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decagon_maze decagon_maze .

Description

Draw a regular decagon maze, with each side consisting of of 2depth pieces of length unit_len.

Usage

decagon_maze(depth, unit_len = 4L, clockwise = TRUE,
start_from = c("midpoint", "corner"), method = c("five_flower"),
draw_boundary = FALSE, num_boundary_holes = 2, boundary_lines = TRUE,
boundary_holes = NULL, boundary_hole_color = NULL,
boundary_hole_locations = NULL, boundary_hole_arrows = FALSE,
end_side = 1)

Arguments

depth the depth of recursion. This controls the side length.

unit_len the unit length in graph coordinates. This controls the width of the ‘holes’ in the
boundary lines and generally controls the spacing of mazes.

clockwise whether to draw clockwise.

start_from whether to start from the midpoint of the first side of a maze, or from the corner
facing the first side.

method there are a few ways to recursively draw an decagon. The following values are
acceptable:
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five_flower Dissects the decagon as ‘flower’ of five rhombuses in the center,
and another five surrounding them.

draw_boundary a boolean indicating whether a final boundary shall be drawn around the maze.

num_boundary_holes

the number of boundary sides which should be randomly selected to have holes.
Note that the boundary_holes parameter takes precedence.

boundary_lines indicates which of the sides of the maze shall have drawn boundary lines. Can
be a logical array indicating which sides shall have lines, or a numeric array,
giving the index of sides that shall have lines.

boundary_holes an array indicating which of the boundary lines have holes. If NULL, then bound-
ary holes are randomly selected by the num_boundary_holes parameter. If nu-
meric, indicates which sides of the maze shall have holes. If a boolean array, in-
dicates which of the sides shall have holes. These forms are recycled if needed.
See holey_path. Note that if no line is drawn, no hole can be drawn either.

boundary_hole_color

the color of boundary holes. A value of NULL indicates no colored holes. See
holey_path for more details. Can be an array of colors, or colors and the value
'clear', which stands in for NULL to indicate no filled hole to be drawn.

boundary_hole_locations

the ‘locations’ of the boundary holes within each boundary segment. A value
of NULL indicates the code may randomly choose, as is the default. May be
a numeric array. A positive value up to the side length is interpreted as the
location to place the boundary hole. A negative value is interpreted as counting
down from the side length plus 1. A value of zero corresponds to allowing the
code to pick the location within a segment. A value of NA may cause an error.

boundary_hole_arrows

a boolean or boolean array indicating whether to draw perpendicular double
arrows at the boundary holes, as a visual guide. These can be useful for locating
the entry and exit points of a maze.

end_side the number of the side to end on. A value of 1 corresponds to the starting side,
while higher numbers correspond to the drawn side of the figure in the canonical
order (that is, the order induced by the clockwise parameter).

Details

Draws a maze in a regular decagon. Dissects the decagon into rhombuses.
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Value

nothing; the function is called for side effects only, though in the future this might return information
about the drawn boundary of the shape.

Author(s)

Steven E. Pav <shabbychef@gmail.com>

Examples

## Not run:
turtle_init(2200,2200,mode='clip')
turtle_hide()
turtle_up()
turtle_do({

turtle_setpos(25,1100)
turtle_setangle(0)

decagon_maze(5,21,draw_boundary=TRUE,boundary_holes=c(1,6))
})

## End(Not run)

dodecagon_maze dodecagon_maze .

Description

Draw a regular dodecagon maze, with each side consisting of of 2depth pieces of length unit_len.
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Usage

dodecagon_maze(depth, unit_len = 4L, clockwise = TRUE,
start_from = c("midpoint", "corner"), method = c("hex_ring"),
draw_boundary = FALSE, num_boundary_holes = 2, boundary_lines = TRUE,
boundary_holes = NULL, boundary_hole_color = NULL,
boundary_hole_locations = NULL, boundary_hole_arrows = FALSE,
end_side = 1)

Arguments

depth the depth of recursion. This controls the side length.

unit_len the unit length in graph coordinates. This controls the width of the ‘holes’ in the
boundary lines and generally controls the spacing of mazes.

clockwise whether to draw clockwise.

start_from whether to start from the midpoint of the first side of a maze, or from the corner
facing the first side.

method there are a few ways to recursively draw an decagon. The following values are
acceptable:

hex_ring A regular hexagon maze in the center is drawn, with a ring of alter-
nating squares and equilateral triangle mazes around it.

draw_boundary a boolean indicating whether a final boundary shall be drawn around the maze.

num_boundary_holes

the number of boundary sides which should be randomly selected to have holes.
Note that the boundary_holes parameter takes precedence.

boundary_lines indicates which of the sides of the maze shall have drawn boundary lines. Can
be a logical array indicating which sides shall have lines, or a numeric array,
giving the index of sides that shall have lines.

boundary_holes an array indicating which of the boundary lines have holes. If NULL, then bound-
ary holes are randomly selected by the num_boundary_holes parameter. If nu-
meric, indicates which sides of the maze shall have holes. If a boolean array, in-
dicates which of the sides shall have holes. These forms are recycled if needed.
See holey_path. Note that if no line is drawn, no hole can be drawn either.

boundary_hole_color

the color of boundary holes. A value of NULL indicates no colored holes. See
holey_path for more details. Can be an array of colors, or colors and the value
'clear', which stands in for NULL to indicate no filled hole to be drawn.

boundary_hole_locations

the ‘locations’ of the boundary holes within each boundary segment. A value
of NULL indicates the code may randomly choose, as is the default. May be
a numeric array. A positive value up to the side length is interpreted as the
location to place the boundary hole. A negative value is interpreted as counting
down from the side length plus 1. A value of zero corresponds to allowing the
code to pick the location within a segment. A value of NA may cause an error.



6 dodecagon_maze

boundary_hole_arrows

a boolean or boolean array indicating whether to draw perpendicular double
arrows at the boundary holes, as a visual guide. These can be useful for locating
the entry and exit points of a maze.

end_side the number of the side to end on. A value of 1 corresponds to the starting side,
while higher numbers correspond to the drawn side of the figure in the canonical
order (that is, the order induced by the clockwise parameter).

Details

Draws a maze in a regular dodecagon. Currently dissects the maze into a hexagon and a ring of
squares and equilateral triangles.

Value

nothing; the function is called for side effects only, though in the future this might return information
about the drawn boundary of the shape.

Author(s)

Steven E. Pav <shabbychef@gmail.com>

Examples

## Not run:
turtle_init(2200,2200,mode='clip')
turtle_hide()
turtle_up()
turtle_do({

turtle_setpos(25,1100)
turtle_setangle(0)
dodecagon_maze(5,21,draw_boundary=TRUE,boundary_holes=c(1,6))

})
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## End(Not run)

eq_triangle_maze eq_triangle_maze .

Description

Recursively draw an equilateral triangle maze, with sides consisting of 2depth pieces of length
unit_len.

