
Package ‘metR’
May 13, 2025

Type Package

Language en-GB

Title Tools for Easier Analysis of Meteorological Fields

Version 0.18.1

Description Many useful functions and extensions for dealing
with meteorological data in the tidy data framework. Extends 'ggplot2'
for better plotting of scalar and vector fields and provides commonly
used analysis methods in the atmospheric sciences.

License GPL-3

URL https://eliocamp.github.io/metR/

BugReports https://github.com/eliocamp/metR/issues

Depends R (>= 2.10)

Imports checkmate, data.table, digest, Formula, formula.tools, ggplot2
(>= 3.5.0), grid, gtable, memoise, plyr, scales, sf, stringr,
purrr, isoband, lubridate

Suggests maps, covr, irlba, knitr, ncdf4, pkgdown, reshape2, markdown,
testthat (>= 2.1.0), viridis, CFtime, gridExtra, vdiffr, proj4,
kriging, terra, here, gsignal, rnaturalearth

ByteCompile yes

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

VignetteBuilder knitr

NeedsCompilation no

Author Elio Campitelli [cre, aut] (ORCID:
<https://orcid.org/0000-0002-7742-9230>)

Maintainer Elio Campitelli <eliocampitelli@gmail.com>

Repository CRAN

Date/Publication 2025-05-13 06:30:01 UTC

1

https://eliocamp.github.io/metR/
https://github.com/eliocamp/metR/issues
https://orcid.org/0000-0002-7742-9230

2 Contents

Contents
Anomaly . 3
as.discretised_scale . 4
as.path . 9
ConvertLongitude . 10
coriolis . 11
cut.eof . 11
denormalise . 12
Derivate . 12
EOF . 14
EPflux . 17
FitLm . 18
geom_arrow . 19
geom_contour2 . 24
geom_contour_fill . 29
geom_contour_tanaka . 33
geom_label_contour . 37
geom_relief . 41
geom_streamline . 44
geopotential . 50
GeostrophicWind . 51
GetSMNData . 52
GetTopography . 52
Impute2D . 54
ImputeEOF . 54
Interpolate . 56
is.cross . 57
JumpBy . 58
logic . 59
Mag . 60
MakeBreaks . 61
map_labels . 62
MaskLand . 63
metR . 64
Percentile . 65
ReadNetCDF . 66
reverselog_trans . 69
scale_divergent . 70
scale_label_colour_continuous . 72
scale_longitude . 75
scale_mag . 77
season . 78
Smooth2D . 79
spherical . 80
standard_atmosphere . 81
stat_na . 83
stat_subset . 86

Anomaly 3

surface . 88
temperature . 89
thermodynamics . 89
Trajectory . 91
WaveFlux . 92
waves . 93
WrapCircular . 96

Index 98

Anomaly Anomalies

Description

Saves keystrokes for computing anomalies.

Usage

Anomaly(x, baseline = seq_along(x), ...)

Arguments

x numeric vector

baseline logical or numerical vector used for subsetting x before computing the mean

... other arguments passed to mean such as na.rm

Value

A numeric vector of the same length as x with each value’s distance to the mean.

See Also

Other utilities: JumpBy(), Mag(), Percentile(), logic

Examples

Zonal temperature anomaly
library(data.table)
temperature[, .(lon = lon, air.z = Anomaly(air)), by = .(lat, lev)]

4 as.discretised_scale

as.discretised_scale Create discretised versions of continuous scales

Description

This scale allows ggplot to understand data that has been discretised with some procedure akin to
cut and access the underlying continuous values. For a scale that does the opposite (take continuous
data and treat them as discrete) see ggplot2::binned_scale().

Usage

as.discretised_scale(scale_function)

scale_fill_discretised(
...,
low = "#132B43",
high = "#56B1F7",
space = "Lab",
na.value = "grey50",
guide = ggplot2::guide_colorsteps(even.steps = FALSE, show.limits = TRUE),
aesthetics = "fill"

)

scale_fill_divergent_discretised(
...,
low = scales::muted("blue"),
mid = "white",
high = scales::muted("red"),
midpoint = 0,
space = "Lab",
na.value = "grey50",
guide = ggplot2::guide_colorsteps(even.steps = FALSE, show.limits = TRUE)

)

discretised_scale(
aesthetics,
scale_name,
palette,
name = ggplot2::waiver(),
breaks = ggplot2::waiver(),
labels = ggplot2::waiver(),
limits = NULL,
trans = scales::identity_trans(),
na.value = NA,
drop = FALSE,
guide = ggplot2::guide_colorsteps(even.steps = FALSE),
position = "left",

as.discretised_scale 5

rescaler = scales::rescale,
oob = scales::censor,
super = ScaleDiscretised

)

Arguments

scale_function a scale function (e.g. scale_fill_divergent)

... Arguments passed on to continuous_scale

scale_name [Deprecated] The name of the scale that should be used for error
messages associated with this scale.

palette A palette function that when called with a numeric vector with values
between 0 and 1 returns the corresponding output values (e.g., scales::pal_area()).

breaks One of:
• NULL for no breaks
• waiver() for the default breaks computed by the transformation object
• A numeric vector of positions
• A function that takes the limits as input and returns breaks as output

(e.g., a function returned by scales::extended_breaks()). Note that
for position scales, limits are provided after scale expansion. Also ac-
cepts rlang lambda function notation.

minor_breaks One of:
• NULL for no minor breaks
• waiver() for the default breaks (one minor break between each major

break)
• A numeric vector of positions
• A function that given the limits returns a vector of minor breaks. Also

accepts rlang lambda function notation. When the function has two
arguments, it will be given the limits and major breaks.

n.breaks An integer guiding the number of major breaks. The algorithm may
choose a slightly different number to ensure nice break labels. Will only
have an effect if breaks = waiver(). Use NULL to use the default number
of breaks given by the transformation.

labels One of:
• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plot-

math for details.
• A function that takes the breaks as input and returns labels as output.

Also accepts rlang lambda function notation.
limits One of:

• NULL to use the default scale range
• A numeric vector of length two providing limits of the scale. Use NA to

refer to the existing minimum or maximum

6 as.discretised_scale

• A function that accepts the existing (automatic) limits and returns new
limits. Also accepts rlang lambda function notation. Note that setting
limits on positional scales will remove data outside of the limits. If
the purpose is to zoom, use the limit argument in the coordinate system
(see coord_cartesian()).

rescaler A function used to scale the input values to the range [0, 1]. This is
always scales::rescale(), except for diverging and n colour gradients
(i.e., scale_colour_gradient2(), scale_colour_gradientn()). The
rescaler is ignored by position scales, which always use scales::rescale().
Also accepts rlang lambda function notation.

oob One of:
• Function that handles limits outside of the scale limits (out of bounds).

Also accepts rlang lambda function notation.
• The default (scales::censor()) replaces out of bounds values with
NA.

• scales::squish() for squishing out of bounds values into range.
• scales::squish_infinite() for squishing infinite values into range.

trans [Deprecated] Deprecated in favour of transform.
call The call used to construct the scale for reporting messages.
super The super class to use for the constructed scale

low, high Colours for low and high ends of the gradient.

space colour space in which to calculate gradient. Must be "Lab" - other values are
deprecated.

na.value Colour to use for missing values

guide Type of legend. Use "colourbar" for continuous colour bar, or "legend" for
discrete colour legend.

aesthetics Character string or vector of character strings listing the name(s) of the aes-
thetic(s) that this scale works with. This can be useful, for example, to ap-
ply colour settings to the colour and fill aesthetics at the same time, via
aesthetics = c("colour", "fill").

mid colour for mid point

midpoint The midpoint (in data value) of the diverging scale. Defaults to 0.

scale_name [Deprecated] The name of the scale that should be used for error messages
associated with this scale.

palette A palette function that when called with a numeric vector with values between
0 and 1 returns the corresponding output values (e.g., scales::pal_area()).

name The name of the scale. Used as the axis or legend title. If waiver(), the default,
the name of the scale is taken from the first mapping used for that aesthetic. If
NULL, the legend title will be omitted.

breaks One of:

• NULL for no breaks
• waiver() for the default breaks computed by the transformation object
• A numeric vector of positions

as.discretised_scale 7

• A function that takes the limits as input and returns breaks as output (e.g.,
a function returned by scales::extended_breaks()). Note that for po-
sition scales, limits are provided after scale expansion. Also accepts rlang
lambda function notation.

labels One of:

• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plotmath

for details.
• A function that takes the breaks as input and returns labels as output. Also

accepts rlang lambda function notation.

limits One of:

• NULL to use the default scale range
• A numeric vector of length two providing limits of the scale. Use NA to

refer to the existing minimum or maximum
• A function that accepts the existing (automatic) limits and returns new

limits. Also accepts rlang lambda function notation. Note that setting
limits on positional scales will remove data outside of the limits. If the
purpose is to zoom, use the limit argument in the coordinate system (see
coord_cartesian()).

trans [Deprecated] Deprecated in favour of transform.

drop Should unused factor levels be omitted from the scale? The default, TRUE, uses
the levels that appear in the data; FALSE uses all the levels in the factor.

position For position scales, The position of the axis. left or right for y axes, top or
bottom for x axes.

rescaler A function used to scale the input values to the range [0, 1]. This is always
scales::rescale(), except for diverging and n colour gradients (i.e., scale_colour_gradient2(),
scale_colour_gradientn()). The rescaler is ignored by position scales,
which always use scales::rescale(). Also accepts rlang lambda function
notation.

oob One of:

• Function that handles limits outside of the scale limits (out of bounds). Also
accepts rlang lambda function notation.

• The default (scales::censor()) replaces out of bounds values with NA.
• scales::squish() for squishing out of bounds values into range.
• scales::squish_infinite() for squishing infinite values into range.

super The super class to use for the constructed scale

Details

This scale makes it very easy to synchronise the breaks of filled contours and the breaks shown no
the colour guide. Bear in mind that when using geom_contour_fill(), the default fill aesthetic
(level_mid) is not discretised. To use this scale with that geom, you need to set aes(fill =
after_stat(level)).

8 as.discretised_scale

Value

A function with the same arguments as scale_function that works with discretised values.

See Also

scale_fill_discretised

Examples

library(ggplot2)
scale_fill_brewer_discretised <- as.discretised_scale(scale_fill_distiller)

library(ggplot2)

Using the `level` compute aesthetic from `geom_contour_fill()`
(or ggplot2::geom_contour_filled()), the default scale is discrete.
This means that you cannot map colours to the underlying numbers.
v <- ggplot(faithfuld, aes(waiting, eruptions, z = density))
v + geom_contour_fill(aes(fill = after_stat(level)))

v + geom_contour_fill(aes(fill = after_stat(level))) +
scale_fill_discretised()

The scale can be customised the same as any continuous colour scale
v + geom_contour_fill(aes(fill = after_stat(level))) +

scale_fill_discretised(low = "#a62100", high = "#fff394")

Setting limits explicitly will truncate the scale
(if any limit is inside the range of the breaks but doesn't
coincide with any range, it will be rounded with a warning)
v + geom_contour_fill(aes(fill = after_stat(level))) +

scale_fill_discretised(low = "#a62100", high = "#fff394",
limits = c(0.01, 0.028))

Or extend it.
v + geom_contour_fill(aes(fill = after_stat(level))) +

scale_fill_discretised(low = "#a62100", high = "#fff394",
limits = c(0, 0.07))

v + geom_contour_fill(aes(fill = after_stat(level))) +
scale_fill_divergent_discretised(midpoint = 0.02)

Existing continous scales can be "retrofitted" by changing the `super`
and `guide` arguments.
v + geom_contour_fill(aes(fill = after_stat(level))) +

scale_fill_distiller(super = ScaleDiscretised)

Unequal breaks will, by default, map to unequal spacing in the guide
v + geom_contour_fill(aes(fill = after_stat(level)), breaks = c(0, 0.005, 0.01, 0.02, 0.04)) +

scale_fill_discretised()

as.path 9

You can change that by the `even.steps` argument on ggplot2::guide_colorsteps()
v + geom_contour_fill(aes(fill = after_stat(level)), breaks = c(0, 0.005, 0.01, 0.02, 0.04)) +
scale_fill_discretised(guide = guide_colorsteps(even.steps = TRUE, show.limits = TRUE))

as.path Interpolates between locations

Description

This is a helper function to quickly make an interpolated list of locations between a number of
locations

Usage

as.path(x, y, n = 10, path = TRUE)

Arguments

x, y numeric vectors of x and y locations. If one of them is of length 1, if will be
recycled.

n number of points to interpolate to

path either TRUE of a character vector with the name of the path.

Details

This function is mostly useful when combined with Interpolate

Value

A list of components x and y with the list of locations and the path arguments

See Also

Interpolate

10 ConvertLongitude

ConvertLongitude Converts between longitude conventions

Description

Converts longitude from [0, 360) to [-180, 180) and vice versa.

Usage

ConvertLongitude(lon, group = NULL, from = NULL)

Arguments

lon numeric vector of longitude

group optional vector of groups (the same length as longitude) that will be split on the
edges (see examples)

from optionally explicitly say from which convention to convert

Value

If group is missing, a numeric vector the same length of lon. Else, a list with vectors lon and
group.

Examples

library(ggplot2)
library(data.table)

data(geopotential)

ggplot(geopotential[date == date[1]], aes(lon, lat, z = gh)) +
geom_contour(color = "black") +
geom_contour(aes(x = ConvertLongitude(lon)))

if (requireNamespace("maps")) {
map <- setDT(map_data("world"))
map[, c("lon", "group2") := ConvertLongitude(long, group, from = 180)]

ggplot(map, aes(lon, lat, group = group2)) +
geom_path()

}

coriolis 11

coriolis Effects of the Earth’s rotation

Description

Coriolis and beta parameters by latitude.

Usage

coriolis(lat)

f(lat)

coriolis.dy(lat, a = 6371000)

f.dy(lat, a = 6371000)

Arguments

lat latitude in degrees

a radius of the earth

Details

All functions use the correct sidereal day (24hs 56mins 4.091s) instead of the incorrect solar day
(24hs) for 0.3\ pedantry.

cut.eof Remove some principal components.

Description

Returns an eof object with just the n principal components.

Usage

S3 method for class 'eof'
cut(x, n, ...)

Arguments

x an eof object

n which eofs to keep

... further arguments passed to or from other methods

12 Derivate

denormalise Denormalise eof matrices

Description

The matrices returned by EOF() are normalized. This function multiplies the left or right matrix by
the diagonal matrix to return it to proper units.

Usage

denormalise(eof, which = c("left", "right"))

denormalize(eof, which = c("left", "right"))

Arguments

eof an eof object.

which which side of the eof decomposition to denormalise

Derivate Derivate a discrete variable using finite differences

Description

Derivate a discrete variable using finite differences

Usage

Derivate(
formula,
order = 1,
cyclical = FALSE,
fill = FALSE,
data = NULL,
sphere = FALSE,
a = 6371000,
equispaced = TRUE

)

Laplacian(
formula,
cyclical = FALSE,
fill = FALSE,
data = NULL,
sphere = FALSE,

Derivate 13

a = 6371000,
equispaced = TRUE

)

Divergence(
formula,
cyclical = FALSE,
fill = FALSE,
data = NULL,
sphere = FALSE,
a = 6371000,
equispaced = TRUE

)

Vorticity(
formula,
cyclical = FALSE,
fill = FALSE,
data = NULL,
sphere = FALSE,
a = 6371000,
equispaced = TRUE

)

Arguments

formula a formula indicating dependent and independent variables
order order of the derivative
cyclical logical vector of boundary condition for each independent variable
fill logical indicating whether to fill values at the boundaries with forward and back-

wards differencing
data optional data.frame containing the variables
sphere logical indicating whether to use spherical coordinates (see details)
a radius to use in spherical coordinates (defaults to Earth’s radius)
equispaced logical indicating whether points are equispaced or not.

