Package 'metaBMA'

September 13, 2023

Type Package

Date 2023-09-12

Title Bayesian Model Averaging for Random and Fixed Effects Meta-Analysis

Version 0.6.9

Description Computes the posterior model probabilities for standard meta-analysis models (null model vs. alternative model assuming either fixed- or random-effects, respectively). These posterior probabilities are used to estimate the overall mean effect size as the weighted average of the mean effect size estimates of the random- and fixed-effect model as proposed by Gronau, Van Erp, Heck, Cesario, Jonas, & Wagenmakers (2017, <doi:10.1080/23743603.2017.1326760>). The user can define a wide range of non-informative or informative priors for the mean effect size and the heterogeneity coefficient. Moreover, using pre-compiled Stan models, meta-analysis with continuous and discrete moderators with Jeffreys-Zellner-Siow (JZS) priors can be fitted and tested. This allows to compute Bayes factors and perform Bayesian model averaging across random- and fixed-effects meta-analysis, see Gronau, Heck, Berkhout, Haaf, & Wagenmak-ers (2021, <doi:10.1177/25152459211031256>).

Depends R (>= 4.0.0), Rcpp (>= 1.0.0), methods

Imports bridgesampling, coda, LaplacesDemon, logspline, mvtnorm, RcppParallel (>= 5.0.1), rstan (>= 2.26.0), rstantools (>= 2.3.0)

Suggests testthat, knitr, rmarkdown, spelling

LinkingTo BH (>= 1.78.0), Rcpp (>= 1.0.0), RcppEigen (>= 0.3.3.9.1), RcppParallel (>= 5.0.1), rstan (>= 2.26.0), StanHeaders (>= 2.26.0)

VignetteBuilder knitr

```
URL https://github.com/danheck/metaBMA,
```

https://danheck.github.io/metaBMA/

License GPL-3

Encoding UTF-8

LazyData true

NeedsCompilation yes

SystemRequirements GNU make

Biarch true

Language en-US

RoxygenNote 7.2.3

Author Daniel W. Heck [aut, cre] (<https://orcid.org/0000-0002-6302-9252>), Quentin F. Gronau [ctb], Eric-Jan Wagenmakers [ctb], Indrajeet Patil [ctb] (<https://orcid.org/0000-0003-1995-6531>)

Maintainer Daniel W. Heck <daniel.heck@uni-marburg.de>

Repository CRAN

Date/Publication 2023-09-13 07:20:02 UTC

R topics documented:

metaBMA-package	3
bma	4
facial_feedback	5
inclusion	6
meta_bma	7
meta_default	9
meta_fixed	11
meta_ordered	13
meta_random	15
meta_sensitivity	17
plot.meta_pred	19
plot.meta_sensitivity	19
plot.prior	20
plot_default	21
plot_forest	21
plot_posterior	22
power_pose	23
predicted_bf	24
prior	25
towels	26
transform_es	27

Index

2

metaBMA-package

metaBMA: Bayesian Model Averaging for Random and Fixed Effects Meta-Analysis

Description

Fixed-effects meta-analyses assume that the effect size d is identical in all studies. In contrast, random-effects meta-analyses assume that effects vary according to a normal distribution with mean d and standard deviation τ . Both models can be compared in a Bayesian framework by assuming specific prior distribution for d and τ (see prior). Given the posterior model probabilities, the evidence for or against an effect (i.e., whether d = 0) and the evidence for or against random effects can be evaluated (i.e., whether $\tau = 0$). By using Bayesian model averaging, both tests can be performed by integrating over the other model. This allows to test whether an effect exists while accounting for uncertainty whether study heterogeneity exists (so-called inclusion Bayes factors). For a primer on Bayesian model-averaged meta-analysis, see Gronau, Heck, Berkhout, Haaf, and Wagenmakers (2020).

Details

The most general functions in metaBMA is meta_bma, which fits random- and fixed-effects models, compute the inclusion Bayes factor for the presence of an effect and the averaged posterior distribution of the mean effect d (which accounts for uncertainty regarding study heterogeneity). Prior distributions can be specified and plotted using the function prior.

Moreover, $meta_fixed$ and $meta_random$ fit a single meta-analysis models. The model-specific posteriors for d can be averaged by bma and inclusion Bayes factors be computed by inclusion.

Results can be visualized with the functions plot_posterior, which compares the prior and posterior density for a fitted meta-analysis, and plot_forest, which plots study and overall effect sizes.

For more details how to use the package, see the vignette: vignette("metaBMA").

Funding

Funding for this research was provided by the Berkeley Initiative for Transparency in the Social Sciences, a program of the Center for Effective Global Action (CEGA), Laura and John Arnold Foundation, and by the German Research Foundation (grant GRK-2277: Statistical Modeling in Psychology).

Author(s)

Heck, D. W. & Gronau, Q. F.

References

Gronau, Q. F., Erp, S. V., Heck, D. W., Cesario, J., Jonas, K. J., & Wagenmakers, E.-J. (2017). A Bayesian model-averaged meta-analysis of the power pose effect with informed and default priors: the case of felt power. Comprehensive Results in Social Psychology, 2(1), 123-138. doi:10.1080/23743603.2017.1326760

Gronau, Q. F., Heck, D. W., Berkhout, S. W., Haaf, J. M., & Wagenmakers, E.-J. (2021). A primer on Bayesian model-averaged meta-analysis. Advances in Methods and Practices in Psychological Science, 4(3), 1–19. doi:10.1177/25152459211031256

Heck, D. W., Gronau, Q. F., & Wagenmakers, E.-J. (2019). metaBMA: Bayesian model averaging for random and fixed effects meta-analysis. https://CRAN.R-project.org/package=metaBMA

See Also

Useful links:

- https://github.com/danheck/metaBMA
- https://danheck.github.io/metaBMA/

bma

Bayesian Model Averaging

Description

Model averaging for different meta-analysis models (e.g., random-effects or fixed-effects with different priors) based on the posterior model probability.

Usage

```
bma(
   meta,
   prior = 1,
   parameter = "d",
   summarize = "integrate",
   ci = 0.95,
   rel.tol = .Machine$double.eps^0.5
)
```

meta	list of meta-analysis models (fitted via meta_random or meta_fixed)
prior	prior probabilities over models (possibly unnormalized). For instance, if the first model is as likely as models 2, 3 and 4 together: $prior = c(3,1,1,1)$. The default is a discrete uniform distribution over models.
parameter	either the mean effect "d" or the heterogeneity "tau" (i.e., the across-study standard deviation of population effect sizes).
summarize	how to estimate parameter summaries (mean, median, SD, etc.): Either by nu- merical integration (summarize = "integrate") or based on MCMC/Stan sam- ples (summarize = "stan").
ci	probability for the credibility/highest-density intervals.
rel.tol	relative tolerance used for numerical integration using integrate. Use rel.tol=.Machine\$double.eps for maximal precision (however, this might be slow).

facial_feedback

Examples

```
# model averaging for fixed and random effects
data(towels)
fixed <- meta_fixed(logOR, SE, study, towels)
random <- meta_random(logOR, SE, study, towels)
averaged <- bma(list("fixed" = fixed, "random" = random))
averaged
plot_posterior(averaged)
plot_forest(averaged, mar = c(4.5, 20, 4, .3))</pre>
```

facial_feedback Data Set: Facial Feedback

Description

Preregistered replication (Wagenmakers et al., 2016) that investigated the facial feedback hypothesis (Strack, Martin, & Stepper, 1988).