Usage

eq_triangle_maze(depth, unit_len, clockwise = TRUE,
method = c("stack_trapezoids", "triangles", "uniform", "two_ears", "random",
"hex_and_three", "shave_all", "shave"), start_from = c("midpoint",
"corner"), boustro = c(1, 1), draw_boundary = FALSE,
num_boundary_holes = 2, boundary_lines = TRUE, boundary_holes = NULL,
boundary_hole_color = NULL, boundary_hole_locations = NULL,
boundary_hole_arrows = FALSE, end_side = 1)

Arguments

depth the depth of recursion. This controls the side length.

unit_len the unit length in graph coordinates. This controls the width of the ‘holes’ in the
boundary lines and generally controls the spacing of mazes.

clockwise whether to draw clockwise.

method there are many ways to recursive draw a triangle. The following values are
acceptable:

stack_trapezoids Isosceles trapezoids are stacked on top of each other, with
the long sides aligned to the first side.

triangles The triangle maze is recursively drawn as four equilateral triangle
mazes of half size, each connected to their neighbors.

uniform The triangle maze is recursively drawn as four equilateral triangle uni-
form mazes of half size, each connected to their neighbors.

two_ears The triangle maze is recursively drawn as a large parallelogram maze
connected to two two half size equilateral triangle mazes, which are ‘ears’.

random A method is randomly selected from the available methods.
hex_and_three When 2depth is a power of three, the triangle is drawn as a

hexagonal maze of one third size connected to three equilateral triangular
mazes, each one third size, at the corners.

shave Here 2depth can be arbitrary. A single line is ‘shaved’ off the triangle,
connected to another equilateral triangle of length one less is drawn next to
it. This sub triangle will either be drawn using a ‘hex_and_three’, ‘random’,
or ‘shave’ methods, in decreasing order of preference, depending on the
side length.
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shave_all Here 2depth can be arbitrary. A single line is ‘shaved’ off the triangle,
connected to another equilateral triangle of length one less is drawn next to
it. This sub triangle will also be drawn using the ‘shave_all’ method. These
mazes tend to look boring, and are not recommended.

start_from whether to start from the midpoint of the first side of a maze, or from the corner
facing the first side.

boustro an array of two values, which help determine the location of holes in internal
lines of length height. The default value, c(1,1) results in uniform selection.
Otherwise the location of holes are chosen with probability proportional to a
beta density with the ordered elements of boustro set as shape1 and shape2.
In sub mazes, this parameter is reversed, which can lead to ‘boustrophedonic’
mazes. It is suggested that the sum of values not exceed 40, as otherwise the
location of internal holes may be not widely dispersed from the mean value.

draw_boundary a boolean indicating whether a final boundary shall be drawn around the maze.

num_boundary_holes

the number of boundary sides which should be randomly selected to have holes.
Note that the boundary_holes parameter takes precedence.

boundary_lines indicates which of the sides of the maze shall have drawn boundary lines. Can
be a logical array indicating which sides shall have lines, or a numeric array,
giving the index of sides that shall have lines.

boundary_holes an array indicating which of the boundary lines have holes. If NULL, then bound-
ary holes are randomly selected by the num_boundary_holes parameter. If nu-
meric, indicates which sides of the maze shall have holes. If a boolean array, in-
dicates which of the sides shall have holes. These forms are recycled if needed.
See holey_path. Note that if no line is drawn, no hole can be drawn either.

boundary_hole_color

the color of boundary holes. A value of NULL indicates no colored holes. See
holey_path for more details. Can be an array of colors, or colors and the value
'clear', which stands in for NULL to indicate no filled hole to be drawn.

boundary_hole_locations

the ‘locations’ of the boundary holes within each boundary segment. A value
of NULL indicates the code may randomly choose, as is the default. May be
a numeric array. A positive value up to the side length is interpreted as the
location to place the boundary hole. A negative value is interpreted as counting
down from the side length plus 1. A value of zero corresponds to allowing the
code to pick the location within a segment. A value of NA may cause an error.

boundary_hole_arrows

a boolean or boolean array indicating whether to draw perpendicular double
arrows at the boundary holes, as a visual guide. These can be useful for locating
the entry and exit points of a maze.

end_side the number of the side to end on. A value of 1 corresponds to the starting side,
while higher numbers correspond to the drawn side of the figure in the canonical
order (that is, the order induced by the clockwise parameter).
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Details

Draws a maze in an equilateral triangle, starting from the midpoint of the first side (or the corner
before the first side via the start_from option). A number of different recursive methods are
supported, dividing the triangle into sub-triangles, or hexagons, parallelogram and triangles, and so
on. Optionally draws boundaries around the triangle, with control over which sides have lines and
holes. Side length of triangles consists of 2depth segments of length unit_len, though depth may
be non-integral. A number of different methods are supported.

For method='uniform':

For method='triangles':

For method='two_ears':
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For method='hex_and_three':

For method='shave':
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For method='shave_all':

Value

nothing; the function is called for side effects only, though in the future this might return information
about the drawn boundary of the shape.

Author(s)

Steven E. Pav <shabbychef@gmail.com>

Examples

library(TurtleGraphics)
turtle_init(2500,2500)
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turtle_hide()
turtle_up()
turtle_do({

turtle_left(90)
turtle_forward(40)
turtle_right(90)
eq_triangle_maze(depth=3,12,clockwise=FALSE,method='two_ears',draw_boundary=TRUE)

})

turtle_init(2500,2500)
turtle_hide()
turtle_up()
turtle_do({

turtle_left(90)
turtle_forward(40)
turtle_right(90)
eq_triangle_maze(depth=3,12,clockwise=FALSE,method='random',draw_boundary=TRUE)

})

# join two together, with green holes on opposite sides
turtle_init(2500,2500)
turtle_hide()
turtle_up()
turtle_do({

turtle_left(90)
turtle_forward(40)
turtle_right(90)
eq_triangle_maze(depth=3,12,clockwise=TRUE,method='two_ears',draw_boundary=TRUE,

boundary_holes=c(1,3),boundary_hole_color=c('clear','clear','green'))
eq_triangle_maze(depth=3,12,clockwise=FALSE,method='uniform',draw_boundary=TRUE,

boundary_lines=c(2,3),boundary_holes=c(2),boundary_hole_color='green')
})

# non integral depths also possible:
turtle_init(2500,2500)
turtle_hide()
turtle_up()
turtle_do({

turtle_left(90)
turtle_forward(40)
turtle_right(90)
eq_triangle_maze(depth=log2(27),12,clockwise=TRUE,method='hex_and_three',draw_boundary=TRUE,

boundary_holes=c(1,3),boundary_hole_color=c('clear','clear','green'))
eq_triangle_maze(depth=log2(27),12,clockwise=FALSE,method='shave',draw_boundary=TRUE,

boundary_lines=c(2,3),boundary_holes=c(2),boundary_hole_color='green')
})

hexaflake_maze hexaflake_maze .
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Description

Recursively draw a hexaflake maze, a cross between a Koch snowflake and a Sierpinski triangle.
The outer part of the flake consists of a hexagon of side length 3depth pieces of length unit_len.
The ‘inner’ and ‘outer’ pieces of the flake are mazes drawn in different colors.

Usage

hexaflake_maze(depth, unit_len, clockwise = TRUE, start_from = c("midpoint",
"corner"), color1 = "black", color2 = "gray40", draw_boundary = FALSE,
num_boundary_holes = 2, boundary_lines = TRUE, boundary_holes = NULL,
boundary_hole_color = NULL, boundary_hole_locations = NULL,
boundary_hole_arrows = FALSE, end_side = 1)

Arguments

depth the depth of recursion. This controls the side length. Should be an integer.

unit_len the unit length in graph coordinates. This controls the width of the ‘holes’ in the
boundary lines and generally controls the spacing of mazes.

clockwise whether to draw clockwise.

start_from whether to start from the midpoint of the first side of a maze, or from the corner
facing the first side.

color1 The dominant color of the maze.

color2 The negative color of the maze.

draw_boundary a boolean indicating whether a final boundary shall be drawn around the maze.
num_boundary_holes

the number of boundary sides which should be randomly selected to have holes.
Note that the boundary_holes parameter takes precedence.

boundary_lines indicates which of the sides of the maze shall have drawn boundary lines. Can
be a logical array indicating which sides shall have lines, or a numeric array,
giving the index of sides that shall have lines.

boundary_holes an array indicating which of the boundary lines have holes. If NULL, then bound-
ary holes are randomly selected by the num_boundary_holes parameter. If nu-
meric, indicates which sides of the maze shall have holes. If a boolean array, in-
dicates which of the sides shall have holes. These forms are recycled if needed.
See holey_path. Note that if no line is drawn, no hole can be drawn either.

boundary_hole_color

the color of boundary holes. A value of NULL indicates no colored holes. See
holey_path for more details. Can be an array of colors, or colors and the value
'clear', which stands in for NULL to indicate no filled hole to be drawn.

boundary_hole_locations

the ‘locations’ of the boundary holes within each boundary segment. A value
of NULL indicates the code may randomly choose, as is the default. May be
a numeric array. A positive value up to the side length is interpreted as the
location to place the boundary hole. A negative value is interpreted as counting
down from the side length plus 1. A value of zero corresponds to allowing the
code to pick the location within a segment. A value of NA may cause an error.
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boundary_hole_arrows

a boolean or boolean array indicating whether to draw perpendicular double
arrows at the boundary holes, as a visual guide. These can be useful for locating
the entry and exit points of a maze.

end_side the number of the side to end on. A value of 1 corresponds to the starting side,
while higher numbers correspond to the drawn side of the figure in the canonical
order (that is, the order induced by the clockwise parameter).

