
Package ‘mcmc’
November 16, 2023

Version 0.9-8

Date 2023-11-14

Title Markov Chain Monte Carlo

Author Charles J. Geyer <geyer@umn.edu> and Leif T. Johnson

<ltjohnson@google.com>

Maintainer Charles J. Geyer <geyer@umn.edu>

Depends R (>= 3.6.0)

Imports stats

Suggests xtable, Iso

ByteCompile TRUE

Description Simulates continuous distributions of random vectors using
Markov chain Monte Carlo (MCMC). Users specify the distribution by an
R function that evaluates the log unnormalized density. Algorithms
are random walk Metropolis algorithm (function metrop), simulated
tempering (function temper), and morphometric random walk Metropolis
(Johnson and Geyer, 2012, <doi:10.1214/12-AOS1048>,
function morph.metrop),
which achieves geometric ergodicity by change of variable.

License MIT + file LICENSE

URL http://www.stat.umn.edu/geyer/mcmc/,

https://github.com/cjgeyer/mcmc

NeedsCompilation yes

Repository CRAN

Date/Publication 2023-11-16 22:20:02 UTC

R topics documented:
foo . 2
initseq . 2
logit . 4

1

https://doi.org/10.1214/12-AOS1048
http://www.stat.umn.edu/geyer/mcmc/
https://github.com/cjgeyer/mcmc

2 initseq

metrop . 5
morph . 9
morph.metrop . 12
olbm . 14
temper . 15

Index 21

foo Simulated logistic regression data.

Description

Like it says

Usage

data(foo)

Format

A data frame with variables

x1 quantitative predictor.

x2 quantitative predictor.

x3 quantitative predictor.

y Bernoulli response.

Examples

library(mcmc)
data(foo)
out <- glm(y ~ x1 + x2 + x3, family = binomial, data = foo)
summary(out)

initseq Initial Sequence Estimators

Description

Variance of sample mean of functional of reversible Markov chain using methods of Geyer (1992).

Usage

initseq(x)

initseq 3

Arguments

x a numeric vector that is a scalar-valued functional of a reversible Markov chain.

Details

Let
γk = cov(Xi, Xi+k)

considered as a function of the lag k be the autocovariance function of the input time series. Define

Γk = γ2k + γ2k+1

the sum of consecutive pairs of autocovariances. Then Theorem 3.1 in Geyer (1992) says that Γk

considered as a function of k is strictly positive, strictly decreasing, and strictly convex, assuming
the input time series is a scalar-valued functional of a reversible Markov chain. All of the MCMC
done by this package is reversible. This R function estimates the “big gamma” function, Γk consid-
ered as a function of k, subject to three different constraints, (1) nonnegative, (2) nonnegative and
nonincreasing, and (3) nonnegative, nonincreasing, and convex. It also estimates the variance in the
Markov chain central limit theorem (CLT)

γ0 + 2

∞∑
k=1

γk = −γ0 + 2

∞∑
k=0

Γk

Note: The batch means provided by metrop are also scalar functionals of a reversible Markov
chain. Thus these initial sequence estimators applied to the batch means give valid standard errors
for the mean of the match means even when the batch length is too short to provide a valid estimate
of asymptotic variance. One does, of course, have to multiply the asymptotic variance of the batch
means by the batch length to get the asymptotic variance for the unbatched chain.

Value

a list containing the following components:

gamma0 the scalar γ0, the marginal variance of x.
Gamma.pos the vector Γ, estimated so as to be nonnegative, where, as always, R uses one-

origin indexing so Gamma.pos[1] is Γ0.
Gamma.dec the vector Γ, estimated so as to be nonnegative and nonincreasing, where, as

always, R uses one-origin indexing so Gamma.dec[1] is Γ0.
Gamma.con the vector Γ, estimated so as to be nonnegative and nonincreasing and convex,

where, as always, R uses one-origin indexing so Gamma.con[1] is Γ0.
var.pos the scalar - gamma0 + 2 * sum(Gamma.pos), which is the asymptotic variance in

the Markov chain CLT. Divide by length(x) to get the approximate variance of
the sample mean of x.

var.dec the scalar - gamma0 + 2 * sum(Gamma.dec), which is the asymptotic variance in
the Markov chain CLT. Divide by length(x) to get the approximate variance of
the sample mean of x.

var.con the scalar - gamma0 + 2 * sum(Gamma.con), which is the asymptotic variance in
the Markov chain CLT. Divide by length(x) to get the approximate variance of
the sample mean of x.

4 logit

Bugs

Not precisely a bug, but var.pos, var.dec, and var.con can be negative. This happens only when
the chain is way too short to estimate the variance, and even then rarely. But it does happen.

References

Geyer, C. J. (1992) Practical Markov Chain Monte Carlo. Statistical Science 7 473–483.