Usage

facial_feedback

Format

A data frame with three variables:

study Authors of original study (see Wagenmakers et. al, 2016)

d Measure of effect size: Cohen's d (difference between smile vs. pout condition)

SE Measure of precision: standard error of Cohen's d

Details

The facial-feedback hypothesis states that people's affective responses can be influenced by their own facial expression (e.g., smiling, pouting), even when their expression did not result from their emotional experiences (Strack, Martin, & Stepper, 1988).

References

Strack, F., Martin, L. L., & Stepper, S. (1988). Inhibiting and facilitating conditions of the human smile: A nonobtrusive test of the facial feedback hypothesis. Journal of Personality and Social Psychology, 54, 768–777. doi:10.1037/00223514.54.5.768

Wagenmakers, E.-J., Beek, T., Dijkhoff, L., Gronau, Q. F., Acosta, A., Adams, R. B., ... Zwaan, R. A. (2016). Registered replication report: Strack, Martin, & Stepper (1988). Perspectives on Psychological Science, 11, 917-928. doi:10.1177/1745691616674458

Examples

```
data(facial_feedback)
head(facial_feedback)
mf <- meta_fixed(d, SE, study, facial_feedback)
mf
plot_posterior(mf)
```

inclusion

Inclusion Bayes Factor

Description

Computes the inclusion Bayes factor for two sets of models (e.g., A={M1,M2} vs. B={M3,M4}).

Usage

```
inclusion(logml, include = 1, prior = 1)
```

Arguments

logml	a vector with log-marginal likelihoods. Alternatively, a list with meta-analysis models (fitted via meta_random or meta_fixed).
include	integer vector which models to include in inclusion Bayes factor/posterior prob- ability. If only two marginal likelihoods/meta-analyses are supplied, the inclu- sion Bayes factor is identical to the usual Bayes factor BF_{M1,M2}. One can include models depending on the names of the models (such as "random_H1") by providing a character value, for instance: include="H1" (all H1 vs. all H0 models) or include="random" (all random- vs. all fixed-effects models).
prior	prior probabilities over models (possibly unnormalized). For instance, if the first model is as likely as models 2, 3 and 4 together: $prior = c(3,1,1,1)$. The default is a discrete uniform distribution over models.

Examples

```
#### Example with simple Normal-distribution models
# generate data:
x <- rnorm(50)
# Model 1: x ~ Normal(0,1)
logm1 <- sum(dnorm(x, log = TRUE))
# Model 2: x ~ Normal(.2, 1)
logm2 <- sum(dnorm(x, mean = .2, log = TRUE))
# Model 3: x ~ Student-t(df=2)
logm3 <- sum(dt(x, df = 2, log = TRUE))
# BF: Correct (Model 1) vs. misspecified (2 & 3)
inclusion(c(logm1, logm2, logm3), include = 1)</pre>
```

6

meta_bma

Description

Fits random- and fixed-effects meta-analyses and performs Bayesian model averaging for H1 (d != 0) vs. H0 (d = 0).

Usage

```
meta_bma(
  у,
  SE,
  labels,
  data,
  d = prior("cauchy", c(location = 0, scale = 0.707)),
  tau = prior("invgamma", c(shape = 1, scale = 0.15)),
  rscale_contin = 0.5,
  rscale_discrete = 0.707,
  centering = TRUE,
  prior = c(1, 1, 1, 1),
  logml = "integrate",
  summarize = "stan",
  ci = 0.95,
  rel.tol = .Machine$double.eps^0.3,
  logml_iter = 5000,
  silent_stan = TRUE,
  . . .
)
```

у	effect size per study. Can be provided as (1) a numeric vector, (2) the quoted or unquoted name of the variable in data, or (3) a formula to include discrete or continuous moderator variables.
SE	standard error of effect size for each study. Can be a numeric vector or the quoted or unquoted name of the variable in data
labels	optional: character values with study labels. Can be a character vector or the quoted or unquoted name of the variable in data
data	data frame containing the variables for effect size y, standard error SE, labels, and moderators per study.
d	prior distribution on the average effect size d. The prior probability density function is defined via prior.
tau	prior distribution on the between-study heterogeneity tau (i.e., the standard deviation of the study effect sizes dstudy in a random-effects meta-analysis. A (nonnegative) prior probability density function is defined via prior.

<pre>rscale_contin rscale_discrete</pre>	scale parameter of the JZS prior for the continuous covariates.
	scale parameter of the JZS prior for discrete moderators.
centering	whether continuous moderators are centered.
prior	prior probabilities over models (possibly unnormalized) in the order c(fixed_H0, fixed_H1, random_H0, random_H1). For instance, if we expect fixed effects to be two times as likely as random effects and H0 and H1 to be equally likely: prior = c(2,2,1,1).
logml	how to estimate the log-marginal likelihood: either by numerical integration ("integrate") or by bridge sampling using MCMC/Stan samples ("stan"). To obtain high precision with logml="stan", many MCMC samples are required (e.g., logml_iter=10000, warmup=1000).
summarize	how to estimate parameter summaries (mean, median, SD, etc.): Either by nu- merical integration (summarize = "integrate") or based on MCMC/Stan sam- ples (summarize = "stan").
ci	probability for the credibility/highest-density intervals.
rel.tol	relative tolerance used for numerical integration using integrate. Use rel.tol=.Machine\$double.eps for maximal precision (however, this might be slow).
logml_iter	number of iterations (per chain) from the posterior distribution of d and tau. The samples are used for computing the marginal likelihood of the random-effects model with bridge sampling (if logml="stan") and for obtaining parameter estimates (if summarize="stan"). Note that the argument iter=2000 controls the number of iterations for estimation of the random-effect parameters per study in random-effects meta-analysis.
silent_stan	whether to suppress the Stan progress bar.
	further arguments passed to rstan::sampling (see stanmodel-method-sampling). Relevant MCMC settings concern the number of warmup samples that are dis- carded (warmup=500), the total number of iterations per chain (iter=2000), the number of MCMC chains (chains=4), whether multiple cores should be used (cores=4), and control arguments that make the sampling in Stan more robust, for instance: control=list(adapt_delta=.97).

Details

Bayesian model averaging for four meta-analysis models: Fixed- vs. random-effects and H0 (d = 0) vs. H1 (e.g., d > 0). For a primer on Bayesian model-averaged meta-analysis, see Gronau, Heck, Berkhout, Haaf, and Wagenmakers (2020).

By default, the log-marginal likelihood is computed by numerical integration (logml="integrate"). This is relatively fast and gives precise, reproducible results. However, for extreme priors or data (e.g., very small standard errors), numerical integration is not robust and might provide incorrect results. As an alternative, the log-marginal likelihood can be estimated using MCMC/Stan samples and bridge sampling (logml="stan").