Details

Draws a maze in an Hexflake. Relies on generation of hexagonal and triangular mazes for the
internals. An internal hexagon and six surrounding hexagons are recursively drawn as hexaflakes,
connected by 12 equilateral triangles, drawn in the secondary color:

Value

nothing; the function is called for side effects only, though in the future this might return information
about the drawn boundary of the shape.

Author(s)

Steven E. Pav <shabbychef@gmail.com>

See Also

sierpinski_trapezoid_maze.

Examples

library(TurtleGraphics)
turtle_init(1000,1000,mode='clip')
turtle_hide()
turtle_do({
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turtle_setpos(50,500)
turtle_setangle(0)
hexaflake_maze(depth=3,unit_len=10,draw_boundary=TRUE,color2='green')

})

hexagon_maze hexagon_maze .

Description

Recursively draw a regular hexagon, with sides consisting of 2depth pieces of length unit_len.

Usage

hexagon_maze(depth, unit_len, clockwise = TRUE, method = c("two_trapezoids",
"six_triangles", "three_parallelograms", "random"),
start_from = c("midpoint", "corner"), boustro = c(1, 1),
draw_boundary = FALSE, num_boundary_holes = 2, boundary_lines = TRUE,
boundary_holes = NULL, boundary_hole_color = NULL,
boundary_hole_locations = NULL, boundary_hole_arrows = FALSE,
end_side = 1)

Arguments

depth the depth of recursion. This controls the side length. If an integer then nice
recursive mazes are possible, but non-integral values corresponding to log base
2 of integers are also acceptable.

unit_len the unit length in graph coordinates. This controls the width of the ‘holes’ in the
boundary lines and generally controls the spacing of mazes.

clockwise whether to draw clockwise.

method there are many ways to recursive draw an isosceles trapezoid. The following
values are acceptable:

two_trapezoids Two isosceles trapezoids are placed next to each other, with a
holey line between them.

size_triangles Six equilateral triangles are packed together, with five holey
lines and one solid line.

three_parallelograms Three parallelograms are packed together, with two ho-
ley lines and one solid line between them.

random A method is chosen uniformly at random.

start_from whether to start from the midpoint of the first side of a maze, or from the corner
facing the first side.
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boustro an array of two values, which help determine the location of holes in internal
lines of length height. The default value, c(1,1) results in uniform selection.
Otherwise the location of holes are chosen with probability proportional to a
beta density with the ordered elements of boustro set as shape1 and shape2.
In sub mazes, this parameter is reversed, which can lead to ‘boustrophedonic’
mazes. It is suggested that the sum of values not exceed 40, as otherwise the
location of internal holes may be not widely dispersed from the mean value.

draw_boundary a boolean indicating whether a final boundary shall be drawn around the maze.
num_boundary_holes

the number of boundary sides which should be randomly selected to have holes.
Note that the boundary_holes parameter takes precedence.

boundary_lines indicates which of the sides of the maze shall have drawn boundary lines. Can
be a logical array indicating which sides shall have lines, or a numeric array,
giving the index of sides that shall have lines.

boundary_holes an array indicating which of the boundary lines have holes. If NULL, then bound-
ary holes are randomly selected by the num_boundary_holes parameter. If nu-
meric, indicates which sides of the maze shall have holes. If a boolean array, in-
dicates which of the sides shall have holes. These forms are recycled if needed.
See holey_path. Note that if no line is drawn, no hole can be drawn either.

boundary_hole_color

the color of boundary holes. A value of NULL indicates no colored holes. See
holey_path for more details. Can be an array of colors, or colors and the value
'clear', which stands in for NULL to indicate no filled hole to be drawn.

boundary_hole_locations

the ‘locations’ of the boundary holes within each boundary segment. A value
of NULL indicates the code may randomly choose, as is the default. May be
a numeric array. A positive value up to the side length is interpreted as the
location to place the boundary hole. A negative value is interpreted as counting
down from the side length plus 1. A value of zero corresponds to allowing the
code to pick the location within a segment. A value of NA may cause an error.

boundary_hole_arrows

a boolean or boolean array indicating whether to draw perpendicular double
arrows at the boundary holes, as a visual guide. These can be useful for locating
the entry and exit points of a maze.

end_side the number of the side to end on. A value of 1 corresponds to the starting side,
while higher numbers correspond to the drawn side of the figure in the canonical
order (that is, the order induced by the clockwise parameter).

Details

Draws a maze in a regular hexagon, starting from the midpoint of the first side (or the corner before
the first side via the start_from option). A number of different recursive methods are supported, di-
viding the triangle into trapezoids, triangles or parallelograms. Optionally draws boundaries around
the hexagon, with control over which sides have lines and holes. Sides of the hexagon consist of
2depth segments of length unit_len, though depth may be non-integral. A number of different
methods are supported.

For method='two_trapezoids':
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For method='six_trapezoids':

For method='three_trapezoids':
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Value

nothing; the function is called for side effects only, though in the future this might return information
about the drawn boundary of the shape.

Author(s)

Steven E. Pav <shabbychef@gmail.com>

Examples

library(TurtleGraphics)
turtle_init(2000,2000)
turtle_hide()
turtle_do({
turtle_up()
turtle_backward(250)
turtle_right(90)
turtle_forward(150)
turtle_left(90)

turtle_right(60)
hexagon_maze(depth=3,12,clockwise=FALSE,method='six_triangles',

draw_boundary=TRUE,boundary_holes=c(1,4),boundary_hole_color='green')
})

turtle_init(2000,2000)
turtle_hide()
turtle_do({
turtle_up()
turtle_backward(250)
turtle_right(90)
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turtle_forward(150)
turtle_left(90)

turtle_right(60)
hexagon_maze(depth=log2(20),12,clockwise=FALSE,method='six_triangles',

draw_boundary=TRUE,boundary_holes=c(1,4),boundary_hole_color='green')
})

turtle_init(1000,1000)
turtle_hide()
turtle_do({
turtle_up()
turtle_backward(250)
turtle_right(90)
turtle_forward(150)
turtle_left(90)

turtle_right(60)
hexagon_maze(depth=3,12,clockwise=FALSE,method='three_parallelograms',

draw_boundary=TRUE,boundary_holes=c(1,4),boundary_hole_color='green')
})

turtle_init(1000,1000)
turtle_hide()
turtle_do({
hexagon_maze(depth=3,15,clockwise=TRUE,method='two_trapezoids',

draw_boundary=TRUE,boundary_holes=c(1,4))
hexagon_maze(depth=3,15,clockwise=FALSE,method='two_trapezoids',

draw_boundary=TRUE,boundary_lines=c(2,3,4,5,6),boundary_holes=c(1,4))
})

turtle_init(1000,1000)
turtle_hide()
turtle_do({
depth <- 3
num_segs <- 2^depth
unit_len <- 8
multiplier <- -1
hexagon_maze(depth=depth,unit_len,clockwise=FALSE,method='two_trapezoids',

draw_boundary=FALSE)
for (iii in c(1:6)) {
if (iii %in% c(1,4)) {
holes <- c(1,4)
} else {
holes <- c(1)
}
hexagon_maze(depth=depth,unit_len,clockwise=TRUE,method='two_trapezoids',

draw_boundary=TRUE,boundary_holes=holes)
turtle_forward(distance=unit_len * num_segs/2)
turtle_right((multiplier * 60) %% 360)
turtle_forward(distance=unit_len * num_segs/2)
}
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})

holey_line holey_line .

