Package ‘matlib’

October 2, 2024
Type Package

Title Matrix Functions for Teaching and Learning Linear Algebra and
Multivariate Statistics

Version 1.0.0
Date 2024-09-27
Maintainer Michael Friendly <friendly@yorku.ca>

Description A collection of matrix functions for teaching and learning matrix
linear algebra as used in multivariate statistical methods. These functions are
mainly for tutorial purposes in learning matrix algebra ideas using R. In some
cases, functions are provided for concepts available elsewhere in R, but where
the function call or name is not obvious. In other cases, functions are provided
to show or demonstrate an algorithm. In addition, a collection of functions are
provided for drawing vector diagrams in 2D and 3D.

License GPL (>=2)
Language en-US

URL https://github.com/friendly/matlib,
http://friendly.github.io/matlib/

BugReports https://github.com/friendly/matlib/issues
LazyData TRUE
Suggests carData, webshot2, markdown, bookdown, clipr

Imports xtable, MASS, rgl, car, methods, dplyr, knitr, rmarkdown,
rstudioapi

VignetteBuilder knitr
RoxygenNote 7.3.2
Encoding UTF-8
NeedsCompilation no

Author Michael Friendly [aut, cre] (<https://orcid.org/0000-0002-3237-0941>),
John Fox [aut] (<https://orcid.org/0000-0002-1196-8012>),
Phil Chalmers [aut] (<https://orcid.org/0000-0001-5332-2810>),
Georges Monette [ctb] (<https://orcid.org/0000-0003-0076-5532>),
Gaston Sanchez [ctb]

https://github.com/friendly/matlib
http://friendly.github.io/matlib/
https://github.com/friendly/matlib/issues
https://orcid.org/0000-0002-3237-0941
https://orcid.org/0000-0002-1196-8012
https://orcid.org/0000-0001-5332-2810
https://orcid.org/0000-0003-0076-5532

2 Contents

Repository CRAN
Date/Publication 2024-10-02 18:30:10 UTC

Contents
matlib-package 3
adjoint e e 4
angle e 5
A 6
arrows3d L e 8
buildTmat e e e e e e 9
cholesky e 10
circle . . . L e 11
circle3d e e e 13
Class e 13
cofactor e 14
conedd e e 15
0] o3 1<) 16
Det. . . . e e 17
echelon L e 18
Eigen e e e 19
Eqn . . e 20
gaussianEliminationo 25
getYmult L e e e e 26
GINV . . . e e 27
GramSchmidt e e 28
gsorth . . L e e e 29
Inverse L e e e 30
T 31
latexMatrix e e e e 32
latexMatrixOperations e 39
len . . . e e e 44
LU . 44
matrix2latex e e e e e 46
MINOT . . o v v o e 47
MoorePenrose e 48
IMPOWET . . . v v v vttt e e e e e e e e e e e e e e e e e 49
plotregvec3d L 50
PIOtEQN L e e e 52
plotEqn3d e 54
pointOnline 55
powerMethod e 56
printMatEqno 58
printMatrix e e 59
Proj . . . e e e 60
QR . . e 61

matlib-package 3

regvec3do e e e e 63
rowadd L e e 66
rowCofactors e e e e e e 67
TOWMINOTS o o ot e e 68
rowmult e 69
TOWSWAD © . v v v v vt e e e e e e e e e e e e e e e 70
showEig L 71
showEqn. o o 72
Solve . . . e e 74
SVD . 76
svdDemo 77
SWD o o e e e e e e e e e e e 78
symMat e e e e e e 79
therapy e 80
5 81
vandermode L. e e e 81
VEC « o v v e e e e e e e e e e e e e e e e e 82
VECIOTS & o o v v v o e 82
vectors3d L 84
WOTKEIS e e 86
Xprod ... e 87
Index 88
matlib-package matlib: Matrix Functions for Teaching and Learning Linear Algebra
and Multivariate Statistics.
Description

These functions are designed mainly for tutorial purposes in teaching & learning matrix algebra
ideas and applications to statistical methods using R.

Details

In some cases, functions are provided for concepts available elsewhere in R, but where the function
call or name is not obvious. In other cases, functions are provided to show or demonstrate an
algorithm, sometimes providing a verbose argument to print the details of computations.

In addition, a collection of functions are provided for drawing vector diagrams in 2D and 3D.

These are not meant for production uses. Other methods are more efficient for larger problems.

Topics

The functions in this package are grouped under the following topics

» Convenience functions:

tr, R, J, len, vec, Proj, mpower, vandermode

4 adjoint

* Determinants: functions for calculating determinants by cofactor expansion
minor, cofactor, rowMinors, rowCofactors

* Elementary row operations: functions for solving linear equations "manually" by the steps
used in row echelon form and Gaussian elimination
rowadd, rowmult, rowswap

* Linear equations: functions to illustrate linear equations of the form $A x = b$
showEqgn, plotEqgn

* Gaussian elimination: functions for illustrating Gaussian elimination for solving systems of
linear equations of the form $A x = b$.
gaussianElimination, Inverse, inv, echelon, Ginv, LU, cholesky, swp

* Eigenvalues: functions to illustrate the algorithms for calculating eigenvalues and eigenvectors
eigen, SVD, powerMethod, showEig

* Vector diagrams: functions for drawing vector diagrams in 2D and 3D
arrows3d, corner, arc, pointOnLine, vectors, vectors3d, regvec3d

Most of these ideas and implementations arose in courses and books by the authors. [Psychol-
ogy 6140](http://friendly.appsO1.yorku.ca/psy6140/) was a starting point. Fox (1984) introduced
illustrations of vector geometry.

macOS Installation Note

The functions that draw 3D graphs use the rgl package. On macOS, the rgl package requires that
XQuartz be installed. After installing XQuartz, it’s necessary either to log out of and back into your
macOS account or to reboot your Mac.

References

Fox, J. Linear Statistical Models and Related Methods. John Wiley and Sons, 1984

Fox, J. and Friendly, M. (2016). "Visualizing Simultaneous Linear Equations, Geometric Vectors,
and Least-Squares Regression with the matlib Package for R". useR Conference, Stanford, CA,
June 27 - June 30, 2016.

adjoint Calculate the Adjoint of a matrix

Description
This function calculates the adjoint of a square matrix, defined as the transposed matrix of cofactors
of all elements.

Usage

adjoint(A)

Arguments

A a square matrix

https://www.xquartz.org/

angle 5

Value

a matrix of the same size as A

Author(s)

Michael Friendly

See Also

Other determinants: Det (), cofactor(), minor(), rowCofactors(), rowMinors()

Examples

A <= J(3, 3) + 2xdiag(3)
adjoint(A)

angle Angle between two vectors

Description

angle calculates the angle between two vectors.

Usage

angle(x, y, degree = TRUE)

Arguments
X a numeric vector
y a numeric vector
degree logical; should the angle be computed in degrees? If FALSE the result is returned
in radians
Value

a scalar containing the angle between the vectors

See Also

len

6 arc

Examples
x <= ¢c(2,1)
y <= c(1,1)

angle(x, y) # degrees
angle(x, y, degree = FALSE) # radians

visually

xlim <- ¢(0,2.5)

ylim <- ¢(90,2)

proper geometry requires asp=1

plot(xlim, ylim, type="n", xlab="X", ylab="Y", asp=1,
main = expression(theta == 18.4))

abline(v=0, h=0, col="gray")

vectors(rbind(x,y), col=c("red”, "blue"), cex.lab=c(2, 2))

text(.5, .37, expression(theta))

it
x <= ¢c(-2,1)
y <= c(1,1)

angle(x, y) # degrees
angle(x, y, degree = FALSE) # radians

visually

xlim <- ¢(-2,1.5)

ylim <- ¢(90,2)

proper geometry requires asp=1

plot(xlim, ylim, type="n", xlab="X", ylab="Y", asp=1,
main = expression(theta == 108.4))

abline(v=0, h=0, col="gray")

vectors(rbind(x,y), col=c("red”, "blue"), cex.lab=c(2, 2))

text (0, .4, expression(theta), cex=1.5)

arc Draw an arc showing the angle between vectors

Description

A utility function for drawing vector diagrams. Draws a circular arc to show the angle between two
vectors in 2D or 3D.

Usage

arc(pl, p2, p3, d = 0.1, absolute = TRUE, ...)
Arguments

pl Starting point of first vector

p2 End point of first vector, and also start of second vector

arc 7

p3 End point of second vector
d The distance from p2 along each vector for drawing their corner
absolute logical; if TRUE, d is taken as an absolute distance along the vectors; otherwise

it is calculated as a relative distance, i.e., a fraction of the length of the vectors.

Arguments passed to link[graphics]{lines} orto link[rgl]{lines3d}

Details
In this implementation, the two vectors are specified by three points, p1, p2, p3, meaning a line
from p1 to p2, and another line from p2 to p3.

Value

none

References

https://math.stackexchange.com/questions/1507248/find-arc-between-two-tips-of-vectors-in-3d

See Also

Other vector diagrams: Proj(), arrows3d(), circle3d(), corner(), plot.regvec3d(), pointOnLine(),
regvec3d(), vectors(), vectors3d()

Examples
library(rgl)
vec <- rbind(diag(3), c(1,1,1))
rOWnameS(VeC) <- C(“X", "Y", ”Z”, ”J")
open3d()

aspect3d(”iso")

vectors3d(vec, col=c(rep(”"black”,3), "red"), lwd=2)
draw the XZ plane, whose equation is Y=0
planes3d(@, @, 1, @, col="gray", alpha=0.2)

show projections of the unit vector J
segments3d(rbind(c(1,1,1), c(1, 1, 0)))
segments3d(rbind(c(0,0,0), c(1, 1, @)))
segments3d(rbind(¢(1,0,0), c(1, 1, 0)))
segments3d(rbind(c(0,1,0), c(1, 1, 0)))
segments3d(rbind(c(1,1,1), c(1, @, @)))

show some orthogonal vectors
pl <- ¢(0,90,0)

p2 <- c(1,1,0)

p3 <- c(1,1,1)

p4 <- c¢(1,0,0)

show some angles

arc(pl, p2, p3, d=.2)

arc(p4, pl1, p2, d=.2)

arc(p3, pl, p2, d=.2)

https://math.stackexchange.com/questions/1507248/find-arc-between-two-tips-of-vectors-in-3d

arrows3d

arrows3d

Draw 3D arrows

Description

Draws nice 3D arrows with cone3ds at their tips.

Usage

arrows3d(
coords,

headlength = 0.035,

head = "end",
scale = NULL,
radius =

NULL,

ref.length = NULL,

draw = TRUE,

Arguments

coords

headlength
head

scale

radius

ref.length

draw

Details

A 2n x 3 matrix giving the start and end (x,y,z) coordinates of n arrows, in pairs.
The first vector in each pair is taken as the starting coordinates of the arrow, the
second as the end coordinates.

Length of the arrow heads, in device units
Position of the arrow head. Only head="end" is presently implemented.

Scale factor for base and tip of arrow head, a vector of length 3, giving relative
scale factors for X, Y, Z

radius of the base of the arrow head

length of vector to be used to scale all of the arrow heads (permits drawing arrow
heads of the same size as in a previous call); if NULL, arrows are scaled relative
to the longest vector

if TRUE (the default) draw the arrow(s)

rgl arguments passed down to segments3d and cone3d, for example, col and
1wd

This function is meant to be analogous to arrows, but for 3D plots using rgl. headlength, scale
and radius set the length, scale factor and base radius of the arrow head, a 3D cone. The units of
these are all in terms of the ranges of the current rgl 3D scene.

Value

invisibly returns the length of the vector used to scale the arrow heads

buildTmat 9

Author(s)

January Weiner, borrowed from the pca3d package, slightly modified by John Fox

See Also

vectors3d

Other vector diagrams: Proj(), arc(), circle3d(), corner(), plot.regvec3d(), pointOnLine(),
regvec3d(), vectors(), vectors3d()

Examples

#none yet

buildTmat Build/Get transformation matrices

Description

Recover the history of the row operations that have been performed. This function combines the
transformation matrices into a single transformation matrix representing all row operations or may
optionally print all the individual operations which have been performed.

Usage
buildTmat(x, all = FALSE)

S3 method for class 'trace'
as.matrix(x, ...)

S3 method for class 'trace'

print(x, ...)
Arguments
X amatrix A, joined with a vector of constants, b, that has been passed to gaussianElimination
or the row operator matrix functions
all logical; print individual transformation ies?
additional arguments
Value

the transformation matrix or a list of individual transformation matrices

Author(s)
Phil Chalmers

10 cholesky

See Also

echelon, gaussianElimination

Examples

A <- matrix(c(2, 1, -1,
-3, -1, 2,
-2, 1, 2), 3, 3, byrow=TRUE)
b <- c(8, -11, -3)

using row operations to reduce below diagonal to @
Abt <- Ab <- cbind(A, b)

Abt <- rowadd(Abt, 1, 2, 3/2)

Abt <- rowadd(Abt, 1, 3, 1)

Abt <- rowadd(Abt, 2, 3, -4)

Abt

build T matrix and multiply by original form
(T <- buildTmat(Abt))
T %*% Ab # same as Abt

print all transformation matrices
buildTmat(Abt, TRUE)

invert transformation matrix to reverse operations
inv(T) %*% Abt

gaussian elimination

(soln <- gaussianElimination(A, b))
T <- buildTmat(soln)

inv(T) %*% soln

cholesky Cholesky Square Root of a Matrix

Description
Returns the Cholesky square root of the non-singular, symmetric matrix X. The purpose is mainly
to demonstrate the algorithm used by Kennedy & Gentle (1980).

Usage
cholesky(X, tol = sqgrt(.Machine$double.eps))

Arguments

X a square symmetric matrix

tol tolerance for checking for 0 pivot

circle 11

Value

the Cholesky square root of X

Author(s)

John Fox

References

Kennedy W.J. Jr, Gentle J.E. (1980). Statistical Computing. Marcel Dekker.

See Also

chol for the base R function

gsorth for Gram-Schmidt orthogonalization of a data matrix

Examples

C <- matrix(c(1,2,3,2,5,6,3,6,10), 3, 3) # nonsingular, symmetric
C

cholesky(C)

cholesky(C) %*% t(cholesky(C)) # check

circle Draw circles on an existing plot.

Description

Draw circles on an existing plot.

Usage

circle(
X,
Y,
radius,
nv = 60,
border = NULL,
col = NA,
1ty = 1,
density = NULL,
angle = 45,

lwd =1

12

Arguments

X?y

radius
nv
border
col

1ty
density
angle
lwd

Details

circle

Coordinates of the center of the circle. If x is a vector of length 2, y is ignored
and the center is taken as x[1], x[2].

Radius (or radii) of the circle(s) in user units.
Number of vertices to draw the circle.

Color to use for drawing the circumference. polygon
Color to use for filling the circle.

Line type for the circumference.

Density for patterned fill. See polygon.

Angle of patterned fill. See polygon.

Line width for the circumference.

Rather than depending on the aspect ratio par("asp”) set globally or in the call to plot, circle
uses the dimensions of the current plot and the x and y coordinates to draw a circle rather than an
ellipse. Of course, if you resize the plot the aspect ratio can change.

This function was copied from draw.circle

Value

Invisibly returns a list with the x and y coordinates of the points on the circumference of the last

circle displayed.

