
Package ‘matchingR’
October 13, 2022

Type Package

Title Matching Algorithms in R and C++

Version 1.3.3

Date 2021-05-25

Author Jan Tilly, Nick Janetos

Maintainer Jan Tilly <jantilly@gmail.com>

Description Computes matching algorithms quickly using Rcpp.
Implements the Gale-Shapley Algorithm to compute the stable
matching for two-sided markets, such as the stable marriage
problem and the college-admissions problem. Implements Irving's
Algorithm for the stable roommate problem. Implements the top
trading cycle algorithm for the indivisible goods trading problem.

License GPL (>= 2)

URL https://github.com/jtilly/matchingR/

BugReports https://github.com/jtilly/matchingR/issues/

Depends Rcpp

LinkingTo Rcpp, RcppArmadillo

Suggests testthat, knitr, rmarkdown

VignetteBuilder knitr

RoxygenNote 7.1.1

NeedsCompilation yes

Repository CRAN

Date/Publication 2021-05-25 08:10:02 UTC

R topics documented:
matchingR-package . 2
cpp_wrapper_galeshapley . 4
cpp_wrapper_galeshapley_check_stability . 5

1

https://github.com/jtilly/matchingR/
https://github.com/jtilly/matchingR/issues/

2 matchingR-package

cpp_wrapper_irving . 6
cpp_wrapper_irving_check_stability . 6
cpp_wrapper_ttc . 7
cpp_wrapper_ttc_check_stability . 8
galeShapley.checkPreferences . 8
galeShapley.checkStability . 9
galeShapley.collegeAdmissions . 11
galeShapley.marriageMarket . 14
galeShapley.validate . 16
matchingR-deprecated . 18
rankIndex . 18
repcol . 19
reprow . 19
roommate . 20
roommate.checkPreferences . 21
roommate.checkStability . 22
roommate.validate . 23
sortIndex . 24
sortIndexOneSided . 24
toptrading . 25
toptrading.checkStability . 26

Index 28

matchingR-package matchingR: Matching Algorithms in R and C++

Description

matchingR is an R package which quickly computes a variety of matching algorithms for one-sided
and two-sided markets. This package implements

• the Gale-Shapley Algorithm to compute the stable matching for two-sided markets, such as
the stable marriage problem and the college-admissions problem

• Irving’s Algorithm to compute the stable matching for one-sided markets such as the stable
roommates problem

• the top trading cycle algorithm for the indivisible goods trading problem.

All matching algorithms are implemented in C++ and can therefore be computed quickly. The pack-
age may be useful when the number of market participants is large or when many matchings need to
be computed (e.g. for extensive simulations or for estimation purposes). The Gale-Shapley function
of this package has successfully been used to simulate preferences and compute the matching with
30,000 participants on each side of the market.

Matching markets are common in practice and widely studied by economists. Popular examples
include

• the National Resident Matching Program that matches graduates from medical school to resi-
dency programs at teaching hospitals throughout the United States

matchingR-package 3

• the matching of students to schools including the New York City High School Match or the
the Boston Public School Match (and many more)

• the matching of kidney donors to recipients in kidney exchanges.

Author(s)

Jan Tilly, Nick Janetos

References

Gale, D. and Shapley, L.S. (1962). College admissions and the stability of marriage. The American
Mathematical Monthly, 69(1): 9–15.

Irving, R. W. (1985). An efficient algorithm for the "stable roommates" problem. Journal of Algo-
rithms, 6(4): 577–595

Shapley, L., & Scarf, H. (1974). On cores and indivisibility. Journal of Mathematical Economics,
1(1), 23-37.

See Also

Useful links:

• https://github.com/jtilly/matchingR/

• Report bugs at https://github.com/jtilly/matchingR/issues/

Examples

stable marriage problem
set.seed(1)
nmen <- 25
nwomen <- 20
uM <- matrix(runif(nmen * nwomen), nrow = nwomen, ncol = nmen)
uW <- matrix(runif(nwomen * nmen), nrow = nmen, ncol = nwomen)
results <- galeShapley.marriageMarket(uM, uW)
galeShapley.checkStability(uM, uW, results$proposals, results$engagements)

college admissions problem
nstudents <- 25
ncolleges <- 5
uStudents <- matrix(runif(nstudents * ncolleges), nrow = ncolleges, ncol = nstudents)
uColleges <- matrix(runif(nstudents * ncolleges), nrow = nstudents, ncol = ncolleges)
results <- galeShapley.collegeAdmissions(

