
Package ‘meltr’
January 9, 2024

Title Read Non-Rectangular Text Data

Version 1.0.2

Description The goal of 'meltr' is to provide a fast and friendly way to
read non-rectangular data, such as ragged forms of csv (comma-separated
values), tsv (tab-separated values), and fwf (fixed-width format) files.

License MIT + file LICENSE

URL https://r-lib.github.io/meltr/, https://github.com/r-lib/meltr

BugReports https://github.com/r-lib/meltr/issues

Depends R (>= 2.10)

Imports cli, methods, R6, rlang, tibble

Suggests clipr, covr, crayon, curl, readr, testthat (>= 3.0.0), withr

LinkingTo cpp11

Config/testthat/edition 3

Config/Needs/website dplyr

Encoding UTF-8

RoxygenNote 7.2.1

NeedsCompilation yes

Author Hadley Wickham [aut],
Duncan Garmonsway [aut, cre] (@nacnudus),
Jim Hester [aut] (<https://orcid.org/0000-0002-2739-7082>),
RStudio [cph, fnd],
https://github.com/mandreyel/ [cph] (mio library)

Maintainer Duncan Garmonsway <nacnudus@gmail.com>

Repository CRAN

Date/Publication 2024-01-09 02:30:02 UTC

1

https://r-lib.github.io/meltr/
https://github.com/r-lib/meltr
https://github.com/r-lib/meltr/issues
https://orcid.org/0000-0002-2739-7082

2 date_names

R topics documented:
clipboard . 2
date_names . 2
locale . 3
meltr_example . 4
melt_delim . 5
melt_fwf . 8
melt_table . 11
problems . 13
show_progress . 14

Index 15

clipboard Returns values from the clipboard

Description

This is useful in the readr::read_delim() functions to read from the clipboard.

Usage

clipboard()

See Also

readr::read_delim

Examples

Not run:
clipboard()

End(Not run)

date_names Create or retrieve date names

Description

When parsing dates, you often need to know how weekdays of the week and months are represented
as text. This pair of functions allows you to either create your own, or retrieve from a standard list.
The standard list is derived from ICU (https://icu.unicode.org/) via the stringi package.

https://icu.unicode.org/

locale 3

Usage

date_names(mon, mon_ab = mon, day, day_ab = day, am_pm = c("AM", "PM"))

date_names_lang(language)

date_names_langs()

Arguments

mon, mon_ab Full and abbreviated month names.

day, day_ab Full and abbreviated week day names. Starts with Sunday.

am_pm Names used for AM and PM.

language A BCP 47 locale, made up of a language and a region, e.g. "en_US" for Ameri-
can English. See date_names_langs() for a complete list of available locales.

Value

A date names object

Examples

date_names(mon = LETTERS[1:12], day = letters[1:7])
date_names_lang("en")
date_names_lang("ko")
date_names_lang("fr")

locale Create locales

Description

A locale object tries to capture all the defaults that can vary between countries. You set the locale
in once, and the details are automatically passed on down to the columns parsers. The defaults have
been chosen to match R (i.e. US English) as closely as possible. See vignette("locales") for
more details.

Usage

locale(
date_names = "en",
date_format = "%AD",
time_format = "%AT",
decimal_mark = ".",
grouping_mark = ",",
tz = "UTC",
encoding = "UTF-8"

)

4 meltr_example

default_locale()

Arguments

date_names Character representations of day and month names. Either the language code as
string (passed on to date_names_lang()) or an object created by date_names().

date_format, time_format

Default date and time formats.
decimal_mark, grouping_mark

Symbols used to indicate the decimal place, and to chunk larger numbers. Dec-
imal mark can only be , or ..

tz Default tz. This is used both for input (if the time zone isn’t present in indi-
vidual strings), and for output (to control the default display). The default is
to use "UTC", a time zone that does not use daylight savings time (DST) and
hence is typically most useful for data. The absence of time zones makes it
approximately 50x faster to generate UTC times than any other time zone.
Use "" to use the system default time zone, but beware that this will not be
reproducible across systems.
For a complete list of possible time zones, see OlsonNames(). Americans, note
that "EST" is a Canadian time zone that does not have DST. It is not Eastern
Standard Time. It’s better to use "US/Eastern", "US/Central" etc.

encoding Default encoding. This only affects how the file is read - meltr always converts
the output to UTF-8.