Author(s)

Jim Lemon, thanks to David Winsemius for the density and angle args

See Also

polygon

Examples

plot(1:5,seq(1,10,length=5),

type="n

, xlab="" ’ylab:un ,

main="Test draw.circle”)
draw three concentric circles
circle(2, 4, c(1, 0.66, 0.33),border="purple”,

col=c("#ffOOff" "#ffT77FF" "#ffccff"), 1ty=1,lwd=1)

draw some others
circle(2.5, 8, 0.6,border="red"”,1lty=3,1wd=3)
circle(4, 3, 0.7,border="green"”,col="yellow",1ty=1,

density=5,angle=30,1wd=10)

circle(3.5, 8, 0.8,border="blue”,lty=2,1lwd=2)

circle3d 13

circle3d Draw a horizontal circle

Description

A utility function for drawing a horizontal circle in the (x,y) plane in a 3D graph

Usage
circle3d(center, radius, segments = 100, fill = FALSE, ...)
Arguments
center A vector of length 3.
radius A positive number.
segments An integer specifying the number of line segments to use to draw the circle
(default, 100).
fill logical; if TRUE, the circle is filled (the default is FALSE).
rgl material properties for the circle.
See Also

Other vector diagrams: Proj(), arc(), arrows3d(), corner(), plot.regvec3d(), pointOnLine(),
regvec3d(), vectors(), vectors3d()

Examples

ctr=c(0,0,0)

circle3d(ctr, 3, fill = TRUE)
circle3d(ctr - c(-1,-1,0), 3, col="blue")
circle3d(ctr + c(1,1,0), 3, col="red")

class Class Data Set

Description

A small artificial data set used to illustrate statistical concepts.

Usage

data(”class")

14 cofactor

Format
A data frame with 15 observations on the following 4 variables.

sex a factor with levels F M
age a numeric vector
height anumeric vector

weight a numeric vector

Examples

data(class)
plot(class)

cofactor Cofactor of A[i,j]

Description
Returns the cofactor of element (i,j) of the square matrix A, i.e., the signed minor of the sub-matrix
that results when row i and column j are deleted.

Usage

cofactor(A, i, j)

Arguments

A a square matrix
i row index

j column index

Value

the cofactor of Ali,j]

Author(s)
Michael Friendly

See Also

rowCofactors for all cofactors of a given row

Other determinants: Det (), adjoint(), minor(), rowCofactors(), rowMinors()

cone3d 15

Examples

M <- matrix(c(4, -12, -4,
2, 1, 3,
-1, -3, 2), 3, 3, byrow=TRUE)
cofactor(M, 1, 1)
cofactor(M, 1, 2)
cofactor(M, 1, 3)

cone3d Draw a 3D cone

Description

Draws a cone in 3D from a base point to a tip point, with a given radius at the base. This is used
to draw nice arrow heads in arrows3d.

Usage

cone3d(base, tip, radius = 10, col = "grey", scale = NULL, ...)
Arguments

base coordinates of base of the cone

tip coordinates of tip of the cone

radius radius of the base

col color

scale scale factor for base and tip

rgl arguments passed down; see rgl.material

Value

returns the integer object ID of the shape that was added to the scene

Author(s)

January Weiner, borrowed from from the pca3d package

See Also

arrows3d

Examples

none yet

16 corner

corner Draw a corner showing the angle between two vectors

Description

A utility function for drawing vector diagrams. Draws two line segments to indicate the angle
between two vectors, typically used for indicating orthogonal vectors are at right angles in 2D and

3D diagrams.
Usage
corner(pl, p2, p3, d = 0.1, absolute = TRUE, ...)
Arguments
pl Starting point of first vector
p2 End point of first vector, and also start of second vector
p3 End point of second vector
d The distance from p2 along each vector for drawing their corner
absolute logical; if TRUE, d is taken as an absolute distance along the vectors; otherwise
it is calculated as a relative distance, i.e., a fraction of the length of the vectors.
See pointOnLine for the precise definition.
Arguments passed to link[graphics]{lines} orto link[rgl]{lines3d}
Details

In this implementation, the two vectors are specified by three points, p1, p2, p3, meaning a line
from p1 to p2, and another line from p2 to p3.

Value

none

See Also

Other vector diagrams: Proj(), arc(), arrows3d(), circle3d(), plot.regvec3d(), pointOnLine(),
regvec3d(), vectors(), vectors3d()

Examples

none yet

Det 17

Det Determinant of a Square Matrix

Description

Returns the determinant of a square matrix X, computed either by Gaussian elimination, expansion
by cofactors, or as the product of the eigenvalues of the matrix. If the latter, X must be symmetric.

Usage

Det(
X,
method = c("elimination”, "eigenvalues", "cofactors”),
verbose = FALSE,
fractions = FALSE,

)
Arguments
X a square matrix
method one of ‘"elimination"‘ (the default), ‘"eigenvalues"‘, or ‘"cofactors"* (for com-
putation by minors and cofactors)
verbose logical; if TRUE, print intermediate steps
fractions logical; if TRUE, try to express non-integers as rational numbers, using the fractions
function; if you require greater accuracy, you can set the cycles (default 10)
and/or max.denominator (default 2000) arguments to fractions as a global
option, e.g., options(fractions=1list(cycles=100, max.denominator=10"4)).
arguments passed to gaussianElimination or Eigen
Value

the determinant of X

Author(s)

John Fox

See Also

det for the base R function
gaussianElimination, Eigen

Other determinants: adjoint(), cofactor(), minor(), rowCofactors(), rowMinors()

18 echelon

Examples

A <- matrix(c(1,2,3,2,5,6,3,6,10), 3, 3) # nonsingular, symmetric
A

Det(A)

Det(A, verbose=TRUE, fractions=TRUE)

B <- matrix(1:9, 3, 3) # a singular matrix

B

Det(B)

C <- matrix(c(1, .5, .5, 1), 2, 2) # square, symmetric, nonsingular
Det(C)

Det(C, method="eigenvalues")

Det(C, method="cofactors")

echelon Echelon Form of a Matrix

Description

Returns the (reduced) row-echelon form of the matrix A, using gaussianElimination.

Usage
echelon(A, B, reduced = TRUE, ...)
Arguments
A coefficient matrix
B right-hand side vector or matrix. If B is a matrix, the result gives solutions for
each column as the right-hand side of the equations with coefficients in A.
reduced logical; should reduced row echelon form be returned? If FALSE a non-reduced
row echelon form will be returned
other arguments passed to gaussianElimination
Details

When the matrix A is square and non-singular, the reduced row-echelon result will be the identity
matrix, while the row-echelon from will be an upper triangle matrix. Otherwise, the result will have
some all-zero rows, and the rank of the matrix is the number of not all-zero rows.

Value

the reduced echelon form of X.

Author(s)
John Fox

Eigen 19

Examples

A <- matrix(c(2, 1, -1,
-3, -1, 2,
-2, 1, 2), 3, 3, byrow=TRUE)

b <- c(8, -11, -3)

echelon(A, b, verbose=TRUE, fractions=TRUE) # reduced row-echelon form
echelon(A, b, reduced=FALSE, verbose=TRUE, fractions=TRUE) # row-echelon form

A <- matrix(c(1,2,3,4,5,6,7,8,10), 3, 3) # a nonsingular matrix
A

echelon(A, reduced=FALSE) # the row-echelon form of A
echelon(A) # the reduced row-echelon form of A

b <-1:3
echelon(A, b) # solving the matrix equation Ax = b
echelon(A, diag(3)) # inverting A

B <- matrix(1:9, 3, 3) # a singular matrix
B

echelon(B)

echelon(B, reduced=FALSE)

echelon(B, b)

echelon(B, diag(3))

Eigen Eigen Decomposition of a Square Symmetric Matrix

Description
Eigen calculates the eigenvalues and eigenvectors of a square, symmetric matrix using the iterated
QR decomposition

Usage

Eigen(X, tol = sqgrt(.Machine$double.eps), max.iter = 100, retain.zeroes = TRUE)

Arguments
X a square symmetric matrix
tol tolerance passed to QR
max.iter maximum number of QR iterations

retain.zeroes logical; retain O eigenvalues?

Value

a list of two elements: values— eigenvalues, vectors— eigenvectors

20 Eqgn

Author(s)

John Fox and Georges Monette

See Also

eigen

SVD

Examples

C <- matrix(c(1,2,3,2,5,6,3,6,10), 3, 3) # nonsingular, symmetric
C

EC <- Eigen(C) # eigenanalysis of C

EC$vectors %*% diag(EC$values) %*% t(EC$vectors) # check

Eqgn Create a LaleX Equation Wrapper

Description

The Eqgn function is designed to produce LaTeX expressions of mathematical equations for writ-
ing. The output can be copied/pasted into documents or used directly in chunks in .Rmd, .Rnw,
or .gmd documents to compile to equations. It wraps the equations generated by its arguments
in either a \begin{equation} ...\end{equation} or \begin{align} ...\end{align} LaTeX
environment. See also ref for consistent inline referencing of numbered equations.

In a code chunk, use the chunk options results="asis', echo=FALSE to show only the result of
compiling the LaTeX expressions.

Egn_newline() emits a newline (\) in an equation, with an optional increase to the padding fol-
lowing the newline.

Egn_text() inserts a literal string to be rendered in a text font in an equation.

Egn_hspace() is used to create (symmetric) equation spaces, most typically around = signs Input
to lhs, rhs can be a numeric to increase the size of the space or a character vector to be passed to
the LaTeX macro \hspace{}.

Egn_vspace() inserts vertical space between lines in an equation. Typically used for aligned,
multiline equations.

Egn_size() is used to increase or decrease the size of LaTeX text and equations. Can be applied to
a specific string or applied to all subsequent text until overwritten.

ref{} provides inline references to equations in R markdown and Quarto documents. Depending
on the output type this function will provide the correct inline wrapper for MathJax or LaTeX
equations. This provides more consistent referencing when switching between HTML and PDF
outputs as well as documentation types (e.g., .Rmd vs .qgmd).

Eqgn 21

Usage
Ean(
label = NULL,
align = FALSE,
preview = getOption("previewEgn"),
html_output = knitr::is_html_output(),
quarto = getOption(”quartoEgn"),
mat_args = list(),
preview.pdf = FALSE,
preview.packages = NULL

)
Eqgn_newline(space = 0)
Eqn_text (text)
Eqgn_hspace(lhs = 5, mid = "", rhs = NULL, times = 1)
Eqn_vspace(space)
Eqn_size(string, size = 0)
ref(
label,
parentheses = TRUE,
html_output = knitr::is_html_output(),

quarto = getOption("quartoEgn")
)

Arguments

comma separated LaTeX expressions that are either a) a character vector,
which will be automatically wrapped the expression inside a call to cat, b)
a matrix object containing character or numeric information, which will be
passed latexMatrix, along with the information in mat_args, or c¢) an object
that was explicitly created via latexMatrix, which provides greater specificity.
Note that user defined functions that use cat within their body should return an
empty character vector to avoid printing the returned object

label character vector specifying the label to use (e.g., eq:myeqn), which for LaTeX
can be reference via \ref{eq:myeqgn} or via the inline function ref. Including
a label will also include an equation number automatically.
For compiled documents if an HTML output is detected (see html_output) then
the equations will be labelled via (\#eq:myeqgn) and references via \@ref (eq:myeqn),
or again via ref for convenience. For Quarto documents the label must be of
the form eq-LABEL

align logical; use the align environment with explicit & representing alignment points.
Default: FALSE

22

preview

html_output

quarto

mat_args

preview.pdf

Eqgn

logical; render an HTML version of the equation and display? This is intended
for testing purposes and is only applicable to interactive R sessions, though for

code testing purposes can be set globally via options (e.g., options('previewEqn

= FALSE)). Disabled whenever quarto or html_output are TRUE

logical; use labels for HTML outputs instead of the LaTeX? Automatically
changed for compiled documents that support knitr. Generally not required
or recommended for the user to modify, except to view the generated syntax

logical; use Quarto referencing syntax? When TRUE the html_output will be
irrelevant. Generally not recommended for the user to modify, except to view
the generated syntax

list of arguments to be passed to latexMatrix to change the properties of
the matrix input object(s). Note that these inputs are used globally, and ap-
ply to each matrix object supplied. If further specificity is required create
latexMatrix objects directly.

logical; build a PDF of the preview equation? Generally not require unless
additional LaTeX packages are required that are not supported by MathJax

preview.packages

space

text
lhs

mid

rhs

times

string

size

parentheses

Author(s)

Phil Chalmers

See Also

character vector for adding additional LaTeX package information to the equa-
tion preview. Only used when preview.pdf = TRUE

includes extra vertical space. Metric of the vertical space must be ’ex’, ’pt’,
‘'mm’, ’cm’, ’em’, ’bp’, ’dd’, 'pc’, or ’in’
argument to be used within \text{}

spacing size. Can be a number between -1 and 6. -1 provides negative spaces
and 0 gives no spacing. Input can also be a character vector, which will be
passed to \hspace{} (e.g., '1cm'; see space argument for supported metrics).
Default is 5, resulting in a \quad space.

character vector to place in the middle of the space specification. Most com-
monly this will be operators like '='

see lhs for details. If left as NULL and mid is specified the this will be set to rhs
to create symmetric spaces around mid

number of times to repeat the spacings

a string that should have its text size modified. If missing the size modifier is
returned, which applies the size modifier to the remainder of the text until reset
with Eqn_size()

numeric size of LaTeX text modifier, ranging from -3 (\tiny) to 5 (\HUGE), with
0 defining the normal test size (\normalsize; default)

logical; include parentheses around the referenced equation?

latexMatrix, matrix2latex, ref

Eqgn

Examples

character input
Eqn('e=mc"2")

show only the LaTeX code
Eqn('e=mc*2', preview=FALSE)

Equation numbers & labels
Eqn('e=mc*2', label = 'eq:einstein')
Egn(”X=U \\lambda V", label='eq:svd')

html_output and quarto outputs only show code
(both auto detected in compiled documents)
Egn('e=mc”*2', label = 'eq:einstein', html_output = TRUE)

Quarto output
Egn('e=mc*2', label = 'eg-einstein', quarto = TRUE)

Not run:
The following requires LaTeX compilers to be pre-installed

View PDF instead of HTML
Eqn('e=mc*2', preview.pdf=TRUE)

Add extra LaTeX dependencies for PDF build
Egn('\\bm{e}=mc*2', preview.pdf=TRUE,
preview.packages=c('amsmath', 'bm'))

End(Not run)

Multiple expressions
Eqn("e=mc*2",
Egn_newline(),
"X=U \\lambda V", label='eq:svd')

expressions that use cat() within their calls
Egn('SVD = ',
latexMatrix("u", "n", "k"),
latexMatrix("\\lambda", "k", "k", diag=TRUE),
latexMatrix("v", "k", "p", transpose = TRUE),
label="eq:svd")

align equations using & operator

Egn("X &= U \\lambda V", Eqn_newline(),
"& =", latexMatrix("u”, "n", "k"),
latexMatrix(”\\lambda”, "k", "k", diag=TRUE),
latexMatrix("v", "k", "p", transpose = TRUE),
align=TRUE)

numeric/character matrix example
A <- matrix(c(2, 1, -1,

24

-3, -1, 2,
-2, 1, 2), 3, 3, byrow=TRUE)
b <- matrix(c(8, -11, -3))

numeric matrix wrapped internally
cbind(A,b) |> Eqn()
cbind(A,b) [> latexMatrix() |> Eqgn()

change numeric matrix brackets globally
cbind(A,b) |> Egn(mat_args=list(matrix="'bmatrix'))

greater flexibility when using latexMatrix()
cbind(A, b) |> latexMatrix() |> partition(columns=3) |> Eqn()

with showEgn()
showEgn(A, b, latex=TRUE) [> Eqn()

Eqn_newline()
Egn_newline('10ex")

Egn_hspace()
Egn_hspace(3) # smaller
Eqn_hspace(3, times=2)
Egn_hspace('1cm")

symmetric spacing around mid
Egn_hspace(mid="'=")
Egn_hspace(mid="'=", times=2)

Egn_vspace('1.5ex")
Eqn_vspace('1cm")

set size globally
Egn_size(size=3)
Egn_size() # reset

locally for defined string
string <- 'e = mc*2'
Eqgn_size(string, size=1)

used inside of Egn() or manually defined labels in the document
Egn('e = mc*2', label='eq:einstein')

use within inline block via “r ref()"
ref('eq:einstein')
ref('eq:einstein', parentheses=FALSE)

Eqgn

gaussianElimination 25

ref('eq:einstein', html_output=TRUE)

With Quarto

Egn('e = mc*2', label='eg-einstein', quarto=TRUE)
ref('eq:einstein', quarto=TRUE)

ref('eq:einstein', quarto=TRUE, parentheses=FALSE)

gaussianElimination Gaussian Elimination

Description

gaussianElimination demonstrates the algorithm of row reduction used for solving systems of
linear equations of the form Ax = B. Optional arguments verbose and fractions may be used to
see how the algorithm works.