See Also

metrop

Examples

n <- 2e4
rho <- 0.99
x <- arima.sim(model = list(ar = rho), n = n)
out <- initseq(x)
Not run:
plot(seq(along = out$Gamma.pos) - 1, out$Gamma.pos,

xlab = "k", ylab = expression(Gamma[k]), type = "l")
lines(seq(along = out$Gamma.dec) - 1, out$Gamma.dec, col = "red")
lines(seq(along = out$Gamma.con) - 1, out$Gamma.con, col = "blue")

End(Not run)
asymptotic 95% confidence interval for mean of x
mean(x) + c(-1, 1) * qnorm(0.975) * sqrt(out$var.con / length(x))
estimated asymptotic variance
out$var.con
theoretical asymptotic variance
(1 + rho) / (1 - rho) * 1 / (1 - rho^2)
illustrating use with batch means
bm <- apply(matrix(x, nrow = 5), 2, mean)
initseq(bm)$var.con * 5

logit Simulated logistic regression data.

Description

Like it says

Usage

data(logit)

metrop 5

Format

A data frame with variables

x1 quantitative predictor.
x2 quantitative predictor.
x3 quantitative predictor.
x4 quantitative predictor.
y Bernoulli response.

Examples

library(mcmc)
data(logit)
out <- glm(y ~ x1 + x2 + x3 + x4, family = binomial, data = logit)
summary(out)

metrop Metropolis Algorithm

Description

Markov chain Monte Carlo for continuous random vector using a Metropolis algorithm.

Usage

metrop(obj, initial, nbatch, blen = 1, nspac = 1, scale = 1, outfun,
debug = FALSE, ...)

S3 method for class 'function'
metrop(obj, initial, nbatch, blen = 1, nspac = 1,

scale = 1, outfun, debug = FALSE, ...)
S3 method for class 'metropolis'
metrop(obj, initial, nbatch, blen = 1, nspac = 1,

scale = 1, outfun, debug = FALSE, ...)

Arguments

obj Either an R function or an object of class "metropolis" from a previous invo-
cation of this function.
If a function, it evaluates the log unnormalized probability density of the de-
sired equilibrium distribution of the Markov chain. Its first argument is the state
vector of the Markov chain. Other arguments arbitrary and taken from the ...
arguments of this function. It should return -Inf for points of the state space
having probability zero under the desired equilibrium distribution. See also De-
tails and Warning.
If an object of class "metropolis", any missing arguments (including the log
unnormalized density function) are taken from this object. Also initial is
ignored and the initial state of the Markov chain is the final state from the run
recorded in obj.

6 metrop

initial a real vector, the initial state of the Markov chain. Must be feasible, see Details.
Ignored if obj is of class "metropolis".

nbatch the number of batches.

blen the length of batches.

nspac the spacing of iterations that contribute to batches.

scale controls the proposal step size. If scalar or vector, the proposal is x + scale * z
where x is the current state and z is a standard normal random vector. If matrix,
the proposal is x + scale %*% z.

outfun controls the output. If a function, then the batch means of outfun(state,
...) are returned. If a numeric or logical vector, then the batch means of
state[outfun] (if this makes sense). If missing, the the batch means of state
are returned.

debug if TRUE extra output useful for testing.

... additional arguments for obj or outfun.

Details

Runs a “random-walk” Metropolis algorithm, terminology introduced by Tierney (1994), with mul-
tivariate normal proposal producing a Markov chain with equilibrium distribution having a specified
unnormalized density. Distribution must be continuous. Support of the distribution is the support
of the density specified by argument obj. The initial state must satisfy obj(state, ...) > -Inf.
Description of a complete MCMC analysis (Bayesian logistic regression) using this function can be
found in the vignette vignette("demo", "mcmc").

Suppose the function coded by the log unnormalized function (either obj or obj$lud) is actually
a log unnormalized density, that is, if w denotes that function, then ew integrates to some value
strictly between zero and infinity. Then the metrop function always simulates a reversible, Harris
ergodic Markov chain having the equilibrium distribution with this log unnormalized density. The
chain is not guaranteed to be geometrically ergodic. In fact it cannot be geometrically ergodic if the
tails of the log unnormalized density are sufficiently heavy. The morph.metrop function deals with
this situation.

Value

an object of class "mcmc", subclass "metropolis", which is a list containing at least the following
components:

accept fraction of Metropolis proposals accepted.

batch nbatch by p matrix, the batch means, where p is the dimension of the result of
outfun if outfun is a function, otherwise the dimension of state[outfun] if
that makes sense, and the dimension of state when outfun is missing.

accept.batch a vector of length nbatch, the batch means of the acceptances.

initial value of argument initial.

final final state of Markov chain.

initial.seed value of .Random.seed before the run.

final.seed value of .Random.seed after the run.

metrop 7

time running time of Markov chain from system.time().

lud the function used to calculate log unnormalized density, either obj or obj$lud
from a previous run.

nbatch the argument nbatch or obj$nbatch.

blen the argument blen or obj$blen.

nspac the argument nspac or obj$nspac.

outfun the argument outfun or obj$outfun.