Details

Each element of the return vector is an estimation of ∂nx
∂yn by centred finite differences.

If sphere = TRUE, then the first two independent variables are assumed to be longitude and latitude
(in that order) in degrees. Then, a correction is applied to the derivative so that they are in the
same units as a.

Using fill = TRUE will degrade the solution near the edges of a non-cyclical boundary. Use with
caution.

Laplacian(), Divergence() and Vorticity() are convenient wrappers that call Derivate() and
make the appropriate sums. For Divergence() and Vorticity(), formula must be of the form vx
+ vy ~ x + y (in that order).

14 EOF

Value

If there is one independent variable and one dependent variable, a numeric vector of the same length
as the dependent variable. If there are two or more independent variables or two or more dependent
variables, a list containing the directional derivatives of each dependent variables.

See Also

Other meteorology functions: EOF(), GeostrophicWind(), WaveFlux(), thermodynamics, waves

Examples

data.table::setDTthreads(2)
theta <- seq(0, 360, length.out = 20)*pi/180
theta <- theta[-1]
x <- cos(theta)
dx_analytical <- -sin(theta)
dx_finitediff <- Derivate(x ~ theta, cyclical = TRUE)[[1]]

plot(theta, dx_analytical, type = "l")
points(theta, dx_finitediff, col = "red")

Curvature (Laplacian)
Note the different boundary conditions for each dimension
variable <- expand.grid(lon = seq(0, 360, by = 3)[-1],

lat = seq(-90, 90, by = 3))
variable$z <- with(variable, cos(lat*pi/180*3) + sin(lon*pi/180*2))
variable <- cbind(

variable,
as.data.frame(Derivate(z ~ lon + lat, data = variable,

cyclical = c(TRUE, FALSE), order = 2)))
library(ggplot2)
ggplot(variable, aes(lon, lat)) +

geom_contour(aes(z = z)) +
geom_contour(aes(z = z.ddlon + z.ddlat), color = "red")

The same as
ggplot(variable, aes(lon, lat)) +

geom_contour(aes(z = z)) +
geom_contour(aes(z = Laplacian(z ~ lon + lat, cyclical = c(TRUE, FALSE))),

color = "red")

EOF Empirical Orthogonal Function

Description

Computes Singular Value Decomposition (also known as Principal Components Analysis or Em-
pirical Orthogonal Functions).

EOF 15

Usage

EOF(
formula,
n = 1,
data = NULL,
B = 0,
probs = c(lower = 0.025, mid = 0.5, upper = 0.975),
rotate = NULL,
suffix = "PC",
fill = NULL,
engine = NULL

)

Arguments

formula a formula to build the matrix that will be used in the SVD decomposition (see
Details)

n which singular values to return (if NULL, returns all)

data a data.frame

B number of bootstrap samples used to estimate confidence intervals. Ignored if
<= 1.

probs the probabilities of the lower and upper values of estimated confidence intervals.
If named, it’s names will be used as column names.

rotate a function to apply to the loadings to rotate them. E.g. for varimax rotation use
stats::varimax.

suffix character to name the principal components

fill value to infill implicit missing values or NULL if the data is dense.

engine function to use to compute SVD. If NULL it uses irlba::irlba (if installed) if the
largest singular value to compute is lower than half the maximum possible value,
otherwise it uses base::svd. If the user provides a function, it needs to be a drop-
in replacement for base::svd (the same arguments and output format).

Details

Singular values can be computed over matrices so formula denotes how to build a matrix from the
data. It is a formula of the form VAR ~ LEFT | RIGHT (see Formula::Formula) in which VAR is
the variable whose values will populate the matrix, and LEFT represent the variables used to make
the rows and RIGHT, the columns of the matrix. Think it like "VAR as a function of LEFT and
RIGHT". The variable combination used in this formula must identify an unique value in a cell.

So, for example, v ~ x + y | t would mean that there is one value of v for each combination of x, y
and t, and that there will be one row for each combination of x and y and one row for each t.

In the result, the left and right vectors have dimensions of the LEFT and RIGHT part of the formula,
respectively.

It is much faster to compute only some singular vectors, so is advisable not to set n to NULL. If the
irlba package is installed, EOF uses irlba::irlba instead of base::svd since it’s much faster.

16 EOF

The bootstrapping procedure follows Fisher et.al. (2016) and returns the standard deviation of each
singular value.

Value

An eof object which is just a named list of data.tables

left data.table with left singular vectors

right data.table with right singular vectors

sdev data.table with singular values, their explained variance, and, optionally, quantiles estimated
via bootstrap

There are some methods implemented

• summary

• screeplot and the equivalent ggplot2::autoplot

• cut.eof

• predict

References

Fisher, A., Caffo, B., Schwartz, B., & Zipunnikov, V. (2016). Fast, Exact Bootstrap Principal
Component Analysis for p > 1 million. Journal of the American Statistical Association, 111(514),
846–860. doi:10.1080/01621459.2015.1062383

See Also

Other meteorology functions: Derivate(), GeostrophicWind(), WaveFlux(), thermodynamics,
waves

Examples

The Antarctic Oscillation is computed from the
monthly geopotential height anomalies weighted by latitude.
library(data.table)
data(geopotential)
geopotential <- copy(geopotential)
geopotential[, gh.t.w := Anomaly(gh)*sqrt(cos(lat*pi/180)),

by = .(lon, lat, month(date))]

eof <- EOF(gh.t.w ~ lat + lon | date, 1:5, data = geopotential,
B = 100, probs = c(low = 0.1, hig = 0.9))

Inspect the explained variance of each component
summary(eof)
screeplot(eof)

Keep only the 1st.
aao <- cut(eof, 1)

https://doi.org/10.1080/01621459.2015.1062383

EPflux 17

AAO field
library(ggplot2)
ggplot(aao$left, aes(lon, lat, z = gh.t.w)) +

geom_contour(aes(color = after_stat(level))) +
coord_polar()

AAO signal
ggplot(aao$right, aes(date, gh.t.w)) +

geom_line()

standard deviation, % of explained variance and
confidence intervals.
aao$sdev

Reconstructed fields based only on the two first
principal components
field <- predict(eof, 1:2)

Compare it to the real field.
ggplot(field[date == date[1]], aes(lon, lat)) +

geom_contour_fill(aes(z = gh.t.w), data = geopotential[date == date[1]]) +
geom_contour2(aes(z = gh.t.w, linetype = factor(-sign(stat(level))))) +
scale_fill_divergent()

EPflux Computes Eliassen-Palm fluxes.

Description

Computes Eliassen-Palm fluxes.

Usage

EPflux(lon, lat, lev, t, u, v)

Arguments

lon longitudes in degrees.

lat latitudes in degrees.

lev pressure levels.

t temperature in Kelvin.

u zonal wind in m/s.

v meridional wind in m/s.

18 FitLm

Value

A data.table with columns Flon, Flat and Flev giving the zonal, meridional and vertical compo-
nents of the EP Fluxes at each longitude, latitude and level.

References

Plumb, R. A. (1985). On the Three-Dimensional Propagation of Stationary Waves. Journal of the
Atmospheric Sciences, 42(3), 217–229. doi:10.1175/15200469(1985)042<0217:OTTDPO>2.0.CO;2
Cohen, J., Barlow, M., Kushner, P. J., & Saito, K. (2007). Stratosphere–Troposphere Coupling and
Links with Eurasian Land Surface Variability. Journal of Climate, 20(21), 5335–5343. doi:10.1175/
2007JCLI1725.1

FitLm Fast estimates of linear regression

Description

Computes a linear regression with stats::.lm.fit and returns the estimate and, optionally, standard
error for each regressor.

Usage

FitLm(y, ..., intercept = TRUE, weights = NULL, se = FALSE, r2 = se)

ResidLm(y, ..., intercept = TRUE, weights = NULL)

Detrend(y, time = seq_along(y))

Arguments

y numeric vector of observations to model

... numeric vectors of variables used in the modelling

intercept logical indicating whether to automatically add the intercept

weights numerical vector of weights (which doesn’t need to be normalised)

se logical indicating whether to compute the standard error

r2 logical indicating whether to compute r squared

time time vector to use for detrending. Only necessary in the case of irregularly
sampled timeseries

https://doi.org/10.1175/1520-0469%281985%29042%3C0217%3AOTTDPO%3E2.0.CO%3B2
https://doi.org/10.1175/2007JCLI1725.1
https://doi.org/10.1175/2007JCLI1725.1

geom_arrow 19

Value

FitLm returns a list with elements

term the name of the regressor

estimate estimate of the regression

std.error standard error

df degrees of freedom

r.squared Percent of variance explained by the model (repeated in each term)

adj.r.squared r.squared‘ adjusted based on the degrees of freedom)

ResidLm and Detrend returns a vector of the same length

If there’s no complete cases in the regression, NAs are returned with no warning.

Examples

Linear trend with "signficant" areas shaded with points
library(data.table)
library(ggplot2)
system.time({

regr <- geopotential[, FitLm(gh, date, se = TRUE), by = .(lon, lat)]
})

ggplot(regr[term != "(Intercept)"], aes(lon, lat)) +
geom_contour(aes(z = estimate, color = after_stat(level))) +
stat_subset(aes(subset = abs(estimate) > 2*std.error), size = 0.05)

Using stats::lm() is much slower and with no names.
Not run:
system.time({

regr <- geopotential[, coef(lm(gh ~ date))[2], by = .(lon, lat)]
})

End(Not run)

geom_arrow Arrows

Description

Parametrization of ggplot2::geom_segment either by location and displacement or by magnitude
and angle with default arrows. geom_arrow() is the same as geom_vector() but defaults to pre-
serving the direction under coordinate transformation and different plot ratios.

20 geom_arrow

Usage

geom_arrow(
mapping = NULL,
data = NULL,
stat = "arrow",
position = "identity",
...,
start = 0,
direction = c("ccw", "cw"),
pivot = 0.5,
preserve.dir = TRUE,
min.mag = 0,
skip = 0,
skip.x = skip,
skip.y = skip,
arrow.angle = 15,
arrow.length = 0.5,
arrow.ends = "last",
arrow.type = "closed",
arrow = grid::arrow(arrow.angle, grid::unit(arrow.length, "lines"), ends = arrow.ends,

type = arrow.type),
lineend = "butt",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_vector(
mapping = NULL,
data = NULL,
stat = "arrow",
position = "identity",
...,
start = 0,
direction = c("ccw", "cw"),
pivot = 0.5,
preserve.dir = FALSE,
min.mag = 0,
skip = 0,
skip.x = skip,
skip.y = skip,
arrow.angle = 15,
arrow.length = 0.5,
arrow.ends = "last",
arrow.type = "closed",
arrow = grid::arrow(arrow.angle, grid::unit(arrow.length, "lines"), ends = arrow.ends,

type = arrow.type),
lineend = "butt",

geom_arrow 21

na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the

22 geom_arrow

available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

start starting angle for rotation in degrees

direction direction of rotation (counter-clockwise or clockwise)

pivot numeric indicating where to pivot the arrow where 0 means at the beginning and
1 means at the end.

preserve.dir logical indicating whether to preserve direction or not

min.mag minimum magnitude for plotting vectors
skip, skip.x, skip.y

numeric specifying number of gridpoints not to draw in the x and y direction
arrow.length, arrow.angle, arrow.ends, arrow.type

parameters passed to grid::arrow

arrow specification for arrow heads, as created by grid::arrow().

lineend Line end style (round, butt, square).

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Details

Direction and start allows to work with different standards. For the meteorological standard, for
example, use star = -90 and direction = "cw".

Aesthetics

geom_vector understands the following aesthetics (required aesthetics are in bold)

geom_arrow 23

• x
• y
• either mag and angle, or dx and dy
• alpha

• colour

• linetype

• size

• lineend

See Also

Other ggplot2 helpers: MakeBreaks(), WrapCircular(), geom_contour2(), geom_contour_fill(),
geom_label_contour(), geom_relief(), geom_streamline(), guide_colourstrip(), map_labels,
reverselog_trans(), scale_divergent, scale_longitude, stat_na(), stat_subset()

Examples

library(data.table)
library(ggplot2)

data(seals)
If the velocity components are in the same units as the axis,
geom_vector() (or geom_arrow(preserve.dir = TRUE)) might be a better option
ggplot(seals, aes(long, lat)) +

geom_arrow(aes(dx = delta_long, dy = delta_lat), skip = 1, color = "red") +
geom_vector(aes(dx = delta_long, dy = delta_lat), skip = 1) +
scale_mag()

data(geopotential)
geopotential <- copy(geopotential)[date == date[1]]
geopotential[, gh.z := Anomaly(gh), by = .(lat)]
geopotential[, c("u", "v") := GeostrophicWind(gh.z, lon, lat)]

(g <- ggplot(geopotential, aes(lon, lat)) +
geom_arrow(aes(dx = dlon(u, lat), dy = dlat(v)), skip.x = 3, skip.y = 2,

color = "red") +
geom_vector(aes(dx = dlon(u, lat), dy = dlat(v)), skip.x = 3, skip.y = 2) +
scale_mag(guide = "none"))

A dramatic illustration of the difference between arrow and vector
g + coord_polar()

When plotting winds in a lat-lon grid, a good way to have both
the correct direction and an interpretable magnitude is to define
the angle by the longitud and latitude displacement and the magnitude
by the wind velocity. That way arrows are always parallel to streamlines
and their magnitude are in the correct units.
ggplot(geopotential, aes(lon, lat)) +

geom_contour(aes(z = gh.z)) +
geom_vector(aes(angle = atan2(dlat(v), dlon(u, lat))*180/pi,

24 geom_contour2

mag = Mag(v, u)), skip = 1, pivot = 0.5) +
scale_mag()

Sverdrup transport
library(data.table)
b <- 10
d <- 10
grid <- as.data.table(expand.grid(x = seq(1, d, by = 0.5),

y = seq(1, b, by = 0.5)))
grid[, My := -sin(pi*y/b)*pi/b]
grid[, Mx := -pi^2/b^2*cos(pi*y/b)*(d - x)]

ggplot(grid, aes(x, y)) +
geom_arrow(aes(dx = Mx, dy = My))

Due to limitations in ggplot2 (see: https://github.com/tidyverse/ggplot2/issues/4291),
if you define the vector with the dx and dy aesthetics, you need
to explicitly add scale_mag() in order to show the arrow legend.

ggplot(grid, aes(x, y)) +
geom_arrow(aes(dx = Mx, dy = My)) +
scale_mag()

Alternative, use Mag and Angle.
ggplot(grid, aes(x, y)) +

geom_arrow(aes(mag = Mag(Mx, My), angle = Angle(Mx, My)))

geom_contour2 2d contours of a 3d surface

Description

Similar to ggplot2::geom_contour but it can label contour lines, accepts accepts a function as the
breaks argument and and computes breaks globally instead of per panel.