Description

Draws a line with a randomly selected ‘hole’ in it.

Usage

holey_line(unit_len, num_segs, which_seg = NULL, go_back = FALSE,
hole_color = NULL, hole_arrow = FALSE)

Arguments

unit_len the unit length in graph coordinates. This controls the width of the ‘holes’ in the
boundary lines and generally controls the spacing of mazes.

num_segs the total number of segments. All but one of these, of length unit_len will be
drawn. The other, randomly chosen, will be a hole. If num_segs is one, only a
hole is made, and no line drawn. If zero or less, no action taken.

which_seg optional numeric indicating which segment should have the hole. If NULL, the
hole segment is chosen uniformly at random.

go_back whether to return the turtle to starting position when the line has been drawn.

hole_color the color to plot the ‘hole’. A NULL value corresponds to no drawn hole. See the
colors function for acceptable values.

hole_arrow a boolean or indicating whether to draw a perpendicular arrow at a hole.

Details

This function is the workhorse of drawing mazes, as it creates a maze wall with a single hole in it.

Value

Returns the which_seg variable, the location of the hole, though typically the function is called for
side effects only.

Author(s)

Steven E. Pav <shabbychef@gmail.com>
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Examples

library(TurtleGraphics)
turtle_init(1000,1000,mode='clip')
turtle_hide()
y <- holey_line(unit_len=20, num_segs=15)

turtle_right(90)
y <- holey_line(unit_len=20, num_segs=10,hole_arrow=TRUE)

holey_path holey_path .

Description

Make the turtle move multiple units, making turns, and possibly drawing line segments possibly
with holes in them.

Usage

holey_path(unit_len, lengths, angles, draw_line = TRUE, has_hole = FALSE,
hole_color = NULL, hole_locations = NULL, hole_arrows = FALSE)

Arguments

unit_len the unit length in graph coordinates. This controls the width of the ‘holes’ in the
boundary lines and generally controls the spacing of mazes.

lengths an array of the number of units each part of the path. An array of length n.

angles after each part of the path is drawn, the turtle turns right by the given angle.

draw_line a boolean array telling whether each part of the path is drawn at all, or whether
the turtle simply moves through that path.

has_hole a boolean array telling whether, conditional on the path being drawn, it has a
one unit hole.

hole_color the color to plot the ‘hole’. A value NULL or 'clear' corresponds to no drawn
hole, the latter being useful for mixing drawn colored holes with no hole drawn
at all (for which 'white' would be an acceptable choice if the background were
white). Filled holes are often useful for indicating the entry and exit points of a
maze. See the colors function for acceptable values.

hole_locations an optional array of ‘locations’ of the holes. These affect the which_seg of
any holey lines which are drawn. If an array of numeric values, a value of zero
corresponds to allowing the code to randomly choose the location of a hole;
negative values are ‘inverted’ by adding length + 1, so that if the same segment
is drawn twice, in different directions, only the sign of the hole location needs to
be flipped to have aligned holes. NA values will throw an error for now, though
this may change in the future.
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hole_arrows a boolean or boolean array telling whether to draw a perpendicular arrow at a
hole.

Details

Causes the turtle to move through a path of connected line segments, possibly drawing lines, possi-
bly drawing holes in those lines. All arguments are recycled to the length of the longest argument
via mapply, which simplifies the path description.

Value

nothing; the function is called for side effects only, though in the future this might return information
about the drawn boundary of the shape.

Author(s)

Steven E. Pav <shabbychef@gmail.com>

See Also

holey_line.

Examples

library(TurtleGraphics)
# draw a triangle with holes on the boundaries
turtle_init(1000,1000)
holey_path(unit_len=20, lengths=rep(10,3), angles=c(120), draw_line=TRUE, has_hole=TRUE)

# draw a square with holes on the boundaries
turtle_init(1000,1000)
turtle_hide()
holey_path(unit_len=20, lengths=rep(10,4), angles=c(90), draw_line=TRUE, has_hole=TRUE,

hole_color=c('red','green'))

# draw a square spiral
turtle_init(1000,1000)
turtle_hide()
holey_path(unit_len=20, lengths=sort(rep(1:10,2),decreasing=TRUE), angles=c(90),

draw_line=TRUE, has_hole=FALSE)

iso_trapezoid_maze iso_trapezoid_maze .

Description

Recursively draw a isosceles trapezoid maze, with three sides consisting of 2depth pieces of length
unit_len, and one long side of length 2depth+1 pieces, starting from the long side.
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Usage

iso_trapezoid_maze(depth, unit_len = 4L, clockwise = TRUE,
start_from = c("midpoint", "corner"), method = c("four_trapezoids",
"one_ear", "random"), boustro = c(1, 1), draw_boundary = FALSE,
num_boundary_holes = 2, boundary_lines = TRUE, boundary_holes = NULL,
boundary_hole_color = NULL, boundary_hole_locations = NULL,
boundary_hole_arrows = FALSE, end_side = 1)

Arguments

depth the depth of recursion. This controls the side length: three sides have round(2^depth)
segments of length unit_len, while the long side is twice as long. depth need
not be integral.

unit_len the unit length in graph coordinates. This controls the width of the ‘holes’ in the
boundary lines and generally controls the spacing of mazes.

clockwise whether to draw clockwise.

start_from whether to start from the midpoint of the first side of a maze, or from the corner
facing the first side.

method there are many ways to recursive draw an isosceles trapezoid. The following
values are acceptable:

four_trapezoids Four isosceles trapezoids are packed around each other with a
‘bone’ between them.

one_ear A parallelogram is placed next to an equilateral triangle (an ‘ear’).
Note this method is acceptable when depth is not an integer.

random A method is chosen uniformly at random.

boustro an array of two values, which help determine the location of holes in internal
lines of length height. The default value, c(1,1) results in uniform selection.
Otherwise the location of holes are chosen with probability proportional to a
beta density with the ordered elements of boustro set as shape1 and shape2.
In sub mazes, this parameter is reversed, which can lead to ‘boustrophedonic’
mazes. It is suggested that the sum of values not exceed 40, as otherwise the
location of internal holes may be not widely dispersed from the mean value.

draw_boundary a boolean indicating whether a final boundary shall be drawn around the maze.
num_boundary_holes

the number of boundary sides which should be randomly selected to have holes.
Note that the boundary_holes parameter takes precedence.

boundary_lines indicates which of the sides of the maze shall have drawn boundary lines. Can
be a logical array indicating which sides shall have lines, or a numeric array,
giving the index of sides that shall have lines.

boundary_holes an array indicating which of the boundary lines have holes. If NULL, then bound-
ary holes are randomly selected by the num_boundary_holes parameter. If nu-
meric, indicates which sides of the maze shall have holes. If a boolean array, in-
dicates which of the sides shall have holes. These forms are recycled if needed.
See holey_path. Note that if no line is drawn, no hole can be drawn either.
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boundary_hole_color

the color of boundary holes. A value of NULL indicates no colored holes. See
holey_path for more details. Can be an array of colors, or colors and the value
'clear', which stands in for NULL to indicate no filled hole to be drawn.

boundary_hole_locations

the ‘locations’ of the boundary holes within each boundary segment. A value
of NULL indicates the code may randomly choose, as is the default. May be
a numeric array. A positive value up to the side length is interpreted as the
location to place the boundary hole. A negative value is interpreted as counting
down from the side length plus 1. A value of zero corresponds to allowing the
code to pick the location within a segment. A value of NA may cause an error.

boundary_hole_arrows

a boolean or boolean array indicating whether to draw perpendicular double
arrows at the boundary holes, as a visual guide. These can be useful for locating
the entry and exit points of a maze.

end_side the number of the side to end on. A value of 1 corresponds to the starting side,
while higher numbers correspond to the drawn side of the figure in the canonical
order (that is, the order induced by the clockwise parameter).