Description of additional output when debug = TRUE can be found in the vignette debug (../doc/
debug.pdf).

Warning

If outfun is missing or not a function, then the log unnormalized density can be defined without a
. . . argument and that works fine. One can define it starting ludfun <- function(state) and that
works or ludfun <- function(state, foo, bar), where foo and bar are supplied as additional
arguments to metrop.

If outfun is a function, then both it and the log unnormalized density function can be defined
without . . . arguments if they have exactly the same arguments list and that works fine. Otherwise it
doesn’t work. Define these functions by

ludfun <- function(state, foo)
outfun <- function(state, bar)

and you get an error about unused arguments. Instead define these functions by

ludfun <- function(state, foo, \ldots)
outfun <- function(state, bar, \ldots)

and supply foo and bar as additional arguments to metrop, and that works fine.

In short, the log unnormalized density function and outfun need to have . . . in their arguments list
to be safe. Sometimes it works when . . . is left out and sometimes it doesn’t.

Of course, one can avoid this whole issue by always defining the log unnormalized density function
and outfun to have only one argument state and use global variables (objects in the R global
environment) to specify any other information these functions need to use. That too follows the R
way. But some people consider that bad programming practice.

A third option is to define either or both of these functions using a function factory. This is
demonstrated in the vignette for this package named demo, which is shown by vignette("demo",
"mcmc").

Philosophy of MCMC

This function follows the philosophy of MCMC explained the introductory chapter of the Handbook
of Markov Chain Monte Carlo (Geyer, 2011).

This function automatically does batch means in order to reduce the size of output and to enable easy
calculation of Monte Carlo standard errors (MCSE), which measure error due to the Monte Carlo

../doc/debug.pdf
../doc/debug.pdf

8 metrop

sampling (not error due to statistical sampling — MCSE gets smaller when you run the computer
longer, but statistical sampling variability only gets smaller when you get a larger data set). All of
this is explained in the package vignette vignette("demo", "mcmc") and in Section 1.10 of Geyer
(2011).

This function does not apparently do “burn-in” because this concept does not actually help with
MCMC (Geyer, 2011, Section 1.11.4) but the re-entrant property of this function does allow one
to do “burn-in” if one wants. Assuming ludfun, start.value, scale have been already defined
and are, respectively, an R function coding the log unnormalized density of the target distribution,
a valid state of the Markov chain, and a useful scale factor,

out <- metrop(ludfun, start.value, nbatch = 1, blen = 1e5, scale = scale)
out <- metrop(out, nbatch = 100, blen = 1000)

throws away a run of 100 thousand iterations before doing another run of 100 thousand iterations
that is actually useful for analysis, for example,

apply(out$batch, 2, mean)
apply(out$batch, 2, sd) / sqrt(out$nbatch)

give estimates of posterior means and their MCSE assuming the batch length (here 1000) was long
enough to contain almost all of the significant autocorrelation (see Geyer, 2011, Section 1.10, for
more on MCSE). The re-entrant property of this function (the second run starts where the first one
stops) assures that this is really “burn-in”.

The re-entrant property allows one to do very long runs without having to do them in one invocation
of this function.

out2 <- metrop(out)
out3 <- metrop(out2)
batch <- rbind(out$batch, out2$batch, out3$batch)

produces a result as if the first run had been three times as long.

Tuning

The scale argument must be adjusted so that the acceptance rate is not too low or too high to get
reasonable performance. The rule of thumb is that the acceptance rate should be about 25%. But
this recommendation (Gelman, et al., 1996) is justified by analysis of a toy problem (simulating a
spherical multivariate normal distribution) for which MCMC is unnecessary. There is no reason to
believe this is optimal for all problems (if it were optimal, a stronger theorem could be proved).
Nevertheless, it is clear that at very low acceptance rates the chain makes little progress (because in
most iterations it does not move) and that at very high acceptance rates the chain also makes little
progress (because unless the log unnormalized density is nearly constant, very high acceptance rates
can only be achieved by very small values of scale so the steps the chain takes are also very small).

Even in the Gelman, et al. (1996) result, the optimal rate for spherical multivariate normal depends
on dimension. It is 44% for d = 1 and 23% for d = ∞. Geyer and Thompson (1995) have an
example, admittedly for simulated tempering (see temper) rather than random-walk Metropolis, in
which no acceptance rate less than 70% produces an ergodic Markov chain. Thus 25% is merely
a rule of thumb. We only know we don’t want too high or too low. Probably 1% or 99% is very
inefficient.

morph 9

References

Gelman, A., Roberts, G. O., and Gilks, W. R. (1996) Efficient Metropolis jumping rules. In
Bayesian Statistics 5: Proceedings of the Fifth Valencia International Meeting. Edited by J. M.
Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith. Oxford University Press, Oxford, pp.
599–607.