Usage

geom_contour2(
mapping = NULL,
data = NULL,
stat = "contour2",
position = "identity",
...,
lineend = "butt",
linejoin = "round",
linemitre = 1,
breaks = MakeBreaks(),
bins = NULL,

geom_contour2 25

binwidth = NULL,
global.breaks = TRUE,
na.rm = FALSE,
na.fill = FALSE,
skip = 1,
margin = grid::unit(c(1, 1, 1, 1), "pt"),
label.placer = label_placer_flattest(),
show.legend = NA,
inherit.aes = TRUE

)

stat_contour2(
mapping = NULL,
data = NULL,
geom = "contour2",
position = "identity",
...,
breaks = MakeBreaks(),
bins = NULL,
binwidth = NULL,
proj = NULL,
proj.latlon = TRUE,
clip = NULL,
kriging = FALSE,
global.breaks = TRUE,
na.rm = FALSE,
na.fill = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-

26 geom_contour2

ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

lineend Line end style (round, butt, square).

linejoin Line join style (round, mitre, bevel).

linemitre Line mitre limit (number greater than 1).

breaks One of:

• A numeric vector of breaks

geom_contour2 27

• A function that takes the range of the data and binwidth as input and returns
breaks as output

bins Number of evenly spaced breaks.
binwidth Distance between breaks.
global.breaks Logical indicating whether breaks should be computed for the whole data or

for each grouping.
na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,

missing values are silently removed.
na.fill How to fill missing values.

• FALSE for letting the computation fail with no interpolation
• TRUE for imputing missing values with Impute2D
• A numeric value for constant imputation
• A function that takes a vector and returns a numeric (e.g. mean)

skip number of contours to skip for labelling (e.g. skip = 1 will skip 1 contour line
between labels).

margin the margin around labels around which contour lines are clipped to avoid over-
lapping.

label.placer a label placer function. See label_placer_flattest().
show.legend logical. Should this layer be included in the legends? NA, the default, includes if

any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

proj The projection to which to project the contours to. It can be either a projection
string or a function to apply to the whole contour dataset.

proj.latlon Logical indicating if the projection step should project from a cartographic pro-
jection to a lon/lat grid or the other way around.

clip A simple features object to be used as a clip. Contours are only drawn in the
interior of this polygon.

kriging Whether to perform ordinary kriging before contouring. Use this if you want to
use contours with irregularly spaced data. If FALSE, no kriging is performed. If
TRUE, kriging will be performed with 40 points. If a numeric, kriging will be
performed with kriging points.

28 geom_contour2

Aesthetics

geom_contour2 understands the following aesthetics (required aesthetics are in bold):

Aesthetics related to contour lines:

• x
• y
• z
• alpha

• colour

• group

• linetype

• size

• weight

Aesthetics related to labels:

• label

• label_colour

• label_alpha

• label_size

• family

• fontface

Computed variables

level height of contour

See Also

Other ggplot2 helpers: MakeBreaks(), WrapCircular(), geom_arrow(), geom_contour_fill(),
geom_label_contour(), geom_relief(), geom_streamline(), guide_colourstrip(), map_labels,
reverselog_trans(), scale_divergent, scale_longitude, stat_na(), stat_subset()

Other ggplot2 helpers: MakeBreaks(), WrapCircular(), geom_arrow(), geom_contour_fill(),
geom_label_contour(), geom_relief(), geom_streamline(), guide_colourstrip(), map_labels,
reverselog_trans(), scale_divergent, scale_longitude, stat_na(), stat_subset()

Examples

library(ggplot2)

Breaks can be a function.
ggplot(reshape2::melt(volcano), aes(Var1, Var2)) +

geom_contour2(aes(z = value, color = after_stat(level)),

geom_contour_fill 29

breaks = AnchorBreaks(130, binwidth = 10))

Add labels by supplying the label aes.
ggplot(reshape2::melt(volcano), aes(Var1, Var2)) +

geom_contour2(aes(z = value, label = after_stat(level)))

ggplot(reshape2::melt(volcano), aes(Var1, Var2)) +
geom_contour2(aes(z = value, label = after_stat(level)),

skip = 0)

Use label.placer to control where contours are labelled.
ggplot(reshape2::melt(volcano), aes(Var1, Var2)) +

geom_contour2(aes(z = value, label = after_stat(level)),
label.placer = label_placer_n(n = 2))

Use the rot_adjuster argument of the placer function to
control the angle. For example, to fix it to some angle:
ggplot(reshape2::melt(volcano), aes(Var1, Var2)) +

geom_contour2(aes(z = value, label = after_stat(level)),
skip = 0,
label.placer = label_placer_flattest(rot_adjuster = 0))

geom_contour_fill Filled 2d contours of a 3d surface

Description

While ggplot2’s geom_contour can plot nice contours, it doesn’t work with the polygon geom. This
stat makes some small manipulation of the data to ensure that all contours are closed and also com-
putes a new aesthetic int.level, which differs from level (computed by ggplot2::geom_contour)
in that represents the value of the z aesthetic inside the contour instead of at the edge. It also
computes breaks globally instead of per panel, so that faceted plots have all the same binwidth.

Usage

geom_contour_fill(
mapping = NULL,
data = NULL,
stat = "ContourFill",
position = "identity",
...,
breaks = MakeBreaks(),
bins = NULL,
binwidth = NULL,
proj = NULL,
proj.latlon = TRUE,
clip = NULL,
kriging = FALSE,

30 geom_contour_fill

global.breaks = TRUE,
na.fill = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

stat_contour_fill(
mapping = NULL,
data = NULL,
geom = "polygon",
position = "identity",
...,
breaks = MakeBreaks(),
bins = NULL,
binwidth = NULL,
global.breaks = TRUE,
proj = NULL,
proj.latlon = TRUE,
clip = NULL,
kriging = FALSE,
na.fill = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

geom_contour_fill 31

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

breaks numeric vector of breaks

bins Number of evenly spaced breaks.

binwidth Distance between breaks.

proj The projection to which to project the contours to. It can be either a projection
string or a function to apply to the whole contour dataset.

proj.latlon Logical indicating if the projection step should project from a cartographic pro-
jection to a lon/lat grid or the other way around.

clip A simple features object to be used as a clip. Contours are only drawn in the
interior of this polygon.

32 geom_contour_fill

kriging Whether to perform ordinary kriging before contouring. Use this if you want to
use contours with irregularly spaced data. If FALSE, no kriging is performed. If
TRUE, kriging will be performed with 40 points. If a numeric, kriging will be
performed with kriging points.

global.breaks Logical indicating whether breaks should be computed for the whole data or
for each grouping.

na.fill How to fill missing values.

• FALSE for letting the computation fail with no interpolation
• TRUE for imputing missing values with Impute2D
• A numeric value for constant imputation
• A function that takes a vector and returns a numeric (e.g. mean)

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

Aesthetics

geom_contour_fill understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• colour

• group

• linetype

• size

• weight

geom_contour_tanaka 33

Computed variables

level An ordered factor that represents bin ranges.

level_d Same as level, but automatically uses scale_fill_discretised()

level_low,level_high,level_mid Lower and upper bin boundaries for each band, as well the mid
point between the boundaries.

See Also

Other ggplot2 helpers: MakeBreaks(), WrapCircular(), geom_arrow(), geom_contour2(), geom_label_contour(),
geom_relief(), geom_streamline(), guide_colourstrip(), map_labels, reverselog_trans(),
scale_divergent, scale_longitude, stat_na(), stat_subset()

Examples

library(ggplot2)
surface <- reshape2::melt(volcano)
ggplot(surface, aes(Var1, Var2, z = value)) +

geom_contour_fill() +
geom_contour(color = "black", size = 0.1)

ggplot(surface, aes(Var1, Var2, z = value)) +
geom_contour_fill(aes(fill = after_stat(level)))

ggplot(surface, aes(Var1, Var2, z = value)) +
geom_contour_fill(aes(fill = after_stat(level_d)))

geom_contour_tanaka Illuminated contours

Description

Illuminated contours (aka Tanaka contours) use varying brightness and width to create an illusion
of relief. This can help distinguishing between concave and convex areas (local minimums and
maximums), specially in black and white plots or to make photocopy safe plots with divergent
colour palettes, or to render a more aesthetically pleasing representation of topography.

Usage

geom_contour_tanaka(
mapping = NULL,
data = NULL,
stat = "Contour2",
position = "identity",
...,

34 geom_contour_tanaka

breaks = NULL,
bins = NULL,
binwidth = NULL,
sun.angle = 60,
light = "white",
dark = "gray20",
range = c(0.01, 0.5),
smooth = 0,
proj = NULL,
proj.latlon = TRUE,
clip = NULL,
kriging = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

geom_contour_tanaka 35

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

breaks One of:

• A numeric vector of breaks
• A function that takes the range of the data and binwidth as input and returns

breaks as output

bins Number of evenly spaced breaks.

binwidth Distance between breaks.

sun.angle angle of the sun in degrees counterclockwise from 12 o’ clock

light, dark valid colour representing the light and dark shading

range numeric vector of length 2 with the minimum and maximum size of lines

smooth numeric indicating the degree of smoothing of illumination and size. Larger

proj The projection to which to project the contours to. It can be either a projection
string or a function to apply to the whole contour dataset.

proj.latlon Logical indicating if the projection step should project from a cartographic pro-
jection to a lon/lat grid or the other way around.

clip A simple features object to be used as a clip. Contours are only drawn in the
interior of this polygon.

36 geom_contour_tanaka

kriging Whether to perform ordinary kriging before contouring. Use this if you want to
use contours with irregularly spaced data. If FALSE, no kriging is performed. If
TRUE, kriging will be performed with 40 points. If a numeric, kriging will be
performed with kriging points.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Aesthetics

geom_contour_tanaka understands the following aesthetics (required aesthetics are in bold)

• x

• y

• z

• linetype

Examples

library(ggplot2)
library(data.table)
A fresh look at the boring old volcano dataset
ggplot(reshape2::melt(volcano), aes(Var1, Var2)) +

geom_contour_fill(aes(z = value)) +
geom_contour_tanaka(aes(z = value)) +
theme_void()

If the transition between segments feels too abrupt,
smooth it a bit with smooth
ggplot(reshape2::melt(volcano), aes(Var1, Var2)) +

geom_contour_fill(aes(z = value)) +
geom_contour_tanaka(aes(z = value), smooth = 1) +
theme_void()

data(geopotential)
geo <- geopotential[date == unique(date)[4]]
geo[, gh.z := Anomaly(gh), by = lat]

In a monochrome contour map, it's impossible to know which areas are
local maximums or minimums.
ggplot(geo, aes(lon, lat)) +

geom_contour2(aes(z = gh.z), color = "black", xwrap = c(0, 360))

geom_label_contour 37

With tanaka contours, they are obvious.
ggplot(geo, aes(lon, lat)) +

geom_contour_tanaka(aes(z = gh.z), dark = "black",
xwrap = c(0, 360)) +

scale_fill_divergent()

A good divergent color palette has the same luminosity for positive
and negative values.But that means that printed in grayscale (Desaturated),
they are indistinguishable.
(g <- ggplot(geo, aes(lon, lat)) +

geom_contour_fill(aes(z = gh.z), xwrap = c(0, 360)) +
scale_fill_gradientn(colours = c("#767676", "white", "#484848"),

values = c(0, 0.415, 1)))

Tanaka contours can solve this issue.
g + geom_contour_tanaka(aes(z = gh.z))

geom_label_contour Label contours

Description

Draws labels on contours built with ggplot2::stat_contour.

Usage

geom_label_contour(
mapping = NULL,
data = NULL,
stat = "text_contour",
position = "identity",
...,
min.size = 5,
skip = 1,
label.placer = label_placer_flattest(),
parse = FALSE,
nudge_x = 0,
nudge_y = 0,
label.padding = grid::unit(0.25, "lines"),
label.r = grid::unit(0.15, "lines"),
label.size = 0.25,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

38 geom_label_contour

geom_text_contour(
mapping = NULL,
data = NULL,
stat = "text_contour",
position = "identity",
...,
min.size = 5,
skip = 1,
rotate = TRUE,
label.placer = label_placer_flattest(),
parse = FALSE,
nudge_x = 0,
nudge_y = 0,
stroke = 0,
check_overlap = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. Cannot be jointy specified
with nudge_x or nudge_y. This can be used in various ways, including to pre-
vent overplotting and improving the display. The position argument accepts
the following:

geom_label_contour 39

• The result of calling a position function, such as position_jitter().
• A string nameing the position adjustment. To give the position as a string,

strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

min.size minimum number of points for a contour to be labelled.

skip number of contours to skip

label.placer a label placer function. See label_placer_flattest().

parse If TRUE, the labels will be parsed into expressions and displayed as described in
?plotmath.

nudge_x, nudge_y
Horizontal and vertical adjustment to nudge labels by. Useful for offsetting text
from points, particularly on discrete scales. Cannot be jointly specified with
position.

label.padding Amount of padding around label. Defaults to 0.25 lines.

label.r Radius of rounded corners. Defaults to 0.15 lines.

label.size Size of label border, in mm.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

40 geom_label_contour

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

rotate logical indicating whether to rotate text following the contour.

stroke numerical indicating width of stroke relative to the size of the text. Ignored if
less than zero.

check_overlap If TRUE, text that overlaps previous text in the same layer will not be plotted.
check_overlap happens at draw time and in the order of the data. Therefore
data should be arranged by the label column before calling geom_text(). Note
that this argument is not supported by geom_label().

Details

Is best used with a previous call to ggplot2::stat_contour with the same parameters (e.g. the same
binwidth, breaks, or bins). Note that while geom_text_contour() can angle itself to follow the
contour, this is not the case with geom_label_contour().

Aesthetics

geom_text_contour understands the following aesthetics (required aesthetics are in bold):

• x

• y

• label

• alpha

• angle

• colour

• stroke.color

• family

• fontface

• group

• hjust

• lineheight

• size

• vjust

See Also

Other ggplot2 helpers: MakeBreaks(), WrapCircular(), geom_arrow(), geom_contour2(), geom_contour_fill(),
geom_relief(), geom_streamline(), guide_colourstrip(), map_labels, reverselog_trans(),
scale_divergent, scale_longitude, stat_na(), stat_subset()

geom_relief 41

Examples

library(ggplot2)
v <- reshape2::melt(volcano)
g <- ggplot(v, aes(Var1, Var2)) +

geom_contour(aes(z = value))
g + geom_text_contour(aes(z = value))

g + geom_text_contour(aes(z = value), stroke = 0.2)

g + geom_text_contour(aes(z = value), stroke = 0.2, stroke.colour = "red")

g + geom_text_contour(aes(z = value, stroke.colour = after_stat(level)), stroke = 0.2) +
scale_colour_gradient(aesthetics = "stroke.colour", guide = "none")

g + geom_text_contour(aes(z = value), rotate = FALSE)

g + geom_text_contour(aes(z = value),
label.placer = label_placer_random())

g + geom_text_contour(aes(z = value),
label.placer = label_placer_n(3))

g + geom_text_contour(aes(z = value),
label.placer = label_placer_flattest())

g + geom_text_contour(aes(z = value),
label.placer = label_placer_flattest(ref_angle = 90))

geom_relief Relief Shading

Description

geom_relief() simulates shading caused by relief. Can be useful when plotting topographic data
because relief shading might give a more intuitive impression of the shape of the terrain than contour
lines or mapping height to colour. geom_shadow() projects shadows.

Usage

geom_relief(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
sun.angle = 60,
raster = TRUE,

42 geom_relief

interpolate = TRUE,
shadow = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_shadow(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
sun.angle = 60,
range = c(0, 1),
skip = 0,
raster = TRUE,
interpolate = TRUE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

geom_relief 43

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

sun.angle angle from which the sun is shining, in degrees counterclockwise from 12 o’
clock

raster if TRUE (the default), uses ggplot2::geom_raster, if FALSE, uses ggplot2::geom_tile.

interpolate If TRUE interpolate linearly, if FALSE (the default) don’t interpolate.

shadow if TRUE, adds also a layer of geom_shadow()

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

44 geom_streamline

range transparency range for shadows

skip data points to skip when casting shadows

Details

light and dark must be valid colours determining the light and dark shading (defaults to "white"
and "gray20", respectively).