studentUtils = uStudents,
collegeUtils = uColleges,
slots = 4

)
results
check stability
galeShapley.checkStability(

uStudents,
uColleges,
results$matched.students,

https://github.com/jtilly/matchingR/
https://github.com/jtilly/matchingR/issues/

4 cpp_wrapper_galeshapley

results$matched.colleges
)

stable roommate problem
set.seed(2)
N <- 10
u <- matrix(runif(N^2), nrow = N, ncol = N)
results <- roommate(utils = u)
results
check stability
roommate.checkStability(utils = u, matching = results)

top trading cycle algorithm
N <- 10
u <- matrix(runif(N^2), nrow = N, ncol = N)
results <- toptrading(utils = u)
results
check stability
toptrading.checkStability(utils = u, matching = results)

cpp_wrapper_galeshapley

C++ wrapper for Gale-Shapley Algorithm

Description

This function provides an R wrapper for the C++ backend. Users should not call this function
directly and instead use galeShapley.marriageMarket or galeShapley.collegeAdmissions.

Usage

cpp_wrapper_galeshapley(proposerPref, reviewerUtils)

Arguments

proposerPref is a matrix with the preference order of the proposing side of the market. If
there are n proposers and m reviewers in the market, then this matrix will be of
dimension m by n. The i,jth element refers to j’s ith most favorite partner.
Preference orders must be complete and specified using C++ indexing (starting
at 0).

reviewerUtils is a matrix with cardinal utilities of the courted side of the market. If there are
n proposers and m reviewers, then this matrix will be of dimension n by m. The
i,jth element refers to the payoff that individual j receives from being matched
to individual i.

cpp_wrapper_galeshapley_check_stability 5

Value

A list with elements that specify who is matched to whom. Suppose there are n proposers and m
reviewers. The list contains the following items:

• proposals is a vector of length n whose ith element contains the number of the reviewer that
proposer i is matched to using C++ indexing. Proposers that remain unmatched will be listed
as being matched to m.

• engagements is a vector of length m whose jth element contains the number of the proposer
that reviewer j is matched to using C++ indexing. Reviwers that remain unmatched will be
listed as being matched to n.

cpp_wrapper_galeshapley_check_stability

C++ Wrapper to Check Stability of Two-sided Matching

Description

This function checks if a given matching is stable for a particular set of preferences. This function
provides an R wrapper for the C++ backend. Users should not call this function directly and instead
use galeShapley.checkStability.

Usage

cpp_wrapper_galeshapley_check_stability(
proposerUtils,
reviewerUtils,
proposals,
engagements

)

Arguments

proposerUtils is a matrix with cardinal utilities of the proposing side of the market. If there are
n proposers and m reviewers, then this matrix will be of dimension m by n. The
i,jth element refers to the payoff that individual j receives from being matched
to individual i.

reviewerUtils is a matrix with cardinal utilities of the courted side of the market. If there are
n proposers and m reviewers, then this matrix will be of dimension n by m. The
i,jth element refers to the payoff that individual j receives from being matched
to individual i.

proposals is a matrix that contains the number of the reviewer that a given proposer is
matched to: the first row contains the number of the reviewer that is matched
with the first proposer (using C++ indexing), the second row contains the id of
the reviewer that is matched with the second proposer, etc. The column dimen-
sion accommodates proposers with multiple slots.

engagements is a matrix that contains the number of the proposer that a given reviewer is
matched to (using C++ indexing). The column dimension accommodates re-
viewers with multiple slots.

6 cpp_wrapper_irving_check_stability

Value

true if the matching is stable, false otherwise

cpp_wrapper_irving Computes a stable roommate matching

Description

This is the C++ wrapper for the stable roommate problem. Users should not call this function
directly, but instead use roommate.

Usage

cpp_wrapper_irving(pref)

Arguments

pref is a matrix with the preference order of each individual in the market. If there are
n individuals, then this matrix will be of dimension n-1 by n. The i,jth element
refers to j’s ith most favorite partner. Preference orders must be specified using
C++ indexing (starting at 0). The matrix pref must be of dimension n-1 by n.

Value

A vector of length n corresponding to the matchings that were formed (using C++ indexing). E.g.
if the 4th element of this vector is 0 then individual 4 was matched with individual 1. If no stable
matching exists, then this function returns a vector of zeros. @export

cpp_wrapper_irving_check_stability

Check if a matching solves the stable roommate problem

Description

This function checks if a given matching is stable for a particular set of preferences. This function
checks if there’s an unmatched pair that would rather be matched with each other than with their
assigned partners.