Geyer, C. J. (2011) Introduction to MCMC. In Handbook of Markov Chain Monte Carlo. Edited by
S. P. Brooks, A. E. Gelman, G. L. Jones, and X. L. Meng. Chapman & Hall/CRC, Boca Raton, FL,
pp. 3–48.

Geyer, C. J. and Thompson, E. A. (1995) Annealing Markov chain Monte Carlo with applications
to ancestral inference. Journal of the American Statistical Association 90 909–920.

Tierney, L. (1994) Markov chains for exploring posterior distributions (with discussion). Annals of
Statistics 22 1701–1762.

See Also

morph.metrop and temper

Examples

h <- function(x) if (all(x >= 0) && sum(x) <= 1) return(1) else return(-Inf)
out <- metrop(h, rep(0, 5), 1000)
out$accept
acceptance rate too low
out <- metrop(out, scale = 0.1)
out$accept
t.test(out$accept.batch)$conf.int
acceptance rate o. k. (about 25 percent)
plot(out$batch[, 1])
but run length too short (few excursions from end to end of range)
out <- metrop(out, nbatch = 1e4)
out$accept
plot(out$batch[, 1])
hist(out$batch[, 1])
acf(out$batch[, 1], lag.max = 250)
looks like batch length of 250 is perhaps OK
out <- metrop(out, blen = 250, nbatch = 100)
apply(out$batch, 2, mean) # Monte Carlo estimates of means
apply(out$batch, 2, sd) / sqrt(out$nbatch) # Monte Carlo standard errors
t.test(out$accept.batch)$conf.int
acf(out$batch[, 1]) # appears that blen is long enough

morph Variable Transformation

Description

Utility functions for variable transformation.

10 morph

Usage

morph(b, r, p, center)
morph.identity()

Arguments

b Positive real number. May be missing.

r Non-negative real number. May be missing. If p is specified, r defaults to 0.

p Real number strictly greater than 2. May be missing. If r is specified, p defaults
to 3.

center Real scalar or vector. May be missing. If center is a vector it should be the
same length of the state of the Markov chain, center defaults to 0

Details

The morph function facilitates using variable transformations by providing functions to (using X
for the original random variable with the pdf fX , and Y for the transformed random variable with
the pdf fY):

• Calculate the log unnormalized probability density for Y induced by the transformation.

• Transform an arbitrary function of X to a function of Y .

• Transform values of X to values of Y .

• Transform values of Y to values of X (the inverse transformation).

for a select few transformations.

morph.identity implements the identity transformation, Y = X .

The parameters r, p, b and center specify the transformation function. In all cases, center gives
the center of the transformation, which is the value c in the equation

Y = f(X − c).

If no parameters are specified, the identity transformation, Y = X , is used.

The parameters r, p and b specify a function g, which is a monotonically increasing bijection from
the non-negative reals to the non-negative reals. Then

f(X) = g
(
|X|
) X
|X|

where |X| represents the Euclidean norm of the vector X . The inverse function is given by

f−1(Y) = g−1
(
|Y |
) Y
|Y |

.

The parameters r and p are used to define the function

g1(x) = x+ (x− r)pI(x > r)

morph 11

where I(·) is the indicator function. We require that r is non-negative and p is strictly greater than
2. The parameter b is used to define the function

g2(x) =
(
ebx − e/3

)
I(x >

1

b
) +

(
x3b3e/6 + xbe/2

)
I(x ≤ 1

b
)

We require that b is positive.

The parameters r, p and b specify f−1 in the following manner:

• If one or both of r and p is specified, and b is not specified, then

f−1(X) = g1(|X|) X
|X|

.

If only r is specified, p = 3 is used. If only p is specified, r = 0 is used.

• If only b is specified, then

f−1(X) = g2(|X|) X
|X|

.

• If one or both of r and p is specified, and b is also specified, then

f−1(X) = g2(g1(|X|)) X
|X|

.

Value

a list containing the functions

• outfun(f), a function that operates on functions. outfun(f) returns the function function(state,
...) f(inverse(state), ...).

• inverse, the inverse transformation function.

• transform, the transformation function.

• lud, a function that operates on functions. As input, lud takes a function that calculates a
log unnormalized probability density, and returns a function that calculates the log unnor-
malized density by transforming a random variable using the transform function. lud(f) =
function(state, ...) f(inverse(state), ...) + log.jacobian(state), where log.jacobian
represents the function that calculate the log Jacobian of the transformation. log.jacobian
is not returned.

Warning

The equations for the returned transform function (see below) do not have a general analytical
solution when p is not equal to 3. This implementation uses numerical approximation to calculate
transform when p is not equal to 3. If computation speed is a factor, it is advisable to use p=3.
This is not a factor when using morph.metrop, as transform is only called once during setup, and
not at all while running the Markov chain.