To obtain posterior summary statistics for the average effect size d and the heterogeneity parameter tau, one can also choose between numerical integration (summarize="integrate") or MCMC sampling in Stan (summarize="stan"). If any moderators are included in a model, both the marginal likelihood and posterior summary statistics can only be computed using Stan.

meta_default

References

Gronau, Q. F., Erp, S. V., Heck, D. W., Cesario, J., Jonas, K. J., & Wagenmakers, E.-J. (2017). A Bayesian model-averaged meta-analysis of the power pose effect with informed and default priors: the case of felt power. Comprehensive Results in Social Psychology, 2(1), 123-138. doi:10.1080/23743603.2017.1326760

Gronau, Q. F., Heck, D. W., Berkhout, S. W., Haaf, J. M., & Wagenmakers, E.-J. (2021). A primer on Bayesian model-averaged meta-analysis. Advances in Methods and Practices in Psychological Science, 4(3), 1–19. doi:10.1177/25152459211031256

Berkhout, S. W., Haaf, J. M., Gronau, Q. F., Heck, D. W., & Wagenmakers, E.-J. (2023). A tutorial on Bayesian model-averaged meta-analysis in JASP. Behavior Research Methods.

See Also

meta_fixed, meta_random

Examples

```
### Bayesian Model-Averaged Meta-Analysis (H1: d>0)
data(towels)
set.seed(123)
mb <- meta_bma(logOR, SE, study, towels,
    d = prior("norm", c(mean = 0, sd = .3), lower = 0),
    tau = prior("invgamma", c(shape = 1, scale = 0.15))
)
mb
plot_posterior(mb, "d")</pre>
```

meta_default

```
Defaults for Model Averaging in Meta-Analysis
```

Description

Wrapper with default prior for Bayesian meta-analysis. Since version 0.6.6, the default priors for Cohen's d have been changed from a normal distribution with scale=0.3 to a Cauchy distribution with scale=0.707. Moreover, scale adjustments were implemented when using Fisher's z or log odds-ratios.

```
meta_default(y, SE, labels, data, field = "psychology", effect = "d", ...)
```

Arguments

У	effect size per study. Can be provided as (1) a numeric vector, (2) the quoted or unquoted name of the variable in data, or (3) a formula to include discrete or continuous moderator variables.
SE	standard error of effect size for each study. Can be a numeric vector or the quoted or unquoted name of the variable in data
labels	optional: character values with study labels. Can be a character vector or the quoted or unquoted name of the variable in data
data	data frame containing the variables for effect size y, standard error SE, labels, and moderators per study.
field	either"psychology" or "medicine"
effect	the type of effect size used in the meta-analysis: either Cohen's d ("d"), Fisher's z-transformed correlation ("z"), or log odds ratios ("logOR").
	further arguments passed to meta_bma

Details

The prior distribution depends on the scale of the effect size that is used in the meta-analysis (Cohen's d, Fisher's z, or log odds ratio). To ensure that the results are comparable when transforming between different effect sizes (e.g., using the function transform_es), it is necessary to adjust the prior distributions. The present adjustments merely use a linear re-scaling of the priors to achieve approximately invariant results when using different types of effect sizes.

- The distribution of Fisher's z is approximately half as wide as the distribution of Cohen's d and hence the prior scale parameter is divided by two.
- The distribution of the log odds ratio is approximately pi / sqrt(3) = 1.81 times as wide as the distribution of Cohen's d. Hence, the prior scale parameter is doubled by this factor.

For field = "psychology", this results in the following defaults:

- effect = "d" (Cohen's d): Cauchy distribution with scale=0.707 on the overall effect size (parameter d) and inverse gamma distribution with shape=1 and scale=0.15 on the standard deviation of effect sizes across studies (parameter tau).
- effect = "z" (Fisher's z): Cauchy distribution with scale=0.354 on d and inverse gamma with shape=1 and scale=0.075 on tau.
- effect = "logOR" (log odds ratio): Cauchy distribution with scale=1.283 on d and inverse gamma with shape=1 and scale=0.272 on tau.

Currently, the same priors are used when specifying field = "medicine".

Default prior distributions can be plotted using plot_default.

References

Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Converting among effect sizes. In Introduction to Meta-Analysis (pp. 45–49). John Wiley & Sons, Ltd. doi:10.1002/9780470743386.ch7

meta_fixed

Gronau, Q. F., Erp, S. V., Heck, D. W., Cesario, J., Jonas, K. J., & Wagenmakers, E.-J. (2017). A Bayesian model-averaged meta-analysis of the power pose effect with informed and default priors: the case of felt power. Comprehensive Results in Social Psychology, 2(1), 123-138. doi:10.1080/23743603.2017.1326760

See Also

meta_bma, plot_default, transform_es

Examples

```
data(towels)
set.seed(123)
md <- meta_default(logOR, SE, study, towels,
    field = "psychology", effect = "logOR"
)
md
plot_forest(md)</pre>
```

meta_fixed

Bayesian Fixed-Effects Meta-Analysis

Description

Runs a Bayesian meta-analysis assuming that the mean effect d in each study is identical (i.e., a fixed-effects analysis).

```
meta_fixed(
  у,
  SE,
  labels,
  data,
  d = prior("cauchy", c(location = 0, scale = 0.707)),
  rscale_contin = 1/2,
  rscale_discrete = 0.707,
  centering = TRUE,
  logml = "integrate",
  summarize = "integrate",
  ci = 0.95,
  rel.tol = .Machine$double.eps^0.3,
  silent_stan = TRUE,
  . . .
)
```