Usage

gaussianElimination(
A,
B,
tol = sqrt(.Machine$double.eps),
verbose = FALSE,
latex = FALSE,
fractions = FALSE

)

S3 method for class 'enhancedMatrix'

print(x, ...)

Arguments

A coefficient matrix

B right-hand side vector or matrix. If B is a matrix, the result gives solutions for
each column as the right-hand side of the equations with coefficients in A.

tol tolerance for checking for 0 pivot

verbose logical; if TRUE, print intermediate steps

latex logical; if TRUE, and verbose is TRUE, print intermediate steps using LaTeX equa-
tion outputs rather than R output

fractions logical; if TRUE, try to express non-integers as rational numbers, using the fractions
function; if you require greater accuracy, you can set the cycles (default 10)
and/or max.denominator (default 2000) arguments to fractions as a global
option, e.g., options(fractions=1list(cycles=100, max.denominator=104)).

X matrix to print

arguments to pass down

26 getYmult

Value

If B is absent, returns the reduced row-echelon form of A. If B is present, returns the reduced row-
echelon form of A, with the same operations applied to B.

Author(s)
John Fox

Examples

A <- matrix(c(2, 1, -1,
-3, -1, 2,
-2, 1, 2), 3, 3, byrow=TRUE)
b <- c(8, -11, -3)
gaussianElimination(A, b)
gaussianElimination(A, b, verbose=TRUE, fractions=TRUE)
gaussianElimination(A, b, verbose=TRUE, fractions=TRUE, latex=TRUE)

determine whether matrix is solvable
gaussianElimination(A, numeric(3))

find inverse matrix by elimination: A =1 -> A*-1 A = A1 1 -> 1 = A*-1
gaussianElimination(A, diag(3))
inv(A)

works for 1-row systems (issue # 30)
A2 <- matrix(c(1, 1), nrow=1)

b2 =2

gaussianElimination(A2, b2)
showEgn(A2, b2)

plotEqgn works for this case
plotEqn(A2, b2)

getYmult Correct for aspect and coordinate ratio

Description
Calculate a multiplication factor for the Y dimension to correct for unequal plot aspect and coordi-
nate ratios on the current graphics device.

Usage

getYmult()

Details

getYmult retrieves the plot aspect ratio and the coordinate ratio for the current graphics device,
calculates a multiplicative factor to equalize the X and Y dimensions of a plotted graphic object.

Ginv 27

Value

The correction factor for the Y dimension.

Author(s)

Jim Lemon

Ginv Generalized Inverse of a Matrix

Description

Ginv returns an arbitrary generalized inverse of the matrix A, using gaussianElimination.

Usage

Ginv(A, tol = sgrt(.Machine$double.eps), verbose = FALSE, fractions = FALSE)

Arguments
A numerical matrix
tol tolerance for checking for 0 pivot
verbose logical; if TRUE, print intermediate steps
fractions logical; if TRUE, try to express non-integers as rational numbers, using the fractions
function; if you require greater accuracy, you can set the cycles (default 10)
and/or max.denominator (default 2000) arguments to fractions as a global
option, e.g., options(fractions=1list(cycles=100, max.denominator=10"4)).
Details

A generalized inverse is a matrix A~ satisfying AATA = A.

The purpose of this function is mainly to show how the generalized inverse can be computed using
Gaussian elimination.

Value

the generalized inverse of A, expressed as fractions if fractions=TRUE, or rounded

Author(s)
John Fox

See Also

ginv for a more generally usable function

28 GramSchmidt

Examples

A <- matrix(c(1,2,3,4,5,6,7,8,10), 3, 3) # a nonsingular matrix

A

Ginv(A, fractions=TRUE) # a generalized inverse of A = inverse of A
round(Ginv(A) %*% A, 6) # check

B <- matrix(1:9, 3, 3) # a singular matrix

B

Ginv(B, fractions=TRUE) # a generalized inverse of B
B %*% Ginv(B) %*% B # check

GramSchmidt Gram-Schmidt Orthogonalization of a Matrix

Description

Carries out simple Gram-Schmidt orthogonalization of a matrix. Treating the columns of the ma-
trix X in the given order, each successive column after the first is made orthogonal to all previous
columns by subtracting their projections on the current column.

Usage

GramSchmidt (
X,
normalize = TRUE,
verbose = FALSE,
tol = sqrt(.Machine$double.eps),
omit_zero_columns = TRUE

)
Arguments
X a matrix
normalize logical; should the resulting columns be normalized to unit length? The default
is TRUE
verbose logical; if TRUE, print intermediate steps. The default is FALSE
tol the tolerance for detecting linear dependencies in the columns of a. The default

is sqrt(.Machine$double.eps)
omit_zero_columns
if TRUE (the default), remove linearly dependent columns from the result

Value

A matrix of the same size as X, with orthogonal columns (but with 0 columns removed by default)

gsorth

Author(s)

29

Phil Chalmers, John Fox

Examples

(xx <= matrix(c(1:3, 3:1, 1, 0, -2), 3, 3))

crossprod(xx)

(zz <- GramSchmidt(xx, normalize=FALSE))
zapsmall(crossprod(zz))

normalized

(zz <~ GramSchmidt(xx))
zapsmall(crossprod(zz))

print steps

GramSchmidt(xx, verbose=TRUE)

A non-invertible matrix; hence, it is of deficient rank
(xx <= matrix(c(1:3, 3:1, 1, 0, -1), 3, 3))

R(xx)

crossprod(xx)

GramSchmidt finds an orthonormal basis
(zz <- GramSchmidt(xx))
zapsmall(crossprod(zz))

gsorth

Gram-Schmidt Orthogonalization of a Matrix

Description

Calculates a matrix with uncorrelated columns using the Gram-Schmidt process

Usage

gsorth(y, order, recenter = TRUE, rescale = TRUE, adjnames = TRUE)

Arguments

y

order

recenter

rescale

adjnames

a numeric matrix or data frame
if specified, a permutation of the column indices of y

logical; if TRUE, the result has same means as the original y, else means = 0 for
cols 2:p

logical; if TRUE, the result has same sd as original, else, sd = residual sd

logical; if TRUE, colnames are adjusted to Y1, Y2.1, Y3.12, ...

30 Inverse

Details

This function, originally from the heplots package has now been deprecated in matlib. Use
GramSchmidt instead.

Value

a matrix/data frame with uncorrelated columns

Examples

Not run:

set.seed(1234)

A <- matrix(c(1:60 + rnorm(60)), 20, 3)
cor(A)

G <- gsorth(A)

zapsmall(cor(G))

End(Not run)

Inverse Inverse of a Matrix

Description

Uses gaussianElimination to find the inverse of a square, non-singular matrix, X.

Usage

Inverse(X, tol = sqgrt(.Machine$double.eps), verbose = FALSE, ...)
Arguments

X a square numeric matrix

tol tolerance for checking for 0 pivot

verbose logical; if TRUE, print intermediate steps

other arguments passed on

Details

The method is purely didactic: The identity matrix, I, is appended to X, giving X |I. Applying
Gaussian elimination gives 7| X ~*, and the portion corresponding to X ~ ! is returned.

Value

the inverse of X

Author(s)

John Fox

Examples

A <- matrix(c(2, 1, -1,
-3, -1, 2,
-2, 1, 2), 3, 3, byrow=TRUE)
Inverse(A)

Inverse(A, verbose=TRUE, fractions=TRUE)

J Create a vector, matrix or array of constants

Description

This function creates a vector, matrix or array of constants, typically used for the unit vector or unit
matrix in matrix expressions.

Usage
J(..., constant = 1, dimnames = NULL)
Arguments
One or more arguments supplying the dimensions of the array, all non-negative
integers
constant The value of the constant used in the array
dimnames Either NULL or the names for the dimensions.
Details

The "dimnames" attribute is optional: if present it is a list with one component for each dimension,
either NULL or a character vector of the length given by the element of the "dim" attribute for that
dimension. The list can be named, and the list names will be used as names for the dimensions.

Examples

J(3

J(2,3)

J(2,3,2)

J(2,3, constant=2, dimnames=list(letters[1:2], LETTERS[1:31))

X <- matrix(1:6, nrow=2, ncol=3)

dimnames(X) <- list(sex=c("M", "F"), day=c("Mon”, "Wed"”, "Fri"))
J(2) %x% X # column sums

X %x% J(3) # row sums

32 latexMatrix

latexMatrix Create and Manipulate LaTeX Representations of Matrices

Description

The purpose of the 1atexMatrix() function is to facilitate the preparation of LaTeX and Markdown
documents that include matrices. The function generates the the LaTeX code for matrices of various
types programmatically. The objects produced by the function can also be manipulated, e.g., with
standard arithmetic functions and operators: See latexMatrixOperations.

The latexMatrix() function can construct the LaTeX code for a symbolic matrix, whose elements
are a symbol, with row and column subscripts. For example:

\begin{pmatrix}
x_{11} & x_{12} & \dots & x_{1m} \
x_{21} & x_{22} & \dots & x_{2m} \
\vdots & \vdots & \ddots & \vdots \
x_{n1} & x_{n2} & \dots & x_{nm}
\end{pmatrix}

When rendered in LaTeX, this produces:

T11 12 0 Tim
T21 X22 - T2m
Tnl Tnp2 e Tnm

Alternatively, instead of characters, the number of rows and/or columns can be integers, generating
a matrix of given size.

As well, instead of a character for the matrix symbol, you can supply a matrix of arbitrary character
strings (in LaTeX notation) or numbers, and these will be used as the elements of the matrix.

You can print the resulting LaTeX code to the console. When the result is assigned to a variable,
you can send it to the clipboard using write_clip(). Perhaps most convenient of all, the function
can be used used in a markdown chunk in a Rmd or gmd document, e.g,

*7{r results = "asis"}
latexMatrix(”\lambda"”, nrow=2, ncol=2,
diag=TRUE)

This generates

A O
0 A

latexMatrix
Usage
latexMatrix(
symbol = "x",
nrow = "n",
ncol = "m",

)

rownames = NULL,

colnames = NULL,

matrix = getOption("latexMatrixEnv"),
diag = FALSE,

sparse = FALSE,

zero.based = c(FALSE, FALSE),

end.at = ¢c("n - 1", "m - 1"),

comma = any(zero.based),

exponent,

transpose = FALSE,

show.size = FALSE,

digits = getOption("digits”) - 2,
fractions = FALSE,

prefix = "",
suffix = "",
prefix.row = R
prefix.col =

partition(x, ...)

S3 method for class 'latexMatrix'
partition(x, rows, columns, ...)

getLatex(x, ...)

S3 method for class 'latexMatrix'
getlLatex(x, ...)

getBody(x, ...)

S3 method for class 'latexMatrix'
getBody(x, ...)

getWrapper(x, ...)

S3 method for class 'latexMatrix'
getWrapper(x, ...)

Dim(x, ...)

S3 method for class 'latexMatrix'
Dim(x, ...)

33

34

Nrow(x, ...)

S3 method for class 'latexMatrix'
Nrow(x, ...)

Ncol(x, ...)

S3 method for class 'latexMatrix'
Ncol(x, ...)

S3 method for class 'latexMatrix'

print(
X,
onConsole = TRUE,
bordermatrix = getOption("bordermatrix"),
cell.spacing = getOption("“cell.spacing"”),
colname.spacing = getOption(”colname.spacing”),

)

S3 method for class 'latexMatrix'
is.numeric(x)

S3 method for class 'latexMatrix'
as.double(x, locals = list(), ...)

S3 method for class 'latexMatrix'
x[i, j, ..., drop]

S3 method for class 'latexMatrix'
cbind(..., deparse.level)

S3 method for class 'latexMatrix'
rbind(..., deparse.level)

S3 method for class 'latexMatrix'
dimnames(x)

Dimnames(x) <- value

S3 replacement method for class 'latexMatrix'
Dimnames(x) <- value

Rownames(x) <- value

S3 replacement method for class 'latexMatrix'
Rownames(x) <- value

latexMatrix

latexMatrix 35

Colnames(x) <- value

S3 replacement method for class 'latexMatrix'
Colnames(x) <- value

Arguments

symbol name for matrix elements, character string. For LaTeX symbols, the backslash
must be doubled because it is an escape character in R. That is, you must use
symbol = "\\beta" to get 3. Alternatively, this can be an R matrix object, con-
taining numbers or LaTeX code for the elements. For a row or column vector,
use matrix(..., nrow=1) ormatrix(..., ncol=1)

nrow Number of rows, a single character representing rows symbolically, or an inte-
ger, generating that many rows.

ncol Number of columns, a single character representing columns symbolically, or
an integer, generating that many columns.

rownames optional vector of names for the matrix rows. if symbol is an R matrix with row
names, these are used. For a matrix with a non-numeric (e.g., "m") number of
rows, 3 names should be supplied, for the 1st, 2nd, and last rows.

colnames optional vector of names for the matrix columns. if symbol is an R matrix
with column names, these are used. For a matrix with a non-numeric (e.g.,
"n") number of columns, 3 names should be supplied, for the 1st, 2nd, and last
columns.

matrix Character string giving the LaTeX matrix environment used in \begin{}, \end{3}.
Typically one of:
"pmatrix” uses parentheses: " (", ")"
"bmatrix"” uses square brackets: "[", "]1"
"Bmatrix” uses braces: "{", "}"
"vmatrix"” uses vertical bars: "|", "|"
"Vmatrix" uses double vertical bars: "||", "||"
"matrix” generates a plain matrix without delimiters
"smallmatrix” same as "matrix”, but for in-line use
Small matrix definitions from the mathtools LaTeX package are also pos-
sible for in-line use (e.g., "psmallmatrix”). The default is taken from the
"latexMatrixEnv" option; if this option isn’t set, then "pmatrix” is used.

diag logical; if TRUE, off-diagonal elements are all O (and nrow must == ncol)

sparse logical; if TRUE replace 0’s with empty characters to print a sparse matrix

zero.based logical 2-vector; start the row and/or column indices at O rather than 1; the
default is c(FALSE, FALSE)

end.at if row or column indices start at 0, should they end at n -1 and m- 1 or at

n and m? (where n and m represent the characters used to denote the number
of rows and columns, respectively); the default is c("n - 1", "m - 1"); applies
only when nrow or ncol are characters