Value

A locale object

Examples

locale()
locale("fr")

South American locale
locale("es", decimal_mark = ",")

meltr_example Get path to meltr example

Description

meltr comes bundled with a number of sample files in its inst/extdata directory. This function
make them easy to access

Usage

meltr_example(file = NULL)

melt_delim 5

Arguments

file Name of file. If NULL, the example files will be listed.

Value

A file path or a vector of file names

Examples

meltr_example()
meltr_example("mtcars.csv")

melt_delim Return melted data for each token in a delimited file (including csv &
tsv)

Description

For certain non-rectangular data formats, it can be useful to parse the data into a melted format
where each row represents a single token.

Usage

melt_delim(
file,
delim,
quote = "\"",
escape_backslash = FALSE,
escape_double = TRUE,
locale = default_locale(),
na = c("", "NA"),
quoted_na = TRUE,
comment = "",
trim_ws = FALSE,
skip = 0,
n_max = Inf,
progress = show_progress(),
skip_empty_rows = FALSE

)

melt_csv(
file,
locale = default_locale(),
na = c("", "NA"),
quoted_na = TRUE,
quote = "\"",
comment = "",

6 melt_delim

trim_ws = TRUE,
skip = 0,
n_max = Inf,
progress = show_progress(),
skip_empty_rows = FALSE

)

melt_csv2(
file,
locale = default_locale(),
na = c("", "NA"),
quoted_na = TRUE,
quote = "\"",
comment = "",
trim_ws = TRUE,
skip = 0,
n_max = Inf,
progress = show_progress(),
skip_empty_rows = FALSE

)

melt_tsv(
file,
locale = default_locale(),
na = c("", "NA"),
quoted_na = TRUE,
quote = "\"",
comment = "",
trim_ws = TRUE,
skip = 0,
n_max = Inf,
progress = show_progress(),
skip_empty_rows = FALSE

)

Arguments

file Either a path to a file, a connection, or literal data (either a single string or a raw
vector).
Files ending in .gz, .bz2, .xz, or .zip will be automatically uncompressed.
Files starting with http://, https://, ftp://, or ftps:// will be automati-
cally downloaded. Remote gz files can also be automatically downloaded and
decompressed.
Literal data is most useful for examples and tests. To be recognised as literal
data, the input must be either wrapped with I(), be a string containing at least
one new line, or be a vector containing at least one string with a new line.
Using a value of clipboard() will read from the system clipboard.

delim Single character used to separate fields within a record.

melt_delim 7

quote Single character used to quote strings.
escape_backslash

Does the file use backslashes to escape special characters? This is more gen-
eral than escape_double as backslashes can be used to escape the delimiter
character, the quote character, or to add special characters like \\n.

escape_double Does the file escape quotes by doubling them? i.e. If this option is TRUE, the
value """" represents a single quote, \".

locale The locale controls defaults that vary from place to place. The default locale is
US-centric (like R), but you can use locale() to create your own locale that
controls things like the default time zone, encoding, decimal mark, big mark,
and day/month names.

na Character vector of strings to interpret as missing values. Set this option to
character() to indicate no missing values.

quoted_na [Deprecated] Should missing values inside quotes be treated as missing values
(the default) or strings. This parameter is soft deprecated as of readr 2.0.0.

comment A string used to identify comments. Any text after the comment characters will
be silently ignored.

trim_ws Should leading and trailing whitespace (ASCII spaces and tabs) be trimmed
from each field before parsing it?

skip Number of lines to skip before reading data. If comment is supplied any com-
mented lines are ignored after skipping.

n_max Maximum number of lines to read.

progress Display a progress bar? By default it will only display in an interactive session
and not while knitting a document. The automatic progress bar can be disabled
by setting option readr.show_progress to FALSE.

skip_empty_rows

Should blank rows be ignored altogether? i.e. If this option is TRUE then blank
rows will not be represented at all. If it is FALSE then they will be represented
by NA values in all the columns.