Arguments

yeffect size per study. Can be provided as (1) a numeric vector, (2) the quoted or unquoted name of the variable in data, or (3) a formula to include discrete or continuous moderator variables.SEstandard error of effect size for each study. Can be a numeric vector or the quoted or unquoted name of the variable in datalabelsoptional: character values with study labels. Can be a character vector or the quoted or unquoted name of the variable in datadatadata frame containing the variables for effect size y, standard error SE, labels, and moderators per study.dprior distribution on the average effect size d. The prior probability density function is defined via prior.rscale_continscale parameter of the JZS prior for the continuous covariates.rscale_discreterscale parameter of the JZS prior for discrete moderators.centeringwhether continuous moderators are centered.logmlhow to estimate the log-marginal likelihood: either by numerical integration ("integrate") or by bridge sampling using MCMC/Stan samples ("stan"). To obtain high precision with logml="stan", many MCMC samples are required (e.g., logml_iter=10000, warmup=1000).summarizehow to estimate parameter summaries (mean, median, SD, etc.): Either by nu- merical integration (summarize = "integrate") or based on MCMC/Stan sam- ples (summarize = "stan").cirobability for the credibility/highest-density intervals.rel.tolrelative tolerance used for stan::sampling (see standoel=method=sampling).silent_stanwhether to suppress that progress barfurther arguments passed to rstan::sampling (see standoel=method=sampling). Relevant MCMC estanis (chains=4)		
quoted or unquoted name of the variable in datalabelsoptional: character values with study labels. Can be a character vector or the quoted or unquoted name of the variable in datadatadata frame containing the variables for effect size y, standard error SE, labels, and moderators per study.dprior distribution on the average effect size d. The prior probability density function is defined via prior.rscale_continscale parameter of the JZS prior for the continuous covariates.rscale_discretescale parameter of the JZS prior for discrete moderators.centeringwhether continuous moderators are centered.logmlhow to estimate the log-marginal likelihood: either by numerical integration ("integrate") or by bridge sampling using MCMC/Stan samples ("stan"). To obtain high precision with logml="stan", many MCMC samples are required (e.g., logml_iter=10000, warmup=1000).summarizehow to estimate parameter summaries (mean, median, SD, etc.): Either by nu- merical integration (summarize = "integrate") or based on MCMC/Stan sam- ples (summarize = "stan").ciprobability for the credibility/highest-density intervals.rel.tolrelative tolerance used for numerical integration using integrate. Use rel.tol=.Machine\$double.eps for maximal precision (however, this might be slow).silent_stanwhether to suppress the Stan progress barfurther arguments passed to rstan::sampling (see stanmodel-method-sampling). Relevant MCMC settings concern the number of warmup samples that are dis- carded (warmup=500), the total number of iterations per cahou, liter=2000), the number of MCMC chains (chains=4), whether multiple cores should be used (cores=4), and control argum	У	unquoted name of the variable in data, or (3) a formula to include discrete or
quoted or unquoted name of the variable in datadatadata frame containing the variables for effect size y, standard error SE, labels, and moderators per study.dprior distribution on the average effect size d. The prior probability density function is defined via prior.rscale_continscale parameter of the JZS prior for the continuous covariates.rscale_discretescale parameter of the JZS prior for discrete moderators.centeringwhether continuous moderators are centered.logmlhow to estimate the log-marginal likelihood: either by numerical integration ("integrate") or by bridge sampling using MCMC/Stan samples ("stan"). To obtain high precision with logml="stan", many MCMC samples are required (e.g., logml_iter=10000, warmup=1000).summarizehow to estimate parameter summaries (mean, median, SD, etc.): Either by nu- merical integration (summarize = "integrate") or based on MCMC/Stan sam- ples (summarize = "stan").ciprobability for the credibility/highest-density intervals.rel.tolrelative tolerance used for numerical integration using integrate. Use rel.tol=.Machine\$double.eps for maximal precision (however, this might be slow).silent_stanwhether to suppress the Stan progress barfurther arguments passed to rstan::sampling (see stanmodel-method-sampling). Relevant MCMC settings concern the number of warmup samples that are disc carded (warmup=500), the total number of iteraions per chain (iter=2000), the number of MCMC chains (chains=4), whether multiple cores should be used (cores=4), and control arguments that make the sampling in Stan more robust,	SE	·
and moderators per study. d prior distribution on the average effect size d. The prior probability density function is defined via prior. rscale_contin scale parameter of the JZS prior for the continuous covariates. rscale_discrete scale parameter of the JZS prior for discrete moderators. centering whether continuous moderators are centered. logml how to estimate the log-marginal likelihood: either by numerical integration ("integrate") or by bridge sampling using MCMC/Stan samples ("stan"). To obtain high precision with logml="stan", many MCMC samples are required (e.g., logml_iter=10000, warmup=1000). summarize how to estimate parameter summaries (mean, median, SD, etc.): Either by numerical integration (summarize = "integrate") or based on MCMC/Stan samples (summarize = "stan"). ci probability for the credibility/highest-density intervals. rel.tol relative tolerance used for numerical integration using integrate. Use rel.tol=.Machine\$double.eps for maximal precision (however, this might be slow). silent_stan whether to suppress the Stan progress bar. further arguments passed to rstan::sampling (see stanmodel-method-sampling). Relevant MCMC settings concern the number of iterations per chain (iter=2000), the number of MCMC/C chains (chains=4), whether multiple cores should be used (cores=4), and control arguments that make the sampling in Stan more robust,	labels	
function is defined via prior. rscale_contin scale parameter of the JZS prior for the continuous covariates. rscale_discrete scale parameter of the JZS prior for discrete moderators. centering whether continuous moderators are centered. logml how to estimate the log-marginal likelihood: either by numerical integration ("integrate") or by bridge sampling using MCMC/Stan samples ("stan"). To obtain high precision with logml="stan", many MCMC samples are required (e.g., logml_iter=10000, warmup=1000). summarize how to estimate parameter summaries (mean, median, SD, etc.): Either by numerical integration (summarize = "integrate") or based on MCMC/Stan samples (summarize = "stan"). ci probability for the credibility/highest-density intervals. rel.tol relative tolerance used for numerical integration using integrate. Use rel.tol=.Machine\$double.eps for maximal precision (however, this might be slow). silent_stan whether to suppress the Stan progress bar. further arguments passed to rstan::sampling (see stanmodel-method-sampling). Relevant MCMC settings concern the number of warmup samples that are discarded (warmup=500), the number of iterations per chain (iter=2000), the number of MCMC chains (chains=4), whether multiple cores should be used (cores=4), and control arguments that make the sampling in Stan more robust,	data	6
rscale_discrete scale parameter of the JZS prior for discrete moderators. centering whether continuous moderators are centered. logml how to estimate the log-marginal likelihood: either by numerical integration ("integrate") or by bridge sampling using MCMC/Stan samples ("stan"). To obtain high precision with logml="stan", many MCMC samples are required (e.g., logml_iter=10000, warmup=1000). summarize how to estimate parameter summaries (mean, median, SD, etc.): Either by numerical integration (summarize = "integrate") or based on MCMC/Stan samples (summarize = "stan"). ci probability for the credibility/highest-density intervals. rel.tol relative tolerance used for numerical integration using integrate. Use rel.tol=.Machine\$double.eps for maximal precision (however, this might be slow). silent_stan whether to suppress the Stan progress bar. further arguments passed to rstan::sampling (see stanmodel-method-sampling). Relevant MCMC settings concern the number of warmup samples that are discarded (warmup=560), the total number of iterations per chain (iter=2000), the number of MCMC chains (chains=4), whether multiple cores should be used (cores=4), and control arguments that make the sampling in Stan more robust,	d	
centeringwhether continuous moderators are centered.logmlhow to estimate the log-marginal likelihood: either by numerical integration ("integrate") or by bridge sampling using MCMC/Stan samples ("stan"). To obtain high precision with logml="stan", many MCMC samples are required (e.g., logml_iter=10000, warmup=1000).summarizehow to estimate parameter summaries (mean, median, SD, etc.): Either by nu- merical integration (summarize = "integrate") or based on MCMC/Stan sam- ples (summarize = "stan").ciprobability for the credibility/highest-density intervals.rel.tolrelative tolerance used for numerical integration using integrate. Use rel.tol=.Machine\$double.eps for maximal precision (however, this might be slow).silent_stanwhether to suppress the Stan progress barfurther arguments passed to rstan::sampling (see stanmodel-method-sampling). Relevant MCMC settings concern the number of warmup samples that are discarded (warmup=500), the total number of iterations per chain (iter=2000), the number of MCMC chains (chains=4), whether multiple cores should be used (cores=4), and control arguments that make the sampling in Stan more robust,		• •
 how to estimate the log-marginal likelihood: either by numerical integration ("integrate") or by bridge sampling using MCMC/Stan samples ("stan"). To obtain high precision with logml="stan", many MCMC samples are required (e.g., logml_iter=10000, warmup=1000). summarize how to estimate parameter summaries (mean, median, SD, etc.): Either by nu- merical integration (summarize = "integrate") or based on MCMC/Stan sam- ples (summarize = "stan"). ci probability for the credibility/highest-density intervals. rel.tol relative tolerance used for numerical integration using integrate. Use rel.tol=.Machine\$double.eps for maximal precision (however, this might be slow). silent_stan whether to suppress the Stan progress bar. further arguments passed to rstan::sampling (see stanmodel-method-sampling). Relevant MCMC settings concern the number of warmup samples that are dis- carded (warmup=500), the total number of iterations per chain (iter=2000), the number of MCMC chains (chains=4), whether multiple cores should be used (cores=4), and control arguments that make the sampling in Stan more robust, 		scale parameter of the JZS prior for discrete moderators.
 ("integrate") or by bridge sampling using MCMC/Stan samples ("stan"). To obtain high precision with logml="stan", many MCMC samples are required (e.g., logml_iter=10000, warmup=1000). summarize how to estimate parameter summaries (mean, median, SD, etc.): Either by numerical integration (summarize = "integrate") or based on MCMC/Stan samples (summarize = "stan"). ci probability for the credibility/highest-density intervals. rel.tol relative tolerance used for numerical integration using integrate. Use rel.tol=.Machine\$double.eps for maximal precision (however, this might be slow). silent_stan whether to suppress the Stan progress bar. further arguments passed to rstan::sampling (see stanmodel-method-sampling). Relevant MCMC settings concern the number of warmup samples that are discarded (warmup=500), the total number of iterations per chain (iter=2000), the number of MCMC chains (chains=4), whether multiple cores should be used (cores=4), and control arguments that make the sampling in Stan more robust, 	centering	whether continuous moderators are centered.
merical integration (summarize = "integrate") or based on MCMC/Stan samples (summarize = "stan").ciprobability for the credibility/highest-density intervals.rel.tolrelative tolerance used for numerical integration using integrate. Use rel.tol=.Machine\$double.eps for maximal precision (however, this might be slow).silent_stanwhether to suppress the Stan progress barfurther arguments passed to rstan::sampling (see stanmodel-method-sampling). Relevant MCMC settings concern the number of warmup samples that are discarded (warmup=500), the total number of iterations per chain (iter=2000), the number of MCMC chains (chains=4), whether multiple cores should be used (cores=4), and control arguments that make the sampling in Stan more robust,	logml	("integrate") or by bridge sampling using MCMC/Stan samples ("stan"). To obtain high precision with logml="stan", many MCMC samples are required
<pre>rel.tol relative tolerance used for numerical integration using integrate. Use rel.tol=.Machine\$double.eps for maximal precision (however, this might be slow). silent_stan whether to suppress the Stan progress bar further arguments passed to rstan::sampling (see stanmodel-method-sampling). Relevant MCMC settings concern the number of warmup samples that are dis- carded (warmup=500), the total number of iterations per chain (iter=2000), the number of MCMC chains (chains=4), whether multiple cores should be used (cores=4), and control arguments that make the sampling in Stan more robust,</pre>	summarize	merical integration (summarize = "integrate") or based on MCMC/Stan sam-
for maximal precision (however, this might be slow). silent_stan whether to suppress the Stan progress bar. further arguments passed to rstan::sampling (see stanmodel-method-sampling). Relevant MCMC settings concern the number of warmup samples that are dis- carded (warmup=500), the total number of iterations per chain (iter=2000), the number of MCMC chains (chains=4), whether multiple cores should be used (cores=4), and control arguments that make the sampling in Stan more robust,	ci	probability for the credibility/highest-density intervals.
further arguments passed to rstan::sampling (see stanmodel-method-sampling). Relevant MCMC settings concern the number of warmup samples that are discarded (warmup=500), the total number of iterations per chain (iter=2000), the number of MCMC chains (chains=4), whether multiple cores should be used (cores=4), and control arguments that make the sampling in Stan more robust,	rel.tol	relative tolerance used for numerical integration using integrate. Use rel.tol=.Machine\$double.eps for maximal precision (however, this might be slow).
Relevant MCMC settings concern the number of warmup samples that are dis- carded (warmup=500), the total number of iterations per chain (iter=2000), the number of MCMC chains (chains=4), whether multiple cores should be used (cores=4), and control arguments that make the sampling in Stan more robust,	silent_stan	whether to suppress the Stan progress bar.
		Relevant MCMC settings concern the number of warmup samples that are dis- carded (warmup=500), the total number of iterations per chain (iter=2000), the number of MCMC chains (chains=4), whether multiple cores should be used (cores=4), and control arguments that make the sampling in Stan more robust,