36

comma

exponent

transpose
show.size
digits
fractions
prefix

suffix

prefix.row
prefix.col

X

rows

columns

onConsole

bordermatrix

cell.spacing

colname.spacing

locals

drop

latexMatrix

logical; if TRUE, commas are inserted between row and column subscripts, as in
x_{1,13; the default is FALSE except for zero-based indices.

if specified, e.g., "-1", or "1/2", the exponent is applied to the matrix

if TRUE, the transpose symbol "\top"” is appended to the matrix; this may also
be a character string, e.g., "T", "\prime”, "\textsf{T}" are commonly used.

logical; if TRUE shows the order of the matrix as an appended subscript.

for a numeric matrix, number of digits to display;

logical; if TRUE, try to express non-integers as rational numbers, using the fractions

function.

optional character string to be pre-pended to each matrix element, e.g, to wrap
each element in a function like "\sqrt" (but add braces)

optional character string to be appended to each matrix element, e.g., for expo-
nents on each element

optional character string to be pre-pended to each matrix row index
optional character string to be pre-pended to each matrix column index
a "latexMatrix” object

for rbind() and cbind(), one or more "latexMatrix” objects with, respec-
tively, the same number of columns or rows; otherwise, for compatibility with
generic functions, may be ignored

row numbers after which partition lines should be drawn in the LaTeX printed
representation of the matrix; if omitted, then the matrix isn’t partitioned by rows

column numbers after which partition lines should be drawn in the LaTeX printed
representation of the matrix; if omitted, then the matrix isn’t partitioned by
columns

if TRUE, the default, print the LaTeX code for the matrix on the R console.

if TRUE, the LaTeX "\bordermatrix"” macro is used for matrices with row
and/or column names. This macro doesn’t work in Markdown-based documents.
The default is taken from the "bordermatrix” option, and if that option isn’t
set the argument is set to FALSE.

a character whose width is used to try to even out spacing of printed cell ele-
ments; the default is taken from the "cell. spacing” option, and if that option
isn’t set the character "e" is used.

a character whose width is used to try to even out spacing of printed column
names; the default is taken from the "colname.spacing” option, and if that
option isn’t set the character "i" is used.

an optional list or named numeric vector of variables to be given specific nu-
meric values; e.g., locals = list(a=1, b=5, c=-1, d=4) or locals =c(a
=1,b=5,c=-1,d=4)

row index or indices (negative indices to omit rows)
column index or indices (negative indices to omit columns)

to match the generic indexing function, ignored

latexMatrix 37

deparse.level to match the generic rbind() and cbind() functions; ignored

value for "Dimnames<-()", a two-element list with, respectively, character vectors of
row and column names; for "Rownames<-()" and "Colnames<-()", a vector of
names.
Details

This implementation assumes that the LaTeX amsmath package will be available because it uses the
shorthands \begin{pmatrix}, ... rather than

\left(
\begin{array}(ccc)

\end{array}
\right)

You may need to use extra_dependencies: ["amsmath”] in your YAML header of a Rmd or gmd
file.

You can supply a numeric matrix as the symbol, but the result will not be pretty unless the ele-
ments are integers or are rounded. For a LaTeX representation of general numeric matrices, use
matrix2latex.

The partition() function modifies (only) the printed LaTeX representation of a "latexMatrix”
object to include partition lines by rows and/or columns.

The accessor functions getLatex (), getBody (), getWrapper (), getDim(), getNrow(), and getNcol ()
may be used to retrieve components of the returned object.

Various functions and operators for "1atexMatrix" objects are documented separately; see, latexMatrixOperations.

Value

latexMatrix() returns an object of class "latexMatrix" which contains the LaTeX representation
of the matrix as a character string, in the returned object are named:

e "matrix” (the LaTeX representation of the matrix);
e "dim"” (nrow and ncol);
* "body" (a character matrix of LaTeX expressions for the cells of the matrix);

* "wrapper"(the beginning and ending lines for the LaTeX matrix environment).

partition(), rbind(), cbind(), and indexing of "latexMatrix” objects alsoreturna "latexMatrix”
object.

Author(s)
John Fox

See Also

latexMatrixOperations, matrix2latex, write_clip

38 latexMatrix

Examples

latexMatrix()

return value

mat <- latexMatrix()
str(mat)
cat(getLatex(mat))

copy to clipboard (can't be done in non-interactive mode)
Not run:
clipr::write_clip(mat)

End(Not run)

can use a complex symbol
latexMatrix("\\widehat{\\beta}", 2, 4)

numeric rows/cols
latexMatrix(ncol=3)
latexMatrix(nrow=4)
latexMatrix(nrow=4, ncol=4)

diagonal matrices
latexMatrix(nrow=3, ncol=3, diag=TRUE)

noan

latexMatrix(nrow="n", ncol="n", diag=TRUE)

non

latexMatrix(nrow="n", ncol="n", diag=TRUE, sparse=TRUE)

commas, exponents, transpose

latexMatrix(”"\\beta”, comma=TRUE, exponent="-1")
latexMatrix(”\\beta”, comma=TRUE, transpose=TRUE)
latexMatrix(”\\beta”, comma=TRUE, exponent="-1", transpose=TRUE)

for a row/column vector, wrap in matrix()
latexMatrix(matrix(LETTERS[1:4], nrow=1))
latexMatrix(matrix(LETTERS[1:4], ncol=1))

represent the SVD, X = U D V' symbolically

<- latexMatrix("x", "n", "p")

<- latexMatrix("u", "n", "k")

<- latexMatrix("\\lambda", "k", "k", diag=TRUE)

<- latexMatrix("v", "k", "p", transpose = TRUE)
cat("\\mathrm{SVD: }\n", getLatex(X), "=\n", getLatex(U),
getLatex(D), getLatex(V))

< O C X %

supply a matrix for 'symbol'
m <- matrix(c(
"\\alpha", "\\beta"”,
"\\gamma"”, "\\delta”,
"\\epsilon”, "\\pi”,
0, 0), 4, 2, byrow=TRUE)
latexMatrix(m)

latexMatrixOperations 39

Identity matrix
latexMatrix(diag(3))
latexMatrix(diag(3), sparse=TRUE)

prefix / suffix
latexMatrix(prefix="\\sqrt{", suffix="3}")
latexMatrix(suffix="*{1/23}")

show size (order) of a matrix
latexMatrix(show.size=TRUE)
latexMatrix(nrow=3, ncol=4, show.size=TRUE)

handling fractions

m <- matrix(3/(1:9), 3, 3)
latexMatrix(m)

latexMatrix(m, digits=2)
latexMatrix(m, fractions=TRUE)

zero-based indexing
latexMatrix(zero.based=c(TRUE, TRUE))

partitioned matrix
X <- latexMatrix(nrow=5, ncol=6)
partition(X, rows=c(2, 4), columns=c(3, 5))

binding rows and columns; indexing
X <- latexMatrix("x", nrow=4, ncol=2)
Y <- latexMatrix("y", nrow=4, ncol=1)
Z <- latexMatrix(matrix(1:8, 4, 2))
chbind(X, Y, 2)

rbind(X, Z)
X[1:2,]
X[-(1:2), 1
X[1:2, 2]

defining row and column names

W <- latexMatrix(rownames=c("\\alpha_1", "\\alpha_2", "\\alpha_m"),
colnames=c("\\beta_1", "\\beta_2", "\\beta_n"))

W

Rownames(W) <- c("\\mathrm{Abe}", "\\mathrm{Barry}", "\\mathrm{Zelda}")

Colnames(W) <- c("\\mathrm{Age}", "\\mathrm{BMI}", "\\mathrm{Waist}")

W

latexMatrixOperations Various Functions and Operators for "latexMatrix" Objects

Description

These operators and functions provide for LaTeX representations of symbolic and numeric ma-
trix arithmetic and computations. They provide reasonable means to compose meaningful matrix
equations in LaTeX far easier than doing this manually matrix by matrix.

40 latexMatrixOperations

The following operators and functions are documented here:

e matsum() and +, matrix addition;

* matdiff() and -, matrix subtraction and negation;

* *, product of a scalar and a matrix;

* Dot (), inner product of two vectors;

* matprod() and %*%, matrix product;

* matpower() and *, powers (including inverse) of a square matrix;
* solve() and inverse(), matrix inverse of a square matrix;

* t(), transpose;

* determinant() of a square matrix;

* kronecker() and %0%, the Kronecker product.
Usage
matsum(A, ...)

S3 method for class 'latexMatrix'
matsum(A, ..., as.numeric = TRUE)

S3 method for class 'latexMatrix'
el + e2

matdiff(A, B, ...)

S3 method for class 'latexMatrix'
matdiff(A, B = NULL, as.numeric = TRUE, ...)

S3 method for class 'latexMatrix'
el - e2

S3 method for class 'latexMatrix'
el * e2

Dot(x, y, simplify = TRUE)
matmult(X, ...)

S3 method for class 'latexMatrix'
matmult(X, ..., simplify = TRUE, as.numeric = TRUE)

S3 method for class 'latexMatrix'
X %*% Yy

matpower (X, power, ...)

latexMatrixOperations 41

S3 method for class 'latexMatrix'
matpower (X, power, simplify = TRUE, as.numeric = TRUE, ...)

S3 method for class 'latexMatrix'
el * e2

inverse(X, ...)

S3 method for class 'latexMatrix'
inverse(X, ..., as.numeric = TRUE, simplify = TRUE)

S3 method for class 'latexMatrix'
t(x)

S3 method for class 'latexMatrix'
determinant(x, logarithm, ...)

S3 method for class 'latexMatrix'
solve(
a7
b,
simplify = FALSE,
as.numeric = TRUE,
frac = c("\\dfrac”, "\\frac”, "\\tfrac”, "\\cfrac"),

)
S4 method for signature 'latexMatrix,latexMatrix'
kronecker(X, Y, FUN = "x" make.dimnames = FALSE, ...)
X %X% Yy

Arguments
A a "latexMatrix” object

for matmult() and sum() zero or more "latexMatrix” objects; otherwise ar-
guments to be passed down

as.numeric if TRUE (the default) and the matrices to be multiplied, added, etc., can be co-
erced to numeric, matrix multiplication, addition, etc., is performed numerically;
supersedes simplify

el a "latexMatrix" object; or for * a scalar;

e2 a "latexMatrix” object; for x a scalar; for * an integer power >= -1 to raise a
square matrix

B a "latexMatrix” object

X for Dot a numeric or character vector; otherwise a "latexMatrix" object

y for Dot a numeric or character vector; otherwise a "latexMatrix" object

42 latexMatrixOperations

simplify if TRUE (the default), an attempt is made to simplify the result slightly; for
solve(), return a LaTeX expression with the inverse of the determinant in front
of the adjoint matrix rather than a "latexMatrix” object in which each element
of the adjoint matrix is divided by the determinant

X a "latexMatrix” object

power to raise a square matrix to this power, an integer >= -1.

logarithm to match the generic determinant() function, ignored

a a "latexMatrix” object representing a square matrix

b ignored; to match the solve() generic

frac LaTeX command to use in forming fractions; the default is "\dfrac”
Y a "latexMatrix” object

FUN to match the kronecker () generic, ignored

make.dimnames to match the kronecker () generic, ignored

Details

These operators and functions only apply to "latexMatrix” objects of definite (i.e., numeric) di-
mensions.

When there are both a function and an operator (e.g., matmult() and %*%), the former is more
flexible via optional arguments and the latter calls the former with default arguments. For example,
using the operator A %*% B multiplies the two matrices A and B, returning a symbolic result. The
function matmult () multiplies two or more matrices, and can simplify the result and/or produced
the numeric representation of the product.

The result of matrix multiplication, C = A B is composed of the vector inner (dot) products of
each row of A with each column of B,

T
Cij = a; bj = Zkaik . bk;j

The Dot () function computes the inner product symbolically in LaTeX notation for numeric and
character vectors, simplifying the result if simplify = TRUE. The LaTeX symbol for multiplication
("\cdot" by default) can be changed by changing options(latexMultSymbol), e.g, options(latexMultSymbol
="\\times") (note the double-backslash).
Value
All of these functions return "latexMatrix” objects, except for Dot (), which returns a LaTeX
expression as a character string.
Author(s)
John Fox

See Also

latexMatrix

latexMatrixOperations

Examples

A <- latexMatrix(symbol="a", nrow=2, ncol=2)
B <- latexMatrix(symbol="b", nrow=2, ncol=2)
A

B

A+ B

A-B

"a" x A

C <- latexMatrix(symbol="c", nrow=2, ncol=3)
A %x% C

t(C)

determinant(A)

cat(solve(A, simplify=TRUE))

D <- latexMatrix(matrix(letters[1:4], 2, 2))

D

as.numeric(D, locals=list(a=1, b=2, c=3, d=4))

X <- latexMatrix(matrix(c(3, 2, o, 1, 1, 1, 2,-2, 1), 3, 3))
X

as.numeric(X)

MASS: :fractions(as.numeric(inverse(X)))

(d <- determinant(X))

eval (parse(text=(gsub("\\\\cdot”, "*", d))))

X <- latexMatrix(matrix(1:6, 2, 3), matrix="bmatrix")
I3 <- latexMatrix(diag(3))

I3 %X% X

kronecker(I3, X, sparse=TRUE)

(E <- latexMatrix(diag(1:3)))
equivalent:

X %*x% E

matmult(X, E)

matmult(X, E, simplify=FALSE, as.numeric=FALSE)

equivalent:
X %*% E %*% E
matmult(X, E, E)

equivalent:
E*-1
inverse(E)
solve(E)

solve(E, as.numeric=FALSE) # details
equivalent
E*3

matpower(E, 3)

matpower(E, 3, as.numeric=FALSE)

43

44 LU

len Length of a Vector or Column Lengths of a Matrix

Description
len calculates the Euclidean length (also called Euclidean norm) of a vector or the length of each
column of a numeric matrix.

Usage
len(X)

Arguments

X a numeric vector or matrix

Value

a scalar or vector containing the length(s)

See Also

norm for more general matrix norms

Examples

len(1:3)
len(matrix(1:9, 3, 3))

distance between two vectors
len(1:3 - c(1,1,1))

LU LU Decomposition

Description
LU computes the LU decomposition of a matrix, A, such that PA = LU, where L is a lower triangle
matrix, U is an upper triangle, and P is a permutation matrix.

Usage

LUCA, b, tol = sqgrt(.Machine$double.eps), verbose = FALSE, ...)

LU

right-hand side vector. When supplied the returned object will also contain the

Arguments
A coefficient matrix
b
solved d and x elements
tol tolerance for checking for 0 pivot
verbose logical; if TRUE, print intermediate steps
additional arguments passed to showEqn
Details

The LU decomposition is used to solve the equation Ax = b by calculating L(Uz — d) = 0, where
Ld = b. If row exchanges are necessary for A then the permutation matrix P will be required
to exchange the rows in A; otherwise, P will be an identity matrix and the LU equation will be

simplified to A = LU.

Value

A list of matrix components of the solution, P, L and U. If b is supplied, the vectors d and x are also

returned.