Usage

cpp_wrapper_irving_check_stability(pref, matchings)

cpp_wrapper_ttc 7

Arguments

pref is a matrix with the preference order of each individual in the market. If there are
n individuals, then this matrix will be of dimension n-1 by n. The i,jth element
refers to j’s ith most favorite partner. Preference orders must be specified using
C++ indexing (starting at 0). The matrix pref must be of dimension n-1 by n.

matchings is a vector of length n corresponding to the matchings that were formed (using
C++ indexing). E.g. if the 4th element of this vector is 0 then individual 4
was matched with individual 1. If no stable matching exists, then this function
returns a vector of zeros.

Value

true if the matching is stable, false otherwise @export

cpp_wrapper_ttc Computes the top trading cycle algorithm

Description

This is the C++ wrapper for the top trading cycle algorithm. Users should not call this function
directly, but instead use toptrading.

Usage

cpp_wrapper_ttc(pref)

Arguments

pref is a matrix with the preference order of all individuals in the market. If there are
n individuals, then this matrix will be of dimension n by n. The i,jth element
refers to j’s ith most favorite partner. Preference orders must be specified using
C++ indexing (starting at 0).

Details

This function uses the top trading cycle algorithm to find a stable trade between agents, each with
some indivisible good, and with preferences over the goods of other agents. Each agent is matched
to one other agent, and matchings are not necessarily two-way. Agents may be matched with
themselves.

Value

A vector of length n corresponding to the matchings being made, so that e.g. if the 4th element is 5
then agent 4 was matched to agent 6. This vector uses C++ indexing that starts at 0.

8 galeShapley.checkPreferences

cpp_wrapper_ttc_check_stability

Check if a one-sided matching for the top trading cycle algorithm is
stable

Description

Check if a one-sided matching for the top trading cycle algorithm is stable

Usage

cpp_wrapper_ttc_check_stability(pref, matchings)

Arguments

pref is a matrix with the preference order of all individuals in the market. If there are
n individuals, then this matrix will be of dimension n by n. The i,jth element
refers to j’s ith most favorite partner. Preference orders must be specified using
C++ indexing (starting at 0).

matchings is a vector of length n corresponding to the matchings being made, so that e.g. if
the 4th element is 5 then agent 4 was matched to agent 6. This vector uses C++
indexing that starts at 0.

Value

true if the matching is stable, false otherwise

galeShapley.checkPreferences

Check if preference order is complete

Description

This function checks if a given preference ordering is complete. If needed, it transforms the indices
from R indices (starting at 1) to C++ indices (starting at zero).

Usage

galeShapley.checkPreferences(pref)

Arguments

pref is a matrix with ordinal preference orderings for one side of the market. Sup-
pose that pref refers to the preferences of n women over m men. In that case,
pref will be of dimension m by n. The i,jth element refers to woman j’s ith
most favorite man. Preference orders can either be specified using R-indexing
(starting at 1) or C++ indexing (starting at 0).

galeShapley.checkStability 9

Value

a matrix with ordinal preference orderings with proper C++ indices or NULL if the preference order
is not complete.

Examples

preferences in proper C++ indexing: galeShapley.checkPreferences(pref)
will return pref
pref <- matrix(c(

0, 1, 0,
1, 0, 1

), nrow = 2, ncol = 3, byrow = TRUE)
pref
galeShapley.checkPreferences(pref)

preferences in R indexing: galeShapley.checkPreferences(pref)
will return pref-1
pref <- matrix(c(

1, 2, 1,
2, 1, 2

), nrow = 2, ncol = 3, byrow = TRUE)
pref
galeShapley.checkPreferences(pref)

incomplete preferences: galeShapley.checkPreferences(pref)
will return NULL
pref <- matrix(c(

3, 2, 1,
2, 1, 2

), nrow = 2, ncol = 3, byrow = TRUE)
pref
galeShapley.checkPreferences(pref)

galeShapley.checkStability

Check if a two-sided matching is stable

Description

This function checks if a given matching is stable for a particular set of preferences. This stability
check can be applied to both the stable marriage problem and the college admission problem. The
function requires preferences to be specified in cardinal form. If necessary, the function rankIndex
can be used to turn ordinal preferences into cardinal utilities.

Usage

galeShapley.checkStability(
proposerUtils,
reviewerUtils,

10 galeShapley.checkStability

proposals,
engagements

)

Arguments

proposerUtils is a matrix with cardinal utilities of the proposing side of the market. If there are
n proposers and m reviewers, then this matrix will be of dimension m by n. The
i,jth element refers to the payoff that proposer j receives from being matched
to reviewer i.

reviewerUtils is a matrix with cardinal utilities of the courted side of the market. If there are
n proposers and m reviewers, then this matrix will be of dimension n by m. The
i,jth element refers to the payoff that reviewer j receives from being matched
to proposer i.

proposals is a matrix that contains the number of the reviewer that a given proposer is
matched to: the first row contains the reviewer that is matched to the first pro-
poser, the second row contains the reviewer that is matched to the second pro-
poser, etc. The column dimension accommodates proposers with multiple slots.

engagements is a matrix that contains the number of the proposer that a given reviewer is
matched to. The column dimension accommodates reviewers with multiple
slots.