Examples

```
### Bayesian Fixed-Effects Meta-Analysis (H1: d>0)
data(towels)
mf <- meta_fixed(logOR, SE, study,
    data = towels,
    d = prior("norm", c(mean = 0, sd = .3), lower = 0)
)
mf
plot_posterior(mf)
plot_forest(mf)</pre>
```

meta_ordered

Description

Computes the Bayes factor for the hypothesis that the true study effects in a random-effects metaanalysis are all positive or negative.

Usage

```
meta_ordered(
 у,
  SE,
 labels,
 data,
 d = prior("norm", c(mean = 0, sd = 0.3), lower = 0),
  tau = prior("invgamma", c(shape = 1, scale = 0.15)),
 prior = c(1, 1, 1, 1),
  logml = "integrate",
  summarize = "stan",
  ci = 0.95,
  rel.tol = .Machine$double.eps^0.3,
  logml_iter = 5000,
  iter = 5000,
  silent_stan = TRUE,
  . . .
)
```

у	effect size per study. Can be provided as (1) a numeric vector, (2) the quoted or unquoted name of the variable in data, or (3) a formula to include discrete or continuous moderator variables.
SE	standard error of effect size for each study. Can be a numeric vector or the quoted or unquoted name of the variable in data
labels	optional: character values with study labels. Can be a character vector or the quoted or unquoted name of the variable in data
data	data frame containing the variables for effect size y, standard error SE, labels, and moderators per study.
d	prior distribution on the average effect size d. The prior probability density function is defined via prior.
tau	prior distribution on the between-study heterogeneity tau (i.e., the standard deviation of the study effect sizes dstudy in a random-effects meta-analysis. A (nonnegative) prior probability density function is defined via prior.