Aesthetics

geom_relief() and geom_shadow() understands the following aesthetics (required aesthetics are
in bold)

• x

• y

• z

• light

• dark

• sun.angle

See Also

Other ggplot2 helpers: MakeBreaks(), WrapCircular(), geom_arrow(), geom_contour2(), geom_contour_fill(),
geom_label_contour(), geom_streamline(), guide_colourstrip(), map_labels, reverselog_trans(),
scale_divergent, scale_longitude, stat_na(), stat_subset()

Examples

Not run:
library(ggplot2)
ggplot(reshape2::melt(volcano), aes(Var1, Var2)) +

geom_relief(aes(z = value))

End(Not run)

geom_streamline Streamlines

Description

Streamlines are paths that are always tangential to a vector field. In the case of a steady field, it’s
identical to the path of a massless particle that moves with the "flow".

geom_streamline 45

Usage

geom_streamline(
mapping = NULL,
data = NULL,
stat = "streamline",
position = "identity",
...,
L = 5,
min.L = 0,
res = 1,
S = NULL,
dt = NULL,
xwrap = NULL,
ywrap = NULL,
skip = 1,
skip.x = skip,
skip.y = skip,
n = NULL,
nx = n,
ny = n,
jitter = 1,
jitter.x = jitter,
jitter.y = jitter,
arrow.angle = 6,
arrow.length = 0.5,
arrow.ends = "last",
arrow.type = "closed",
arrow = grid::arrow(arrow.angle, grid::unit(arrow.length, "lines"), ends = arrow.ends,

type = arrow.type),
lineend = "butt",
na.rm = TRUE,
show.legend = NA,
inherit.aes = TRUE

)

stat_streamline(
mapping = NULL,
data = NULL,
geom = "streamline",
position = "identity",
...,
L = 5,
min.L = 0,
res = 1,
S = NULL,
dt = NULL,
xwrap = NULL,
ywrap = NULL,

46 geom_streamline

skip = 1,
skip.x = skip,
skip.y = skip,
n = NULL,
nx = n,
ny = n,
jitter = 1,
jitter.x = jitter,
jitter.y = jitter,
arrow.angle = 6,
arrow.length = 0.5,
arrow.ends = "last",
arrow.type = "closed",
arrow = grid::arrow(arrow.angle, grid::unit(arrow.length, "lines"), ends = arrow.ends,

type = arrow.type),
lineend = "butt",
na.rm = TRUE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

geom_streamline 47

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

L typical length of a streamline in x and y units

min.L minimum length of segments to show

res resolution parameter (higher numbers increases the resolution)

S optional numeric number of timesteps for integration

dt optional numeric size "timestep" for integration

xwrap, ywrap vector of length two used to wrap the circular dimension.
skip, skip.x, skip.y

numeric specifying number of gridpoints not to draw in the x and y direction

n, nx, ny optional numeric indicating the number of points to draw in the x and y direction
(replaces skip if not NULL)

jitter, jitter.x, jitter.y
amount of jitter of the starting points

arrow.length, arrow.angle, arrow.ends, arrow.type
parameters passed to grid::arrow

arrow specification for arrow heads, as created by grid::arrow().

48 geom_streamline

lineend Line end style (round, butt, square).

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

Details

Streamlines are computed by simple integration with a forward Euler method. By default, stat_streamline()
computes dt and S from L, res, the resolution of the grid and the mean magnitude of the field. S
is then defined as the number of steps necessary to make a streamline of length L under an uniform
mean field and dt is chosen so that each step is no larger than the resolution of the data (divided by
the res parameter). Be aware that this rule of thumb might fail in field with very skewed distribution
of magnitudes.

Alternatively, L and/or res are ignored if S and/or dt are specified explicitly. This not only makes
it possible to fine-tune the result but also divorces the integration parameters from the properties of
the data and makes it possible to compare streamlines between different fields.

The starting grid is a semi regular grid defined, either by the resolution of the field and the skip.x
and skip.y parameters o the nx and ny parameters, jittered by an amount proportional to the reso-
lution of the data and the jitter.x and jitter.y parameters.

It might be important that the units of the vector field are compatible to the units of the x and y di-
mensions. For example, passing dx and dy in m/s on a longitude-latitude grid will might misleading
results (see spherical).

Missing values are not permitted and the field must be defined on a regular grid, for now.

Aesthetics

stat_streamline understands the following aesthetics (required aesthetics are in bold)

• x

• y

geom_streamline 49

• dx

• dy

• alpha

• colour

• linetype

• size

Computed variables

step step in the simulation

dx dx at each location of the streamline

dy dy at each location of the streamline

See Also

Other ggplot2 helpers: MakeBreaks(), WrapCircular(), geom_arrow(), geom_contour2(), geom_contour_fill(),
geom_label_contour(), geom_relief(), guide_colourstrip(), map_labels, reverselog_trans(),
scale_divergent, scale_longitude, stat_na(), stat_subset()

Examples

Not run:
library(data.table)
library(ggplot2)
data(geopotential)

geopotential <- copy(geopotential)[date == date[1]]
geopotential[, gh.z := Anomaly(gh), by = .(lat)]
geopotential[, c("u", "v") := GeostrophicWind(gh.z, lon, lat)]

(g <- ggplot(geopotential, aes(lon, lat)) +
geom_contour2(aes(z = gh.z), xwrap = c(0, 360)) +
geom_streamline(aes(dx = dlon(u, lat), dy = dlat(v)), L = 60,

xwrap = c(0, 360)))

The circular parameter is particularly important for polar coordinates
g + coord_polar()

If u and v are not converted into degrees/second, the resulting
streamlines have problems, specially near the pole.
ggplot(geopotential, aes(lon, lat)) +

geom_contour(aes(z = gh.z)) +
geom_streamline(aes(dx = u, dy = v), L = 50)

The step variable can be mapped to size or alpha to
get cute "drops". It's important to note that after_stat(dx) (the calculated variable)
is NOT the same as dx (from the data).
ggplot(geopotential, aes(lon, lat)) +

geom_streamline(aes(dx = dlon(u, lat), dy = dlat(v), alpha = after_stat(step),

50 geopotential

color = sqrt(after_stat(dx^2) + after_stat(dy^2)),
size = after_stat(step)),
L = 40, xwrap = c(0, 360), res = 2, arrow = NULL,
lineend = "round") +

scale_size(range = c(0, 0.6))

Using topographic information to simulate "rivers" from slope
topo <- GetTopography(295, -55+360, -30, -42, res = 1/20) # needs internet!
topo[, c("dx", "dy") := Derivate(h ~ lon + lat)]
topo[h <= 0, c("dx", "dy") := 0]

See how in this example the integration step is too coarse in the
western montanous region where the slope is much higher than in the
flatlands of La Pampa at in the east.
ggplot(topo, aes(lon, lat)) +

geom_relief(aes(z = h), interpolate = TRUE, data = topo[h >= 0]) +
geom_contour(aes(z = h), breaks = 0, color = "black") +
geom_streamline(aes(dx = -dx, dy = -dy), L = 10, skip = 3, arrow = NULL,

color = "#4658BD") +
coord_quickmap()

End(Not run)

geopotential Geopotential height

Description

Monthly geopotential field at 700hPa south of 20°S from January 1990 to December 2000.

Usage

geopotential

Format

A data.table with 53224 rows and 5 variables.

lon longitude in degrees

lat latitude in degrees

lev level in hPa

gh geopotential height in meters

date date

Source

https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.derived.pressure.html

https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.derived.pressure.html

GeostrophicWind 51

GeostrophicWind Calculate geostrophic winds

Description

Geostrophic wind from a geopotential height field.

Usage

GeostrophicWind(gh, lon, lat, cyclical = "guess", g = 9.81, a = 6371000)

Arguments

gh geopotential height

lon longitude in degrees

lat latitude in degrees

cyclical boundary condition for longitude (see details)

g acceleration of gravity

a Earth’s radius

Details

If cyclical = "guess" (the default) the function will try to guess if lon covers the whole globe
and set cyclical conditions accordingly. For more predictable results, set the boundary condition
explicitly.

Value

A named list with vectors for the zonal and meridional component of geostrophic wind.

See Also

Other meteorology functions: Derivate(), EOF(), WaveFlux(), thermodynamics, waves

Examples

data(geopotential)
geopotential <- data.table::copy(geopotential)
geopotential[date == date[1], c("u", "v") := GeostrophicWind(gh, lon, lat)]
library(ggplot2)
ggplot(geopotential[date == date[1]], aes(lon, lat)) +

geom_contour(aes(z = gh)) +
geom_vector(aes(dx = u, dy = v), skip = 2) +
scale_mag()

52 GetTopography

GetSMNData Get Meteorological data This function is defunct.

Description

Get Meteorological data This function is defunct.

Usage

GetSMNData(
date,
type = c("hourly", "daily", "radiation"),
bar = FALSE,
cache = TRUE,
file.dir = tempdir()

)

Arguments

date date vector of dates to fetch data

type type of data to retrieve

bar logical object indicating whether to show a progress bar

cache logical indicating if the results should be saved on disk

file.dir optional directory where to save and/or retrieve data

Value

Nothing

GetTopography Get topographic data

Description

Retrieves topographic data from ETOPO1 Global Relief Model (see references).

Usage

GetTopography(
lon.west,
lon.east,
lat.north,
lat.south,
resolution = 3.5,

GetTopography 53

cache = TRUE,
file.dir = tempdir(),
verbose = interactive()

)

Arguments

lon.west, lon.east, lat.north, lat.south
latitudes and longitudes of the bounding box in degrees

resolution numeric vector indicating the desired resolution (in degrees) in the lon and lat
directions (maximum resolution is 1 minute)

cache logical indicating if the results should be saved on disk

file.dir optional directory where to save and/or retrieve data

verbose logical indicating whether to print progress

Details

Very large requests can take long and can be denied by the NOAA server. If the function fails, try
with a smaller bounding box or coarser resolution.

Longitude coordinates must be between 0 and 360.

Value

A data table with height (in meters) for each longitude and latitude.

References

Source: Amante, C. and B.W. Eakins, 2009. ETOPO1 1 Arc-Minute Global Relief Model: Proce-
dures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24. National
Geophysical Data Center, NOAA. doi:10.7289/V5C8276M

Examples

Not run:
topo <- GetTopography(280, 330, 0, -60, resolution = 0.5)
library(ggplot2)
ggplot(topo, aes(lon, lat)) +

geom_raster(aes(fill = h)) +
geom_contour(aes(z = h), breaks = 0, color = "black", size = 0.3) +
scale_fill_gradient2(low = "steelblue", high = "goldenrod2", mid = "olivedrab") +
coord_quickmap()

End(Not run)

https://doi.org/10.7289/V5C8276M

54 ImputeEOF

Impute2D Impute missing values by linear or constant interpolation

Description

Provides methods for (soft) imputation of missing values.

Usage

Impute2D(formula, data = NULL, method = "interpolate")

Arguments

formula a formula indicating dependent and independent variables (see Details)

data optional data.frame with the data

method "interpolate" for interpolation, a numeric for constant imputation or a function
that takes a vector and returns a number (like mean)

Details

This is "soft" imputation because the imputed values are not supposed to be representative of the
missing data but just filling for algorithms that need complete data (in particular, contouring). The
method used if method = "interpolate" is to do simple linear interpolation in both the x and y
direction and then average the result.

This is the imputation method used by geom_contour_fill().

ImputeEOF Impute missing values

Description

Imputes missing values via Data Interpolating Empirical Orthogonal Functions (DINEOF).

Usage

ImputeEOF(
formula,
max.eof = NULL,
data = NULL,
min.eof = 1,
tol = 0.01,
max.iter = 10000,
validation = NULL,
verbose = interactive()

)

ImputeEOF 55

Arguments

formula a formula to build the matrix that will be used in the SVD decomposition (see
Details)

max.eof, min.eof
maximum and minimum number of singular values used for imputation

data a data.frame

tol tolerance used for determining convergence

max.iter maximum iterations allowed for the algorithm

validation number of points to use in cross-validation (defaults to the maximum of 30 or
10% of the non NA points)

verbose logical indicating whether to print progress

Details

Singular values can be computed over matrices so formula denotes how to build a matrix from the
data. It is a formula of the form VAR ~ LEFT | RIGHT (see Formula::Formula) in which VAR is
the variable whose values will populate the matrix, and LEFT represent the variables used to make
the rows and RIGHT, the columns of the matrix. Think it like "VAR as a function of LEFT and
RIGHT".

Alternatively, if value.var is not NULL, it’s possible to use the (probably) more familiar data.table::dcast
formula interface. In that case, data must be provided.

If data is a matrix, the formula argument is ignored and the function returns a matrix.

Value

A vector of imputed values with attributes eof, which is the number of singular values used in the
final imputation; and rmse, which is the Root Mean Square Error estimated from cross-validation.

References

Beckers, J.-M., Barth, A., and Alvera-Azcárate, A.: DINEOF reconstruction of clouded images
including error maps – application to the Sea-Surface Temperature around Corsican Island, Ocean
Sci., 2, 183-199, doi:10.5194/os21832006, 2006.

Examples

library(data.table)
data(geopotential)
geopotential <- copy(geopotential)
geopotential[, gh.t := Anomaly(gh), by = .(lat, lon, month(date))]

Add gaps to field
geopotential[, gh.gap := gh.t]
set.seed(42)
geopotential[sample(1:.N, .N*0.3), gh.gap := NA]

max.eof <- 5 # change to a higher value

https://doi.org/10.5194/os-2-183-2006

56 Interpolate

geopotential[, gh.impute := ImputeEOF(gh.gap ~ lat + lon | date, max.eof,
verbose = TRUE, max.iter = 2000)]

library(ggplot2)
ggplot(geopotential[date == date[1]], aes(lon, lat)) +

geom_contour(aes(z = gh.t), color = "black") +
geom_contour(aes(z = gh.impute))

Scatterplot with a sample.
na.sample <- geopotential[is.na(gh.gap)][sample(1:.N, .N*0.1)]
ggplot(na.sample, aes(gh.t, gh.impute)) +

geom_point()

Estimated RMSE
attr(geopotential$gh.impute, "rmse")
Real RMSE
geopotential[is.na(gh.gap), sqrt(mean((gh.t - gh.impute)^2))]

Interpolate Bilinear interpolation

Description

Interpolates values using bilinear interpolation.

Usage

Interpolate(formula, x.out, y.out, data = NULL, grid = TRUE, path = FALSE)

Arguments

formula a formula indicating dependent and independent variables (see Details)

x.out, y.out x and y values where to interpolate (see Details)

data optional data.frame with the data

grid logical indicating if x.out and y.out define a regular grid.

path a logical or character indicating if the x.out and y.out define a path. If character,
it will be the name of the column returning the order of said path.