Value

true if the matching is stable, false otherwise

Examples

define cardinal utilities
uM <- matrix(c(

0.52, 0.85,
0.96, 0.63,
0.82, 0.08,
0.55, 0.34

), nrow = 4, byrow = TRUE)
uW <- matrix(c(

0.76, 0.88, 0.74, 0.02,
0.32, 0.21, 0.02, 0.79

), ncol = 4, byrow = TRUE)
define matching
results <- list(

proposals = matrix(c(2, 1), ncol = 1),
engagements = matrix(c(2, 1, NA, NA), ncol = 1)

)
check stability
galeShapley.checkStability(uM, uW, results$proposals, results$engagements)

if preferences are in ordinal form, we can use galeShapley.validate
to transform them into cardinal form and then use checkStability()
prefM <- matrix(c(

galeShapley.collegeAdmissions 11

2, 1,
3, 2,
4, 4,
1, 3

), nrow = 4, byrow = TRUE)
prefW <- matrix(c(

1, 1, 1, 2,
2, 2, 2, 1

), ncol = 4, byrow = TRUE)
define matching
results <- list(

proposals = matrix(c(2, 1), ncol = 1),
engagements = matrix(c(2, 1, NA, NA), ncol = 1)

)
check stability
pref.validated <- galeShapley.validate(

proposerPref = prefM,
reviewerPref = prefW

)
galeShapley.checkStability(

pref.validated$proposerUtils,
pref.validated$reviewerUtils,
results$proposals,
results$engagements

)

galeShapley.collegeAdmissions

Gale-Shapley Algorithm: College Admissions Problem

Description

This function computes the Gale-Shapley algorithm and finds a solution to the college admissions
problem. In the student-optimal college admissions problem, n students apply to m colleges, where
each college has s slots.

Usage

galeShapley.collegeAdmissions(
studentUtils = NULL,
collegeUtils = NULL,
studentPref = NULL,
collegePref = NULL,
slots = 1,
studentOptimal = TRUE

)

12 galeShapley.collegeAdmissions

Arguments

studentUtils is a matrix with cardinal utilities of the students. If there are n students and m
colleges, then this matrix will be of dimension m by n. The i,jth element refers
to the payoff that student j receives from being matched to college i.

collegeUtils is a matrix with cardinal utilities of colleges. If there are n students and m col-
leges, then this matrix will be of dimension n by m. The i,jth element refers to
the payoff that college j receives from being matched to student i.

studentPref is a matrix with the preference order of the proposing side of the market (only
required when studentUtils is not provided). If there are n students and m
colleges in the market, then this matrix will be of dimension m by n. The i,jth
element refers to student j’s ith most favorite college. Preference orders can
either be specified using R-indexing (starting at 1) or C++ indexing (starting at
0).

collegePref is a matrix with the preference order of the courted side of the market (only
required when collegeUtils is not provided). If there are n students and m
colleges in the market, then this matrix will be of dimension n by m. The i,jth
element refers to individual j’s ith most favorite partner. Preference orders can
either be specified using R-indexing (starting at 1) or C++ indexing (starting at
0).

slots is the number of slots that each college has available. If this is 1, then the
algorithm is identical to galeShapley.marriageMarket. slots can either be a
integer or a vector. If it is an integer, then all colleges have the same number of
slots. If it is a vector, it must have as many elements as there are colleges where
each element refers to the number of slots at a particular college.

studentOptimal is TRUE if students apply to colleges. The resulting match is student-optimal.
studentOptimal is FALSE if colleges apply to students. The resulting match is
college-optimal.

Details

The algorithm works analogously to galeShapley.marriageMarket. The Gale-Shapley algorithm
works as follows: Students ("the proposers") sequentially make proposals to each of their most
preferred available colleges ("the reviewers"). A college can hold on to at most s proposals at
a time. A college with an open slot will accept any application that it receives. A college that
already holds on to s applications will reject any application by a student that it values less than her
current set of applicants. If a college receives an application from a student that it values more than
its current set of applicants, then it will accept the application and drop its least preferred current
applicant. This process continues until all students are matched to colleges.