prior	prior probabilities over models (possibly unnormalized) in the order c(fixed_H0, fixed_H1, ordered_H1, random_H1). Note that the model random_H0 is not included in the comparison.
logml	how to estimate the log-marginal likelihood: either by numerical integration ("integrate") or by bridge sampling using MCMC/Stan samples ("stan"). To obtain high precision with logml="stan", many MCMC samples are required (e.g., logml_iter=10000, warmup=1000).
summarize	how to estimate parameter summaries (mean, median, SD, etc.): Either by nu- merical integration (summarize = "integrate") or based on MCMC/Stan sam- ples (summarize = "stan").
ci	probability for the credibility/highest-density intervals.
rel.tol	relative tolerance used for numerical integration using integrate. Use rel.tol=.Machine\$double.eps for maximal precision (however, this might be slow).
logml_iter	number of iterations (per chain) from the posterior distribution of d and tau. The samples are used for computing the marginal likelihood of the random-effects model with bridge sampling (if logml="stan") and for obtaining parameter estimates (if summarize="stan"). Note that the argument iter=2000 controls the number of iterations for estimation of the random-effect parameters per study in random-effects meta-analysis.
iter	number of MCMC iterations for the random-effects meta-analysis. Needs to be larger than usual to estimate the probability of all random effects being ordered (i.e., positive or negative).
silent_stan	whether to suppress the Stan progress bar.
	further arguments passed to rstan::sampling (see stanmodel-method-sampling). Relevant MCMC settings concern the number of warmup samples that are dis- carded (warmup=500), the total number of iterations per chain (iter=2000), the number of MCMC chains (chains=4), whether multiple cores should be used (cores=4), and control arguments that make the sampling in Stan more robust, for instance: control=list(adapt_delta=.97).

Details

Usually, in random-effects meta-analysis, the study-specific random-effects are allowed to be both negative or positive even when the prior on the overall effect size d is truncated to be positive). In contrast, the function meta_ordered fits and tests a model in which the random effects are forced to be either all positive or all negative. The direction of the study-specific random-effects is defined via the prior on the mode of the truncated normal distribution d. For instance, d=prior("norm", c(0, .5), lower=0) means that all random-effects are positive (not just the overall mean effect size).

The posterior summary statistics of the overall effect size in the model ordered refer to the the *av*erage/mean of the study-specific effect sizes (as implied by the fitted truncated normal distribution) and *not* to the location parameter d of the truncated normal distribution (which is only the mode, not the expected value of a truncated normal distribution).

The Bayes factor for the order-constrained model is computed using the encompassing Bayes factor. Since many posterior samples are required for this approach, the default number of MCMC iterations for meta_ordered is iter=5000 per chain.

meta_random

References

Haaf, J. M., & Rouder, J. N. (2018). Some do and some don't? Accounting for variability of individual difference structures. Psychonomic Bulletin & Review, 26, 772–789. doi:10.3758/s13423-0181522x

See Also

meta_bma, meta_random

Examples

```
### Bayesian Meta-Analysis with Order Constraints (H1: d>0)
data(towels)
set.seed(123)
mo <- meta_ordered(logOR, SE, study, towels,
    d = prior("norm", c(mean = 0, sd = .3), lower = 0)
)
mo
plot_posterior(mo)</pre>
```

meta_random

Bayesian Random-Effects Meta-Analysis

Description

Bayesian meta-analysis assuming that the effect size d varies across studies with standard deviation τ (i.e., a random-effects model).

```
meta_random(
  у,
  SE,
  labels,
  data,
  d = prior("cauchy", c(location = 0, scale = 0.707)),
  tau = prior("invgamma", c(shape = 1, scale = 0.15)),
  rscale_contin = 0.5,
  rscale_discrete = 0.707,
  centering = TRUE,
  logml = "integrate",
  summarize = "stan",
  ci = 0.95,
  rel.tol = .Machine$double.eps^0.3,
  logml_iter = 5000,
  silent_stan = TRUE,
```

) ...

у	effect size per study. Can be provided as (1) a numeric vector, (2) the quoted or unquoted name of the variable in data, or (3) a formula to include discrete or continuous moderator variables.
SE	standard error of effect size for each study. Can be a numeric vector or the quoted or unquoted name of the variable in data
labels	optional: character values with study labels. Can be a character vector or the quoted or unquoted name of the variable in data
data	data frame containing the variables for effect size y, standard error SE, labels, and moderators per study.
d	prior distribution on the average effect size d. The prior probability density function is defined via prior.
tau	prior distribution on the between-study heterogeneity tau (i.e., the standard deviation of the study effect sizes dstudy in a random-effects meta-analysis. A (nonnegative) prior probability density function is defined via prior.
rscale_contin rscale_discret	scale parameter of the JZS prior for the continuous covariates.
	scale parameter of the JZS prior for discrete moderators.
centering	whether continuous moderators are centered.
logml	how to estimate the log-marginal likelihood: either by numerical integration ("integrate") or by bridge sampling using MCMC/Stan samples ("stan"). To obtain high precision with logml="stan", many MCMC samples are required (e.g., logml_iter=10000, warmup=1000).
summarize	how to estimate parameter summaries (mean, median, SD, etc.): Either by nu- merical integration (summarize = "integrate") or based on MCMC/Stan sam- ples (summarize = "stan").
ci	probability for the credibility/highest-density intervals.
rel.tol	relative tolerance used for numerical integration using integrate. Use rel.tol=.Machine\$double.eps for maximal precision (however, this might be slow).
logml_iter	number of iterations (per chain) from the posterior distribution of d and tau. The samples are used for computing the marginal likelihood of the random-effects model with bridge sampling (if logml="stan") and for obtaining parameter estimates (if summarize="stan"). Note that the argument iter=2000 controls the number of iterations for estimation of the random-effect parameters per study in random-effects meta-analysis.
silent_stan	whether to suppress the Stan progress bar.
	further arguments passed to rstan::sampling (see stanmodel-method-sampling). Relevant MCMC settings concern the number of warmup samples that are dis- carded (warmup=500), the total number of iterations per chain (iter=2000), the number of MCMC chains (chains=4), whether multiple cores should be used (cores=4), and control arguments that make the sampling in Stan more robust, for instance: control=list(adapt_delta=.97).

meta_sensitivity

Examples

```
### Bayesian Random-Effects Meta-Analysis (H1: d>0)
data(towels)
set.seed(123)
mr <- meta_random(logOR, SE, study,
    data = towels,
    d = prior("norm", c(mean = 0, sd = .3), lower = 0),
    tau = prior("invgamma", c(shape = 1, scale = 0.15))
)
mr
plot_posterior(mr)</pre>
```

meta_sensitivity Sensitivity Analysis for Bayesian Meta-Analysis

Description

Sensitivity analysis assuming different prior distributions for the two main parameters of a Bayesian meta-analysis (i.e., the overall effect and the heterogeneity of effect sizes across studies).