Details

formula must be of the form VAR1 | VAR2 ~ X + Y where VAR1, VAR2, etc... are the names of
the variables to interpolate and X and Y the names of the x and y values, respectively. It is also
possible to pass only values of x, in which case, regular linear interpolation is performed and y.out,
if exists, is ignored with a warning.

is.cross 57

If grid = TRUE, x.out and y.out must define the values of a regular grid. If grid = FALSE, they
define the locations where to interpolate. Both grid and path cannot be set to TRUE and the value
of path takes precedence.

x.out can be a list, in which case, the first two elements will be interpreted as the x and y values
where to interpolate and it can also have a path element that will be used in place of the path
argument. This helps when creating a path with as.path (see Examples)

Value

A data.frame with interpolated values and locations

Examples

library(data.table)
data(geopotential)
geopotential <- geopotential[date == date[1]]
new grid
x.out <- seq(0, 360, by = 10)
y.out <- seq(-90, 0, by = 10)

Interpolate values to a new grid
interpolated <- geopotential[, Interpolate(gh ~ lon + lat, x.out, y.out)]

Add values to an existing grid
geopotential[, gh.new := Interpolate(gh ~ lon + lat, lon, lat,

data = interpolated, grid = FALSE)$gh]

Interpolate multiple values
geopotential[, c("u", "v") := GeostrophicWind(gh, lon, lat)]
interpolated <- geopotential[, Interpolate(u | v ~ lon + lat, x.out, y.out)]

Interpolate values following a path
lats <- c(-34, -54, -30) # start and end latitudes
lons <- c(302, 290, 180) # start and end longituded
path <- geopotential[, Interpolate(gh ~ lon + lat, as.path(lons, lats))]

is.cross Cross pattern

Description

Reduces the density of a regular grid using a cross pattern.

Usage

is.cross(x, y, skip = 0)

cross(x, y)

58 JumpBy

Arguments

x, y x and y points that define a regular grid.

skip how many points to skip. Greater value reduces the final point density.

Value

is.cross returns a logical vector indicating whether each point belongs to the reduced grid or not.
cross returns a list of x and y components of the reduced density grid.

Examples

Basic usage
grid <- expand.grid(x = 1:10, y = 1:10)
cross <- is.cross(grid$x, grid$y, skip = 2)

with(grid, plot(x, y))
with(grid, points(x[cross], y[cross], col = "red"))

Its intended use is to highlight areas with geom_subset()
with reduced densnity. This "hatches" areas with temperature
over 270K
library(ggplot2)
ggplot(temperature[lev == 500], aes(lon, lat)) +

geom_raster(aes(fill = air)) +
stat_subset(aes(subset = air > 270 & is.cross(lon, lat)),

geom = "point", size = 0.1)

JumpBy Skip observations

Description

Skip observations

Usage

JumpBy(x, by, start = 1, fill = NULL)

Arguments

x vector

by numeric interval between elements to keep

start index to start from

fill how observations are skipped

logic 59

Details

Mostly useful for labelling only every byth element.

Value

A vector of the same class as x and, if fill is not null, the same length.

See Also

Other utilities: Anomaly(), Mag(), Percentile(), logic

Examples

x <- 1:50
JumpBy(x, 2) # only odd numbers
JumpBy(x, 2, start = 2) # only even numbers
JumpBy(x, 2, fill = NA) # even numbers replaced by NA
JumpBy(x, 2, fill = 6) # even numbers replaced by 6

logic Extended logical operators

Description

Extended binary operators for easy subsetting.

Usage

x %~% target

Similar(x, target, tol = Inf)

Arguments

x, target numeric vectors

tol tolerance for similarity

Details

%~% can be thought as a "similar" operator. It’s a fuzzy version of %in% in that returns TRUE for the
element of x which is the (first) closest to any element of target.

Similar is a functional version of %~% that also has a tol parameter that indicates the maximum
allowed tolerance.

Value

A logical vector of the same length of x.

60 Mag

See Also

Other utilities: Anomaly(), JumpBy(), Mag(), Percentile()

Examples

set.seed(198)
x <- rnorm(100)
x[x %~% c(0.3, 0.5, 1)]

Practical use case: vertical cross-section at
approximately 36W between 50S and 50N.
cross.lon <- -34 + 360
library(ggplot2)
library(data.table)
ggplot(temperature[lon %~% cross.lon & lat %between% c(-50, 50)],

aes(lat, lev)) +
geom_contour(aes(z = air))

Mag Magnitude and angle of a vector

Description

Computes the magnitude of a vector of any dimension. Or angle (in degrees) in 2 dimensions.

Usage

Mag(...)

Angle(x, y)

Arguments

... numeric vectors of coordinates or list of coordinates

x, y x and y directions of the vector

Details

Helpful to save keystrokes and gain readability when computing wind (or any other vector quantity)
magnitude.

Value

Mag: A numeric vector the same length as each element of ... that is
√

(x2 + y2 + ...). Angle: A
numeric vector of the same length as x and y that is atan2(y, x)*180/pi.

MakeBreaks 61

See Also

Other utilities: Anomaly(), JumpBy(), Percentile(), logic

Other utilities: Anomaly(), JumpBy(), Percentile(), logic

Examples

Mag(10, 10)
Angle(10, 10)
Mag(10, 10, 10, 10)
Mag(list(10, 10, 10, 10))

There's no vector recicling!
Not run:
Mag(1, 1:2)

End(Not run)

MakeBreaks Functions for making breaks

Description

Functions that return functions suitable to use as the breaks argument in ggplot2’s continuous
scales and in geom_contour_fill.

Usage

MakeBreaks(binwidth = NULL, bins = 10, exclude = NULL)

AnchorBreaks(anchor = 0, binwidth = NULL, exclude = NULL, bins = 10)

Arguments

binwidth width of breaks

bins number of bins, used if binwidth = NULL

exclude a vector of breaks to exclude

anchor anchor value

Details

MakeBreaks is essentially an export of the default way ggplot2::stat_contour makes breaks.

AnchorBreaks makes breaks starting from an anchor value and covering the range of the data
according to binwidth.

62 map_labels

Value

A function that takes a range as argument and a binwidth as an optional argument and returns a
sequence of equally spaced intervals covering the range.

See Also

Other ggplot2 helpers: WrapCircular(), geom_arrow(), geom_contour2(), geom_contour_fill(),
geom_label_contour(), geom_relief(), geom_streamline(), guide_colourstrip(), map_labels,
reverselog_trans(), scale_divergent, scale_longitude, stat_na(), stat_subset()

Examples

my_breaks <- MakeBreaks(10)
my_breaks(c(1, 100))
my_breaks(c(1, 100), 20) # optional new binwidth argument ignored

MakeBreaks()(c(1, 100), 20) # but is not ignored if initial binwidth is NULL

One to one mapping between contours and breaks
library(ggplot2)
binwidth <- 20
ggplot(reshape2::melt(volcano), aes(Var1, Var2, z = value)) +

geom_contour(aes(color = after_stat(level)), binwidth = binwidth) +
scale_color_continuous(breaks = MakeBreaks(binwidth))

#Two ways of getting the same contours. Better use the second one.
ggplot(reshape2::melt(volcano), aes(Var1, Var2, z = value)) +

geom_contour2(aes(color = after_stat(level)), breaks = AnchorBreaks(132),
binwidth = binwidth) +

geom_contour2(aes(color = after_stat(level)), breaks = AnchorBreaks(132, binwidth)) +
scale_color_continuous(breaks = AnchorBreaks(132, binwidth))

map_labels Label longitude and latitude

Description

Provide easy functions for adding suffixes to longitude and latitude for labelling maps.

Usage

LonLabel(lon, east = "°E", west = "°W", zero = "°")

LatLabel(lat, north = "°N", south = "°S", zero = "°")

MaskLand 63

Arguments

lon longitude in degrees
east, west, north, south, zero

text to append for each quadrant

lat latitude in degrees

Details

The default values are for Spanish.

See Also

Other ggplot2 helpers: MakeBreaks(), WrapCircular(), geom_arrow(), geom_contour2(), geom_contour_fill(),
geom_label_contour(), geom_relief(), geom_streamline(), guide_colourstrip(), reverselog_trans(),
scale_divergent, scale_longitude, stat_na(), stat_subset()

Examples

LonLabel(0:360)

MaskLand Mask

Description

Creates a mask

Usage

MaskLand(lon, lat, mask = "world", wrap = c(0, 360))

Arguments

lon a vector of longitudes in degrees in 0-360 format

lat a vector of latitudes in degrees

mask the name of the dataset (that will be load with map) for creating the mask

wrap the longitude range to be used for a global mask

Value

A logical vector of the same length as lat and lon where TRUE means that the point is inside one of
the polygons making up the map. For a global map (the default), this means that the point is over
land.

64 metR

Examples

Make a sea-land mask
mask <- temperature[lev == 1000, .(lon = lon, lat = lat, land = MaskLand(lon, lat))]
temperature <- temperature[mask, on = c("lon", "lat")]
library(ggplot2)

ggplot(mask, aes(lon, lat)) +
geom_raster(aes(fill = land))

Take the temperature difference between land and ocean
diftemp <- temperature[,

.(tempdif = mean(air[land == TRUE]) - mean(air[land == FALSE])),
by = .(lat, lev)]

ggplot(diftemp, aes(lat, lev)) +
geom_contour(aes(z = tempdif, color = after_stat(level))) +
scale_y_level() +
scale_x_latitude() +
scale_color_divergent()

metR metR: Tools for Easier Analysis of Meteorological Fields

Description

Many useful functions and extensions for dealing with meteorological data in the tidy data frame-
work. Extends ’ggplot2’ for better plotting of scalar and vector fields and provides commonly used
analysis methods in the atmospheric sciences.

Overview

Conceptually it’s divided into visualization tools and data tools. The former are geoms, stats and
scales that help with plotting using ’ggplot2’, such as stat_contour_fill or scale_y_level, while the
later are functions for common data processing tools in the atmospheric sciences, such as Derivate
or EOF; these are implemented to work in the ’data.table’ paradigm, but also work with regular data
frames.

To get started, check the vignettes:

• Visualization Tools: vignette("Visualization-tools", package = "metR")

• Working with Data: vignette("Working-with-data", package = "metR")

Author(s)

Maintainer: Elio Campitelli <eliocampitelli@gmail.com> (ORCID)

https://orcid.org/0000-0002-7742-9230

Percentile 65

See Also

Useful links:

• https://eliocamp.github.io/metR/

• Report bugs at https://github.com/eliocamp/metR/issues

Percentile Percentiles

Description

Computes percentiles.

Usage

Percentile(x)

Arguments

x numeric vector

Value

A numeric vector of the same length as x with the percentile of each value of x.

See Also

Other utilities: Anomaly(), JumpBy(), Mag(), logic

Examples

x <- rnorm(100)
p <- Percentile(x)

https://eliocamp.github.io/metR/
https://github.com/eliocamp/metR/issues

66 ReadNetCDF

ReadNetCDF Read NetCDF files.

Description

Using the ncdf4-package package, it reads a NetCDF file. The advantage over using ncvar_get
is that the output is a tidy data.table with proper dimensions.

Usage

ReadNetCDF(
file,
vars = NULL,
out = c("data.frame", "vector", "array"),
subset = NULL,
key = FALSE

)

ParseNetCDFtime(time)

GlanceNetCDF(file, ...)

Arguments

file source to read from. Must be one of:

• A string representing a local file with read access.
• A string representing a URL readable by ncdf4::nc_open(). (this in-

cludes DAP urls).
• A netcdf object returned by ncdf4::nc_open().

vars one of:

• NULL: reads all variables.
• a character vector with the name of the variables to read.
• a function that takes a vector with all the variables and returns either a

character vector with the name of variables to read or a numeric/logical
vector that indicates a subset of variables.

out character indicating the type of output desired

subset a list of subsetting objects. See below.

key if TRUE, returns a data.table keyed by the dimensions of the data.

time the time definition. Can be accessed using GlanceNetCDF.

... in GlanceNetCDF(), ignored. Is there for convenience so that a call to ReadNetCDF()
can be also valid for GlanceNetCDF().

ReadNetCDF 67

Value

The return format is specified by out. It can be a data table in which each column is a variable and
each row, an observation; an array with named dimensions; or a vector. Since it’s possible to return
multiple arrays or vectors (one for each variable), for consistency the return type is always a list.
Either of these two options are much faster than the first since the most time consuming part is the
melting of the array returned by ncdf4::ncvar_get. out = "vector" is particularly useful for adding
new variables to an existing data frame with the same dimensions.

When not all variables specified in vars have the same number of dimensions, the shorter variables
will be recycled. E.g. if reading a 3D pressure field and a 2D surface temperature field, the latter
will be turned into a 3D field with the same values in each missing dimension.

GlanceNetCDF() returns a list of variables and dimensions included in the file with a nice printing
method.

Subsetting

In the most basic form, subset will be a named list whose names must match the dimensions
specified in the NetCDF file and each element must be a vector whose range defines a contiguous
subset of data. You don’t need to provide and exact range that matches the actual gridpoints of
the file; the closest gridpoint will be selected. Furthermore, you can use NA to refer to the existing
minimum or maximum.

So, if you want to get Southern Hemisphere data from the from a file that defines latitude as lat,
then you can use:

subset = list(lat = -90:0)

To use dimension indices instead of values, wrap the expression in base::I(). For example to read
the first 10 timesteps of a file:

subset = list(time = I(1, 10))

Negative indices are interpreted as starting from the end. So to read the last 10 timesteps of a file:

subset = list(time = I(-10, 0))

More complex subsetting operations are supported. If you want to read non-contiguous chunks of
data, you can specify each chunk into a list inside subset. For example this subset

subset = list(list(lat = -90:-70, lon = 0:60),
list(lat = 70:90, lon = 300:360))

will return two contiguous chunks: one on the South-West corner and one on the North-East corner.
Alternatively, if you want to get the four corners that are combination of those two conditions,

subset = list(lat = list(-90:-70, 70:90),
lon = list(0:60, 300:360))

Both operations can be mixed together. So for example this

68 ReadNetCDF

subset = list(list(lat = -90:-70,
lon = 0:60),

time = list(c("2000-01-01", "2000-12-31"),
c("2010-01-01", "2010-12-31")))

returns one spatial chunk for each of two temporal chunks.

The general idea is that named elements define ’global’ subsets ranges that will be applied to every
other subset, while each unnamed element define one contiguous chunk. In the above example,
time defines two temporal ranges that every subset of data will have.

The above example, then, is equivalent to

subset = list(list(lat = -90:-70,
lon = 0:60,
time = c("2000-01-01", "2000-12-31")),

list(lat = -90:-70,
lon = 0:60,
time = c("2010-01-01", "2010-12-31")))

but demands much less typing.

Examples

file <- system.file("extdata", "temperature.nc", package = "metR")
Get a list of variables.
variables <- GlanceNetCDF(file)
print(variables)

The object returned by GlanceNetCDF is a list with lots
of information
str(variables)

Read only the first one, with name "var".
field <- ReadNetCDF(file, vars = c(var = names(variables$vars[1])))
Add a new variable.
¡Make sure it's on the same exact grid!
field[, var2 := ReadNetCDF(file, out = "vector")]

Not run:
Using a DAP url
url <- "http://iridl.ldeo.columbia.edu/SOURCES/.Models/.SubX/.GMAO/.GEOS_V2p1/.hindcast/.ua/dods"
field <- ReadNetCDF(url, subset = list(M = 1,

P = 10,
S = "1999-01-01"))

In this case, opening the netcdf file takes a non-neglible
amount of time. So if you want to iterate over many dimensions,
then it's more efficient to open the file first and then read it.

ncfile <- ncdf4::nc_open(url)
field <- ReadNetCDF(ncfile, subset = list(M = 1,

reverselog_trans 69

P = 10,
S = "1999-01-01"))

Using a function in `vars` to read all variables that
start with "radar_".
ReadNetCDF(radar_file, vars = function(x) startsWith(x, "radar_"))

End(Not run)

reverselog_trans Reverse log transform

Description

Reverse log transformation. Useful when plotting and one axis is in pressure levels.