Details

melt_csv() and melt_tsv() are special cases of the general melt_delim(). They’re useful for
reading the most common types of flat file data, comma separated values and tab separated values,
respectively. melt_csv2() uses ; for the field separator and , for the decimal point. This is
common in some European countries.

Value

A tibble() of four columns:

• row, the row that the token comes from in the original file

• col, the column that the token comes from in the original file

• data_type, the data type of the token, e.g. "integer", "character", "date", guessed in a
similar way to the guess_parser() function.

8 melt_fwf

• value, the token itself as a character string, unchanged from its representation in the original
file.

If there are parsing problems, a warning tells you how many, and you can retrieve the details with
problems().

See Also

readr::read_delim() for the conventional way to read rectangular data from delimited files.

Examples

Input sources ---
Read from a path
melt_csv(meltr_example("mtcars.csv"))
Not run:
melt_csv("https://github.com/tidyverse/readr/raw/master/inst/extdata/mtcars.csv")

End(Not run)

Or directly from a string (must contain a newline)
melt_csv("x,y\n1,2\n3,4")

To import empty cells as 'empty' rather than `NA`
melt_csv("x,y\n,NA,\"\",''", na = "NA")

File types --
melt_csv("a,b\n1.0,2.0")
melt_csv2("a;b\n1,0;2,0")
melt_tsv("a\tb\n1.0\t2.0")
melt_delim("a|b\n1.0|2.0", delim = "|")

melt_fwf Return melted data for each token in a fixed width file

Description

For certain non-rectangular data formats, it can be useful to parse the data into a melted format
where each row represents a single token.

Usage

melt_fwf(
file,
col_positions,
locale = default_locale(),
na = c("", "NA"),
comment = "",
trim_ws = TRUE,

melt_fwf 9

skip = 0,
n_max = Inf,
progress = show_progress(),
skip_empty_rows = FALSE

)

fwf_empty(
file,
skip = 0,
skip_empty_rows = FALSE,
col_names = NULL,
comment = "",
n = 100L

)

fwf_widths(widths, col_names = NULL)

fwf_positions(start, end = NULL, col_names = NULL)

fwf_cols(...)

Arguments

file Either a path to a file, a connection, or literal data (either a single string or a raw
vector).
Files ending in .gz, .bz2, .xz, or .zip will be automatically uncompressed.
Files starting with http://, https://, ftp://, or ftps:// will be automati-
cally downloaded. Remote gz files can also be automatically downloaded and
decompressed.
Literal data is most useful for examples and tests. To be recognised as literal
data, the input must be either wrapped with I(), be a string containing at least
one new line, or be a vector containing at least one string with a new line.
Using a value of clipboard() will read from the system clipboard.

col_positions Column positions, as created by fwf_empty(), fwf_widths() or fwf_positions().
To read in only selected fields, use fwf_positions(). If the width of the last
column is variable (a ragged fwf file), supply the last end position as NA.

locale The locale controls defaults that vary from place to place. The default locale is
US-centric (like R), but you can use locale() to create your own locale that
controls things like the default time zone, encoding, decimal mark, big mark,
and day/month names.

na Character vector of strings to interpret as missing values. Set this option to
character() to indicate no missing values.

comment A string used to identify comments. Any text after the comment characters will
be silently ignored.

trim_ws Should leading and trailing whitespace (ASCII spaces and tabs) be trimmed
from each field before parsing it?

skip Number of lines to skip before reading data.