See Also

morph.metrop

12 morph.metrop

Examples

use an exponential transformation, centered at 100.
b1 <- morph(b=1, center=100)
original log unnormalized density is from a t distribution with 3
degrees of freedom, centered at 100.
lud.transformed <- b1$lud(function(x) dt(x - 100, df=3, log=TRUE))
d.transformed <- Vectorize(function(x) exp(lud.transformed(x)))
Not run:
curve(d.transformed, from=-3, to=3, ylab="Induced Density")

End(Not run)

morph.metrop Morphometric Metropolis Algorithm

Description

Markov chain Monte Carlo for continuous random vector using a Metropolis algorithm for an in-
duced density.

Usage

morph.metrop(obj, initial, nbatch, blen = 1, nspac = 1, scale = 1,
outfun, debug = FALSE, morph, ...)

Arguments

obj see metrop.

initial see metrop.

nbatch see metrop.

blen see metrop.

nspac see metrop.

scale see metrop.

outfun unlike for metrop must be a function or missing; if missing the identity function,
function(x) x, is used.

debug see metrop.

morph morph object used for transformations. See morph.

... see metrop.

morph.metrop 13

Details

morph.metrop implements morphometric methods for Markov chains. The caller specifies a log
unnormalized probability density and a transformation. The transformation specified by the morph
parameter is used to induce a new log unnormalized probability density, a Metropolis algorithm is
run for the induced density. The Markov chain is transformed back to the original scale. Running the
Metropolis algorithm for the induced density, instead of the original density, can result in a Markov
chain with better convergence properties. For more details see Johnson and Geyer (submitted).
Except for morph, all parameters are passed to metrop, transformed when necessary. The scale
parameter is not transformed.

If X is a real vector valued continuous random variable, and Y = f(X) where f is a diffeomor-
phism, then the pdf of Y is given by

fY (y) = fX(f−1(y))|∇f−1(y)|

where fX is the pdf of X and ∇f−1 is the Jacobian of f−1. Because f is a diffeomorphism, a
Markov chain for fY may be transformed into a Markov chain for fX . Furthermore, these Markov
chains are isomorphic (Johnson and Geyer, submitted) and have the same convergence rate. The
morph variable provides a diffeomorphism, morph.metrop uses this diffeomorphism to induce the
log unnormalized density, log fY based on the user supplied log unnormalized density, log fX .
morph.metrop runs a Metropolis algorithm for log fY and transforms the resulting Markov chain
into a Markov chain for fX . The user accessible output components are the same as those that come
from metrop, see the documentation for metrop for details.

Subsequent calls of morph.metrop may change to the transformation by specifying a new value for
morph.

Any of the other parameters to morph.metrop may also be modified in subsequent calls. See metrop
for more details.

The general idea is that a random-walk Metropolis sampler (what metrop does) will not be geomet-
rically ergodic unless the tails of the unnormalized density decrease superexponentially fast (so the
tails of the log unnormalized density decrease faster than linearly). It may not be geometrically er-
godic even then (see Johnson and Geyer, submitted, for the complete theory). The transformations
used by this function (provided by morph) can produce geometrically ergodic chains when the tails
of the log unnormalized density are too light for metrop to do so.

When the tails of the unnormalized density are exponentially light but not superexponentially light
(so the tails of the log unnormalized density are asymptotically linear, as in the case of exponential
family models when conjugate priors are used, for example logistic regression, Poisson regression
with log link, or log-linear models for categorical data), one should use morph with b = 0 (the
default), which produces a transformation of the form g1 in the notation used in the details section
of the help for morph. This will produce a geometrically ergodic sampler if other features of the
log unnormalized density are well behaved. For example it will do so for the exponential family
examples mentioned above. (See Johnson and Geyer, submitted, for the complete theory.)

The transformation g1 behaves like a shift transformation on a ball of radius r centered at center,
so these arguments to morph should be chosen so that a sizable proportion of the probability under
the original (untransformed) unnormalized density is contained in this ball. This function will work
when r = 0 and center = 0 (the defaults) are used, but may not work as well as when r and center
are well chosen.

When the tails of the unnormalized density are not exponentially light (so the tails of the log unnor-
malized density decrease sublinearly, as in the case of univariate and multivariate t distributions),

14 olbm

one should use morph with r > 0 and p = 3, which produces a transformation of the form g2 com-
posed with g1 in the notation used in the details section of the help for morph. This will produce a
geometrically ergodic sampler if other features of the log unnormalized density are well behaved.
For example it will do so for the t examples mentioned above. (See Johnson and Geyer, submitted,
for the complete theory.)

Value

an object of class mcmc, subclass morph.metropolis. This object is a list containing all of the
elements from an object returned by metrop, plus at least the following components:

morph the morph object used for the transformations.

morph.final the final state of the Markov chain on the transformed scale.