Details

Draws a maze in an isoscelese trapezoid with three sides of equal length and one long side of twice
that length, starting from the midpoint of the long side (or the corner before the first side via the
start_from option). A number of different recursive methods are supported. Optionally draws
boundaries around the trapezoid, with control over which sides have lines and holes. Three sides of
the trapezoid consist of 2depth segments of length unit_len, while the longer has 2depth. A number
of different methods are supported. For method='four_trapezoids':

For method='one_ear':
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Value

nothing; the function is called for side effects only, though in the future this might return information
about the drawn boundary of the shape.

Author(s)

Steven E. Pav <shabbychef@gmail.com>

Examples

library(TurtleGraphics)
turtle_init(1000,1000)
turtle_hide()
iso_trapezoid_maze(depth=4,20,clockwise=FALSE,draw_boundary=TRUE)

turtle_init(1000,1000)
turtle_hide()
turtle_do({
iso_trapezoid_maze(depth=3,20,clockwise=TRUE,draw_boundary=TRUE,boundary_holes=3)
})

turtle_init(2000,2000)
turtle_hide()
turtle_up()
turtle_do({
len <- 22
iso_trapezoid_maze(depth=log2(len),15,clockwise=TRUE,draw_boundary=TRUE,

boundary_holes=c(1,3),method='one_ear',
boundary_hole_color=c('clear','clear','green','clear'))

iso_trapezoid_maze(depth=log2(len),15,clockwise=FALSE,draw_boundary=TRUE,
boundary_lines=c(2,3,4),boundary_holes=c(2),method='one_ear',
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boundary_hole_color=c('red'))
})

koch_maze koch_maze .

Description

Recursively draw an Koch snowflake maze. The inner part of the snowflake maze consists of an
equilateral triangle of side length 3depth pieces of length unit_len.

Usage

koch_maze(depth, unit_len, clockwise = TRUE, draw_boundary = TRUE,
num_boundary_holes = 2, boundary_lines = TRUE, boundary_holes = NULL,
boundary_hole_color = NULL, boundary_hole_locations = NULL,
boundary_hole_arrows = FALSE, end_side = 1)

Arguments

depth the depth of recursion. This controls the side length. Should be an integer.
unit_len the unit length in graph coordinates. This controls the width of the ‘holes’ in the

boundary lines and generally controls the spacing of mazes.
clockwise whether to draw clockwise.
draw_boundary a boolean indicating whether a final boundary shall be drawn around the maze.
num_boundary_holes

the number of boundary sides which should be randomly selected to have holes.
Note that the boundary_holes parameter takes precedence.

boundary_lines indicates which of the sides of the maze shall have drawn boundary lines. Can
be a logical array indicating which sides shall have lines, or a numeric array,
giving the index of sides that shall have lines.

boundary_holes an array indicating which of the boundary lines have holes. If NULL, then bound-
ary holes are randomly selected by the num_boundary_holes parameter. If nu-
meric, indicates which sides of the maze shall have holes. If a boolean array, in-
dicates which of the sides shall have holes. These forms are recycled if needed.
See holey_path. Note that if no line is drawn, no hole can be drawn either.

boundary_hole_color

the color of boundary holes. A value of NULL indicates no colored holes. See
holey_path for more details. Can be an array of colors, or colors and the value
'clear', which stands in for NULL to indicate no filled hole to be drawn.

boundary_hole_locations

the ‘locations’ of the boundary holes within each boundary segment. A value
of NULL indicates the code may randomly choose, as is the default. May be
a numeric array. A positive value up to the side length is interpreted as the
location to place the boundary hole. A negative value is interpreted as counting
down from the side length plus 1. A value of zero corresponds to allowing the
code to pick the location within a segment. A value of NA may cause an error.



koch_maze 27

boundary_hole_arrows

a boolean or boolean array indicating whether to draw perpendicular double
arrows at the boundary holes, as a visual guide. These can be useful for locating
the entry and exit points of a maze.

end_side the number of the side to end on. A value of 1 corresponds to the starting side,
while higher numbers correspond to the drawn side of the figure in the canonical
order (that is, the order induced by the clockwise parameter).

Details

Draws a maze in an Koch snowflake, starting from the corner of the first side. Relies on generation
of triangular mazes for the internals. The triangular part has sides consisting of 3^depth segments
of length unit_len.

Value

nothing; the function is called for side effects only, though in the future this might return information
about the drawn boundary of the shape.

Author(s)

Steven E. Pav <shabbychef@gmail.com>

Examples

library(TurtleGraphics)
turtle_init(2000,2000)
turtle_hide()
turtle_up()
set.seed(1234)
turtle_do({
turtle_backward(distance=400)
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turtle_left(90)
turtle_forward(650)
turtle_right(90)
turtle_right(30)
koch_maze(depth=3,unit_len=14)
})

mazealls generate recursive mazes

Description

Generate recursive mazes.

Details

Recursive generation of mazes proceeds roughly as follows: subdivide the domain logicall into two
or more parts, creating mazes in the sub-parts, then drawing dividing lines between them with some
holes. The holes in the dividing lines should be constructed so that the sub-parts form a tree, with
exactly one way to get from one of the sub-parts to any one of the others. Then an optional outer
boundary with optional holes is drawn to finish the maze.

unit length

The unit_len parameter controls the graphical length of one ‘unit’, which is the length of holes
between sections of the mazes, and is roughly the width of the ‘hallways’ of a maze. Here is an
example of using different unit lengths in a stack of trapezoids
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boundaries

The parameters draw_boundary, boundary_lines, boundary_holes, num_boundary_holes and
boundary_hole_color control the drawing of the final outer boundary of polynomial mazes. With-
out a boundary the maze can be used in recursive construction. Adding a boundary provides the
typical entry and exit points of a maze. The parameter draw_boundary is a single Boolean that
controls whether the boundary is drawn or not. The parameter boundary_lines may be a scalar
Boolean, or a numeric array giving the indices of which sides should have drawn boundary lines.
The sides are numbered in the order in which they appear, and are controlled by the clockwise
parameter. The parameter boundary_holes is a numeric array giving the indices of the bound-
ary lines that should have holes. If NULL, then we uniformly choose num_boundary_holes holes
at random. Holes can be drawn as colored segments with the boundary_hole_color, which is a
character array giving the color of each hole. The value ’clear’ stands in for clear holes. Arrows
can optionally be drawn at the boundary holes via the boundary_hole_arrows parameter, which is
either a logical array or a numerical array indicating which sides should have boundary hole arrows.

end side

The end_side parameter controls which side of the maze the turtle ends on. The default value of 1
essentially causes the turtle to end where it started. The sides are numbered in the order in which
the boundary would be drawn. Along with the boundary controls, the ending side can be useful to
join together polygons into more complex mazes.

Legal Mumbo Jumbo

mazealls is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; with-
out even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU Lesser General Public License for more details.

Note

This package is dedicated to my friend, Abie Flaxman, who gave me the idea, and other ideas.
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If you like this package, please endorse the author for ‘mazes’ on LinkedIn.

Author(s)

Steven E. Pav <shabbychef@gmail.com>

mazealls-NEWS News for package ’mazealls’:

Description

News for package ‘mazealls’

mazealls Version 0.2.0 (2017-12-12)

• adding octagon, decagon and dodecagon mazes.

• adding Sierpinski triangle, carpet and trapezoid mazes.

• adding hexaflake maze.

• adding option to draw arrows at boundary holes.

• adding boustrophedon factor to parallelogram, triangle, trapezoid, hexagon mazes.

mazealls Initial Version 0.1.0 (2017-11-12)

• first CRAN release.

octagon_maze octagon_maze .

Description

Draw a regular octagon maze, with each side consisting of of 2depth pieces of length unit_len.