10 melt_fwf

n_max Maximum number of lines to read.

progress Display a progress bar? By default it will only display in an interactive session
and not while knitting a document. The automatic progress bar can be disabled
by setting option readr.show_progress to FALSE.

skip_empty_rows

Should blank rows be ignored altogether? i.e. If this option is TRUE then blank
rows will not be represented at all. If it is FALSE then they will be represented
by NA values in all the columns.

col_names Either NULL, or a character vector column names.

n Number of lines the tokenizer will read to determine file structure. By default it
is set to 100.

widths Width of each field. Use NA as width of last field when reading a ragged fwf
file.

start, end Starting and ending (inclusive) positions of each field. Use NA as last end field
when reading a ragged fwf file.

... If the first element is a data frame, then it must have all numeric columns and
either one or two rows. The column names are the variable names. The column
values are the variable widths if a length one vector, and if length two, variable
start and end positions. The elements of ... are used to construct a data frame
with or or two rows as above.

Details

melt_fwf() parses each token of a fixed width file into a single row, but it still requires that each
field is in the same in every row of the source file.

Value

A tibble() of four columns:

• row, the row that the token comes from in the original file

• col, the column that the token comes from in the original file

• data_type, the data type of the token, e.g. "integer", "character", "date", guessed in a
similar way to the guess_parser() function.

• value, the token itself as a character string, unchanged from its representation in the original
file.

If there are parsing problems, a warning tells you how many, and you can retrieve the details with
problems().

See Also

melt_table() to melt fixed width files where each column is separated by whitespace, and melt_fwf()
for the conventional way to read rectangular data from fixed width files.

melt_table 11

Examples

fwf_sample <- meltr_example("fwf-sample.txt")
writeLines(readLines(fwf_sample))

You can specify column positions in several ways:
1. Guess based on position of empty columns
melt_fwf(fwf_sample, fwf_empty(fwf_sample, col_names = c("first", "last", "state", "ssn")))
2. A vector of field widths
melt_fwf(fwf_sample, fwf_widths(c(20, 10, 12), c("name", "state", "ssn")))
3. Paired vectors of start and end positions
melt_fwf(fwf_sample, fwf_positions(c(1, 30), c(10, 42), c("name", "ssn")))
4. Named arguments with start and end positions
melt_fwf(fwf_sample, fwf_cols(name = c(1, 10), ssn = c(30, 42)))
5. Named arguments with column widths
melt_fwf(fwf_sample, fwf_cols(name = 20, state = 10, ssn = 12))

melt_table Return melted data for each token in a whitespace-separated file

Description

For certain non-rectangular data formats, it can be useful to parse the data into a melted format
where each row represents a single token.

melt_table() and melt_table2() are designed to read the type of textual data where each column
is separated by one (or more) columns of space.

melt_table2() allows any number of whitespace characters between columns, and the lines can
be of different lengths.

melt_table() is more strict, each line must be the same length, and each field is in the same
position in every line. It first finds empty columns and then parses like a fixed width file.

Usage

melt_table(
file,
locale = default_locale(),
na = "NA",
skip = 0,
n_max = Inf,
guess_max = min(n_max, 1000),
progress = show_progress(),
comment = "",
skip_empty_rows = FALSE

)

melt_table2(
file,
locale = default_locale(),

12 melt_table

na = "NA",
skip = 0,
n_max = Inf,
progress = show_progress(),
comment = "",
skip_empty_rows = FALSE

)

Arguments

file Either a path to a file, a connection, or literal data (either a single string or a raw
vector).
Files ending in .gz, .bz2, .xz, or .zip will be automatically uncompressed.
Files starting with http://, https://, ftp://, or ftps:// will be automati-
cally downloaded. Remote gz files can also be automatically downloaded and
decompressed.
Literal data is most useful for examples and tests. To be recognised as literal
data, the input must be either wrapped with I(), be a string containing at least
one new line, or be a vector containing at least one string with a new line.
Using a value of clipboard() will read from the system clipboard.

locale The locale controls defaults that vary from place to place. The default locale is
US-centric (like R), but you can use locale() to create your own locale that
controls things like the default time zone, encoding, decimal mark, big mark,
and day/month names.

na Character vector of strings to interpret as missing values. Set this option to
character() to indicate no missing values.

skip Number of lines to skip before reading data.

n_max Maximum number of lines to read.

guess_max Maximum number of lines to use for guessing column types. See vignette("column-types",
package = "readr") for more details.

progress Display a progress bar? By default it will only display in an interactive session
and not while knitting a document. The automatic progress bar can be disabled
by setting option readr.show_progress to FALSE.

comment A string used to identify comments. Any text after the comment characters will
be silently ignored.

skip_empty_rows

Should blank rows be ignored altogether? i.e. If this option is TRUE then blank
rows will not be represented at all. If it is FALSE then they will be represented
by NA values in all the columns.