References

Johnson, L. T. and Geyer, C. J. (submitted) Variable Transformation to Obtain Geometric Ergodicity
in the Random-walk Metropolis Algorithm.

See Also

metrop, morph.

Examples

out <- morph.metrop(function(x) dt(x, df=3, log=TRUE), 0, blen=100,
nbatch=100, morph=morph(b=1))

change the transformation.
out <- morph.metrop(out, morph=morph(b=2))
out$accept
accept rate is high, increase the scale.
out <- morph.metrop(out, scale=4)
close to 0.20 is about right.
out$accept

olbm Overlapping Batch Means

Description

Variance of sample mean of time series calculated using overlapping batch means.

Usage

olbm(x, batch.length, demean = TRUE)

temper 15

Arguments

x a matrix or time series object. Each column of x is treated as a scalar time series.

batch.length length of batches.

demean when demean = TRUE (the default) the sample mean is subtracted from each
batch mean when estimating the variance. Using demean = FALSE would es-
sentially assume the true mean is known to be zero, which might be useful in a
toy problem where the answer is known.

Value

The estimated variance of the sample mean.

See Also

ts

Examples

h <- function(x) if (all(x >= 0) && sum(x) <= 1) return(1) else return(-Inf)
out <- metrop(h, rep(0, 5), 1000)
out <- metrop(out, scale = 0.1)
out <- metrop(out, nbatch = 1e4)
foo <- olbm(out$batch, 150)
monte carlo estimates (true means are same by symmetry)
apply(out$batch, 2, mean)
monte carlo standard errors (true s. d. are same by symmetry)
sqrt(diag(foo))
check that batch length is reasonable
acf(out$batch, lag.max = 200)

temper Simulated Tempering and Umbrella Sampling

Description

Markov chain Monte Carlo (MCMC) for continuous random vectors using parallel or serial tem-
pering, the latter also called umbrella sampling and simulated tempering. The chain simulates k
different distributions on the same state space. In parallel tempering, all the distributions are sim-
ulated in each iteration. In serial tempering, only one of the distributions is simulated (a random
one). In parallel tempering, the state is a k × p matrix, each row of which is the state for one of the
distributions. In serial tempering the state of the Markov chain is a pair (i, x), where i is an integer
between 1 and k and x is a vector of length p. This pair is represented as a single real vector c(i,
x). The variable i says which distribution x is a simulation for.

16 temper

Usage

temper(obj, initial, neighbors, nbatch, blen = 1, nspac = 1, scale = 1,
outfun, debug = FALSE, parallel = FALSE, ...)

S3 method for class 'function'
temper(obj, initial, neighbors, nbatch,

blen = 1, nspac = 1, scale = 1,
outfun, debug = FALSE, parallel = FALSE, ...)

S3 method for class 'tempering'
temper(obj, initial, neighbors, nbatch,

blen = 1, nspac = 1, scale = 1,
outfun, debug = FALSE, parallel = FALSE, ...)

Arguments

obj either an R function or an object of class "tempering" from a previous run.
If a function, it should evaluate the log unnormalized density log h(i, x) of the
desired equilibrium distribution of the Markov chain for serial tempering (the
same function is used for both serial and parallel tempering, see Details below
for further explanation).
If an object of class "tempering", the log unnormalized density function is
obj$lud, and missing arguments of temper are obtained from the corresponding
elements of obj.
The first argument of the log unnormalized density function is the is an R vector
c(i, x), where i says which distribution x is supposed to be a simulation for.
Other arguments are arbitrary and taken from the ... arguments of temper. The
log unnormalized density function should return -Inf in regions of the state
space having probability zero.

initial for serial tempering, a real vector c(i, x) as described above. For parallel tem-
pering, a real k × p matrix as described above. In either case, the initial state of
the Markov chain. Ignored if obj has class "tempering".

neighbors a logical symmetric matrix of dimension k by k. Elements that are TRUE indi-
cate jumps or swaps attempted by the Markov chain. Ignored if obj has class
"tempering".

nbatch the number of batches.

blen the length of batches.

nspac the spacing of iterations that contribute to batches.

scale controls the proposal step size for real elements of the state vector. For serial
tempering, proposing a new value for the x part of the state (i, x). For parallel
tempering, proposing a new value for the xi part of the state (x1, . . . , xk). In
either case, the proposal is a real vector of length p. If scalar or vector, the
proposal is x + scale * z where x is the part x or xi of the state the proposal
may replace. If matrix, the proposal is x + scale %*% z. If list, the length must
be k, and each element must be scalar, vector, or matrix, and operate as described
above. The i-th component of the list is used to update x when the state is (i, x)
or xi otherwise.

temper 17

outfun controls the output. If a function, then the batch means of outfun(state, ...)
are returned. The argument state is like the argument initial of this function.
If missing, the batch means of the real part of the state vector or matrix are
returned, and for serial tempering the batch means of a multivariate Bernoulli
indicating the current component are returned.

debug if TRUE extra output useful for testing.
parallel if TRUE does parallel tempering, if FALSE does serial tempering. Ignored if obj

has class "tempering".
... additional arguments for obj or outfun.

