Package 'mccf1'

October 13, 2022

Title Creates the MCC-F1 Curve and Calculates the MCC-F1 Metric and the Best Threshold

Version 1.1

Date 2019-11-11

Maintainer Chang Cao <kirin.cao@mail.utoronto.ca>

Depends R (>= 3.3.3), ggplot2

Imports ROCR

Description The MCC-F1 analysis is a method to evaluate the performance of binary classifications. The MCC-F1 curve is more reliable than the Receiver Operating Characteristic (ROC) curve and the Precision-Recall (PR)curve under imbalanced ground truth. The MCC-F1 analysis also provides the MCC-F1 metric that integrates classifier performance over varying thresholds, and the best threshold of binary classification.

License GPL (≥ 2)

URL https://bitbucket.org/hoffmanlab/mccf1/

BugReports https://stackoverflow.com/questions/tagged/mccf1

RoxygenNote 6.0.1

NeedsCompilation no

Author Chang Cao [aut, cre], Michael Hoffman [aut], Davide Chicco [aut]

Repository CRAN

Date/Publication 2019-11-11 21:00:03 UTC

R topics documented:

autoplot.mccf1		•				•	•	•	•	•	•	•	•				•	•	•	•	•	•	•	•	•	•	2	2
mccf1																											2	2
summary.mccf1		•																			•				•		3	5
																											- 5	<u>;</u>

Index

autoplot.mccf1

Description

'autoplot.mccf1()' plots the MCC-F1 curve using ggplot2.

Usage

```
## S3 method for class 'mccf1'
autoplot(object, xlab = "F1 score", ylab = "normalized MCC",
    ...)
```

Arguments

object	S3 object of class "mccf1" from the 'mccf1()'
xlab,ylab	x- and y- axis annotation (default: "F1 score", "normalized MCC")
	further arguments passed to and from method 'ggplot()'

Value

the ggplots object

Examples

```
response <- c(rep(1, 1000), rep(0, 10000))
predictor <- c(rbeta(300, 12, 2), rbeta(700, 3, 4), rbeta(10000, 2, 3))
autoplot(mccf1(response, predictor))</pre>
```

mccf1

Perform MCCF1 analysis

Description

'mccf1()' performs MCC (Matthews correlation coefficient)-F1 analysis for paired vectors of binary response classes and fractional prediction scores representing the performance of a binary classification task.

Usage

mccf1(response, predictor)

Arguments

response	numeric vector representing ground truth classes (0 or 1).
predictor	numeric vector representing prediction scores (in the range [0,1]).

Value

S3 object of class "mccf1", a list with the following members: 'thresholds': vector of doubles describing the thresholds; 'normalized_mcc': vector of doubles representing normalized MCC for each threshold; 'f1': vector of doubles representing F1 for each threshold.

Examples

```
response <- c(rep(1L, 1000L), rep(0L, 10000L))
set.seed(2017)
predictor <- c(rbeta(300L, 12, 2), rbeta(700L, 3, 4), rbeta(10000L, 2, 3))
x <- mccf1(response, predictor)
head(x$thresholds)
# [1] Inf 0.9935354 0.9931493 0.9930786 0.9925507 0.9900520
head(x$normalized_mcc)
# [1] NaN 0.5150763 0.5213220 0.5261152 0.5301566 0.5337177
head(x$f1)
# [1] NaN 0.001998002 0.003992016 0.005982054 0.007968127 0.009950249</pre>
```

summary.mccf1

Summarize the the performance of a binary classification using MCC-F1 metric and the best threshold

Description

'summary.mccf1()' calculates the MCC-F1 metric and the best threshold for a binary classification.

Usage

```
## S3 method for class 'mccf1'
summary(object, digits, bins = 100, ...)
```

Arguments

object	S3 object of class "mccf1" object resulting from the function 'mccf1()'
digits	integer, used for number formatting with signif
bins	integer, representing number of bins used to divide up the range of normalized MCC when calculating the MCC-F1 metric (default = 100L)
	other arguments ignored (for compatibility with generic)

Value

data.frame that shows the MCC-F1 metric (in the range [0,1]) and the best threshold (in the range [0,1])

Examples

```
response <- c(rep(1L, 1000L), rep(0L, 10000L))
set.seed(2017)
predictor <- c(rbeta(300L, 12, 2), rbeta(700L, 3, 4), rbeta(10000L, 2, 3))
## Not run: summary(mccf1(response, predictor))
# mccf1_metric best_threshold
# 0.3508904 0.786905
summary(mccf1(response, predictor), bins = 50)
# mccf1_metric best_threshold
# 0.3432971 0.786905
## Not run: summary(mccf1(response, predictor), digits = 3)
# mccf1_metric best_threshold
# 0.351 0.787</pre>
```

4

Index

autoplot.mccf1, 2

mccf1, 2

signif, 3
summary.mccf1, 3