Author(s)

Phil Chalmers

Examples

A <- matrix(c(2, 1, -1,
-3, -1, 2,
-2, 1, 2), 3, 3, byrow=TRUE)
b <- c(8, -11, -3)

(ret <- LU(A)) # P is an identity; no row swapping

with(ret, L %*% U) # check that A =L x U
LUCA, b)

LUCA, b, verbose=TRUE)
LUCA, b, verbose=TRUE, fractions=TRUE)

permutations required in this example
A <- matrix(c(1, 1, -1,
2, 2, 4,
1, -1, 1), 3, 3, byrow=TRUE)
b<-c1, 2, 9
(ret <- LU(A, b))
with(ret, P %*% A)
with(ret, L %*% U)

46 matrix2latex

matrix2latex (Deprecated) Convert matrix to LaTeX equation

Description

(This function has been deprecated; see latexMatrix instead). This function provides a soft-
wrapper to xtable: : xtableMatharray () with additional support for fractions output and brackets.

Usage

matrix2latex(
X,
fractions = FALSE,
brackets = TRUE,
show.size = FALSE,
digits = NULL,

print = TRUE,
)
Arguments
X a numeric or character matrix. If the latter a numeric-based arguments will be
ignored
fractions logical; if TRUE, try to express non-integers as rational numbers, using the fractions
function; if you require greater accuracy, you can set the cycles (default 10)
and/or max.denominator (default 2000) arguments to fractions as a global
option, e.g., options(fractions=list(cycles=100, max.denominator=10"4)).
brackets logical or a character in "p", "b", "B", "V". If TRUE, uses square brackets
around the matrix, FALSE produces no brackets. Otherwise "p") uses parenthe-
ses, (); "b") uses square brackets [1, "B") uses braces { }, "V") uses vertical
bars | |.
show.size logical; if TRUE shows the size of the matrix as an appended subscript.
digits Number of digits to display. If digits == NULL (the default), the function sets
digits = @ if the elements of x are all integers
print logical; print the LaTeX code for the matrix on the console?; default: TRUE
additional arguments passed to xtable: : xtableMatharray()
Details

The code for brackets matches some of the options from the AMS matrix LaTeX package: \pmatrix{3},
\bmatrix{}, \Bmatrix{},

Author(s)
Phil Chalmers

minor 47

Examples

A <- matrix(c(2, 1, -1,
-3, -1, 2,
-2, 1, 2), 3, 3, byrow=TRUE)
b <- c(8, -11, -3)

’

matrix2latex(cbind(A,b))
matrix2latex(cbind(A,b), digits = 0)
matrix2latex(cbind(A/2,b), fractions = TRUE)

matrix2latex(A, digits=0, brackets="p", show.size = TRUE)

character matrices

A <- matrix(paste@('a_', 1:9), 3, 3)
matrix2latex(cbind(A,b))

b <- paste@("\\beta_", 1:3)
matrix2latex(cbind(A,b))

minor Minor of A[i,j]

Description
Returns the minor of element (i,j) of the square matrix A, i.e., the determinant of the sub-matrix
that results when row i and column j are deleted.

Usage

minor (A, i, j)

Arguments

A a square matrix
i row index

J column index

Value

the minor of Al[i,j]

Author(s)
Michael Friendly

See Also

rowMinors for all minors of a given row

Other determinants: Det(), adjoint (), cofactor(), rowCofactors(), rowMinors()

48 MoorePenrose

Examples

M <- matrix(c(4, -12, -4,
2, 1, 3,
-1, -3, 2), 3, 3, byrow=TRUE)
minor(M, 1, 1)
minor(M, 1, 2)
minor(M, 1, 3)

MoorePenrose Moore-Penrose inverse of a matrix

Description

The Moore-Penrose inverse is a generalization of the regular inverse of a square, non-singular,
symmetric matrix to other cases (rectangular, singular), yet retain similar properties to a regular
inverse.

Usage

MoorePenrose(X, tol = sqrt(.Machine$double.eps))

Arguments

X A numeric matrix

tol Tolerance for a singular (rank-deficient) matrix
Value

The Moore-Penrose inverse of X

Examples

X <- matrix(rnorm(20), ncol=2)
introduce a linear dependency in X[, 3]
X <= cbind(X, 1.5%X[, 1] - pixX[, 21)

Y <- MoorePenrose(X)
demonstrate some properties of the M-P inverse

#XY X=X
round(X %*% Y %x% X - X, 8)
BYXY=Y

round(Y %*% X %x% Y - Y, 8)

XY =t(XY)

round(X %*% Y - t(X %*% Y), 8)
#Y X = t(Y X)

round(Y %x% X - t(Y %*% X), 8)

mpower 49

mpower Matrix Power

Description
A simple function to demonstrate calculating the power of a square symmetric matrix in terms of
its eigenvalues and eigenvectors.

Usage

mpower (A, p, tol = sqgrt(.Machine$double.eps))

Arguments

A a square symmetric matrix

p matrix power, not necessarily a positive integer

tol tolerance for determining if the matrix is symmetric
Details

The matrix power p can be a fraction or other non-integer. For example, p=1/2 and p=1/3 give a
square-root and cube-root of the matrix.

Negative powers are also allowed. For example, p=-1 gives the inverse and p=-1/2 gives the inverse
square-root.

Value

A raised to the power p: A*p

See Also

The {%"%} operator in the expm package is far more efficient

Examples

C <- matrix(c(1,2,3,2,5,6,3,6,10), 3, 3) # nonsingular, symmetric
C

mpower (C, 2)

zapsmall(mpower(C, -1))

solve(C) # check

50 plot.regvec3d
plot.regvec3d Plot method for regvec3d objects
Description
The plot method for regvec3d objects uses the low-level graphics tools in this package to draw 3D
and 3D vector diagrams reflecting the partial and marginal relations of y to x1 and x2 in a bivariate
multiple linear regression model, Im(y ~ x1 + x2).
The summary method prints the vectors and their vector lengths, followed by the summary for the
model.
Usage
S3 method for class 'regvec3d'
plot(
X’
Y,
dimension = 3,
col = c("black”, "red”, "blue"”, "brown", "lightgray"),
col.plane = "gray",
cex.lab = 1.2,
show.base = 2,
show.marginal = FALSE,
show.hplane = TRUE,
show.angles = TRUE,
error.sphere = c("none”", "e", "y.hat"),
scale.error.sphere = x$scale,
level.error.sphere = 0.95,
grid = FALSE,
add = FALSE,
)
S3 method for class 'regvec3d'
summary(object, ...)
S3 method for class 'regvec3d'
print(x, ...)
Arguments
X A “regvec3d” object
y Ignored; only included for compatibility with the S3 generic

dimension Number of dimensions to plot: 3 (default) or 2

plot.regvec3d 51

col A vector of 5 colors. col[1] is used for the y and residual (e) vectors, and for
x1 and x2; col[2] is used for the vectors y -> yhat and y -> e; col[3] is used
for the vectors yhat -> b1 and yhat -> b2;

col.plane Color of the base plane in a 3D plot or axes in a 2D plot

cex.lab character expansion applied to vector labels. May be a number or numeric vector
corresponding to the the rows of X, recycled as necessary.

show.base If show.base > 0, draws the base plane in a 3D plot; if show.base > 1, the plane
is drawn thicker

show.marginal If TRUE also draws lines showing the marginal relations of y on x1 and on x2

show. hplane If TRUE, draws the plane defined by y, yhat and the origin in the 3D

show. angles If TRUE, draw and label the angle between the x1 and x2 and between y and yhat,

corresponding respectively to the correlation between the xs and the multiple
correlation

error.sphere Plot a sphere (or in 2D, a circle) of radius proportional to the length of the
residual vector, centered either at the origin ("e") or at the fitted-values vector
("y.hat"; the default is "none".)

scale.error.sphere
Whether to scale the error sphere if error.sphere="y.hat"; defaults to TRUE
if the vectors representing the variables are scaled, in which case the oblique
projections of the error spheres can represent confidence intervals for the coef-
ficients; otherwise defaults to FALSE.

level.error.sphere
The confidence level for the error sphere, applied if scale.error. sphere=TRUE.

grid If TRUE, draws a light grid on the base plane
add If TRUE, add to the current plot; otherwise start a new rgl or plot window
Parameters passed down to functions [unused now]

object A regvec3d object for the summary method

Details
A 3D diagram shows the vector y and the plane formed by the predictors, x1 and x2, where all
variables are represented in deviation form, so that the intercept need not be included.

A 2D diagram, using the first two columns of the result, can be used to show the projection of the
space in the x1, x2 plane.

The drawing functions vectors and 1ink{vectors3d} used by the plot.regvec3d method only
work reasonably well if the variables are shown on commensurate scales, i.e., with either scale=TRUE
or normalize=TRUE.

Value

None

References

Fox, J. (2016). Applied Regression Analysis and Generalized Linear Models, 3rd ed., Sage, Chapter
10.

52 plotEqn

See Also

regvec3d, vectors3d, vectors

Other vector diagrams: Proj(), arc(), arrows3d(), circle3d(), corner(), pointOnLine(),
regvec3d(), vectors(), vectors3d()

Examples

if (require(carData)) {
data("Duncan”, package="carData")
dunc.reg <- regvec3d(prestige ~ income + education, data=Duncan)
plot(dunc.reg)
plot(dunc.reg, dimension=2)
plot(dunc.reg, error.sphere="e")
summary (dunc.reg)

Example showing Simpson's paradox

data("States"”, package="carData")

states.vec <- regvec3d(SATM ~ pay + percent, data=States, scale=TRUE)
plot(states.vec, show.marginal=TRUE)

plot(states.vec, show.marginal=TRUE, dimension=2)

summary (states.vec)

plotEgn Plot Linear Equations

Description

Shows what matrices A, b look like as the system of linear equations, Az = b with two unknowns,
x1, x2, by plotting a line for each equation.

Usage

plotEgn(

col = T:nrow(A),
lwd = 2,

1ty = 1,

axes = TRUE,
labels = TRUE,
solution = TRUE

plotEqn

Arguments

A

vars

xlim

ylim

col
lwd
1ty
axes
labels

solution

Value

53

either the matrix of coefficients of a system of linear equations, or the matrix
cbind(A,b). The A matrix must have two columns.

if supplied, the vector of constants on the right hand side of the equations, of
length matching the number of rows of A.

a numeric or character vector of names of the variables. If supplied, the length
must be equal to the number of unknowns in the equations, i.e., 2. The default
is c(expression(x[1]), expression(x[2])).

horizontal axis limits for the first variable

vertical axis limits for the second variable; if missing, ylim is calculated from
the range of the set of equations over the x1im.

scalar or vector of colors for the lines, recycled as necessary
scalar or vector of line widths for the lines, recycled as necessary
scalar or vector of line types for the lines, recycled as necessary
logical; draw horizontal and vertical axes through (0,0)?

logical, or a vector of character labels for the equations; if TRUE, each equation
is labeled using the character string resulting from showEqgn, modified so that
the xs are properly subscripted.

logical; should the solution points for pairs of equations be marked?

nothing; used for the side effect of making a plot

Author(s)
Michael Friendly

References

Fox, J. and Friendly, M. (2016). "Visualizing Simultaneous Linear Equations, Geometric Vectors,
and Least-Squares Regression with the matlib Package for R". useR Conference, Stanford, CA,
June 27 - June 30, 2016.

See Also

showEqn, vignette("linear-equations”, package="matlib")

Examples

consistent equations
A<- matrix(c(1,2,3, -1, 2, 1),3,2)

b <- ¢c(2,1,3)
showEgn (A, b)
plotEgn(A,b)

54

plotEqn3d

inconsistent equations
b <- c(2,1,6)
showEqgn (A, b)
plotEqgn(A,b)

plotEgn3d

Plot Linear Equations in 3D

Description

Shows what matrices A, b look like as the system of linear equations, Az = b with three unknowns,
x1, x2, and x3, by plotting a plane for each equation.

Usage
plotEqn3d(
A,
b,
vars,
xlim = c(-2, 2),
ylim = c(-2, 2),
zlim,
col = 2:(nrow(A) + 1),
alpha = 0.9,
labels = FALSE,
solution = TRUE,
axes = TRUE,
lit = FALSE
)
Arguments
A either the matrix of coefficients of a system of linear equations, or the matrix
cbind(A,b) The A matrix must have three columns.
b if supplied, the vector of constants on the right hand side of the equations, of
length matching the number of rows of A.
vars a numeric or character vector of names of the variables. If supplied, the length
must be equal to the number of unknowns in the equations. The default is
paste@("x", 1:ncol(A).
x1lim axis limits for the first variable
ylim axis limits for the second variable
zlim horizontal axis limits for the second variable; if missing, z1imis calculated from
the range of the set of equations over the x1imand ylim
col scalar or vector of colors for the lines, recycled as necessary
alpha transparency applied to each plane

pointOnLine 55

labels logical, or a vector of character labels for the equations; not yet implemented.
solution logical; should the solution point for all equations be marked (if possible)

axes logical; whether to frame the plot with coordinate axes

lit logical, specifying if lighting calculation should take place on geometry; see

rgl.material

Value

nothing; used for the side effect of making a plot

Author(s)
Michael Friendly, John Fox

References

Fox, J. and Friendly, M. (2016). "Visualizing Simultaneous Linear Equations, Geometric Vectors,
and Least-Squares Regression with the matlib Package for R". useR Conference, Stanford, CA,
June 27 - June 30, 2016.

Examples

three consistent equations in three unknowns

A <- matrix(c(13, -4, 2, -4, 11, -2, 2, -2, 8), 3,3)
b <-c(1,2,4)

plotEgn3d(A,b)

pointOnLine Position of a point along a line

Description

A utility function for drawing vector diagrams. Find position of an interpolated point along a line
from x1 to x2.

Usage

pointOnLine(x1, x2, d, absolute = TRUE)

Arguments
x1 A vector of length 2 or 3, representing the starting point of a line in 2D or 3D
space
x2 A vector of length 2 or 3, representing the ending point of a line in 2D or 3D
space
d The distance along the line from x1 to x2 of the point to be found.
absolute logical; if TRUE, d is taken as an absolute distance along the line; otherwise it is

calculated as a relative distance, i.e., a fraction of the length of the line.

56 powerMethod

Details

The function takes a step of length d along the line defined by the difference between the two
points, x2 - x1. When absolute=FALSE, this step is proportional to the difference, while when
absolute=TRUE, the difference is first scaled to unit length so that the step is always of length d.
Note that the physical length of a line in different directions in a graph depends on the aspect ratio
of the plot axes, and lines of the same length will only appear equal if the aspect ratio is one (asp=1
in 2D, or aspect3d(”iso") in 3D).

Value

The interpolated point, a vector of the same length as x1

See Also

Other vector diagrams: Proj(), arc(), arrows3d(), circle3d(), corner(), plot.regvec3d(),
regvec3d(), vectors(), vectors3d()

Examples

x1 <- c(0, 0)

x2 <- c(1, 4)

pointOnLine(x1, x2, 0.5)
pointOnLine(x1, x2, 0.5, absolute=FALSE)
pointOnLine(x1, x2, 1.1)

yl <- c(1, 2, 3)

y2 <- ¢c(3, 2, 1)

pointOnLine(y1, y2, 0.5)
pointOnLine(y1, y2, 0.5, absolute=FALSE)

powerMethod Power Method for Eigenvectors

Description
Finds a dominant eigenvalue, A1, and its corresponding eigenvector, v1, of a square matrix by
applying Hotelling’s (1933) Power Method with scaling.