The Gale-Shapley Algorithm requires a complete specification of students’ and colleges’ prefer-
ences over each other. Preferences can be passed on to the algorithm in ordinal form (e.g. student
3 prefers college 1 over college 3 over college 2) or in cardinal form (e.g. student 3 receives payoff
3.14 from being matched to college 1, payoff 2.51 from being matched to college 3 and payoff 2.13
from being matched to college 2). Preferences must be complete, i.e. all students must have fully
specified preferences over all colleges and vice versa.

In the version of the algorithm that is implemented here, all individuals – colleges and students –
prefer being matched to anyone to not being matched at all.

galeShapley.collegeAdmissions 13

The algorithm still works with an unequal number of students and slots. In that case some students
will remain unmatched or some slots will remain open.

Value

A list with elements that specify which student is matched to which college and who remains un-
matched. Suppose there are n students and m colleges with s slots. The list contains the following
items:

• matched.students is a vector of length n whose ith element contains college that student i
is matched to. Students that remain unmatched will be listed as being matched to college NA.

• matched.colleges is a matrix of dimension m by s whose jth row contains the students that
were admitted to college j. Slots that remain open show up as being matched to student to NA.

• unmatched.students is a vector that lists the remaining unmatched students This vector will
be empty when all students get matched.

• unmatched.colleges is a vector that lists colleges with open slots. If a college has multiple
open slots, it will show up multiple times. This vector will be empty whenever all college slots
get filled.

Examples

ncolleges <- 10
nstudents <- 25

randomly generate cardinal preferences of colleges and students
collegeUtils <- matrix(runif(ncolleges * nstudents), nrow = nstudents, ncol = ncolleges)
studentUtils <- matrix(runif(ncolleges * nstudents), nrow = ncolleges, ncol = nstudents)

run the student-optimal algorithm
results.studentoptimal <- galeShapley.collegeAdmissions(

studentUtils = studentUtils,
collegeUtils = collegeUtils,
slots = 2,
studentOptimal = TRUE

)
results.studentoptimal

run the college-optimal algorithm
results.collegeoptimal <- galeShapley.collegeAdmissions(

studentUtils = studentUtils,
collegeUtils = collegeUtils,
slots = 2,
studentOptimal = FALSE

)
results.collegeoptimal

transform the cardinal utilities into preference orders
collegePref <- sortIndex(collegeUtils)
studentPref <- sortIndex(studentUtils)

run the student-optimal algorithm

14 galeShapley.marriageMarket

results.studentoptimal <- galeShapley.collegeAdmissions(
studentPref = studentPref,
collegePref = collegePref,
slots = 2,
studentOptimal = TRUE

)
results.studentoptimal

run the college-optimal algorithm
results.collegeoptimal <- galeShapley.collegeAdmissions(

studentPref = studentPref,
collegePref = collegePref,
slots = 2,
studentOptimal = FALSE

)
results.collegeoptimal

galeShapley.marriageMarket

Gale-Shapley Algorithm: Stable Marriage Problem

Description

This function computes the Gale-Shapley algorithm and finds a solution to the stable marriage
problem.

Usage

galeShapley.marriageMarket(
proposerUtils = NULL,
reviewerUtils = NULL,
proposerPref = NULL,
reviewerPref = NULL

)

Arguments

proposerUtils is a matrix with cardinal utilities of the proposing side of the market. If there are
n proposers and m reviewers, then this matrix will be of dimension m by n. The
i,jth element refers to the payoff that proposer j receives from being matched
to proposer i.

reviewerUtils is a matrix with cardinal utilities of the courted side of the market. If there are
n proposers and m reviewers, then this matrix will be of dimension n by m. The
i,jth element refers to the payoff that reviewer j receives from being matched
to proposer i.

proposerPref is a matrix with the preference order of the proposing side of the market. This
argument is only required when proposerUtils is not provided. If there are n
proposers and m reviewers in the market, then this matrix will be of dimension

galeShapley.marriageMarket 15

m by n. The i,jth element refers to proposer j’s ith most favorite reviewer.
Preference orders can either be specified using R-indexing (starting at 1) or C++
indexing (starting at 0).

reviewerPref is a matrix with the preference order of the courted side of the market. This
argument is only required when reviewerUtils is not provided. If there are n
proposers and m reviewers in the market, then this matrix will be of dimension
n by m. The i,jth element refers to reviewer j’s ith most favorite proposer.
Preference orders can either be specified using R-indexing (starting at 1) or C++
indexing (starting at 0).

Details

The Gale-Shapley algorithm works as follows: Single men ("the proposers") sequentially make
proposals to each of their most preferred available women ("the reviewers"). A woman can hold
on to at most one proposal at a time. A single woman will accept any proposal that is made to
her. A woman that already holds on to a proposal will reject any proposal by a man that she values
less than her current match. If a woman receives a proposal from a man that she values more than
her current match, then she will accept the proposal and her previous match will join the line of
bachelors. This process continues until all men are matched to women.