Usage

reverselog_trans(base = 10)

Arguments

base Base of the logarithm

See Also

Other ggplot2 helpers: MakeBreaks(), WrapCircular(), geom_arrow(), geom_contour2(), geom_contour_fill(),
geom_label_contour(), geom_relief(), geom_streamline(), guide_colourstrip(), map_labels,
scale_divergent, scale_longitude, stat_na(), stat_subset()

Examples

Adiabatic temperature profile
gamma <- 0.286
t <- data.frame(p = c(1000, 950, 850, 700, 500, 300, 200, 100))
t$t <- 300*(t$p/1000)^gamma

library(ggplot2)
ggplot(t, aes(p, t)) +

geom_line() +
coord_flip() +
scale_x_continuous(trans = "reverselog")

70 scale_divergent

scale_divergent Divergent colour scales

Description

Wrapper around ggplot’s scale_colour_gradient2 with inverted defaults of high and low.

Usage

scale_colour_divergent(
...,
low = scales::muted("blue"),
mid = "white",
high = scales::muted("red"),
midpoint = 0,
space = "Lab",
na.value = "grey50",
guide = "colourbar"

)

scale_color_divergent(
...,
low = scales::muted("blue"),
mid = "white",
high = scales::muted("red"),
midpoint = 0,
space = "Lab",
na.value = "grey50",
guide = "colourbar"

)

scale_fill_divergent(
...,
low = scales::muted("blue"),
mid = "white",
high = scales::muted("red"),
midpoint = 0,
space = "Lab",
na.value = "grey50",
guide = "colourbar"

)

Arguments

... Arguments passed on to continuous_scale

scale_name [Deprecated] The name of the scale that should be used for error
messages associated with this scale.

scale_divergent 71

palette A palette function that when called with a numeric vector with values
between 0 and 1 returns the corresponding output values (e.g., scales::pal_area()).

breaks One of:
• NULL for no breaks
• waiver() for the default breaks computed by the transformation object
• A numeric vector of positions
• A function that takes the limits as input and returns breaks as output

(e.g., a function returned by scales::extended_breaks()). Note that
for position scales, limits are provided after scale expansion. Also ac-
cepts rlang lambda function notation.

minor_breaks One of:
• NULL for no minor breaks
• waiver() for the default breaks (one minor break between each major

break)
• A numeric vector of positions
• A function that given the limits returns a vector of minor breaks. Also

accepts rlang lambda function notation. When the function has two
arguments, it will be given the limits and major breaks.

n.breaks An integer guiding the number of major breaks. The algorithm may
choose a slightly different number to ensure nice break labels. Will only
have an effect if breaks = waiver(). Use NULL to use the default number
of breaks given by the transformation.

labels One of:
• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plot-

math for details.
• A function that takes the breaks as input and returns labels as output.

Also accepts rlang lambda function notation.
limits One of:

• NULL to use the default scale range
• A numeric vector of length two providing limits of the scale. Use NA to

refer to the existing minimum or maximum
• A function that accepts the existing (automatic) limits and returns new

limits. Also accepts rlang lambda function notation. Note that setting
limits on positional scales will remove data outside of the limits. If
the purpose is to zoom, use the limit argument in the coordinate system
(see coord_cartesian()).

rescaler A function used to scale the input values to the range [0, 1]. This is
always scales::rescale(), except for diverging and n colour gradients
(i.e., scale_colour_gradient2(), scale_colour_gradientn()). The
rescaler is ignored by position scales, which always use scales::rescale().
Also accepts rlang lambda function notation.

oob One of:

72 scale_label_colour_continuous

• Function that handles limits outside of the scale limits (out of bounds).
Also accepts rlang lambda function notation.

• The default (scales::censor()) replaces out of bounds values with
NA.

• scales::squish() for squishing out of bounds values into range.

• scales::squish_infinite() for squishing infinite values into range.

trans [Deprecated] Deprecated in favour of transform.

call The call used to construct the scale for reporting messages.

super The super class to use for the constructed scale

low, high Colours for low and high ends of the gradient.

mid colour for mid point

midpoint The midpoint (in data value) of the diverging scale. Defaults to 0.

space colour space in which to calculate gradient. Must be "Lab" - other values are
deprecated.

na.value Colour to use for missing values

guide Type of legend. Use "colourbar" for continuous colour bar, or "legend" for
discrete colour legend.

See Also

Other ggplot2 helpers: MakeBreaks(), WrapCircular(), geom_arrow(), geom_contour2(), geom_contour_fill(),
geom_label_contour(), geom_relief(), geom_streamline(), guide_colourstrip(), map_labels,
reverselog_trans(), scale_longitude, stat_na(), stat_subset()

Examples

library(ggplot2)
ggplot(reshape2::melt(volcano), aes(Var1, Var2, z = value)) +

geom_contour(aes(color = after_stat(level))) +
scale_colour_divergent(midpoint = 130)

scale_label_colour_continuous

Scales for contour label aesthetics

Description

Scales for contour label aesthetics

scale_label_colour_continuous 73

Usage

scale_label_colour_continuous(
...,
aesthetics = c("label_colour"),
guide = ggplot2::guide_colorbar(available_aes = "label_colour")

)

scale_label_alpha_continuous(
...,
range = c(0.1, 1),
aesthetics = c("label_alpha")

)

scale_label_size_continuous(
breaks = waiver(),
labels = waiver(),
limits = NULL,
range = c(1, 6),
transform = "identity",
guide = "legend"

)

Arguments

... Arguments passed on to continuous_scale

minor_breaks One of:
• NULL for no minor breaks
• waiver() for the default breaks (one minor break between each major

break)
• A numeric vector of positions
• A function that given the limits returns a vector of minor breaks. Also

accepts rlang lambda function notation. When the function has two
arguments, it will be given the limits and major breaks.

oob One of:
• Function that handles limits outside of the scale limits (out of bounds).

Also accepts rlang lambda function notation.
• The default (scales::censor()) replaces out of bounds values with
NA.

• scales::squish() for squishing out of bounds values into range.
• scales::squish_infinite() for squishing infinite values into range.

na.value Missing values will be replaced with this value.
call The call used to construct the scale for reporting messages.
super The super class to use for the constructed scale

aesthetics Character string or vector of character strings listing the name(s) of the aes-
thetic(s) that this scale works with. This can be useful, for example, to apply
colour settings to the colour and fill aesthetics at the same time, via aesthetics =
c("colour", "fill").

74 scale_label_colour_continuous

guide Type of legend. Use "colourbar" for continuous colour bar, or "legend" for dis-
crete colour legend.

range Output range of alpha values. Must lie between 0 and 1.

breaks One of:

• NULL for no breaks

• waiver() for the default breaks computed by the transformation object

• A numeric vector of positions

• A function that takes the limits as input and returns breaks as output (e.g.,
a function returned by scales::extended_breaks()). Note that for po-
sition scales, limits are provided after scale expansion. Also accepts rlang
lambda function notation.

labels One of:

• NULL for no labels

• waiver() for the default labels computed by the transformation object

• A character vector giving labels (must be same length as breaks)

• An expression vector (must be the same length as breaks). See ?plotmath
for details.

• A function that takes the breaks as input and returns labels as output. Also
accepts rlang lambda function notation.

limits One of:

• NULL to use the default scale range

• A numeric vector of length two providing limits of the scale. Use NA to
refer to the existing minimum or maximum

• A function that accepts the existing (automatic) limits and returns new
limits. Also accepts rlang lambda function notation. Note that setting
limits on positional scales will remove data outside of the limits. If the
purpose is to zoom, use the limit argument in the coordinate system (see
coord_cartesian()).

transform For continuous scales, the name of a transformation object or the object itself.
Built-in transformations include "asn", "atanh", "boxcox", "date", "exp", "hms",
"identity", "log", "log10", "log1p", "log2", "logit", "modulus", "probability",
"probit", "pseudo_log", "reciprocal", "reverse", "sqrt" and "time".

A transformation object bundles together a transform, its inverse, and methods
for generating breaks and labels. Transformation objects are defined in the scales
package, and are called transform_<name>. If transformations require argu-
ments, you can call them from the scales package, e.g. scales::transform_boxcox(p
= 2). You can create your own transformation with scales::new_transform().

scale_longitude 75

scale_longitude Helpful scales for maps

Description

These functions are simple wrappers around scale_x_continuous and scale_y_continuous with
helpful defaults for plotting longitude, latitude and pressure levels.

Usage

scale_x_longitude(
name = "",
ticks = 30,
breaks = seq(-180, 360, by = ticks),
expand = c(0, 0),
labels = LonLabel,
...

)

scale_y_longitude(
name = "",
ticks = 60,
breaks = seq(-180, 360, by = ticks),
expand = c(0, 0),
labels = LonLabel,
...

)

scale_x_latitude(
name = "",
ticks = 30,
breaks = seq(-90, 90, by = ticks),
expand = c(0, 0),
labels = LatLabel,
...

)

scale_y_latitude(
name = "",
ticks = 30,
breaks = seq(-90, 90, by = ticks),
expand = c(0, 0),
labels = LatLabel,
...

)

scale_x_level(name = "", expand = c(0, 0), trans = "reverselog", ...)

76 scale_longitude

scale_y_level(name = "", expand = c(0, 0), trans = "reverselog", ...)

Arguments

name The name of the scale. Used as the axis or legend title. If waiver(), the default,
the name of the scale is taken from the first mapping used for that aesthetic. If
NULL, the legend title will be omitted.

ticks spacing between breaks

breaks One of:

• NULL for no breaks
• waiver() for the default breaks computed by the transformation object
• A numeric vector of positions
• A function that takes the limits as input and returns breaks as output (e.g.,

a function returned by scales::extended_breaks()). Note that for po-
sition scales, limits are provided after scale expansion. Also accepts rlang
lambda function notation.

expand For position scales, a vector of range expansion constants used to add some
padding around the data to ensure that they are placed some distance away from
the axes. Use the convenience function ggplot2::expansion() to generate the
values for the expand argument.

labels One of:

• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plotmath

for details.
• A function that takes the breaks as input and returns labels as output. Also

accepts rlang lambda function notation.

... Other arguments passed on to scale_(x|y)_continuous()

trans [Deprecated] Deprecated in favour of transform.

See Also

Other ggplot2 helpers: MakeBreaks(), WrapCircular(), geom_arrow(), geom_contour2(), geom_contour_fill(),
geom_label_contour(), geom_relief(), geom_streamline(), guide_colourstrip(), map_labels,
reverselog_trans(), scale_divergent, stat_na(), stat_subset()

Examples

data(geopotential)
library(ggplot2)
ggplot(geopotential[date == date[1]], aes(lon, lat, z = gh)) +

geom_contour() +
scale_x_longitude() +
scale_y_latitude()

scale_mag 77

data(temperature)
ggplot(temperature[lon == lon[1] & lat == lat[1]], aes(air, lev)) +

geom_path() +
scale_y_level()

scale_mag Scale for vector magnitudes

Description

Allows to control the size of the arrows in geom_arrow. Highly experimental.

Usage

scale_mag(
name = ggplot2::waiver(),
n.breaks = 1,
breaks = ggplot2::waiver(),
oob = no_censor,
...

)

scale_mag_continuous(
name = ggplot2::waiver(),
n.breaks = 1,
breaks = ggplot2::waiver(),
oob = no_censor,
...

)

Arguments

name The name of the scale. Used as the axis or legend title. If waiver(), the default,
the name of the scale is taken from the first mapping used for that aesthetic. If
NULL, the legend title will be omitted.

n.breaks An integer guiding the number of major breaks. The algorithm may choose a
slightly different number to ensure nice break labels. Will only have an effect if
breaks = waiver(). Use NULL to use the default number of breaks given by the
transformation.

breaks One of:

• NULL for no breaks
• waiver() for the default breaks computed by the transformation object
• A numeric vector of positions

78 season

• A function that takes the limits as input and returns breaks as output (e.g.,
a function returned by scales::extended_breaks()). Note that for po-
sition scales, limits are provided after scale expansion. Also accepts rlang
lambda function notation.

oob One of:

• Function that handles limits outside of the scale limits (out of bounds). Also
accepts rlang lambda function notation.

• The default (scales::censor()) replaces out of bounds values with NA.
• scales::squish() for squishing out of bounds values into range.
• scales::squish_infinite() for squishing infinite values into range.

... Other arguments passed on to scale_(x|y)_continuous()

Examples

library(ggplot2)
g <- ggplot(seals, aes(long, lat)) +

geom_vector(aes(dx = delta_long, dy = delta_lat), skip = 2)

g + scale_mag("Seals velocity")

g + scale_mag("Seals velocity", limits = c(0, 1))

season Assign seasons to months

Description

Assign seasons to months

Usage

season(x, lang = c("en", "es"))

seasonally(x)

is.full_season(x)

Arguments

x A vector of dates (alternative a numeric vector of months, for season())

lang Language to use.

Smooth2D 79

Value

season() returns a factor vector of the same length as x with the trimester of each month. seasonaly()
returns a date vector of the same length as x with the date "rounded" up to the centre month of each
season. is.full_season() returns a logical vector of the same length as x that is true only if the
3 months of each season for each year (December counts for the following year) are present in the
dataset.

Examples

season(1, lang = "en")
season(as.Date("2017-01-01"))

seasonally(as.Date(c("2017-12-01", "2018-01-01", "2018-02-01")))

is.full_season(as.Date(c("2017-12-01", "2018-01-01", "2018-02-01", "2018-03-01")))

Smooth2D Smooths a 2D field

Description

Smooth a 2D field using a user-supplied method.

Usage

Smooth2D(x, y, value, method = smooth_svd(0.01))

smooth_dct(kx = 0.5, ky = kx)

smooth_svd(variance_lost = 0.01)

Arguments

x, y Vector of x and y coordinates

value Vector of values

method The method to use smooth. Must be a function that takes a matrix and returns
the smoothed matrix. Build-in methods are smooth_svd() and smooth_dct().

kx, ky Proportion of components to keep in the x and y direction respectively. Lower
values increase the smoothness.

variance_lost Maximum percentage of variance lost after smoothing.

Details

smooth_svd() computes the SVD of the field and reconstructs it keeping only the leading values
that ensures a maximum variance lost. smooth_dct() computes the Discrete Cosine Transform of
the field and sets a proportion of the components to zero.

80 spherical

Value

A vector of the same length as value.

Examples

library(ggplot2)
Creates a noisy version of the volcano dataset and applies the smooth
volcano <- reshape2::melt(datasets::volcano, value.name = "original")
volcano$noisy <- with(volcano, original + 1.5*rnorm(length(original)))

volcano$smooth_svd <- with(volcano, Smooth2D(Var2, Var1, noisy, method = smooth_svd(0.005)))
volcano$smooth_dct <- with(volcano, Smooth2D(Var2, Var1, noisy, method = smooth_dct(kx = 0.4)))

volcano <- reshape2::melt(volcano, id.vars = c("Var1", "Var2"))

ggplot(volcano, aes(Var1, Var2)) +
geom_contour(aes(z = value, color = after_stat(level))) +
scale_color_viridis_c() +
coord_equal() +
facet_wrap(~variable, ncol = 2)

spherical Transform between spherical coordinates and physical coordinates

Description

Transform a longitude or latitude interval into the equivalent in meters depending on latitude.