Usage

```
meta_sensitivity(
   y,
   SE,
   labels,
   data,
   d_list,
   tau_list,
   analysis = "bma",
   combine_priors = "crossed",
   ...
)
```

У	effect size per study. Can be provided as (1) a numeric vector, (2) the quoted or unquoted name of the variable in data, or (3) a formula to include discrete or continuous moderator variables.
SE	standard error of effect size for each study. Can be a numeric vector or the quoted or unquoted name of the variable in data
labels	optional: character values with study labels. Can be a character vector or the quoted or unquoted name of the variable in data
data	data frame containing the variables for effect size y, standard error SE, labels, and moderators per study.

d_list	a list of prior distributions specified via prior() for the overall effect size (mean) across studies
tau_list	a list of prior distributions specified via $\verb"prior()$ for the heterogeneity (SD) of effect sizes across studies
analysis	which type of meta-analysis should be performed for analysis? Can be one of the following:
	"fixed" for fixed-effects model, see meta_fixed()
	 "random" for random-effects model, see meta_random()
	 "bma" for model averaging, see meta_bma()
combine_priors	either "matched", in which case the analysis includes the <i>matched</i> pairwise combinations of the prior distributions specified in d_list and tau_list, or crossed, in which case the analysis uses <i>all possible</i> pairwise combinations of priors.
	further arguments passed to the function specified in analysis.

Value

an object of the S3 class meta_sensitivity, that is, a list of fitted meta-analysis models. Results can be printed or plotted using plot.meta_sensitivity().

See Also

plot.meta_sensitivity()

Examples

plot.meta_pred

Description

Plot Predicted Bayes Factors

Usage

```
## S3 method for class 'meta_pred'
plot(x, which = "BF.inclusion", scale = "BF", ...)
```

Arguments

x	an object of the class "prediction" which contains observed and predicted Bayes factors
which	a character value defining which Bayes factor to plot. Some options are:
	• "BF.inclusion" = model averaging across fixed- and random-effects models
	• "BF.fixed_H1.fixed_H0" = consider only fixed-effects model
	 "BF.random_H1.random_H0" = consider only fixed-effects model
scale	either plot Bayes factors ("BF"), inverse Bayes factors ("1/BF"), log Bayes factors ("log"), or the log-inverse Bayes factor ("1/log")
•••	arguments passed to plot

plot.meta_sensitivity Plot Sensitivity Analysis for Meta-Analysis

Description

Plot prior or posterior distributions of multiple analyses performed with meta_sensitivity().

```
## S3 method for class 'meta_sensitivity'
plot(
    x,
    parameter = "d",
    distribution = "posterior",
    from,
    to,
    n = 101,
    legend = TRUE,
    ...
)
```

Arguments

х	prior probability density function defined via prior.
parameter	which parameter should be plotted: "d" or "tau".
distribution	which distribution should be plotted: "prior" or "posterior".
from	lower boundary
to	upper boundary
n	integer; the number of x values at which to evaluate.
legend	whether to print all prior specifications and plot a corresponding legend.
	further arguments passed to plot

Details

For meta-analysis with model averaging via meta_bma(), plotting the model-averaged posterior of tau is not yet supported. Instead, the posterior distributions for the random effects models will be plotted.

See Also

meta_sensitivity()

plot.prior

Plot Prior Distribution

Description

Plot the probability density function of a prior distribution.

Usage

S3 method for class 'prior'
plot(x, from, to, ...)

Arguments

x	prior probability density function defined via prior.
from	lower boundary
to	upper boundary
	further arguments passed to plot

Examples

```
p1 <- prior("t", c(location = 0, scale = 0.707, nu = 1), 0, 3)
plot(p1, 0, 2)</pre>
```

```
# define custom prior pdf up to a constant:
p2 <- prior("custom", function(x) x^.5, 0, .5)
plot(p2)
```

20

plot_default

Description

Plots default priors for the mean effect d and the standard deviation of effects tau.

Usage

```
plot_default(field = "psychology", effect = "d", ...)
```

Arguments

field	either"psychology" or "medicine"
effect	the type of effect size used in the meta-analysis: either Cohen's d ("d"), Fisher's z-transformed correlation ("z"), or log odds ratios ("logOR").
•••	further arguments passed to plot (e.g., from, to)

See Also

meta_default for details on standard priors.

Examples

plot_default(field = "psychology", effect = "d")

plot_forest

Forest Plot for Meta-Analysis

Description

Plots estimated effect sizes for all studies.

```
plot_forest(
    meta,
    from,
    to,
    shrinked = "random",
    summary = c("mean", "hpd"),
    mar = c(4.5, 12, 4, 0.3),
    cex.axis = 1,
    ...
)
```

Arguments

meta	fitted meta-analysis model
from	lower limit of the x-axis
to	upper limit of the x-axis
shrinked	which meta-analysis model should be used to show (shrinked) estimates of the study effect sizes. The name must match the corresponding name in the list meta. Can be suppressed by shrinked = ""
summary	character vector with two values: first, either "mean" or "50%"; and second, either highest-probability-density interval "hpd" or the Bayesian credibility interval "bci".
mar	margin of the plot in the order c(bottom, left, top, right) (see par)
cex.axis	size of the y-axis annotation for the labels of studies.
	arguments passed to plot (e.g., from, to)

See Also

meta_bma, meta_fixed, meta_random

Examples

```
data(towels)
mf <- meta_fixed(logOR, SE, study, towels)
plot_forest(mf, mar = c(4.5, 20, 4, .2), xlab = "Log Odds Ratio")</pre>
```

plot_posterior Plot Posterior Distribution

Description

Plot Posterior Distribution

```
plot_posterior(
   meta,
   parameter = "d",
   from,
   to,
   summary = c("mean", "hpd"),
   ...
)
```

power_pose

Arguments

meta	fitted meta-analysis model
parameter	only for random-effects model: whether to plot "d" or "tau"
from	lower limit of the x-axis
to	upper limit of the x-axis
summary	character vector with two values: first, either "mean" or "50%"; and second, either highest-probability-density interval "hpd" or the Bayesian credibility interval "bci".
	arguments passed to plot

See Also

meta_bma, meta_fixed, meta_random

```
power_pose
```

Data Set: Power Pose Effect

Description

Includes six pre-registered replication studies testing whether participants feel more powerful if they adopt expansive as opposed to constrictive body postures. In the data set power_pose_unfamiliar, only those participants are included who were unfamiliar with the power pose effect.

Usage

power_pose

power_pose_unfamiliar

Format

A data frame with three variables:

study Authors of original study

n_high_power number of participants in high-power condition

n_low_power number of participants in low-power condition

mean_high_power mean rating in high-power condition on a 5-point Likert scale

mean_low_power mean rating in low-power condition on a 5-point Likert scale

sd_high_power standard deviation of ratings in high-power condition

sd_low_power standard deviation of ratings in low-power condition

t_value t-value for two-sample t-test

df degrees of freedom for two-sample t-test

two_sided_p_value two-sided p-value of two-sample t-test

one_sided_p_value one-sided p-value of two-sample t-test

effectSize Cohen's d, the standardized effect size (high vs. low power)

SE Standard error of Cohen's d

Data frame with 6 rows and 13 variables

An object of class data. frame with 6 rows and 13 columns.

Details

See Carney, Cuddy, and Yap (2010) for more details.

References

Carney, D. R., Cuddy, A. J. C., & Yap, A. J. (2010). Power posing: Brief nonverbal displays affect neuroendocrine levels and risk tolerance. Psychological Science, 21, 1363–1368.