The Gale-Shapley Algorithm requires a complete specification of proposers’ and reviewers’ prefer-
ences over each other. Preferences can be passed on to the algorithm in ordinal form (e.g. man 3
prefers woman 1 over woman 3 over woman 2) or in cardinal form (e.g. man 3 receives payoff 3.14
from being matched to woman 1, payoff 2.51 from being matched to woman 3, and payoff 2.15
from being matched to woman 2). Preferences must be complete, i.e. all proposers must have fully
specified preferences over all reviewers and vice versa.

In the version of the algorithm that is implemented here, all individuals – proposers and reviewers
– prefer being matched to anyone to not being matched at all.

The algorithm still works with an unequal number of proposers and reviewers. In that case some
agents will remain unmatched.

This function can also be called using galeShapley.

Value

A list with elements that specify who is matched to whom and who remains unmatched. Suppose
there are n proposers and m reviewers. The list contains the following items:

• proposals is a vector of length n whose ith element contains the number of the reviewer that
proposer i is matched to. Proposers that remain unmatched will be listed as being matched to
NA.

• engagements is a vector of length m whose jth element contains the number of the proposer
that reviewer j is matched to. Reviwers that remain unmatched will be listed as being matched
to NA.

• single.proposers is a vector that lists the remaining single proposers. This vector will be
empty whenever n<=m.

• single.reviewers is a vector that lists the remaining single reviewers. This vector will be
empty whenever m<=n.

16 galeShapley.validate

See Also

galeShapley.collegeAdmissions

Examples

nmen <- 5
nwomen <- 4
generate cardinal utilities
uM <- matrix(runif(nmen * nwomen), nrow = nwomen, ncol = nmen)
uW <- matrix(runif(nwomen * nmen), nrow = nmen, ncol = nwomen)
run the algorithm using cardinal utilities as inputs
results <- galeShapley.marriageMarket(uM, uW)
results

transform the cardinal utilities into preference orders
prefM <- sortIndex(uM)
prefW <- sortIndex(uW)
run the algorithm using preference orders as inputs
results <- galeShapley.marriageMarket(proposerPref = prefM, reviewerPref = prefW)
results

galeShapley.validate Input validation of preferences

Description

This function parses and validates the arguments that are passed on to the Gale-Shapley Algorithm.
In particular, it checks if user-defined preference orders are complete and returns an error otherwise.
If user-defined orderings are given in terms of R indices (starting at 1), then these are transformed
into C++ indices (starting at zero).

Usage

galeShapley.validate(
proposerUtils = NULL,
reviewerUtils = NULL,
proposerPref = NULL,
reviewerPref = NULL

)

Arguments

proposerUtils is a matrix with cardinal utilities of the proposing side of the market. If there are
n proposers and m reviewers, then this matrix will be of dimension m by n. The
i,jth element refers to the payoff that proposer j receives from being matched
to reviewer i.

galeShapley.validate 17

reviewerUtils is a matrix with cardinal utilities of the courted side of the market. If there are
n proposers and m reviewers, then this matrix will be of dimension n by m. The
i,jth element refers to the payoff that reviewer j receives from being matched
to proposer i.

proposerPref is a matrix with the preference order of the proposing side of the market (only
required when proposerUtils is not provided). If there are n proposers and m
reviewers in the market, then this matrix will be of dimension m by n. The i,jth
element refers to proposer j’s ith most favorite reviewer. Preference orders can
either be specified using R-indexing (starting at 1) or C++ indexing (starting at
0).

reviewerPref is a matrix with the preference order of the courted side of the market (only
required when reviewerUtils is not provided). If there are n proposers and m
reviewers in the market, then this matrix will be of dimension n by m. The i,jth
element refers to reviewer j’s ith most favorite proposer. Preference orders can
either be specified using R-indexing (starting at 1) or C++ indexing (starting at
0).

Value

a list containing proposerUtils, reviewerUtils, proposerPref (reviewerPref are not required
after they are translated into reviewerUtils).