Usage

powerMethod(A, v = NULL, eps = 1e-06, maxiter = 100, plot = FALSE)

Arguments
A a square numeric matrix
v optional starting vector; if not supplied, it uses a unit vector of length equal to

the number of rows / columns of x.

powerMethod 57

eps convergence threshold for terminating iterations

maxiter maximum number of iterations

plot logical; if TRUE, plot the series of iterated eigenvectors?
Details

The method is based upon the fact that repeated multiplication of a matrix A by a trial vector ng)
converges to the value of the eigenvector,

k+1 k k
ot = o)A
The corresponding eigenvalue is then found as

T
vi Avg
A = L

vivg

In pre-computer days, this method could be extended to find subsequent eigenvalue - eigenvector
pairs by "deflation", i.e., by applying the method again to the new matrix. A — A\jvivf.

This method is still used in some computer-intensive applications with huge matrices where only
the dominant eigenvector is required, e.g., the Google Page Rank algorithm.

Value
a list containing the eigenvector (vector), eigenvalue (value), iterations (iter), and iteration his-
tory (vector_iterations)

Author(s)

Gaston Sanchez (from matrixKkit)

References

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components.
Journal of Educational Psychology, 24, 417-441, and 498-520.

Examples

A <= cbind(c(7, 3), c(3, 6))
powerMethod(A)
eigen(A)$values[1] # check
eigen(A)$vectors[,1]

demonstrate how the power method converges to a solution
powerMethod(A, v = c(-.5, 1), plot = TRUE)

B <- cbind(c(1, 2, @), c(2, 1, 3), c(o0, 3, 1))
(rv <- powerMethod(B))

deflate to find 2nd latent vector
1 <- rv$value

58 printMatEqn

v <- c(rv$vector)

B1 <- B - 1 * outer(v, v)
powerMethod(B1)
eigen(B)$vectors # check

a positive, semi-definite matrix, with eigenvalues 12, 6, @
C <- matrix(c(7, 4, 1, 4, 4, 4, 1, 4, 7), 3, 3)
eigen(C)$vectors

powerMethod(C)

printMatEgn Print Matrices or Matrix Operations Side by Side

Description

This function is designed to print a collection of matrices, vectors, character strings and matrix
expressions side by side. A typical use is to illustrate matrix equations in a compact and compre-
hensible way.

Usage
printMatEqgn(..., space = 1, tol = sqgrt(.Machine$double.eps), fractions = FALSE)
Arguments
matrices and character operations to be passed and printed to the console. These
can include named arguments, character string operation symbols (e.g., "+")
space amount of blank spaces to place around operations such as "+", "=", "=" etc
tol tolerance for rounding
fractions logical; if TRUE, try to express non-integers as rational numbers, using the fractions
function; if you require greater accuracy, you can set the cycles (default 10)
and/or max.denominator (default 2000) arguments to fractions as a global
option, e.g., options(fractions=1list(cycles=100, max.denominator=10"4)).
Value

NULL; A formatted sequence of matrices and matrix operations is printed to the console

Author(s)
Phil Chalmers

See Also

showEgn

printMatrix 59

Examples

A <- matrix(c(2, 1, -1,

-3, -1, 2,

-2, 1, 2), 3, 3, byrow=TRUE)
x <- c(2, 3, -1

provide implicit or explicit labels

printMatEgn(AA = A, "x", xx = x, '=', b = A %*% Xx)
printMatEgn(A, "*", x, '=', b = A %*% x)
printMatEgn(A, "x", x, '=', A %*% x)

compare with showEqgn

b <-c(4, 2, 1)

printMatEgn(A, x=paste@("x", 1:3),"=", b)
showEgn(A, b)

decimal example

A <- matrix(c(@.5, 1, 3, .75, 2.8, 4), nrow = 2)

x <= c(0.5, 3.7, 2.3)

y <- ¢(0.7, -1.2)

b <- A %% x -y

printMatEgn(A, "*", x, "=",y, "=", b)

printMatEgn(A, "x", x, "-", vy, "=", b, fractions=TRUE)

printMatrix (Deprecated) Print a matrix, allowing fractions or LaTeX output

Description

(Deprecated) Print a matrix, allowing fractions or LaTeX output

Usage

printMatrix(
A,
parent = TRUE,
fractions = FALSE,
latex = FALSE,
tol = sqrt(.Machine$double.eps)

)
Arguments
A A numeric matrix
parent flag used to search in the parent envir for suitable definitions of other arguments.

Set to TRUE (the default) if you want to only use the inputs provided.

60 Proj

fractions If TRUE, print numbers as rational fractions, using the fractions function;
if you require greater accuracy, you can set the cycles (default 10) and/or
max.denominator (default 2000) arguments to fractions as a global option,
e.g.,options(fractions=list(cycles=100, max.denominator=10"4)).

latex If TRUE, print the matrix in LaTeX format
tol Tolerance for rounding small numbers to 0
Value

The formatted matrix

See Also

fractions

Examples

A <- matrix(1:12, 3, 4) / 6
printMatrix(A, fractions=TRUE)
printMatrix(A, latex=TRUE)

Proj Projection of Vector y on columns of X

Description

Fitting a linear model, 1Im(y ~ X), by least squares can be thought of geometrically as the orthog-
onal projection of y on the column space of X. This function is designed to allow exploration of
projections and orthogonality.

Usage
Proj(y, X, list = FALSE)

Arguments

y a vector, treated as a one-column matrix

X a vector or matrix. Number of rows of y and X must match

list logical; if FALSE, return just the projected vector; otherwise returns a list
Details

The projection is defined as Py where P = X (X’'X)~ X' and X~ is a generalized inverse.

Value

the projection of y on X (if 1ist=FALSE) or a list with elements y and P

QR 61

Author(s)

Michael Friendly

See Also

Other vector diagrams: arc(), arrows3d(), circle3d(), corner(), plot.regvec3d(), pointOnLine(),
regvec3d(), vectors(), vectors3d()

Examples

X <- matrix(c(1, 1, 1, 1, 1, -1, 1, -1), 4,2, byrow=TRUE)
y <- 1:4

Proj(y, X[,1]) # project y on unit vector

Proj(y, X[,21)

Proj(y, X)

project unit vector on line between two points
y <= c(1,1)

pl <- c(0,0)

p2 <- c(1,0)

Proj(y, cbind(p1, p2))

orthogonal complements
y <- 1:4

yp <-Proj(y, X, list=TRUE)
yp$y

P <- yp$P

IP <- diag(4) - P

yc <= c(IP %*% y)
crossprod(yp$y, yc)

P is idempotent: P P =P
P %x% P
all.equal(P, P %*% P)

QR OR Decomposition by Graham-Schmidt Orthonormalization

Description

QR computes the QR decomposition of a matrix, X, that is an orthonormal matrix,) and an upper
triangular matrix, R, such that X = QR.

Usage

QR(X, tol = sqrt(.Machine$double.eps))

62 R

Arguments

X a numeric matrix

tol tolerance for detecting linear dependencies in the columns of X
Details

The QR decomposition plays an important role in many statistical techniques. In particular it can
be used to solve the equation Az = b for given matrix A and vector b. The function is included
here simply to show the algorithm of Gram-Schmidt orthogonalization. The standard qr function is
faster and more accurate.

Value
a list of three elements, consisting of an orthonormal matrix Q, an upper triangular matrix R, and the
rank of the matrix X

Author(s)

John Fox and Georges Monette

See Also
qr
Examples
A <- matrix(c(1,2,3,4,5,6,7,8,10), 3, 3) # a square nonsingular matrix
res <- QR(A)
res
g <- res$Q
zapsmall(t(q) %*% q) # check that q' q =1
r <- res$R
q %*% r # check that q r = A

relation to determinant: det(A) = prod(diag(R))
det(A)
prod(diag(r))

B <- matrix(1:9, 3, 3) # a singular matrix

QR(B)

R Rank of a Matrix

Description

Returns the rank of a matrix X, using the QR decomposition, QR. Included here as a simple function,
because rank does something different and it is not obvious what to use for matrix rank.

regvec3d 63

Usage

R(X)

Arguments

X a matrix

Value

rank of X

See Also

qr

Examples

M <- outer(1:3, 3:1)
M
R(M

M <- matrix(1:9, 3, 3)
M

R(M)

why rank=2?
echelon(M)

set.seed(1234)

M <- matrix(sample(1:9), 3, 3)
M

R(M)

regvec3d Vector space representation of a two-variable regression model

Description

regvec3d calculates the 3D vectors that represent the projection of a two-variable multiple regres-
sion model from n-D observation space into the 3D mean-deviation variable space that they span,
thus showing the regression of y on x1 and x2 in the model 1m(y ~ x1 + x2). The result can be used
to draw 2D and 3D vector diagrams accurately reflecting the partial and marginal relations of y to
x1 and x2 as vectors in this representation.

64

Usage

regvec3d(x1, ...)

S3 method for class 'formula'
regvec3d(

)

formula,
data = NULL,
which = 1:2,
name.x1,
name.x2,
name.y,
name.e,
name.y.hat,
name.b1.x1,
name.b2.x2,
abbreviate = 0,

Default S3 method:
regvec3d(

x1,

X2,

Y,

scale = FALSE,

normalize = TRUE,

name.x1 = deparse(substitute(x1)),
name.x2 = deparse(substitute(x2)),
name.y = deparse(substitute(y)),
name.e = "residuals”,

name.y.hat = paste@(name.y, "hat"),
name.b1.x1 paste@("b1"”, name.x1),
name.b2.x2 = paste@("b2", name.x2),
name.yl.hat = paste@(name.y, "hat 1"),
name.y2.hat = paste@(name.y, "hat 2"),

regvec3d

The generic argument or the first predictor passed to the default method

A two-sided formula for the linear regression model. It must contain two quan-

titative predictors (x1 and x2) on the right-hand-side. If further predictors are
included, y, x1 and x2 are taken as residuals from the their linear fits on these

)
Arguments
x1
Arguments passed to methods
formula
variables.
data

A data frame in which the variables in the model are found

regvec3d 65

which Indices of predictors variables in the model taken as x1 and x2

name. x1 Name for x1 to be used in the result and plots. By default, this is taken as
the name of the x1 variable in the formula, possibly abbreviated according to
abbreviate.

name. x2 Ditto for the name of x2

name.y Ditto for the name of y

name.e Name for the residual vector. Default: "residuals”

name.y.hat Name for the fitted vector

name.b1.x1 Name for the vector corresponding to the partial coefficient of x1

name.b2.x2 Name for the vector corresponding to the partial coefficient of x2

abbreviate An integer. If abbreviate >0, the names of x1, x2 and y are abbreviated to this
length before being combined with the other name. * arguments

X2 second predictor variable in the model

y response variable in the model

scale logical; if TRUE, standardize each of y, x1, x2 to standard scores

normalize logical; if TRUE, normalize each vector relative to the maximum length of all

name.y1.hat Name for the vector corresponding to the marginal coefficient of x1

name.y2.hat Name for the vector corresponding to the marginal coefficient of x2

Details

If additional variables are included in the model, e.g., Im(y ~ x1 +x2 +x3 + ...), then y, x1 and
x2 are all taken as residuals from their separate linear fits on x3 + . . ., thus showing their partial
relations net of (or adjusting for) these additional predictors.

A 3D diagram shows the vector y and the plane formed by the predictors, x1 and x2, where all
variables are represented in deviation form, so that the intercept need not be included.

A 2D diagram, using the first two columns of the result, can be used to show the projection of the
space in the x1, x2 plane.

In these views, the ANOVA representation of the various sums of squares for the regression pre-
dictors appears as the lengths of the various vectors. For example, the error sum of squares is the
squared length of the e vector, and the regression sum of squares is the squared length of the yhat
vector.

The drawing functions vectors and 1ink{vectors3d} used by the plot.regvec3d method only
work reasonably well if the variables are shown on commensurate scales, i.e., with either scale=TRUE
or normalize=TRUE.

Value
An object of class “regvec3d”, containing the following components

model The “Im” object corresponding to Im(y ~ x1 + x2).

vectors A 9 x 3 matrix, whose rows correspond to the variables in the model, the residual
vector, the fitted vector, the partial fits for x1, x2, and the marginal fits of y on
x1 and x2. The columns effectively represent x1, x2, and y, but are named "x",
Hyll and ”Z”_

66 rowadd

Methods (by class)

* regvec3d(formula): Formula method for regvec3d
* regvec3d(default): Default method for regvec3d

References

Fox, J. (2016). Applied Regression Analysis and Generalized Linear Models, 3rd ed., Sage, Chapter
10.

Fox, J. and Friendly, M. (2016). "Visualizing Simultaneous Linear Equations, Geometric Vectors,
and Least-Squares Regression with the matlib Package for R". useR Conference, Stanford, CA,
June 27 - June 30, 2016.

See Also

plot.regvec3d

Other vector diagrams: Proj(), arc(), arrows3d(), circle3d(), corner(), plot.regvec3d(),
pointOnLine(), vectors(), vectors3d()

Examples

library(rgl)

therapy.vec <- regvec3d(therapy ~ perstest + IE, data=therapy)
therapy.vec

plot(therapy.vec, col.plane="darkgreen")

plot(therapy.vec, dimension=2)

rowadd Elementary Row Operations

Description

The elementary row operation rowadd adds multiples of one or more rows to other rows of a matrix.
This is usually used as a means to solve systems of linear equations, of the form Ax = b, and rowadd
corresponds to adding equals to equals.

Usage

rowadd(x, from, to, mult)

Arguments
X a numeric matrix, possibly consisting of the coefficient matrix, A, joined with a
vector of constants, b.
from the index of one or more source rows. If fromis a vector, it must have the same
length as to.
to the index of one or more destination rows

mult the multiplier(s)

rowCofactors 67

Details

The functions rowmult and rowswap complete the basic operations used in reduction to row echelon
form and Gaussian elimination. These functions are used for demonstration purposes.

Value

the matrix x, as modified

See Also

echelon, gaussianElimination

Other elementary row operations: rowmult(), rowswap()

Examples

A <- matrix(c(2, 1, -1,
-3, -1, 2,
-2, 1, 2), 3, 3, byrow=TRUE)
b <- c(8, -11, -3)

using row operations to reduce below diagonal to @

Ab <- cbind(A, b)

(Ab <- rowadd(Ab, 1, 2, 3/2)) # row 2 <- row 2 + 3/2 row 1
(Ab <- rowadd(Ab, 1, 3, 1)) # row 3 <-row 3 + 1 row 1
(Ab <- rowadd(Ab, 2, 3, -4)) # row 3 <-row 3 - 4 row 2
multiply to make diagonals = 1

(Ab <- rowmult(Ab, 1:3, c(1/2, 2, -1)))

The matrix is now in triangular form

Could continue to reduce above diagonal to zero
echelon(A, b, verbose=TRUE, fractions=TRUE)

convenient use of pipes

I <- diag(3)

A <=1 |>
rowadd(3, 1, 1) |> # add 1 x row 3 to row 1
rowadd(1, 3, 1) |> # add 1 x row 1 to row 3

rowmult(2, 2) # multiply row 2 by 2
rowCofactors Row Cofactors of A[i,]
Description

Returns the vector of cofactors of row i of the square matrix A. The determinant, Det (A), can then
be found as M[i,] %*% rowCofactors(M, i) for any row, i.