Usage

dlon(dx, lat, a = 6731000)

dlat(dy, a = 6731000)

dx(dlon, lat, a = 6731000)

dy(dlat, a = 6731000)

Arguments

dx, dy interval in meters

lat latitude, in degrees

a radius of the Earth

dlon, dlat interval in degrees

standard_atmosphere 81

Examples

library(data.table)
data(geopotential)
geopotential <- geopotential[date == date[1]]

Geostrophic wind
geopotential[, c("u", "v") := GeostrophicWind(gh, lon, lat)] # in meters/second
geopotential[, c("dlon", "dlat") := .(dlon(u, lat), dlat(v))] # in degrees/second
geopotential[, c("u2", "v2") := .(dx(dlon, lat), dy(dlat))] # again in degrees/second

standard_atmosphere Standard atmosphere

Description

Utilities to use the International Standard Atmosphere. It uses the International Standard Atmo-
sphere up to the tropopause (11 km by definition) and then extends up to the 500 km using the
ARDC Model Atmosphere.

Usage

sa_pressure(height)

sa_height(pressure)

sa_temperature(height)

sa_height_trans(pressure_in = "hPa", height_in = "km")

sa_pressure_trans(height_in = "km", pressure_in = "hPa")

sa_height_breaks(n = 6, pressure_in = "hPa", height_in = "km", ...)

sa_height_axis(
name = ggplot2::waiver(),
breaks = sa_height_breaks(pressure_in = pressure_in, height_in = height_in),
labels = ggplot2::waiver(),
guide = ggplot2::waiver(),
pressure_in = "hPa",
height_in = "km"

)

sa_pressure_axis(
name = ggplot2::waiver(),
breaks = scales::log_breaks(n = 6),
labels = scales::number_format(drop0trailing = TRUE, big.mark = "", trim = FALSE),

82 standard_atmosphere

guide = ggplot2::waiver(),
height_in = "km",
pressure_in = "hPa"

)

Arguments

height height in meter

pressure pressure in pascals
height_in, pressure_in

units of height and pressure, respectively. Possible values are "km", "m" for
height and "hPa" and "Pa" for pressure. Alternatively, it can be a numeric con-
stant that multiplied to convert the unit to meters and Pascals respectively. (E.g.
if height is in feet, use height_in = 0.3048.)

n desiderd number of breaks.

... extra arguments passed to scales::breaks_extended.
name, breaks, labels, guide

arguments passed to ggplot2::sec_axis()

Details

sa_pressure(), sa_height(), sa_temperature() return, respectively, pressure (in pascals), height
(in meters) and temperature (in Kelvin).

sa_height_trans() and sa_pressure_trans() are two transformation functions to be used as
the trans argument in ggplot2 scales (e.g. scale_y_continuous(trans = "sa_height").

sa_height_axis() and sa_pressure_axis() return a secondary axis that transforms to height or
pressure respectively to be used as ggplot2 secondary axis (e.g. scale_y_continuous(sec.axis
= sa_height_axis())).

For convenience, and unlike the "primitive" functions, both the transformation functions and the
axis functions input and output in hectopascals and kilometres by default.

References

Standard atmosphere—Glossary of Meteorology. (n.d.). Retrieved 22 February 2021, from https:
//glossary.ametsoc.org/wiki/Standard_atmosphere

Examples

height <- seq(0, 100*1000, by = 1*200)

Temperature profile that defines the standard atmosphere (in degrees Celsius)
plot(sa_temperature(height) - 273.15, height, type = "l")

Pressure profile
plot(sa_pressure(height), height, type = "l")

Use with ggplot2
library(ggplot2)

https://glossary.ametsoc.org/wiki/Standard_atmosphere
https://glossary.ametsoc.org/wiki/Standard_atmosphere

stat_na 83

data <- data.frame(height = height/1000, # height in kilometers
pressure = sa_pressure(height)/100) # pressures in hectopascals

With the sa_*_axis functions, you can label the approximate height
when using isobaric coordinates#'
ggplot(data, aes(height, pressure)) +

geom_path() +
scale_y_continuous(sec.axis = sa_height_axis("height"))

Or the approximate pressure when using physical height
ggplot(data, aes(pressure, height)) +

geom_path() +
scale_y_continuous(sec.axis = sa_pressure_axis("level"))

When working with isobaric coordinates,using a linear scale exagerates
the thickness of the lower levels
ggplot(temperature[lat == 0], aes(lon, lev)) +

geom_contour_fill(aes(z = air)) +
scale_y_reverse()

Using the standard atmospehre height transormation, the result
is an approximate linear scale in height
ggplot(temperature[lat == 0], aes(lon, lev)) +

geom_contour_fill(aes(z = air)) +
scale_y_continuous(trans = "sa_height", expand = c(0, 0))

The result is very similar to using a reverse log transform, which is the
current behaviour of scale_y_level(). This transformation slightly
overextends the higher levels.
ggplot(temperature[lat == 0], aes(lon, lev)) +

geom_contour_fill(aes(z = air)) +
scale_y_level()

stat_na Filter only NA values.

Description

Useful for indicating or masking missing data. This stat subsets data where one variable is NA.

Usage

stat_na(
mapping = NULL,
data = NULL,
geom = "point",
position = "identity",
...,
show.legend = NA,

84 stat_na

inherit.aes = TRUE
)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is

stat_na 85

technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Aesthetics

stat_na understands the following aesthetics (required aesthetics are in bold)

• x
• y
• na
• width

• height

See Also

stat_subset for a more general way of filtering data.
Other ggplot2 helpers: MakeBreaks(), WrapCircular(), geom_arrow(), geom_contour2(), geom_contour_fill(),
geom_label_contour(), geom_relief(), geom_streamline(), guide_colourstrip(), map_labels,
reverselog_trans(), scale_divergent, scale_longitude, stat_subset()

Examples

library(ggplot2)
library(data.table)
surface <- reshape2::melt(volcano)
surface <- within(surface, value[Var1 %between% c(20, 30) & Var2 %between% c(20, 30)] <- NA)
surface[sample(1:nrow(surface), 100, replace = FALSE), 3] <- NA

ggplot(surface, aes(Var1, Var2, z = value)) +
geom_contour_fill(na.fill = TRUE) +
stat_na(aes(na = value), geom = "tile")

86 stat_subset

stat_subset Subset values

Description

Removes values where subset evaluates to FALSE. Useful for showing only statistical significant
values, or an interesting subset of the data without manually subsetting the data.

Usage

stat_subset(
mapping = NULL,
data = NULL,
geom = "point",
position = "identity",
...,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms. The geom argument accepts
the following:

• A Geom ggproto subclass, for example GeomPoint.
• A string naming the geom. To give the geom as a string, strip the function

name of the geom_ prefix. For example, to use geom_point(), give the
geom as "point".

• For more information and other ways to specify the geom, see the layer
geom documentation.

stat_subset 87

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through
.... Unknown arguments that are not part of the 4 categories below are ignored.

• Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red" or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

• When constructing a layer using a stat_*() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area", outline.type = "both"). The
geom’s documentation lists which parameters it can accept.

• Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density", adjust = 0.5). The
stat’s documentation lists which parameters it can accept.

• The key_glyph argument of layer() may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Aesthetics

stat_subset understands the following aesthetics (required aesthetics are in bold)

• x
• y
• subset

88 surface

• width

• height

See Also

stat_na for a more specialized stat for filtering NA values.

Other ggplot2 helpers: MakeBreaks(), WrapCircular(), geom_arrow(), geom_contour2(), geom_contour_fill(),
geom_label_contour(), geom_relief(), geom_streamline(), guide_colourstrip(), map_labels,
reverselog_trans(), scale_divergent, scale_longitude, stat_na()

Examples

library(ggplot2)
ggplot(reshape2::melt(volcano), aes(Var1, Var2)) +

geom_contour(aes(z = value)) +
stat_subset(aes(subset = value >= 150 & value <= 160),

shape = 3, color = "red")

surface Surface height

Description

Surface height of central Argentina on a lambert grid.

Usage

surface

Format

A data.table with 53224 rows and 5 variables.

lon longitude in degrees

lat latitude in degrees

height height in meters

x x coordinates of projection

y y coordinates of projection

temperature 89

temperature Air temperature

Description

A global air temperature field for 2017-07-09.

Usage

temperature

Format

A data.table with 10512 rows and 3 variables:

lon longitude in degrees from 0 to 360

lat latitude in degrees

lev pressure level in hPa)

air air temperature in Kelvin

Source

https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.derived.pressure.html

thermodynamics Thermodynamics

Description

Functions related to common atmospheric thermodynamic relationships.

Usage

IdealGas(p, t, rho, R = 287.058)

Adiabat(p, t, theta, p0 = 1e+05, kappa = 2/7)

VirtualTemperature(p, t, e, tv, epsilon = 0.622)

MixingRatio(p, e, w, epsilon = 0.622)

ClausiusClapeyron(t, es)

DewPoint(p, ws, td, epsilon = 0.622)

https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.derived.pressure.html

90 thermodynamics

Arguments

p pressure

t temperature

rho density

R gas constant for air

theta potential temperature

p0 reference pressure

kappa ratio of dry air constant and specific heat capacity at constant pressure

e vapour partial pressure

tv virtual temperature

epsilon ratio of dry air constant and vapour constant

w mixing ratio

es saturation vapour partial pressure

ws saturation mixing ratio

td dewpoint

Details

IdealGas computes pressure, temperature or density of air according to the ideal gas law P = ρRT .

Adiabat computes pressure, temperature or potential temperature according to the adiabatic rela-
tionship θ = T (P0/P)κ.

VirtualTemperature computes pressure, temperature, vapour partial pressure or virtual tempera-
ture according to the virtual temperature definition T (1− e/P (1− ϵ))−1.

MixingRatio computes pressure, vapour partial temperature, or mixing ratio according to w =
ϵe/(P − e).

ClausiusClapeyron computes saturation pressure or temperature according to the August-Roche-
Magnus formula es = aexpbT/(T + c) with temperature in Kelvin and saturation pressure in Pa.

DewPoint computes pressure, saturation mixing ration or dew point from the relationship ws =
ϵes(Td)/(p− es(Td)). Note that the computation of dew point is approximated.

Is important to take note of the units in which each variable is provided. With the default values,
pressure should be passed in Pascals, temperature and potential temperature in Kelvins, and density
in kg/m3. ClausiusClayperon and DewPoint require and return values in those units.

The defaults value of the R and kappa parameters are correct for dry air, for the case of moist air,
use the virtual temperature instead of the actual temperature.

Value

Each function returns the value of the missing state variable.

References

http://www.atmo.arizona.edu/students/courselinks/fall11/atmo551a/ATMO_451a_551a_files/WaterVapor.pdf

Trajectory 91

See Also

Other meteorology functions: Derivate(), EOF(), GeostrophicWind(), WaveFlux(), waves

Examples

IdealGas(1013*100, 20 + 273.15)
IdealGas(1013*100, rho = 1.15) - 273.15

(theta <- Adiabat(70000, 20 + 273.15))
Adiabat(70000, theta = theta) - 273.15

Relative humidity from T and Td
t <- 25 + 273.15
td <- 20 + 273.15
p <- 1000000
(rh <- ClausiusClapeyron(td)/ClausiusClapeyron(t))

Mixing ratio
ws <- MixingRatio(p, ClausiusClapeyron(t))
w <- ws*rh
DewPoint(p, w) - 273.15 # Recover Td

Trajectory Compute trajectories

Description

Computes trajectories of particles in a time-varying velocity field.

Usage

Trajectory(formula, x0, y0, cyclical = FALSE, data = NULL, res = 2)

Arguments

formula a formula indicating dependent and independent variables in the form of dx +
dy ~ x + y + t.

x0, y0 starting coordinates of the particles.

cyclical logical vector of boundary condition for x and y.

data optional data.frame containing the variables.

res resolution parameter (higher numbers increases the resolution)

92 WaveFlux

WaveFlux Calculate wave-activity flux

Description

Calculate wave-activity flux

Usage

WaveFlux(gh, u, v, lon, lat, lev, g = 9.81, a = 6371000)

Arguments

gh geopotential height

u mean zonal velocity

v mean meridional velocity

lon longitude (in degrees)

lat latitude (in degrees)

lev pressure level (in hPa)

g acceleration of gravity

a Earth’s radius

Details

Calculates Plum-like wave activity fluxes

Value

A list with elements: longitude, latitude, and the two horizontal components of the wave activity
flux.

References

Takaya, K. and H. Nakamura, 2001: A Formulation of a Phase-Independent Wave-Activity Flux
for Stationary and Migratory Quasigeostrophic Eddies on a Zonally Varying Basic Flow. J. Atmos.
Sci., 58, 608–627, doi:10.1175/15200469(2001)058<0608:AFOAPI>2.0.CO;2
Adapted from https://github.com/marisolosman/Reunion_Clima/blob/master/WAF/Calculo_
WAF.ipynb

See Also

Other meteorology functions: Derivate(), EOF(), GeostrophicWind(), thermodynamics, waves

https://doi.org/10.1175/1520-0469%282001%29058%3C0608%3AAFOAPI%3E2.0.CO%3B2
https://github.com/marisolosman/Reunion_Clima/blob/master/WAF/Calculo_WAF.ipynb
https://github.com/marisolosman/Reunion_Clima/blob/master/WAF/Calculo_WAF.ipynb

waves 93

waves Fourier transform functions

Description

Use fft() to fit, filter and reconstruct signals in the frequency domain, as well as to compute the
wave envelope.

Usage

FitWave(y, k = 1)

BuildWave(
x,
amplitude,
phase,
k,
wave = list(amplitude = amplitude, phase = phase, k = k),
sum = TRUE

)

FilterWave(y, k, action = sign(k[k != 0][1]))

WaveEnvelope(y)

Arguments

y numeric vector to transform

k numeric vector of wave numbers

x numeric vector of locations (in radians)

amplitude numeric vector of amplitudes

phase numeric vector of phases

wave optional list output from FitWave

sum whether to perform the sum or not (see Details)

action integer to disambiguate action for k = 0 (see Details)

Details

FitWave performs a fourier transform of the input vector and returns a list of parameters for each
wave number kept. The amplitude (A), phase (ϕ) and wave number (k) satisfy:

y =
∑

Acos((x− ϕ)k)

The phase is calculated so that it lies between 0 and 2π/k so it represents the location (in radians)
of the first maximum of each wave number. For the case of k = 0 (the mean), phase is arbitrarily set
to 0.

94 waves

BuildWave is FitWave’s inverse. It reconstructs the original data for selected wavenumbers. If sum
is TRUE (the default) it performs the above mentioned sum and returns a single vector. If is FALSE,
then it returns a list of k vectors consisting of the reconstructed signal of each wavenumber.

FilterWave filters or removes wavenumbers specified in k. If k is positive, then the result is the
reconstructed signal of y only for wavenumbers specified in k, if it’s negative, is the signal of y
minus the wavenumbers specified in k. The argument action must be be manually set to -1 or +1
if k=0.

WaveEnvelope computes the wave envelope of y following Zimin (2003). To compute the envelope
of only a restricted band, first filter it with FilterWave.