Examples

market size
nmen <- 5
nwomen <- 4

generate cardinal utilities
uM <- matrix(runif(nmen * nwomen), nrow = nwomen, ncol = nmen)
uW <- matrix(runif(nwomen * nmen), nrow = nmen, ncol = nwomen)

turn cardinal utilities into ordinal preferences
prefM <- sortIndex(uM)
prefW <- sortIndex(uW)

validate cardinal preferences
preferences <- galeShapley.validate(uM, uW)
preferences

validate ordinal preferences
preferences <- galeShapley.validate(proposerPref = prefM, reviewerPref = prefW)
preferences

validate ordinal preferences when these are in R style indexing
(instead of C++ style indexing)
preferences <- galeShapley.validate(proposerPref = prefM + 1, reviewerPref = prefW + 1)
preferences

validate preferences when proposer-side is cardinal and reviewer-side is ordinal
preferences <- galeShapley.validate(proposerUtils = uM, reviewerPref = prefW)

18 rankIndex

preferences

matchingR-deprecated Deprecated Functions in matchingR

Description

These functions are provided for compatibility with older version of the matchingR package. Even-
tually, these functions will be removed.

Usage

validateInputs(...)

Arguments

... generic set of parameters — see documentation of new functions

Details

validateInputs was replaced by galeShapley.validate
checkStability was replaced by galeShapley.checkStability

checkPreferenceOrder was replaced by galeShapley.checkPreferences
one2many now mapped into galeShapley.collegeAdmissions
many2one now mapped into galeShapley.collegeAdmissions
one2one was replaced by galeShapley.marriageMarket

galeShapleyMatching was replaced by cpp_wrapper_galeshapley
stableRoommateMatching was replaced by cpp_wrapper_irving

onesided was replaced by roommate
checkStabilityRoommate was replaced by cpp_wrapper_irving_check_stability
validateInputsOneSided was replaced by roommate.validate

checkPreferenceOrderOnesided was replaced by roommate.checkPreferences
topTradingCycle was replaced by cpp_wrapper_ttc

checkStabilityTopTradingCycle was replaced by cpp_wrapper_ttc_check_stability

rankIndex Rank elements within column of a matrix

Description

This function returns the rank of each element within each column of a matrix. The highest element
receives the highest rank.

repcol 19

Usage

rankIndex(sortedIdx)

Arguments

sortedIdx is the input matrix

Value

a rank matrix

repcol Repeat each column of a matrix n times

Description

This function repeats each column of a matrix n times

Usage

repcol(x, n)

Arguments

x is the input matrix

n is the number of repetitions (can be a vector)

Value

matrix with repeated columns

reprow Repeat each row of a matrix n times

Description

This function repeats each row of a matrix n times

Usage

reprow(x, n)

Arguments

x is the input matrix

n is the number of repetitions (can be a vector)

20 roommate

Value

matrix with repeated rows

roommate Compute matching for one-sided markets

Description

This function computes the Irving (1985) algorithm for finding a stable matching in a one-sided
matching market.

Usage

roommate(utils = NULL, pref = NULL)

Arguments

utils is a matrix with cardinal utilities for each individual in the market. If there are
n individuals, then this matrix will be of dimension n-1 by n. Column j refers
to the payoff that individual j receives from being matched to individual 1,
2,..., j-1, j+1, ...n. If a square matrix is passed as utils, then the main
diagonal will be removed.

pref is a matrix with the preference order of each individual in the market. This
argument is only required when utils is not provided. If there are n individuals,
then this matrix will be of dimension n-1 by n. The i,jth element refers to j’s
ith most favorite partner. Preference orders can either be specified using R-
indexing (starting at 1) or C++ indexing (starting at 0). The matrix pref must
be of dimension n-1 by n. Otherwise, the function will throw an error.

Details

Consider the following example: A set of n potential roommates, each with ranked preferences
over all the other potential roommates, are to be matched to rooms, two roommates per room. A
matching is stable if there is no roommate r1 that would rather be matched to some other roommate
d2 than to his current roommate r2 and the other roommate d2 would rather be matched to r1 than
to his current roommate d1.

The algorithm works in two stages. In the first stage, all participants begin unmatched, then, in
sequence, begin making proposals to other potential roommates, beginning with their most preferred
roommate. If a roommate receives a proposal, he either accepts it if he has no other proposal which
is better, or rejects it otherwise. If this stage ends with a roommate who has no proposals, then there
is no stable matching and the algorithm terminates.

In the second stage, the algorithm proceeds by finding and eliminating rotations. Roughly speaking,
a rotation is a sequence of pairs of agents, such that the first agent in each pair is least preferred by
the second agent in that pair (of all the agents remaining to be matched), the second agent in each
pair is most preferred by the first agent in each pair (of all the agents remaining to be matched) and
the second agent in the successive pair is the second most preferred agent (of the agents remaining

roommate.checkPreferences 21

to be matched) of the first agent in the succeeding pair, where here ’successive’ is taken to mean
’modulo m’, where m is the length of the rotation. Once a rotation has been identified, it can be
eliminated in the following way: For each pair, the second agent in the pair rejects the first agent
in the pair (recall that the second agent hates the first agent, while the first agent loves the second
agent), and the first agent then proceeds to propose to the second agent in the succeeding pair. If at
any point during this process, an agent no longer has any agents left to propose to or be proposed to
from, then there is no stable matching and the algorithm terminates.