68 rowMinors

Usage

rowCofactors(A, i)

Arguments
A a square matrix
i row index
Value

a vector of the cofactors of A[i,]

Author(s)

Michael Friendly

See Also

Det for the determinant

Other determinants: Det (), adjoint(), cofactor (), minor(), rowMinors()

Examples

M <- matrix(c(4, -12, -4,
2, 1, 3,
-1, -3, 2), 3, 3, byrow=TRUE)
minor(M, 1, 1)
minor(M, 1, 2)
minor(M, 1, 3)
rowCofactors(M, 1)
Det(M)
expansion by cofactors of row 1
M[1,] %*% rowCofactors(M,1)

rowMinors Row Minors of A[i,]

Description

Returns the vector of minors of row i of the square matrix A

Usage

rowMinors(A, i)

rowmult 69

Arguments
A a square matrix
i row index
Value

a vector of the minors of A[i,]

Author(s)
Michael Friendly

See Also

Other determinants: Det (), adjoint(), cofactor (), minor(), rowCofactors()

Examples

M <- matrix(c(4, -12, -4,
2, 1, 3,
-1, -3, 2), 3, 3, byrow=TRUE)
minor(M, 1, 1)
minor(M, 1, 2)
minor(M, 1, 3)
rowMinors(M, 1)

rowmult Multiply Rows by Constants

Description
Multiplies one or more rows of a matrix by constants. This corresponds to multiplying or dividing
equations by constants.

Usage

rowmult(x, row, mult)

Arguments
X a matrix, possibly consisting of the coefficient matrix, A, joined with a vector of
constants, b.
row index of one or more rows.
mult row multiplier(s)
Value

the matrix x, modified

70 rowswap

See Also

echelon, gaussianElimination

Other elementary row operations: rowadd(), rowswap()

Examples

A <- matrix(c(2, 1, -1,
-3, -1, 2,
-2, 1, 2), 3, 3, byrow=TRUE)
b <- c(8, -11, -3)

using row operations to reduce below diagonal to @

Ab <- cbind(A, b)

(Ab <- rowadd(Ab, 1, 2, 3/2)) # row 2 <- row 2 + 3/2 row 1
(Ab <- rowadd(Ab, 1, 3, 1)) # row 3 <-row 3+ 1 row 1
(Ab <- rowadd(Ab, 2, 3, -4))

multiply to make diagonals = 1

(Ab <- rowmult(Ab, 1:3, c(1/2, 2, -1)))

The matrix is now in triangular form

rowswap Interchange two rows of a matrix

Description

This elementary row operation corresponds to interchanging two equations.

Usage

rowswap(x, from, to)

Arguments
X a matrix, possibly consisting of the coefficient matrix, A, joined with a vector of
constants, b.
from SOurce row.
to destination row
Value

the matrix x, with rows from and to interchanged

See Also

echelon, gaussianElimination

Other elementary row operations: rowadd(), rowmult()

showEig 71

showEig Show the eigenvectors associated with a covariance matrix

Description

This function is designed for illustrating the eigenvectors associated with the covariance matrix for a
given bivariate data set. It draws a data ellipse of the data and adds vectors showing the eigenvectors
of the covariance matrix.

Usage

showEig(
X,
col.vec "blue”,
lwd.vec 3,
mult = sqrt(qchisq(levels, 2)),
asp = 1
levels = c(0.5, 0.95),
plot.points = TRUE,
add = !plot.points,

Arguments
X A two-column matrix or data frame
col.vec color for eigenvectors
lwd.vec line width for eigenvectors
mult length multiplier(s) for eigenvectors
asp aspect ratio of plot, set to asp=1 by default, and passed to dataEllipse
levels passed to dataEllipse determining the coverage of the data ellipse(s)

plot.points logical; should the points be plotted?
add logical; should this call add to an existing plot?

other arguments passed to link[car]{dataEllipse}

Author(s)

Michael Friendly

See Also

dataEllipse

72 showEqn

Examples

X <= rnorm(200)

y <= .5 % x + .5 * rnorm(200)
X <= cbind(x,y)

showEig(X)

Duncan data

data(Duncan, package="carData")

showEig(Duncan[, 2:3], levels=0.68)

showEig(Duncan[,2:3], levels=0.68, robust=TRUE, add=TRUE, fill=TRUE)

showEgn Show Matrices (A, b) as Linear Equations

Description

Shows what matrices

mathbf A,

mathb fb look like as the system of linear equations,
mathbfAx =

mathb fb, but written out as a set of equations.

Usage

showEgn(
A,
b,
vars,
simplify = FALSE,
reduce = FALSE,
fractions = FALSE,
latex = FALSE

)
Arguments

A either the matrix of coefficients of a system of linear equations, or the matrix
cbind(A,b). The matrix can be numeric or character. Alternatively, can be
of class '1Im' to print the equations for the design matrix in a linear regression
model

b if supplied, the vector of constants on the right hand side of the equations. When
omitted the values b1, b2, ..., bn will be used as placeholders

vars a numeric or character vector of names of the variables. If supplied, the length

must be equal to the number of unknowns in the equations. The default is
paste@("x", 1:ncol(A).

simplify logical; try to simplify the equations?

showEqn 73

reduce logical; only show the unique linear equations

fractions logical; express numbers as rational fractions, using the fractions function;
if you require greater accuracy, you can set the cycles (default 10) and/or
max.denominator (default 2000) arguments to fractions as a global option,
e.g.,options(fractions=list(cycles=100, max.denominator=10"4)).

latex logical; print equations in a form suitable for LaTeX output?

Value

a one-column character matrix, one row for each equation

Author(s)
Michael Friendly, John Fox, and Phil Chalmers

References

Fox, J. and Friendly, M. (2016). "Visualizing Simultaneous Linear Equations, Geometric Vectors,
and Least-Squares Regression with the matlib Package for R". useR Conference, Stanford, CA,
June 27 - June 30, 2016.

See Also

plotEgn, plotEgn3d, latexMatrix

Examples

A <- matrix(c(2, 1, -1,
-3, -1, 2,
-2, 1, 2), 3, 3, byrow=TRUE)
b <- c(8, -11, -3)

showEgn(A, b)

show numerically

x <- solve(A, b)

showEgn(A, b, vars=x)

showEgn(A, b, simplify=TRUE)
showEgn(A, b, latex=TRUE)

lower triangle of equation with zeros omitted (for back solving)
A <- matrix(c(2, 1, 2,
-3, -1, 2,
-2, 1, 2), 3, 3, byrow=TRUE)
U <- LUCA)$U
showEgn(U, simplify=TRUE, fractions=TRUE)
showEgn(U, b, simplify=TRUE, fractions=TRUE)

HHHHHAHEEEE
Linear models Design Matricies
data(mtcars)

74 Solve

ancova <- lm(mpg ~ wt + vs, mtcars)

summary (ancova)

showEgn(ancova)

showEgn(ancova, simplify=TRUE)

showEgn(ancova, vars=round(coef(ancova),2))
showEgn(ancova, vars=round(coef(ancova),2), simplify=TRUE)

twoway_int <- Im(mpg ~ vs * am, mtcars)

summary (twoway_int)

car: :Anova(twoway_int)

showEgn (twoway_int)

showEgn (twoway_int, reduce=TRUE)
showEgn(twoway_int, reduce=TRUE, simplify=TRUE)

Piece-wise linear regression

x <= c(1:10, 13:22)

y <- numeric(20)

y[1:10] <- 20:11 + rnorm(10, @, 1.5)

y[11:20] <- seq(11, 15, len=10) + rnorm(10@, @, 1.5)
plot(x, y, pch = 16)

X2 <- as.numeric(x > 10)

mod <- Im(y ~ x + I((x - 10) * x2))
summary (mod)

lines(x, fitted(mod))

showEgn (mod)

showEgn(mod, vars=round(coef(mod),2))
showEgn(mod, simplify=TRUE)

Solve Solve and Display Solutions for Systems of Linear Simultaneous Equa-
tions

Description

Solve the equation system Az = b, given the coefficient matrix A and right-hand side vector b,
using link{gaussianElimination}. Display the solutions using showEqn.

Usage

Solve(
A,
b = rep(0, nrow(A)),
vars,
verbose = FALSE,
simplify = TRUE,
fractions = FALSE,

Solve

Arguments

A
b

vars

verbose
simplify

fractions

Details

75

the matrix of coefficients of a system of linear equations

the vector of constants on the right hand side of the equations. The default is a
vector of zeros, giving the homogeneous equations Az = 0.

a numeric or character vector of names of the variables. If supplied, the length
must be equal to the number of unknowns in the equations. The default is
paste@("x", 1:ncol(A).

logical; show the steps of the Gaussian elimination algorithm?
logical; try to simplify the equations?

logical; express numbers as rational fractions, using the fractions function;
if you require greater accuracy, you can set the cycles (default 10) and/or
max.denominator (default 2000) arguments to fractions as a global option,
e.g.,options(fractions=list(cycles=100, max.denominator=10"4)).

arguments to be passed to link{gaussianElimination} and showEgn

This function mimics the base function solve when supplied with two arguments, (A, b), but gives
a prettier result, as a set of equations for the solution. The call solve(A) with a single argument
overloads this, returning the inverse of the matrix A. For that sense, use the function inv instead.

Value

the function is used primarily for its side effect of printing the solution in a readable form, but it
invisibly returns the solution as a character vector

Author(s)
John Fox

See Also

gaussianElimination, showEgn inv, solve

Examples

Al <- matrix(c(2, 1, -1,

_3! _17 27
-2, 1, 2), 3, 3, byrow=TRUE)

b1 <- c(8, -11, -3)
Solve(Al, bl1) # unique solution

A2 <- matrix(1:9, 3, 3)

b2 <- 1:3
Solve(A2,

b2, fractions=TRUE) # underdetermined

b3 <- c(1, 2, 4)
Solve(A2, b3, fractions=TRUE) # overdetermined

76 SVD

SVD Singular Value Decomposition of a Matrix

Description

Compute the singular-value decomposition of a matrix X either by Jacobi rotations (the default) or
from the eigenstructure of X' X using Eigen. Both methods are iterative. The result consists of two
orthonormal matrices, U, and V' and the vector d of singular values, such that X = Udiag(d)V".

Usage

SVD(
X,
method = c("Jacobi”, "eigen"),
tol = sqrt(.Machine$double.eps),
max.iter = 100

)

Arguments
X a square symmetric matrix
method either "Jacobi"” (the default) or "eigen”
tol zero and convergence tolerance
max.iter maximum number of iterations

Details

The default method is more numerically stable, but the eigenstructure method is much simpler.
Singular values of zero are not retained in the solution.

Value

a list of three elements: d— singular values, U- left singular vectors, V— right singular vectors

Author(s)

John Fox and Georges Monette

See Also

svd, the standard svd function

Eigen

svdDemo 77

Examples

C <- matrix(c(1,2,3,2,5,6,3,6,10), 3, 3) # nonsingular, symmetric
C
SVD(C)

least squares by the SVD
data("workers™)

X <- cbind(1, as.matrix(workers[, c("Experience”, "Skill")1))
head(X)

y <- workers$Income

head(y)

(svd <= SVD(X))

VdU <- svd$V %x% diag(1/svd$d) %x%t(svdsU)

(b <= VdU %*% y)

coef (Im(Income ~ Experience + Skill, data=workers))

svdDemo Demonstrate the SVD for a 3 x 3 matrix

Description

This function draws an rgl scene consisting of a representation of the identity matrix and a 3 x 3
matrix A, together with the corresponding representation of the matrices U, D, and V in the SVD
decomposition, A=UD V’.

Usage

svdDemo(A, shape = c("cube", "sphere"), alpha = 0.7, col = rainbow(6))

Arguments
A A 3 x 3 numeric matrix
shape Basic shape used to represent the identity matrix: "cube” or "sphere”
alpha transparency value used to draw the shape
col Vector of 6 colors for the faces of the basic cube
Value
Nothing
Author(s)

Original idea from Duncan Murdoch

78 Swp

Examples

A <- matrix(c(1,2,0.1, 0.1,1,0.1, 0.1,0.1,0.5), 3,3)
svdDemo (A)

Not run:
B <- matrix(c(1, @, 1, 0, 2, @, 1, 0, 2), 3, 3)
svdDemo (B)

a positive, semi-definite matrix with eigenvalues 12, 6, 0
C <- matrix(c(7, 4, 1, 4, 4, 4, 1, 4, 7, 3, 3)
svdDemo (C)

End(Not run)

swp The Matrix Sweep Operator

Description

The swp function “sweeps” a matrix on the rows and columns given in index to produce a new ma-
trix with those rows and columns “partialled out” by orthogonalization. This was defined as a fun-
damental statistical operation in multivariate methods by Beaton (1964) and expanded by Dempster
(1969). It is closely related to orthogonal projection, but applied to a cross-products or covariance
matrix, rather than to data.

Usage

swp(M, index)

Arguments
M a numeric matrix
index a numeric vector indicating the rows/columns to be swept. The entries must be
less than or equal to the number or rows or columns in M. If missing, the function
sweeps on all rows/columns 1:min(dim(M)).
Details

If M is the partitioned matrix

KR

R R!S
~TR™! U-TR!S

where R is ¢ X g then swp(M, 1:q) gives

symMat 79

Value

the matrix M with rows and columns in indices swept.

References

Beaton, A. E. (1964), The Use of Special Matrix Operations in Statistical Calculus, Princeton, NJ:
Educational Testing Service.

Dempster, A. P. (1969) Elements of Continuous Multivariate Analysis. Addison-Wesley, Reading,
Mass.

See Also

Proj, QR

Examples

data(therapy)

mod3 <- Im(therapy ~ perstest + IE + sex, data=therapy)
X <- model.matrix(mod3)

XY <- cbind(X, therapy=therapy$therapy)

XY
M <- crossprod(XY)
swp(M, 1)
swp(M, 1:2)
symMat Create a Symmetric Matrix from a Vector
Description

Creates a square symmetric matrix from a vector.

Usage
symMat(x, diag = TRUE, byrow = FALSE, names = FALSE)

Arguments

X A numeric vector used to fill the upper or lower triangle of the matrix.

diag Logical. If TRUE (the default), the diagonals of the created matrix are replaced
by elements of x; otherwise, the diagonals of the created matrix are replaced by
n 1 n .

byrow Logical. If FALSE (the default), the created matrix is filled by columns; other-
wise, the matrix is filled by rows.

names Either a logical or a character vector of names for the rows and columns of the

matrix. If FALSE, no names are assigned; if TRUE, rows and columns are named
X1, X2, ...

80 therapy

Value

A symmetric square matrix based on column major ordering of the elements in Xx.

Author(s)

Originally from metaSEM: : vec2symMat, Mike W.-L. Cheung <mikewlcheung @nus.edu.sg>; mod-
ified by Michael Friendly

Examples

symMat(1:6)
symMat(1:6, byrow=TRUE)
symMat(5:0, diag=FALSE)

therapy Therapy Data

Description

A toy data set on outcome in therapy in relation to a personality test (perstest) and a scale of
internal-external locus of control (IE) used to illustrate linear and multiple regression.

Usage

data("therapy")

Format
A data frame with 10 observations on the following 4 variables.

sex a factor with levels F M
perstest score on a personality test, a numeric vector
therapy outcome in psychotherapy, a numeric vector

IE score on a scale of internal-external locus of control, a numeric vector

Examples

data(therapy)
plot(therapy ~ perstest, data=therapy, pch=16)
abline(Im(therapy ~ perstest, data=therapy), col="red")

plot(therapy ~ perstest, data=therapy, cex=1.5, pch=16,
col=ifelse(sex=="M", "red”,"blue"))

tr 81

tr Trace of a Matrix

Description

Calculates the trace of a square numeric matrix, i.e., the sum of its diagonal elements

Usage
tr(X)

Arguments

X a numeric matrix

Value

a numeric value, the sum of diag(X)

Examples

X <= matrix(1:9, 3, 3)
tr(X)

vandermode Vandermode Matrix

Description
The function returns the Vandermode matrix of a numeric vector, x, whose columns are the vector
raised to the powers @:n.