Usage

octagon_maze(depth, unit_len = 4L, clockwise = TRUE,
start_from = c("midpoint", "corner"), method = c("ammann_beenker"),
draw_boundary = FALSE, num_boundary_holes = 2, boundary_lines = TRUE,
boundary_holes = NULL, boundary_hole_color = NULL,
boundary_hole_locations = NULL, boundary_hole_arrows = FALSE,
end_side = 1)

https://cran.r-project.org/package=mazealls
https://cran.r-project.org/package=mazealls
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Arguments

depth the depth of recursion. This controls the side length.

unit_len the unit length in graph coordinates. This controls the width of the ‘holes’ in the
boundary lines and generally controls the spacing of mazes.

clockwise whether to draw clockwise.

start_from whether to start from the midpoint of the first side of a maze, or from the corner
facing the first side.

method there are a few ways to recursively draw an octagon. The following values are
acceptable:

ammann_beenker Decompose into 4 45-degree rhombuses and two squares.

draw_boundary a boolean indicating whether a final boundary shall be drawn around the maze.
num_boundary_holes

the number of boundary sides which should be randomly selected to have holes.
Note that the boundary_holes parameter takes precedence.

boundary_lines indicates which of the sides of the maze shall have drawn boundary lines. Can
be a logical array indicating which sides shall have lines, or a numeric array,
giving the index of sides that shall have lines.

boundary_holes an array indicating which of the boundary lines have holes. If NULL, then bound-
ary holes are randomly selected by the num_boundary_holes parameter. If nu-
meric, indicates which sides of the maze shall have holes. If a boolean array, in-
dicates which of the sides shall have holes. These forms are recycled if needed.
See holey_path. Note that if no line is drawn, no hole can be drawn either.

boundary_hole_color

the color of boundary holes. A value of NULL indicates no colored holes. See
holey_path for more details. Can be an array of colors, or colors and the value
'clear', which stands in for NULL to indicate no filled hole to be drawn.

boundary_hole_locations

the ‘locations’ of the boundary holes within each boundary segment. A value
of NULL indicates the code may randomly choose, as is the default. May be
a numeric array. A positive value up to the side length is interpreted as the
location to place the boundary hole. A negative value is interpreted as counting
down from the side length plus 1. A value of zero corresponds to allowing the
code to pick the location within a segment. A value of NA may cause an error.

boundary_hole_arrows

a boolean or boolean array indicating whether to draw perpendicular double
arrows at the boundary holes, as a visual guide. These can be useful for locating
the entry and exit points of a maze.

end_side the number of the side to end on. A value of 1 corresponds to the starting side,
while higher numbers correspond to the drawn side of the figure in the canonical
order (that is, the order induced by the clockwise parameter).

Details

Draws a maze in a regular octagon via dissection into rhombuses.
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Value

nothing; the function is called for side effects only, though in the future this might return information
about the drawn boundary of the shape.

Author(s)

Steven E. Pav <shabbychef@gmail.com>

Examples

## Not run:
turtle_init(2000,2000,mode='clip')
turtle_hide()
turtle_up()
turtle_do({

turtle_setpos(75,1000)
turtle_setangle(0)

octagon_maze(6,12,draw_boundary=TRUE)
})

## End(Not run)

parallelogram_maze parallelogram_maze .

Description

Recursively draw a parallelogram maze, with the first side consisting of height segments of length
unit_len, and the second side width segments of length unit_len. The angle between the first
and second side may be set.
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Usage

parallelogram_maze(unit_len, height, width = height, angle = 90,
clockwise = TRUE, method = c("two_parallelograms", "four_parallelograms",
"uniform", "random"), start_from = c("midpoint", "corner"), balance = 0,
height_boustro = c(1, 1), width_boustro = c(1, 1),
draw_boundary = FALSE, num_boundary_holes = 2, boundary_lines = TRUE,
boundary_holes = NULL, boundary_hole_color = NULL,
boundary_hole_locations = NULL, boundary_hole_arrows = FALSE,
end_side = 1)

Arguments

unit_len the unit length in graph coordinates. This controls the width of the ‘holes’ in the
boundary lines and generally controls the spacing of mazes.

height the length of the first side in numbers of unit_len segments.

width the length of the second side in numbers of unit_len segments.

angle the angle (in degrees) between the first and second sides. Note that this is the
angle that the Turtle turns when rounding the first corner, so it is the internal
angle at the starting point (if starting from a corner), and the external angle at
the second corner.

clockwise whether to draw clockwise.

method there are many ways to recursive draw an isosceles trapezoid. The following
values are acceptable:

two_parallelograms The parallelogram maze is built as two parallelogram mazes
with a holey line between them.

four_parallelograms The parallelogram maze is built as four parallelogram
mazes with three holey lines and one solid line between them.

uniform The parallelogram maze is built as four parallelogram mazes with
three holey lines and one solid line between them. Sub-mazes are chosen
to be nearly equal in size.

random A method is chosen uniformly at random.

start_from whether to start from the midpoint of the first side of a maze, or from the corner
facing the first side.

balance for the two_parallelograms method, we choose whether to split on height or
width based on a balance condition. The log odds of choosing height over width
is the factor balance times the sign of the difference height - width. When
balance takes the default value of 0, you have equal odds of selecting to split
on height or width. Note that balance is positive and large, you tend to generate
nearly uniform splits. When balance is negative and large, you tend to have
imbalanced mazes, and the imbalance propagates.

height_boustro an array of two values, which help determine the location of holes in internal
lines of length height. The default value, c(1,1) results in uniform selection.
Otherwise the location of holes are chosen with probability proportional to a beta
density with shape1 and shape2 the two elements of height_boustro in order.
In sub mazes, this parameter is reversed, which can lead to ‘boustrophedonic’
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mazes. The sum of values should probably not exceed 30, as otherwise the
location of internal holes is forced.

width_boustro an array of two values, which help determine the location of any split along lines
which are length width.

draw_boundary a boolean indicating whether a final boundary shall be drawn around the maze.

num_boundary_holes

the number of boundary sides which should be randomly selected to have holes.
Note that the boundary_holes parameter takes precedence.

boundary_lines indicates which of the sides of the maze shall have drawn boundary lines. Can
be a logical array indicating which sides shall have lines, or a numeric array,
giving the index of sides that shall have lines.

boundary_holes an array indicating which of the boundary lines have holes. If NULL, then bound-
ary holes are randomly selected by the num_boundary_holes parameter. If nu-
meric, indicates which sides of the maze shall have holes. If a boolean array, in-
dicates which of the sides shall have holes. These forms are recycled if needed.
See holey_path. Note that if no line is drawn, no hole can be drawn either.

boundary_hole_color

the color of boundary holes. A value of NULL indicates no colored holes. See
holey_path for more details. Can be an array of colors, or colors and the value
'clear', which stands in for NULL to indicate no filled hole to be drawn.

boundary_hole_locations

the ‘locations’ of the boundary holes within each boundary segment. A value
of NULL indicates the code may randomly choose, as is the default. May be
a numeric array. A positive value up to the side length is interpreted as the
location to place the boundary hole. A negative value is interpreted as counting
down from the side length plus 1. A value of zero corresponds to allowing the
code to pick the location within a segment. A value of NA may cause an error.

boundary_hole_arrows

a boolean or boolean array indicating whether to draw perpendicular double
arrows at the boundary holes, as a visual guide. These can be useful for locating
the entry and exit points of a maze.

end_side the number of the side to end on. A value of 1 corresponds to the starting side,
while higher numbers correspond to the drawn side of the figure in the canonical
order (that is, the order induced by the clockwise parameter).

Details

Draws a maze in an parallelogram, starting from the midpoint of the first side (or the corner before
the first side via the start_from option). Can recursively subdivide into two or four parallelograms.
The first (and third) side shall consist of height segments of length unit_len. The second and
fourth side consist of width segments of length unit_len. The angle between them is angle. Here
is an example maze:
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This function admits a balance parameter which controls how the maze should be recursively
subdivided. A negative value creates imbalanced mazes, while positive values create more uniform
mazes. Here are create seven mazes created side by side with an increasing balance parameter:

Value

nothing; the function is called for side effects only, though in the future this might return information
about the drawn boundary of the shape.