Details

Serial tempering simulates a mixture of distributions of a continuous random vector. The number
of components of the mixture is k, and the dimension of the random vector is p. Denote the state
(i, x), where i is a positive integer between 1 and k, and let h(i, x) denote the unnormalized joint
density of their equilibrium distribution. The logarithm of this function is what obj or obj$lud
calculates. The mixture distribution is the marginal for x derived from the equilibrium distribution
h(i, x), that is,

h(x) =

k∑
i=1

h(i, x)

Parallel tempering simulates a product of distributions of a continuous random vector. Denote the
state (x1, . . . , xk), then the unnormalized joint density of the equilibrium distribution is

h(x1, . . . , xk) =

k∏
i=1

h(i, xi)

The update mechanism of the Markov chain combines two kinds of elementary updates: jump/swap
updates (jump for serial tempering, swap for parallel tempering) and within-component updates.
Each iteration of the Markov chain one of these elementary updates is done. With probability 1/2 a
jump/swap update is done, and with probability 1/2 a with-component update is done.

Within-component updates are the same for both serial and parallel tempering. They are “random-
walk” Metropolis updates with multivariate normal proposal, the proposal distribution being deter-
mined by the argument scale. In serial tempering, the x part of the current state (i, x) is updated
preserving h(i, x). In parallel tempering, an index i is chosen at random and the part of the state xi
representing that component is updated, again preserving h(i, x).

Jump updates choose uniformly at random a neighbor of the current component: if i indexes the
current component, then it chooses uniformly at random a j such that neighbors[i, j] == TRUE.
It then does does a Metropolis-Hastings update for changing the current state from (i, x) to (j, x).

Swap updates choose a component uniformly at random and a neighbor of that component uni-
formly at random: first an index i is chosen uniformly at random between 1 and k, then an index j
is chosen uniformly at random such that neighbors[i, j] == TRUE. It then does does a Metropolis-
Hastings update for swapping the states of the two components: interchanging xi and xj while
preserving h(x1, . . . , xk).

The initial state must satisfy lud(initial, ...) > - Inf for serial tempering or must satisfy lud(initial[i,
], ...) > - Inf for each i for parallel tempering, where lud is either obj or obj$lud. That is, the
initial state must have positive probability.

18 temper

Value

an object of class "mcmc", subclass "tempering", which is a list containing at least the following
components:

batch the batch means of the continuous part of the state. If outfun is missing, an
nbatch by k by p array. Otherwise, an nbatch by m matrix, where m is the
length of the result of outfun.

ibatch (returned for serial tempering only) an nbatch by k matrix giving batch means
for the multivariate Bernoulli random vector that is all zeros except for a 1 in the
i-th place when the current state is (i, x).

acceptx fraction of Metropolis within-component proposals accepted. A vector of length
k giving the acceptance rate for each component.

accepti fraction of Metropolis jump/swap proposals accepted. A k by k matrix giving
the acceptance rate for each allowed jump or swap component. NA for elements
such that the corresponding elements of neighbors is FALSE.

initial value of argument initial.

final final state of Markov chain.

initial.seed value of .Random.seed before the run.

final.seed value of .Random.seed after the run.

time running time of Markov chain from system.time().

lud the function used to calculate log unnormalized density, either obj or obj$lud
from a previous run.

nbatch the argument nbatch or obj$nbatch.

blen the argument blen or obj$blen.

nspac the argument nspac or obj$nspac.

outfun the argument outfun or obj$outfun.

Description of additional output when debug = TRUE can be found in the vignette debug, which is
shown by vignette("debug", "mcmc").

Warning

If outfun is missing, then the log unnormalized density function can be defined without a . . . argument
and that works fine. One can define it starting ludfun <- function(state) and that works or
ludfun <- function(state, foo, bar), where foo and bar are supplied as additional arguments
to temper and that works too.

If outfun is a function, then both it and the log unnormalized density function can be defined
without . . . arguments if they have exactly the same arguments list and that works fine. Otherwise it
doesn’t work. Define these functions by

ludfun <- function(state, foo)
outfun <- function(state, bar)

and you get an error about unused arguments. Instead define these functions by

temper 19

ludfun <- function(state, foo, \ldots)
outfun <- function(state, bar, \ldots)

and supply foo and bar as additional arguments to temper, and that works fine.

In short, the log unnormalized density function and outfun need to have . . . in their arguments list
to be safe. Sometimes it works when . . . is left out and sometimes it doesn’t.