Usage

vandermode(x, n)

Arguments
X a numeric vector
n a numeric scalar
Value

a matrix of size length(x) x n

Examples

vandermode(1:5, 4)

82 vectors

vec Vectorize a Matrix

Description
Returns a 1-column matrix, stacking the columns of x, a matrix or vector. Also supports comma-
separated inputs similar to the concatenation function c.

Usage

vec(x, ...)

Arguments

X A matrix or vector

(optional) additional objects to be stacked

Value

A one-column matrix containing the elements of x and . . . in column order

Examples

vec(1:3)

vec(matrix(1:6, 2, 3))
vec(c("hello”, "world"))
vec("hello”, "world")
vec(1:3, "hello”, "world")

vectors Draw geometric vectors in 2D

Description

This function draws vectors in a 2D plot, in a way that facilitates constructing vector diagrams. It
allows vectors to be specified as rows of a matrix, and can draw labels on the vectors.

Usage
vectors(
X}
origin = c(0, 0),
lwd = 2,
angle = 13,
length = 0.15,

labels = TRUE,

vectors

cex.lab
pos.lab

frac.lab =

Arguments

X

origin
lwd

angle
length
labels

cex.lab

pos.1lab
frac.lab

Value

none

See Also

arrows, text

83

a vector or two-column matrix representing a set of geometric vectors; if a ma-
trix, one vector is drawn for each row

the origin from which they are drawn, a vector of length 2.

line width(s) for the vectors, a constant or vector of length equal to the number
of rows of X.

the angle argument passed to arrows determining the angle of arrow heads.
the length argument passed to arrows determining the length of arrow heads.

a logical or a character vector of labels for the vectors. If TRUE and X is a matrix,
labels are taken from rownames(X). If NULL, no labels are drawn.

character expansion applied to vector labels. May be a number or numeric vector
corresponding to the the rows of X, recycled as necessary.

label position relative to the label point as in text, recycled as necessary.

location of label point, as a fraction of the distance between origin and X, re-
cycled as necessary. Values frac.lab > 1 locate the label beyond the end of the
vector.

other arguments passed on to graphics functions.

Other vector diagrams: Proj(), arc(), arrows3d(), circle3d(), corner(), plot.regvec3d(),
pointOnLine(), regvec3d(), vectors3d()

Examples

shows addition of vectors

u <- c(3,1)
v <- ¢(1,3)

sum <- u+tv

xlim <- ¢(0,5)
ylim <- c(90,5)

proper geometry requires asp=1
plot(xlim, ylim, type="n", xlab="X", ylab="Y", asp=1)
abline(v=0, h=0, col="gray")

84 vectors3d

vectors(rbind(u,v, “u+tv =sum), col=c("red”, "blue"”, "purple"), cex.lab=c(2, 2, 2.2))
show the opposing sides of the parallelogram

vectors(sum, origin=u, col="red"”, lty=2)

vectors(sum, origin=v, col="blue", 1lty=2)

projection of vectors

vectors(Proj(v,u), labels="P(v,u)"”, lwd=3)
vectors(v, origin=Proj(v,u))
corner(c(0,0), Proj(v,u), v, col="grey")

vectors3d Draw 3D vectors

Description

This function draws vectors in a 3D plot, in a way that facilitates constructing vector diagrams. It
allows vectors to be specified as rows of a matrix, and can draw labels on the vectors.

Usage

vectors3d(
X,
origin = c(0, 0, 0),
headlength = 0.035,
ref.length = NULL,
radius = 1/60,
labels = TRUE,
cex.lab = 1.2,

adj.lab = 0.5,
frac.lab = 1.1,
draw = TRUE,
)
Arguments
X a vector or three-column matrix representing a set of geometric vectors; if a
matrix, one vector is drawn for each row
origin the origin from which they are drawn, a vector of length 3.
headlength the headlength argument passed to arrows3d determining the length of arrow
heads
ref.length vector length to be used in scaling arrow heads so that they are all the same size;
if NULL the longest vector is used to scale the arrow heads
radius radius of the base of the arrow heads
labels a logical or a character vector of labels for the vectors. If TRUE and X is a matrix,

labels are taken from rownames (X). If FALSE or NULL, no labels are drawn.

vectors3d 85

cex.lab character expansion applied to vector labels. May be a number or numeric vector
corresponding to the the rows of X, recycled as necessary.

adj.lab label position relative to the label point as in text3d, recycled as necessary.

frac.lab location of label point, as a fraction of the distance between origin and X, re-
cycled as necessary. Values frac.lab > 1 locate the label beyond the end of the
vector.

draw if TRUE (the default), draw the vector(s).

other arguments passed on to graphics functions.

Value

invisibly returns the vector ref . length used to scale arrow heads

Bugs

At present, the color (color=) argument is not handled as expected when more than one vector is
to be drawn.

Author(s)
Michael Friendly

See Also

arrows3d, texts3d, rgl.material

Other vector diagrams: Proj(), arc(), arrows3d(), circle3d(), corner(), plot.regvec3d(),
pointOnLine(), regvec3d(), vectors()

Examples
vec <- rbind(diag(3), c(1,1,1))
rownames(vec) <- c("Xx", "y", "z", "J")
library(rgl)
open3d()

vectors3d(vec, color=c(rep("black”,3), "red"), 1lwd=2)
draw the XZ plane, whose equation is Y=0
planes3d(@, @, 1, @, col="gray", alpha=0.2)
vectors3d(c(1,1,0), col="green”, lwd=2)

show projections of the unit vector J
segments3d(rbind(c(1,1,1), c(1, 1, @)))
segments3d(rbind(c(0,0,0), c(1, 1, 0)))
segments3d(rbind(c(1,0,0), c(1, 1, @)))
segments3d(rbind(c(0,1,0), c(1, 1, @)))
show some orthogonal vectors

pl <- c(0,90,0)

p2 <- c(1,1,0)

p3 <- c(1,1,1)

p4 <- ¢(1,0,0)

corner(pl, p2, p3, col="red")
corner(pl, p4, p2, col="red")

86 workers

corner(pl, p4, p3, col="blue")

rgl.bringtotop()

workers Workers Data

Description

A toy data set comprised of information on workers Income in relation to other variables, used for
illustrating linear and multiple regression.

Usage

data("workers")

Format
A data frame with 10 observations on the following 4 variables.

Income income from the job, a numeric vector
Experience number of years of experience, a numeric vector
Skill skill level in the job, a numeric vector

Gender a factor with levels Female Male

Examples

data(workers)
plot(Income ~ Experience, data=workers, main="Income ~ Experience”, pch=20, cex=2)

simple linear regression
regl <- 1Im(Income ~ Experience, data=workers)
abline(regl, col="red"”, lwd=3)

quadratic fit?

plot(Income ~ Experience, data=workers, main="Income ~ poly(Experience,2)", pch=20, cex=2)
reg2 <- 1lm(Income ~ poly(Experience,2), data=workers)

fit2 <-predict(reg2)

abline(regl, col="red"”, lwd=1, lty=1)

lines(workers$Experience, fit2, col="blue”, lwd=3)

How does Income depend on a factor?

plot(Income ~ Gender, data=workers, main="Income ~ Gender")
points(workers$Gender, jitter(workers$Income), cex=2, pch=20)
means<-aggregate(workers$Income,list(workers$Gender),mean)
points(means,col="red"”, pch="+", cex=2)
lines(means,col="red"”, lwd=2)

xprod 87

xprod Generalized Vector Cross Product

Description

Given two linearly independent length 3 vectors **a** and **b**, the cross product, a x b (read
"a cross b"), is a vector that is perpendicular to both **a** and **b** thus normal to the plane
containing them.

Usage
xprod(...)

Arguments

N-1 linearly independent vectors of the same length, N.

Details

A generalization of this idea applies to two or more dimensional vectors.

See: [https://en.wikipedia.org/wiki/Cross_product] for geometric and algebraic properties.

Value

Returns the generalized vector cross-product, a vector of length N.

Author(s)

Matthew Lundberg, in a [Stack Overflow post][https://stackoverflow.com/questions/36798301/r-
compute-cross-product-of-vectors-physics]

Examples

xprod(1:3, 4:6)

This works for an dimension
xprod(c(@,1)) # 2d
xprod(c(1,0,0), c(0,1,0)) # 3d
xprod(c(1,1,1), c(0,1,0)) # 3d
xprod(c(1,0,0,0), c(0,1,0,0), c(0,0,1,0)) # 4d

Index

+ datasets
class, 13
therapy, 80
workers, 86

* determinants
adjoint, 4
cofactor, 14
Det, 17
minor, 47
rowCofactors, 67
rowMinors, 68

* elementary row operations
rowadd, 66
rowmult, 69
rowswap, 70

* matrix of elementary row operations
buildTmat, 9

* vector diagrams
arc, 6
arrows3d, 8
circle3d, 13
corner, 16
plot.regvec3d, 50
pointOnLine, 55

Proj, 60
regvec3d, 63
vectors, 82

vectors3d, 84

.latexMatrix (latexMatrixOperations),
39

.latexMatrix (latexMatrixOperations),
39

.latexMatrix (latexMatrixOperations),
39

[.latexMatrix (latexMatrix), 32

%*%.latexMatrix

(latexMatrixOperations), 39
%X% (latexMatrixOperations), 39
~.latexMatrix (latexMatrixOperations),

*

+

88

39

adjoint, 4, 14, 17,47, 68, 69

angle, 5

arc,4,6,9, 13, 16, 52, 56, 61, 66, 83, 85

arrows, 8, 83

arrows3d, 4, 7,8, 13, 15, 16, 52, 56, 61, 66,
83-85

as.double.latexMatrix (latexMatrix), 32

as.matrix.trace (buildTmat), 9

buildTmat, 9

c, 82

cat, 2/

cbind, 37

cbind.latexMatrix (latexMatrix), 32
chol, 11

cholesky, 4, 10

circle, 11

circle3d, 7,9, 13, 16, 52, 56, 61, 66, 83, 85
class, 13

cofactor, 4, 5,14, 17,47, 68, 69
Colnames<- (latexMatrix), 32

cone3d, 15
corner,4,7,9, 13,16, 52, 56, 61, 66, 83, 85

dataEllipse, 71

Det, 5, 14, 17,47, 68, 69

det, 17

determinant, 42

determinant.latexMatrix
(latexMatrixOperations), 39

Dim (latexMatrix), 32

dimnames.latexMatrix (latexMatrix), 32

Dimnames<- (latexMatrix), 32

Dot (latexMatrixOperations), 39

draw.circle, 12

echelon, 4, 10, 18, 67, 70
Eigen, 17,19, 76

INDEX

eigen, 4, 20

Eqn, 20

Egn_hspace (Eqn), 20
Eqn_newline (Eqn), 20
Egn_size (Egn), 20
Egn_text (Egn), 20
Eqn_vspace (Eqgn), 20

fractions, 17, 25, 27, 36, 46, 58, 60, 73, 75

gaussianElimination, 4, 9, 10, 17, 18, 25,
30,67,70,75

getBody (latexMatrix), 32

getlLatex (latexMatrix), 32

getWrapper (latexMatrix), 32

getYmult, 26

Ginv, 4,27

ginv, 27

GramSchmidt, 28, 30

gsorth, 11,29

inv, 4,75

inv (Inverse), 30

Inverse, 4, 30

inverse (latexMatrixOperations), 39
is.numeric.latexMatrix (latexMatrix), 32

J, 3,31

kronecker, 42
kronecker,latexMatrix,latexMatrix-method
(latexMatrixOperations), 39

latexMatrix, 21, 22, 32,42, 46, 73
latexMatrixOperations, 32, 37, 39
len, 3, 5, 44

LU, 4, 44

matdiff (latexMatrixOperations), 39
matlib (matlib-package), 3
matlib-package, 3

matmult (latexMatrixOperations), 39
matpower (latexMatrixOperations), 39
matrix2latex, 22, 37, 46

matsum (latexMatrixOperations), 39
minor, 4, 5, 14, 17,47, 68, 69
MoorePenrose, 48

mpower, 3, 49

Ncol (latexMatrix), 32

89

norm, 44
Nrow (latexMatrix), 32

options, 22

partition (latexMatrix), 32

plot, 12

plot.regvec3d, 7,9, 13, 16,50, 51, 56, 61,
65, 66, 83,85

plotEqn, 4, 52,73

plotEgn3d, 54, 73

pointOnLine, 4, 7,9, 13, 16, 52,55, 61, 66,
83,85

polygon, /2

powerMethod, 4, 56

print.enhancedMatrix
(gaussianElimination), 25

print.latexMatrix (latexMatrix), 32

print.regvec3d (plot.regvec3d), 50

print.trace (buildTmat), 9

printMatEgn, 58

printMatrix, 59

Proj, 3,7,9, 13, 16,52, 56, 60, 66, 79, 83, 85

QR, 19,61, 62, 79
qr, 62, 63

R, 3,62

rbind, 37

rbind.latexMatrix (latexMatrix), 32
ref, 20-22

ref (Egn), 20

regvec3d, 4, 7,9, 13,16, 52, 56, 61, 63, 83, 85
rgl, 8

rgl.material, 15, 55, 85
rowadd, 4, 66, 70
rowCofactors, 4, 5, 14, 17,47, 67, 69
rowMinors, 4, 5, 14, 17,47, 68, 68
rowmult, 4, 67, 69, 70

Rownames<- (latexMatrix), 32
rowswap, 4, 67, 70, 70

segments3d, 8§

showEig, 4,71

showEqn, 4, 45, 53, 58,72, 74, 75

Solve, 74

solve, 42,75

solve.latexMatrix
(latexMatrixOperations), 39

90

summary.regvec3d (plot.regvec3d), 50
SVD, 4, 20, 76

svd, 76

svdDemo, 77

swp, 4, 78

symMat, 79

t.latexMatrix (latexMatrixOperations),
39

text, 83

text3d, 85

texts3d, 85

therapy, 80

tr, 3, 81

vandermode, 3, 81

vec, 3, 82

vectors, 4,7,9, 13,16, 51, 52, 56, 61, 65, 66,
82,85

vectors3d, 4,7,9, 13,16, 52, 56, 61, 66, 83,
84

workers, 86
write_clip, 32, 37

xprod, 87

INDEX

	matlib-package
	adjoint
	angle
	arc
	arrows3d
	buildTmat
	cholesky
	circle
	circle3d
	class
	cofactor
	cone3d
	corner
	Det
	echelon
	Eigen
	Eqn
	gaussianElimination
	getYmult
	Ginv
	GramSchmidt
	gsorth
	Inverse
	J
	latexMatrix
	latexMatrixOperations
	len
	LU
	matrix2latex
	minor
	MoorePenrose
	mpower
	plot.regvec3d
	plotEqn
	plotEqn3d
	pointOnLine
	powerMethod
	printMatEqn
	printMatrix
	Proj
	QR
	R
	regvec3d
	rowadd
	rowCofactors
	rowMinors
	rowmult
	rowswap
	showEig
	showEqn
	Solve
	SVD
	svdDemo
	swp
	symMat
	therapy
	tr
	vandermode
	vec
	vectors
	vectors3d
	workers
	xprod
	Index