Author(s)

Steven E. Pav <shabbychef@gmail.com>
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Examples

library(TurtleGraphics)

turtle_init(500,300,mode='clip')
turtle_hide()
turtle_up()
turtle_do({
turtle_setpos(15,15)
turtle_setangle(0)
parallelogram_maze(angle=90,unit_len=10,width=45,height=25,method='uniform',
start_from='corner',draw_boundary=TRUE)

})

# testing imbalance condition
turtle_init(400,500,mode='clip')
turtle_hide()
turtle_up()
turtle_do({
turtle_setpos(15,250)
turtle_setangle(0)
parallelogram_maze(angle=90,unit_len=10,width=30,height=40,
method='two_parallelograms',draw_boundary=TRUE,balance=-1.0)

})

# a bunch of imbalanced mazes, fading into each other
turtle_init(850,400,mode='clip')
turtle_hide()
turtle_up()
turtle_do({

turtle_setpos(15,200)
turtle_setangle(0)
valseq <- seq(from=-1.5,to=1.5,length.out=4)
blines <- c(1,2,3,4)
bholes <- c(1,3)
set.seed(12354)
for (iii in seq_along(valseq)) {

parallelogram_maze(angle=90,unit_len=10,width=20,height=25,
method='two_parallelograms',draw_boundary=TRUE,balance=valseq[iii],
end_side=3,boundary_lines=blines,boundary_holes=bholes)

turtle_right(180)
blines <- c(2,3,4)
bholes <- c(3)

}
})

# a somewhat 'boustrophedonic' maze
turtle_init(500,300,mode='clip')
turtle_hide()
turtle_up()
turtle_do({
turtle_setpos(15,15)
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turtle_setangle(0)
parallelogram_maze(angle=90,unit_len=10,width=47,height=27,
method='two_parallelograms', height_boustro=c(21,3),width_boustro=c(21,3),balance=-0.25,

start_from='corner',draw_boundary=TRUE)
})

sierpinski_carpet_maze

sierpinski_carpet_maze .

Description

Recursively draw a Sierpinski carpet maze in a parallelogram, with the first side consisting of
height segments of length unit_len, and the second side width segments of length unit_len.
The angle between the first and second side may be set.

Usage

sierpinski_carpet_maze(unit_len, height, width = height, angle = 90,
clockwise = TRUE, method = "random", color1 = "black",
color2 = "gray40", start_from = c("midpoint", "corner"), balance = 0,
draw_boundary = FALSE, num_boundary_holes = 2, boundary_lines = TRUE,
boundary_holes = NULL, boundary_hole_color = NULL,
boundary_hole_locations = NULL, boundary_hole_arrows = FALSE,
end_side = 1)

Arguments

unit_len the unit length in graph coordinates. This controls the width of the ‘holes’ in the
boundary lines and generally controls the spacing of mazes.

height the length of the first side in numbers of unit_len segments.

width the length of the second side in numbers of unit_len segments.

angle the angle (in degrees) between the first and second sides.

clockwise whether to draw clockwise.

method passed to parallelogram_maze to control the method of drawing the sub mazes.

color1 The dominant color of the maze.

color2 The negative color of the maze.

start_from whether to start from the midpoint of the first side of a maze, or from the corner
facing the first side.

balance passed to parallelogram_maze to control imbalance of sub mazes.

draw_boundary a boolean indicating whether a final boundary shall be drawn around the maze.
num_boundary_holes

the number of boundary sides which should be randomly selected to have holes.
Note that the boundary_holes parameter takes precedence.
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boundary_lines indicates which of the sides of the maze shall have drawn boundary lines. Can
be a logical array indicating which sides shall have lines, or a numeric array,
giving the index of sides that shall have lines.

boundary_holes an array indicating which of the boundary lines have holes. If NULL, then bound-
ary holes are randomly selected by the num_boundary_holes parameter. If nu-
meric, indicates which sides of the maze shall have holes. If a boolean array, in-
dicates which of the sides shall have holes. These forms are recycled if needed.
See holey_path. Note that if no line is drawn, no hole can be drawn either.

boundary_hole_color

the color of boundary holes. A value of NULL indicates no colored holes. See
holey_path for more details. Can be an array of colors, or colors and the value
'clear', which stands in for NULL to indicate no filled hole to be drawn.

boundary_hole_locations

the ‘locations’ of the boundary holes within each boundary segment. A value
of NULL indicates the code may randomly choose, as is the default. May be
a numeric array. A positive value up to the side length is interpreted as the
location to place the boundary hole. A negative value is interpreted as counting
down from the side length plus 1. A value of zero corresponds to allowing the
code to pick the location within a segment. A value of NA may cause an error.

boundary_hole_arrows

a boolean or boolean array indicating whether to draw perpendicular double
arrows at the boundary holes, as a visual guide. These can be useful for locating
the entry and exit points of a maze.

end_side the number of the side to end on. A value of 1 corresponds to the starting side,
while higher numbers correspond to the drawn side of the figure in the canonical
order (that is, the order induced by the clockwise parameter).

Details

Draws a Sierpinski carpet as two-color maze in a parallelogram.

Value

nothing; the function is called for side effects only, though in the future this might return information
about the drawn boundary of the shape.

Author(s)

Steven E. Pav <shabbychef@gmail.com>

See Also

parallelogram_maze, sierpinski_maze.

Examples

library(TurtleGraphics)
turtle_init(800,900,mode='clip')
turtle_hide()



sierpinski_maze 39

turtle_up()
turtle_do({
turtle_setpos(35,400)
turtle_setangle(0)
sierpinski_carpet_maze(angle=80,unit_len=8,width=30,height=30,
method='two_parallelograms',draw_boundary=TRUE,balance=-1.0,color2='green')

})

## Not run:
library(TurtleGraphics)
turtle_init(2000,2000,mode='clip')
turtle_hide()
turtle_up()
bholes <- list(c(1,2), c(1), c(2))
turtle_do({
turtle_setpos(1000,1100)
turtle_setangle(180)
for (iii in c(1:3)) {
mybhol <- bholes[[iii]]
sierpinski_carpet_maze(angle=120,unit_len=12,width=81,height=81,
draw_boundary=TRUE,boundary_lines=c(1,2,3),num_boundary_holes=0,
boundary_holes=mybhol,balance=1.0,color2='green',
start_from='corner')
turtle_left(120)
}

})

## End(Not run)

sierpinski_maze sierpinski_maze .

Description

Recursively draw a Sierpinski triangle maze. The sides of the triangle consist of 2depth pieces of
length unit_len. The ‘inner’ and ‘outer’ pieces of the flake are mazes drawn in different colors.

Usage

sierpinski_maze(depth, unit_len, clockwise = TRUE,
start_from = c("midpoint", "corner"), method = "random",
style = c("four_triangles", "hexaflake", "dragon_left", "dragon_right"),
color1 = "black", color2 = "gray40", draw_boundary = FALSE,
num_boundary_holes = 2, boundary_lines = TRUE, boundary_holes = NULL,
boundary_hole_color = NULL, boundary_hole_locations = NULL,
boundary_hole_arrows = FALSE, end_side = 1)
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Arguments

depth the depth of recursion. This controls the side length. Should be an integer.

unit_len the unit length in graph coordinates. This controls the width of the ‘holes’ in the
boundary lines and generally controls the spacing of mazes.

clockwise whether to draw clockwise.

start_from whether to start from the midpoint of the first side of a maze, or from the corner
facing the first side.

method controls the method to draw the underlying equilateral triangles. See eq_triangle_maze.

style controls the style of Sierpinski triangle. The following are recognized:

four_triangles The traditional Sierpinski Triangle of four triangles with the
center in the minor color, color2.

hexaflake Looks more like a hexaflake in a triangle.
dragon_left Looks like a dragon fractal.
dragon_right Looks like a dragon fractal.

color1 The dominant color of the maze.

color2 The negative color of the maze.

draw_boundary a boolean indicating whether a final boundary shall be drawn around the maze.
num_boundary_holes

the number of boundary sides which should be randomly selected to have holes.
Note that the boundary_holes parameter takes precedence.