Value

A tibble() of four columns:

• row, the row that the token comes from in the original file

• col, the column that the token comes from in the original file

problems 13

• data_type, the data type of the token, e.g. "integer", "character", "date", guessed in a
similar way to the guess_parser() function.

• value, the token itself as a character string, unchanged from its representation in the original
file.

If there are parsing problems, a warning tells you how many, and you can retrieve the details with
problems().

See Also

melt_fwf() to melt fixed width files where each column is not separated by whitespace. melt_fwf()
is also useful for reading tabular data with non-standard formatting. readr::read_table() is the
conventional way to read tabular data from whitespace-separated files.

Examples

One corner from http://www.masseyratings.com/cf/compare.htm
massey <- meltr_example("massey-rating.txt")
cat(readLines(massey))
melt_table(massey)

Sample of 1978 fuel economy data from
http://www.fueleconomy.gov/feg/epadata/78data.zip
epa <- meltr_example("epa78.txt")
writeLines(readLines(epa))
melt_table(epa)

problems Retrieve parsing problems

Description

Readr functions will only throw an error if parsing fails in an unrecoverable way. However, there
are lots of potential problems that you might want to know about - these are stored in the problems
attribute of the output, which you can easily access with this function. stop_for_problems() will
throw an error if there are any parsing problems: this is useful for automated scripts where you want
to throw an error as soon as you encounter a problem.

Usage

problems(x = .Last.value)

stop_for_problems(x)

Arguments

x An data frame (from read_*()) or a vector (from parse_*()).

14 show_progress

Value

A data frame with one row for each problem and four columns:

row,col Row and column of problem

expected What readr expected to find

actual What it actually got

Examples

if (requireNamespace("readr")) {
x <- readr::parse_integer(c("1X", "blah", "3"))
problems(x)

y <- readr::parse_integer(c("1", "2", "3"))
problems(y)
}

show_progress Determine whether progress bars should be shown

Description

Progress bars are shown unless one of the following is TRUE

• The bar is explicitly disabled by setting options(readr.show_progress = FALSE)

• The code is run in a non-interactive session (interactive() is FALSE).

• The code is run in an RStudio notebook chunk.

• The code is run by knitr / rmarkdown.

Usage

show_progress()

Value

A logical value

Examples

show_progress()

Index

clipboard, 2
clipboard(), 6, 9, 12

date_names, 2
date_names(), 4
date_names_lang (date_names), 2
date_names_lang(), 4
date_names_langs (date_names), 2
default_locale (locale), 3

fwf_cols (melt_fwf), 8
fwf_empty (melt_fwf), 8
fwf_empty(), 9
fwf_positions (melt_fwf), 8
fwf_positions(), 9
fwf_widths (melt_fwf), 8
fwf_widths(), 9

locale, 3
locale(), 7, 9, 12

melt_csv (melt_delim), 5
melt_csv2 (melt_delim), 5
melt_delim, 5
melt_fwf, 8
melt_fwf(), 10, 13
melt_table, 11
melt_table(), 10
melt_table2 (melt_table), 11
melt_tsv (melt_delim), 5
meltr_example, 4

OlsonNames(), 4

problems, 13
problems(), 8, 10, 13

readr::read_delim(), 2, 8
readr::read_table(), 13

show_progress, 14

stop_for_problems (problems), 13

tibble(), 7, 10, 12

15

	clipboard
	date_names
	locale
	meltr_example
	melt_delim
	melt_fwf
	melt_table
	problems
	show_progress
	Index