Of course, one can avoid this whole issue by always defining the log unnormalized density function
and outfun to have only one argument state and use global variables (objects in the R global
environment) to specify any other information these functions need to use. That too follows the R
way. But some people consider that bad programming practice.

A third option is to define either or both of these functions using a function factory. This is
demonstrated in the vignette for this package named demo, which is shown by vignette("demo",
"mcmc").

Philosophy of MCMC

This function follows the philosophy of MCMC explained the introductory chapter of the Handbook
of Markov Chain Monte Carlo (Geyer, 2011a) and in the chapter of that book on tempering and
related subjects (Geyer, 2011b). See also the section on philosophy of metrop.

Tuning

The scale argument must be adjusted so that the acceptance rate for within-component proposals
(component acceptx of the result returned by this function) is not too low or too high to get rea-
sonable performance. The log unnormalized density function must be chosen so that the acceptance
rate for jump/swap proposals (component accepti of the result returned by this function) is not too
low or too high to get reasonable performance. The former is a vector and the latter is a matrix, and
all these rates must be adjusted to be reasonable.

The rates in in accepti are influenced by the number of components of the tempering mixture
distribution, by what those components are (how far apart they are in some unspecified metric on
probability distributions), and by the chosen normalizing constants for those distributions.

For examples of tuning tempering, see Geyer (2011b) and also the vignette of this package shown
by vignette("bfst", "mcmc"). The help for R function metrop also gives advice on tuning its
sampler, which is relevant for tuning the acceptx rates.

See also Geyer (1991) and Geyer and Thompson (1995) for the general theory of tuning parallel
and serial tempering.

References

Geyer, C. J. (1991) Markov chain Monte Carlo maximum likelihood. Computing Science and
Statistics: Proc. 23rd Symp. Interface, 156–163. http://hdl.handle.net/11299/58440.

Geyer, C. J. (2011a) Introduction to MCMC. In Handbook of Markov Chain Monte Carlo. Edited
by S. P. Brooks, A. E. Gelman, G. L. Jones, and X. L. Meng. Chapman & Hall/CRC, Boca Raton,
FL, pp. 3–48.

Geyer, C. J. (2011b) Importance Sampling, Simulated Tempering, and Umbrella Sampling. In
Handbook of Markov Chain Monte Carlo. Edited by S. P. Brooks, A. E. Gelman, G. L. Jones, and
X. L. Meng. Chapman & Hall/CRC, Boca Raton, FL, pp. 295–312.

http://hdl.handle.net/11299/58440

20 temper

Geyer, C. J. and Thompson, E. A. (1995) Annealing Markov chain Monte Carlo with applications
to ancestral inference. Journal of the American Statistical Association 90 909–920.

Examples

d <- 9
witch.which <- c(0.1, 0.3, 0.5, 0.7, 1.0)
ncomp <- length(witch.which)

neighbors <- matrix(FALSE, ncomp, ncomp)
neighbors[row(neighbors) == col(neighbors) + 1] <- TRUE
neighbors[row(neighbors) == col(neighbors) - 1] <- TRUE

ludfun <- function(state, log.pseudo.prior = rep(0, ncomp)) {
stopifnot(is.numeric(state))
stopifnot(length(state) == d + 1)
icomp <- state[1]
stopifnot(icomp == as.integer(icomp))
stopifnot(1 <= icomp && icomp <= ncomp)
stopifnot(is.numeric(log.pseudo.prior))
stopifnot(length(log.pseudo.prior) == ncomp)
theta <- state[-1]
if (any(theta > 1.0)) return(-Inf)
bnd <- witch.which[icomp]
lpp <- log.pseudo.prior[icomp]
if (any(theta > bnd)) return(lpp)
return(- d * log(bnd) + lpp)

}

parallel tempering
thetas <- matrix(0.5, ncomp, d)
out <- temper(ludfun, initial = thetas, neighbors = neighbors, nbatch = 20,

blen = 10, nspac = 5, scale = 0.56789, parallel = TRUE, debug = TRUE)

serial tempering
theta.initial <- c(1, rep(0.5, d))
log pseudo prior found by trial and error
qux <- c(0, 9.179, 13.73, 16.71, 20.56)

out <- temper(ludfun, initial = theta.initial, neighbors = neighbors,
nbatch = 50, blen = 30, nspac = 2, scale = 0.56789,
parallel = FALSE, debug = FALSE, log.pseudo.prior = qux)

Index

∗ datasets
foo, 2
logit, 4

∗ misc
metrop, 5
morph, 9
morph.metrop, 12
temper, 15

∗ ts
initseq, 2
olbm, 14

foo, 2

initseq, 2

logit, 4

metrop, 3, 4, 5, 12–14, 19
morph, 9, 12–14
morph.metrop, 6, 9, 11, 12

olbm, 14

temper, 8, 9, 15
ts, 15

21

	foo
	initseq
	logit
	metrop
	morph
	morph.metrop
	olbm
	temper
	Index