boundary_lines indicates which of the sides of the maze shall have drawn boundary lines. Can
be a logical array indicating which sides shall have lines, or a numeric array,
giving the index of sides that shall have lines.

boundary_holes an array indicating which of the boundary lines have holes. If NULL, then bound-
ary holes are randomly selected by the num_boundary_holes parameter. If nu-
meric, indicates which sides of the maze shall have holes. If a boolean array, in-
dicates which of the sides shall have holes. These forms are recycled if needed.
See holey_path. Note that if no line is drawn, no hole can be drawn either.

boundary_hole_color

the color of boundary holes. A value of NULL indicates no colored holes. See
holey_path for more details. Can be an array of colors, or colors and the value
'clear', which stands in for NULL to indicate no filled hole to be drawn.

boundary_hole_locations

the ‘locations’ of the boundary holes within each boundary segment. A value
of NULL indicates the code may randomly choose, as is the default. May be
a numeric array. A positive value up to the side length is interpreted as the
location to place the boundary hole. A negative value is interpreted as counting
down from the side length plus 1. A value of zero corresponds to allowing the
code to pick the location within a segment. A value of NA may cause an error.

boundary_hole_arrows

a boolean or boolean array indicating whether to draw perpendicular double
arrows at the boundary holes, as a visual guide. These can be useful for locating
the entry and exit points of a maze.
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end_side the number of the side to end on. A value of 1 corresponds to the starting side,
while higher numbers correspond to the drawn side of the figure in the canonical
order (that is, the order induced by the clockwise parameter).

Details

Draws a maze in an Sierpinski equilateral Triangle. The inner quarter is drawn in the secondary
color, while the outer three quarters are drawn recursively. This is the traditional Sierpinski Triangle,
generated when style=='four_triangles':

Value

nothing; the function is called for side effects only, though in the future this might return information
about the drawn boundary of the shape.

Author(s)

Steven E. Pav <shabbychef@gmail.com>

See Also

eq_triangle_maze, hexaflake_maze, sierpinski_carpet_maze, sierpinski_trapezoid_maze,

Examples

library(TurtleGraphics)
turtle_init(1000,1000,mode='clip')
turtle_up()
turtle_hide()
turtle_do({
turtle_setpos(10,500)
turtle_setangle(0)
sierpinski_maze(depth=5,unit_len=19,boundary_lines=TRUE,
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boundary_holes=c(1,3),color1='black',color2='gray60')
})

sierpinski_trapezoid_maze

sierpinski_trapezoid_maze .

Description

Recursively draw a Sierpinski isosceles trapezoid maze, with three sides consisting of 2depth pieces
of length unit_len, and one long side of length 2depth+1 pieces, starting from the long side.

Usage

sierpinski_trapezoid_maze(depth, unit_len = 4L, clockwise = TRUE,
start_from = c("midpoint", "corner"), color1 = "black",
color2 = "gray40", flip_color_parts = 1, draw_boundary = FALSE,
num_boundary_holes = 2, boundary_lines = TRUE, boundary_holes = NULL,
boundary_hole_color = NULL, boundary_hole_locations = NULL,
boundary_hole_arrows = FALSE, end_side = 1)

Arguments

depth the depth of recursion. This controls the side length: three sides have round(2^depth)
segments of length unit_len, while the long side is twice as long. depth need
not be integral.

unit_len the unit length in graph coordinates. This controls the width of the ‘holes’ in the
boundary lines and generally controls the spacing of mazes.

clockwise whether to draw clockwise.

start_from whether to start from the midpoint of the first side of a maze, or from the corner
facing the first side.

color1 The dominant color of the maze.

color2 The negative color of the maze.
flip_color_parts

a numerical array which can contain values 1 through 4. Those parts of the maze,
when drawn recursively, have their colors flipped. A value of 3 corresponds to a
traditional Sierpinski triangle, while 1 corresponds to a Hexaflake. Values of 2
or 4 look more like dragon mazes.

draw_boundary a boolean indicating whether a final boundary shall be drawn around the maze.
num_boundary_holes

the number of boundary sides which should be randomly selected to have holes.
Note that the boundary_holes parameter takes precedence.
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boundary_lines indicates which of the sides of the maze shall have drawn boundary lines. Can
be a logical array indicating which sides shall have lines, or a numeric array,
giving the index of sides that shall have lines.

boundary_holes an array indicating which of the boundary lines have holes. If NULL, then bound-
ary holes are randomly selected by the num_boundary_holes parameter. If nu-
meric, indicates which sides of the maze shall have holes. If a boolean array, in-
dicates which of the sides shall have holes. These forms are recycled if needed.
See holey_path. Note that if no line is drawn, no hole can be drawn either.

boundary_hole_color

the color of boundary holes. A value of NULL indicates no colored holes. See
holey_path for more details. Can be an array of colors, or colors and the value
'clear', which stands in for NULL to indicate no filled hole to be drawn.

boundary_hole_locations

the ‘locations’ of the boundary holes within each boundary segment. A value
of NULL indicates the code may randomly choose, as is the default. May be
a numeric array. A positive value up to the side length is interpreted as the
location to place the boundary hole. A negative value is interpreted as counting
down from the side length plus 1. A value of zero corresponds to allowing the
code to pick the location within a segment. A value of NA may cause an error.

boundary_hole_arrows

a boolean or boolean array indicating whether to draw perpendicular double
arrows at the boundary holes, as a visual guide. These can be useful for locating
the entry and exit points of a maze.

end_side the number of the side to end on. A value of 1 corresponds to the starting side,
while higher numbers correspond to the drawn side of the figure in the canonical
order (that is, the order induced by the clockwise parameter).

Details

Draws a maze in an isoscelese trapezoid with three sides of equal length and one long side of twice
that length, starting from the midpoint of the long side (or the corner before the first side via the
start_from option). Differently colors the parts of the maze for a Sierpinski effect.

Here are mazes for different values of flip_color_parts ranging from 1 to 4:
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Value

nothing; the function is called for side effects only, though in the future this might return information
about the drawn boundary of the shape.

Author(s)

Steven E. Pav <shabbychef@gmail.com>

See Also

iso_trapezoid_maze, hexaflake_maze, sierpinski_carpet_maze, sierpinski_maze.

Examples

require(TurtleGraphics)
turtle_init(1000,1000,mode='clip')
turtle_hide()
turtle_up()
turtle_do({

turtle_setpos(500,500)
turtle_setangle(0)
sierpinski_trapezoid_maze(unit_len=15,depth=4,color1='black',color2='green',
clockwise=TRUE,draw_boundary=TRUE,boundary_holes=c(1,3))

sierpinski_trapezoid_maze(unit_len=15,depth=4,color1='black',color2='green',
clockwise=FALSE,draw_boundary=TRUE,
boundary_lines=c(2,3,4),boundary_holes=3)

})

# stack some trapezoids!
require(TurtleGraphics)
turtle_init(750,900,mode='clip')
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turtle_hide()
turtle_up()
turtle_do({

turtle_setpos(25,450)
turtle_setangle(0)
blines <- c(1,2,4)
for (dep in seq(from=4,to=0)) {
sierpinski_trapezoid_maze(unit_len=13,depth=dep,color1='black',color2='green',

flip_color_parts=2,
clockwise=TRUE,boundary_lines=blines,draw_boundary=TRUE,boundary_holes=c(1,3),
end_side=3)

turtle_right(180)
blines <- c(1,2,4)

}
})
## Not run:
require(TurtleGraphics)
turtle_init(750,900,mode='clip')
turtle_hide()
turtle_up()
turtle_do({

turtle_setpos(25,450)
turtle_setangle(0)
blines <- c(1,2,4)
for (dep in seq(from=5,to=0)) {
sierpinski_trapezoid_maze(unit_len=13,depth=dep,color1='black',color2='green',

flip_color_parts=3,
clockwise=TRUE,boundary_lines=blines,draw_boundary=TRUE,boundary_holes=c(1,3),
end_side=3)

turtle_right(180)
blines <- c(1,2,4)

}
})

## End(Not run)
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