Value

FitWaves returns a a named list with components

k wavenumbers

amplitude amplitude of each wavenumber

phase phase of each wavenumber in radians

r2 explained variance of each wavenumber

BuildWave returns a vector of the same length of x with the reconstructed vector if sum is TRUE or,
instead, a list with components

k wavenumbers

x the vector of locations

y the reconstructed signal of each wavenumber

FilterWave and WaveEnvelope return a vector of the same length as y ‘

References

Zimin, A.V., I. Szunyogh, D.J. Patil, B.R. Hunt, and E. Ott, 2003: Extracting Envelopes of Rossby
Wave Packets. Mon. Wea. Rev., 131, 1011–1017, doi:10.1175/15200493(2003)131<1011:EEORWP>2.0.CO;2

See Also

Other meteorology functions: Derivate(), EOF(), GeostrophicWind(), WaveFlux(), thermodynamics

Examples

Build a wave with specific wavenumber profile
waves <- list(k = 1:10,

amplitude = rnorm(10)^2,
phase = runif(10, 0, 2*pi/(1:10)))

x <- BuildWave(seq(0, 2*pi, length.out = 60)[-1], wave = waves)

Just fancy FFT
FitWave(x, k = 1:10)

https://doi.org/10.1175/1520-0493%282003%29131%3C1011%3AEEORWP%3E2.0.CO%3B2

waves 95

Extract only specific wave components
plot(FilterWave(x, 1), type = "l")
plot(FilterWave(x, 2), type = "l")
plot(FilterWave(x, 1:4), type = "l")

Remove components from the signal
plot(FilterWave(x, -4:-1), type = "l")

The sum of the two above is the original signal (minus floating point errors)
all.equal(x, FilterWave(x, 1:4) + FilterWave(x, -4:-1))

The Wave envelopes shows where the signal is the most "wavy".
plot(x, type = "l", col = "grey")
lines(WaveEnvelope(x), add = TRUE)

Examples with real data
data(geopotential)
library(data.table)
January mean of geopotential height
jan <- geopotential[month(date) == 1, .(gh = mean(gh)), by = .(lon, lat)]

Stationary waves for each latitude
jan.waves <- jan[, FitWave(gh, 1:4), by = .(lat)]
library(ggplot2)
ggplot(jan.waves, aes(lat, amplitude, color = factor(k))) +

geom_line()

Build field of wavenumber 1
jan[, gh.1 := BuildWave(lon*pi/180, wave = FitWave(gh, 1)), by = .(lat)]
ggplot(jan, aes(lon, lat)) +

geom_contour(aes(z = gh.1, color = after_stat(level))) +
coord_polar()

Build fields of wavenumber 1 and 2
waves <- jan[, BuildWave(lon*pi/180, wave = FitWave(gh, 1:2), sum = FALSE), by = .(lat)]
waves[, lon := x*180/pi]
ggplot(waves, aes(lon, lat)) +

geom_contour(aes(z = y, color = after_stat(level))) +
facet_wrap(~k) +
coord_polar()

Field with waves 0 to 2 filtered
jan[, gh.no12 := gh - BuildWave(lon*pi/180, wave = FitWave(gh, 0:2)), by = .(lat)]
ggplot(jan, aes(lon, lat)) +

geom_contour(aes(z = gh.no12, color = after_stat(level))) +
coord_polar()

Much faster
jan[, gh.no12 := FilterWave(gh, -2:0), by = .(lat)]
ggplot(jan, aes(lon, lat)) +

geom_contour(aes(z = gh.no12, color = after_stat(level))) +
coord_polar()

96 WrapCircular

Using positive numbers returns the field
jan[, gh.only12 := FilterWave(gh, 2:1), by = .(lat)]
ggplot(jan, aes(lon, lat)) +

geom_contour(aes(z = gh.only12, color = after_stat(level))) +
coord_polar()

Compute the envelope of the geopotential
jan[, envelope := WaveEnvelope(gh.no12), by = .(lat)]
ggplot(jan[lat == -60], aes(lon, gh.no12)) +

geom_line() +
geom_line(aes(y = envelope), color = "red")

WrapCircular Wrap periodic data to any range

Description

Periodic data can be defined only in one period and be extended to any arbitrary range.

Usage

WrapCircular(x, circular = "lon", wrap = c(0, 360))

Arguments

x a data.frame

circular the name of the circular dimension

wrap the wrap for the data to be extended to

Value

A data.frame.

See Also

geom_contour2

Other ggplot2 helpers: MakeBreaks(), geom_arrow(), geom_contour2(), geom_contour_fill(),
geom_label_contour(), geom_relief(), geom_streamline(), guide_colourstrip(), map_labels,
reverselog_trans(), scale_divergent, scale_longitude, stat_na(), stat_subset()

Examples

library(ggplot2)
library(data.table)
data(geopotential)
g <- ggplot(geopotential[date == date[1]], aes(lon, lat)) +

WrapCircular 97

geom_contour(aes(z = gh)) +
coord_polar() +
ylim(c(-90, -10))

This plot has problems in lon = 0
g

But using WrapCircular solves it.
g %+% WrapCircular(geopotential[date == date[1]], "lon", c(0, 360))

Aditionally data can be just repeatet to the right and
left
ggplot(WrapCircular(geopotential[date == date[1]], wrap = c(-180, 360 + 180)),

aes(lon, lat)) +
geom_contour(aes(z = gh))

The same behaviour is now implemented directly in geom_contour2
and geom_contour_fill
ggplot(geopotential[date == date[1]], aes(lon, lat)) +

geom_contour2(aes(z = gh), xwrap = c(-180, 360 + 180))

Index

∗ datasets
as.discretised_scale, 4
geom_arrow, 19
geom_contour2, 24
geom_contour_fill, 29
geom_contour_tanaka, 33
geom_label_contour, 37
geom_relief, 41
geom_streamline, 44
geopotential, 50
stat_na, 83
stat_subset, 86
surface, 88
temperature, 89

∗ ggplot2 helpers
geom_arrow, 19
geom_contour2, 24
geom_contour_fill, 29
geom_label_contour, 37
geom_relief, 41
geom_streamline, 44
MakeBreaks, 61
map_labels, 62
reverselog_trans, 69
scale_divergent, 70
scale_longitude, 75
stat_na, 83
stat_subset, 86
WrapCircular, 96

∗ meteorology functions
Derivate, 12
EOF, 14
GeostrophicWind, 51
thermodynamics, 89
WaveFlux, 92
waves, 93

∗ utilities
Anomaly, 3
JumpBy, 58

logic, 59
Mag, 60
Percentile, 65

%~% (logic), 59
%in%, 59

Adiabat (thermodynamics), 89
aes(), 21, 25, 30, 34, 38, 42, 46, 84, 86
AnchorBreaks (MakeBreaks), 61
Angle (Mag), 60
Anomaly, 3, 59–61, 65
as.discretised_scale, 4
as.path, 9, 57
AssignSeason (season), 78

base::I(), 67
base::svd, 15
borders(), 22, 27, 32, 36, 40, 43, 48, 85, 87
BuildWave (waves), 93

ClausiusClapeyron (thermodynamics), 89
continuous_scale, 5, 70, 73
ConvertLongitude, 10
coord_cartesian(), 6, 7, 71, 74
coriolis, 11
cross (is.cross), 57
cut.eof, 11, 16

data.table::dcast, 55
denormalise, 12
denormalize (denormalise), 12
Derivate, 12, 16, 51, 64, 91, 92, 94
Detrend (FitLm), 18
DewPoint (thermodynamics), 89
discretised_scale

(as.discretised_scale), 4
Divergence (Derivate), 12
dlat (spherical), 80
dlon (spherical), 80
dx (spherical), 80

98

INDEX 99

dy (spherical), 80

EOF, 14, 14, 51, 64, 91, 92, 94
EOF(), 12
EPflux, 17

f (coriolis), 11
fft(), 93
FilterWave (waves), 93
FitLm, 18
FitWave (waves), 93
Formula::Formula, 15, 55
fortify(), 21, 25, 30, 34, 38, 42, 46, 84, 86

geom_arrow, 19, 28, 33, 40, 44, 49, 62, 63, 69,
72, 76, 77, 85, 88, 96

geom_contour, 29
geom_contour2, 23, 24, 33, 40, 44, 49, 62, 63,

69, 72, 76, 85, 88, 96
geom_contour_fill, 23, 28, 29, 40, 44, 49,

61–63, 69, 72, 76, 85, 88, 96
geom_contour_fill(), 7, 54
geom_contour_tanaka, 33
geom_label_contour, 23, 28, 33, 37, 44, 49,

62, 63, 69, 72, 76, 85, 88, 96
geom_relief, 23, 28, 33, 40, 41, 49, 62, 63,

69, 72, 76, 85, 88, 96
geom_shadow (geom_relief), 41
geom_streamline, 23, 28, 33, 40, 44, 44, 62,

63, 69, 72, 76, 85, 88, 96
geom_text_contour (geom_label_contour),

37
geom_vector (geom_arrow), 19
GeomArrow (geom_arrow), 19
GeomContour2 (geom_contour2), 24
GeomContourTanaka

(geom_contour_tanaka), 33
GeomLabelContour (geom_label_contour),

37
GeomRelief (geom_relief), 41
GeomShadow (geom_relief), 41
GeomStreamline (geom_streamline), 44
GeomTextContour (geom_label_contour), 37
geopotential, 50
GeostrophicWind, 14, 16, 51, 91, 92, 94
GetSMNData, 52
GetTopography, 52
ggplot(), 21, 25, 30, 34, 38, 42, 46, 84, 86
ggplot2::autoplot, 16

ggplot2::binned_scale(), 4
ggplot2::expansion(), 76
ggplot2::geom_contour, 24, 29
ggplot2::geom_raster, 43
ggplot2::geom_segment, 19
ggplot2::geom_tile, 43
ggplot2::sec_axis(), 82
ggplot2::stat_contour, 37, 40, 61
GlanceNetCDF, 66
GlanceNetCDF (ReadNetCDF), 66
GlanceNetCDF(), 66
grid::arrow, 22, 47
grid::arrow(), 22, 47
guide_colourstrip, 23, 28, 33, 40, 44, 49,

62, 63, 69, 72, 76, 85, 88, 96

IdealGas (thermodynamics), 89
Impute2D, 27, 32, 54
ImputeEOF, 54
Interpolate, 9, 56
irlba::irlba, 15
is.cross, 57
is.full_season (season), 78

JumpBy, 3, 58, 60, 61, 65

key glyphs, 22, 26, 31, 35, 39, 43, 47, 85, 87

label_placer_flattest(), 27, 39
lambda, 5–7, 71–74, 76, 78
Laplacian (Derivate), 12
LatLabel (map_labels), 62
layer geom, 27, 32, 48, 84, 86
layer position, 21, 26, 31, 35, 39, 43, 47,

84, 87
layer stat, 21, 26, 31, 34, 38, 42, 46
layer(), 21, 22, 26, 31, 35, 39, 43, 47, 84, 85,

87
logic, 3, 59, 59, 61, 65
LonLabel (map_labels), 62

Mag, 3, 59, 60, 60, 65
MakeBreaks, 23, 28, 33, 40, 44, 49, 61, 63, 69,

72, 76, 85, 88, 96
map, 63
map_labels, 23, 28, 33, 40, 44, 49, 62, 62, 69,

72, 76, 85, 88, 96
MaskLand, 63
mean, 3, 54

100 INDEX

metR, 64
metR-package (metR), 64
MixingRatio (thermodynamics), 89

ncdf4::nc_open(), 66
ncdf4::ncvar_get, 67
ncvar_get, 66

ParseNetCDFtime (ReadNetCDF), 66
Percentile, 3, 59–61, 65
predict, 16

ReadNetCDF, 66
ReadNetCDF(), 66
RepeatCircular (WrapCircular), 96
ResidLm (FitLm), 18
reverselog_trans, 23, 28, 33, 40, 44, 49, 62,

63, 69, 72, 76, 85, 88, 96

sa_height (standard_atmosphere), 81
sa_height_axis (standard_atmosphere), 81
sa_height_breaks (standard_atmosphere),

81
sa_height_trans (standard_atmosphere),

81
sa_pressure (standard_atmosphere), 81
sa_pressure_axis (standard_atmosphere),

81
sa_pressure_trans

(standard_atmosphere), 81
sa_temperature (standard_atmosphere), 81
scale_color_divergent

(scale_divergent), 70
scale_colour_divergent

(scale_divergent), 70
scale_colour_gradient2, 70
scale_colour_gradient2(), 6, 7, 71
scale_colour_gradientn(), 6, 7, 71
scale_divergent, 23, 28, 33, 40, 44, 49, 62,

63, 69, 70, 76, 85, 88, 96
scale_fill_discretised

(as.discretised_scale), 4
scale_fill_discretised(), 33
scale_fill_divergent (scale_divergent),

70
scale_fill_divergent_discretised

(as.discretised_scale), 4
scale_label_alpha_continuous

(scale_label_colour_continuous),
72

scale_label_colour_continuous, 72
scale_label_size_continuous

(scale_label_colour_continuous),
72

scale_latitude (scale_longitude), 75
scale_longitude, 23, 28, 33, 40, 44, 49, 62,

63, 69, 72, 75, 85, 88, 96
scale_mag, 77
scale_mag_continuous (scale_mag), 77
scale_x_continuous, 75
scale_x_latitude (scale_longitude), 75
scale_x_level (scale_longitude), 75
scale_x_longitude (scale_longitude), 75
scale_y_continuous, 75
scale_y_latitude (scale_longitude), 75
scale_y_level, 64
scale_y_level (scale_longitude), 75
scale_y_longitude (scale_longitude), 75
ScaleDiscretised

(as.discretised_scale), 4
scales::breaks_extended, 82
scales::censor(), 6, 7, 72, 73, 78
scales::extended_breaks(), 5, 7, 71, 74,

76, 78
scales::new_transform(), 74
scales::pal_area(), 5, 6, 71
scales::rescale(), 6, 7, 71
scales::squish(), 6, 7, 72, 73, 78
scales::squish_infinite(), 6, 7, 72, 73,

78
screeplot, 16
season, 78
seasonally (season), 78
Similar (logic), 59
Smooth2D, 79
smooth_dct (Smooth2D), 79
smooth_svd (Smooth2D), 79
spherical, 48, 80
standard_atmosphere, 81
stat_contour2 (geom_contour2), 24
stat_contour_fill, 64
stat_contour_fill (geom_contour_fill),

29
stat_na, 23, 28, 33, 40, 44, 49, 62, 63, 69, 72,

76, 83, 88, 96
stat_streamline (geom_streamline), 44
stat_subset, 23, 28, 33, 40, 44, 49, 62, 63,

69, 72, 76, 85, 86, 96

INDEX 101

StatArrow (geom_arrow), 19
StatContour2 (geom_contour2), 24
StatContourFill (geom_contour_fill), 29
StatNa (stat_na), 83
stats::.lm.fit, 18
StatStreamline (geom_streamline), 44
StatSubset (stat_subset), 86
StatTextContour (geom_label_contour), 37
summary, 16
surface, 88

temperature, 89
thermodynamics, 14, 16, 51, 89, 92, 94
Trajectory, 91
transformation object, 5, 6, 71, 74, 76, 77

VirtualTemperature (thermodynamics), 89
Vorticity (Derivate), 12

WaveEnvelope (waves), 93
WaveFlux, 14, 16, 51, 91, 92, 94
waves, 14, 16, 51, 91, 92, 93
WrapCircular, 23, 28, 33, 40, 44, 49, 62, 63,

69, 72, 76, 85, 88, 96

	Anomaly
	as.discretised_scale
	as.path
	ConvertLongitude
	coriolis
	cut.eof
	denormalise
	Derivate
	EOF
	EPflux
	FitLm
	geom_arrow
	geom_contour2
	geom_contour_fill
	geom_contour_tanaka
	geom_label_contour
	geom_relief
	geom_streamline
	geopotential
	GeostrophicWind
	GetSMNData
	GetTopography
	Impute2D
	ImputeEOF
	Interpolate
	is.cross
	JumpBy
	logic
	Mag
	MakeBreaks
	map_labels
	MaskLand
	metR
	Percentile
	ReadNetCDF
	reverselog_trans
	scale_divergent
	scale_label_colour_continuous
	scale_longitude
	scale_mag
	season
	Smooth2D
	spherical
	standard_atmosphere
	stat_na
	stat_subset
	surface
	temperature
	thermodynamics
	Trajectory
	WaveFlux
	waves
	WrapCircular
	Index