Gronau, Q. F., Erp, S. V., Heck, D. W., Cesario, J., Jonas, K. J., & Wagenmakers, E.-J. (2017). A Bayesian model-averaged meta-analysis of the power pose effect with informed and default priors: the case of felt power. Comprehensive Results in Social Psychology, 2(1), 123-138. doi:10.1080/23743603.2017.1326760

Examples

predicted_bf

Predicted Bayes Factors for a New Study

Description

How much can be learned by an additional study? To judge this, this function samples the distribution of predicted Bayes factors for a new study given the current evidence.

```
predicted_bf(meta, SE, sample = 100, ...)
```

prior

Arguments

meta	model-averaged meta-analysis (fitted with meta_bma).
SE	a scalar: the expected standard error of future study. For instance, $SE = 1/sqrt(N)$ for standardized effect sizes and N = sample size)
sample	number of simulated Bayes factors
	further arguments passed to rstan::sampling to draw posterior samples for d and tau.

prior

Prior Distribution

Description

Defines a prior distribution/probability density function for the average effect size d or for the heterogeneity of effect sizes τ .

Usage

```
prior(
  family,
  param,
  lower,
  upper,
  label = "d",
  rel.tol = .Machine$double.eps^0.5
)
```

family	a character value defining the distribution family.
param	numeric parameters for the distribution. See details for the definition of the parameters of each family.
lower	lower boundary for truncatation of prior density. If family="beta", the interval [0,1] is rescaled to the interval [lower, upper]. Must be specified if family = "custom".
upper	See lower.
label	optional: parameter label.
rel.tol	relative tolerance used for integrating the density of family="custom".

Details

The following prior distributions are currently implemented:

- "norm": Normal distribution with param = c(mean, sd) (see Normal).
- "t": Student's t-distribution with param = c(location, scale, nu) where nu are the degrees
 of freedom (see dist.Student.t).
- "cauchy": Cauchy distribution with param = c(location, scale). The Cauchy distribution is a special case of the t-distribution with degrees of freedom nu=1.
- "gamma": Gamma distribution with param = c(shape, rate) with rate parameter equal to the inverse scale (see GammaDist).
- "invgamma": Inverse gamma distribution with param = c(shape, scale) (see dist.Inverse.Gamma).
- "beta": (Scaled) beta distribution with param = c(shape1, shape2) (see Beta).
- "custom": User-specified prior density function defined by param (see examples; the density must be nonnegative and vectorized, but is normalized internally). Integration is performed from (-Inf, Inf), which requires that the function returns zeros (and not NAs) for values not in the support of the distribution.

Value

an object of the class prior: a density function with the arguments x (parameter values) and log (whether to return density or log-density).

Examples

```
### Half-Normal Distribution
p1 <- prior("norm", c(mean = 0, sd = .3), lower = 0)
p1
p1(c(-1, 1, 3))
plot(p1, -.1, 1)
### Half-Cauchy Distribution
p2 <- prior("cauchy", c(location = 0, scale = .3), lower = 0)
plot(p2, -.5, 3)
### Custom Prior Distribution
p3 <- prior("custom", function(x) x^2, 0, 1)
plot(p3, -.1, 1.2)</pre>
```

towels

Description

Set of studies that investigated whether people reuse towels in hotels more often if they are provided with a descriptive norm (Scheibehenne, Jamil, & Wagenmakers, 2016).

transform_es

Usage

towels

Format

A data frame with three variables:

study Authors of original study (see Scheibehenne et. al, 2016)

logOR Measure of effect size: log-odds ratio of towel reuse (descriptive-social-norm vs. control)

SE Measure of precision: standard error of log-odds ratio per study

Details

Two groups of hotel guests received different messages that encouraged them to reuse their towels. One message simply informed the guests about the benefits of environmental protection (the control condition), and the other message indicated that the majority of guests actually reused their towels in the past (the descriptive-social-norm condition). The results suggested that the latter message facilitated towel reuse.

References

Scheibehenne, B., Jamil, T., & Wagenmakers, E.-J. (2016). Bayesian Evidence Synthesis Can Reconcile Seemingly Inconsistent Results: The Case of Hotel Towel Reuse. Psychological Science, 27, 1043–1046. doi:10.1177/0956797616644081

Examples

data(towels)
head(towels)

transform_es

Transformation of Effect Sizes

Description

Converts between different measures of effect size (i.e., Cohen's d, log odds ratio, Pearson correlation r, and Fisher's z).

Usage

transform_es(y, SE, from, to)

Arguments

У	estimate of the effect size (can be vectorized).
SE	optional: standard error of the effect-size estimate. Must have the same length as y.
from	type of effect-size measure provided by the argument y. Supported effect sizes are Cohen's d ("d"), Fisher's z-transformed correlation ("z"), Pearson's correlation ("r"), or the log odds ratio ("logOR").
to	which type of effect size should be returned (see from).

Details

Note that in in a Bayesian meta-analysis, the prior distributions need to be adapted to the type of effect size. The function meta_default provides modified default prior distributions for different effect size measures which are approximately transformation-invariant (but results may still differ depending on which type of effect size is used for analysis).

Value

If SE is missing, a vector of transformed effect sizes. Otherwise, a matrix with two columns including effect sizes and standard errors.

References

Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Converting among effect sizes. In Introduction to Meta-Analysis (pp. 45–49). John Wiley & Sons, Ltd. doi:10.1002/9780470743386.ch7

See Also

meta_default

Examples

```
# transform a single value of Cohen's
transform_es(y = 0.50, SE = 0.20, from = "d", to = "logOR")
```

```
# towels data set:
transform_es(y = towels$logOR, SE = towels$SE, from = "logOR", to = "d")
```

Index

* datasets facial_feedback, 5 power_pose, 23 towels, 26Beta, 26 bma, 3, 4 dist.Inverse.Gamma, 26 dist.Student.t, 26 facial_feedback, 5 formula, 7, 10, 12, 13, 16, 17 GammaDist, 26 inclusion, 3, 6integrate, 4, 8, 12, 14, 16 meta_bma, 3, 7, 10, 11, 15, 22, 23, 25 meta_bma(), 18, 20 meta_default, 9, 21, 28 meta_fixed, *3*, *4*, *6*, *9*, 11, 22, 23 meta_fixed(), 18 meta_ordered, 13meta_random, 3, 4, 6, 9, 15, 15, 22, 23 meta_random(), 18 meta_sensitivity, 17 meta_sensitivity(), 19, 20 metaBMA (metaBMA-package), 3 metaBMA-package, 3

```
Normal, 26
```

```
par, 22
plot, 19-23
plot.meta_pred, 19
plot.meta_sensitivity, 19
plot.meta_sensitivity(), 18
plot.prior, 20
plot_default, 10, 11, 21
```

plot_forest, 3, 21 plot_posterior, 3, 22 power_pose, 23 power_pose_unfamiliar (power_pose), 23 predicted_bf, 24 prior, 3, 7, 12, 13, 16, 20, 25 prior(), 18

towels, 26 transform_es, *10*, *11*, 27