Otherwise, at the end, every agent is left proposing to an agent who is also proposing back to them,
which results in a stable matching.

Note that neither existence nor uniqueness is guaranteed, this algorithm finds one matching, not all
of them. If no matching exists, this function returns NULL.

Value

A vector of length n corresponding to the matchings that were formed. E.g. if the 4th element of
this vector is 6 then individual 4 was matched with individual 6. If no stable matching exists, then
this function returns NULL.

Examples

example using cardinal utilities
utils <- matrix(c(

-1.63, 0.69, -1.38, -0.03,
2.91, -0.52, 0.52, 0.22,
0.53, -0.52, -1.18, 0.53

), byrow = TRUE, ncol = 4, nrow = 3)
utils
results <- roommate(utils = utils)
results

example using preference orders
pref <- matrix(c(

3, 1, 2, 3,
4, 3, 4, 2,
2, 4, 1, 1

), byrow = TRUE, ncol = 4)
pref
results <- roommate(pref = pref)
results

roommate.checkPreferences

Check if preference order for a one-sided market is complete

Description

Check if preference order for a one-sided market is complete

22 roommate.checkStability

Usage

roommate.checkPreferences(pref)

Arguments

pref is a matrix with the preference order of each individual in the market. This
argument is only required when utils is not provided. If there are n individuals,
then this matrix will be of dimension n-1 by n. The i,jth element refers to j’s
ith most favorite partner. Preference orders can either be specified using R-
indexing (starting at 1) or C++ indexing (starting at 0). The matrix pref must
be of dimension n-1 by n. Otherwise, the function will throw an error.

Value

a matrix with preference orderings with proper C++ indices or NULL if the preference order is not
complete.

roommate.checkStability

Check if a roommate matching is stable

Description

This function checks if a particular roommate matching is stable. A matching is stable if there is no
roommate r1 that would rather be matched to some other roommate d2 than to his current roommate
r2 and the other roommate d2 would rather be matched to r1 than to his current roommate d1.

Usage

roommate.checkStability(utils = NULL, pref = NULL, matching)

Arguments

utils is a matrix with cardinal utilities for each individual in the market. If there are
n individuals, then this matrix will be of dimension n-1 by n. Column j refers
to the payoff that individual j receives from being matched to individual 1,
2,..., j-1, j+1, ...n. If a square matrix is passed as utils, then the main
diagonal will be removed.

pref is a matrix with the preference order of each individual in the market. This
argument is only required when utils is not provided. If there are n individuals,
then this matrix will be of dimension n-1 by n. The i,jth element refers to j’s
ith most favorite partner. Preference orders can either be specified using R-
indexing (starting at 1) or C++ indexing (starting at 0). The matrix pref must
be of dimension n-1 by n. Otherwise, the function will throw an error.

matching is a vector of length n corresponding to the matchings that were formed. E.g. if
the 4th element of this vector is 6 then individual 4 was matched with individual
6.

roommate.validate 23

Value

true if stable, false if not

Examples

define preferences
pref <- matrix(c(

3, 1, 2, 3,
4, 3, 4, 2,
2, 4, 1, 1

), byrow = TRUE, ncol = 4)
pref
compute matching
results <- roommate(pref = pref)
results
check if matching is stable
roommate.checkStability(pref = pref, matching = results)

roommate.validate Input validation for one-sided markets

Description

This function parses and validates the arguments for the function roommate. It returns the validates
arguments. This function is called as part of roommate. Only one of the arguments needs to be
provided.

Usage

roommate.validate(utils = NULL, pref = NULL)

Arguments

utils is a matrix with cardinal utilities for each individual in the market. If there are
n individuals, then this matrix will be of dimension n-1 by n. Column j refers
to the payoff that individual j receives from being matched to individual 1,
2,..., j-1, j+1, ...n. If a square matrix is passed as utils, then the main
diagonal will be removed.

pref is a matrix with the preference order of each individual in the market. This
argument is only required when utils is not provided. If there are n individuals,
then this matrix will be of dimension n-1 by n. The i,jth element refers to j’s
ith most favorite partner. Preference orders can either be specified using R-
indexing (starting at 1) or C++ indexing (starting at 0). The matrix pref must
be of dimension n-1 by n. Otherwise, the function will throw an error.

Value

The validated preference ordering using C++ indexing.

24 sortIndexOneSided

sortIndex Sort indices of a matrix within a column

Description

Within each column of a matrix, this function returns the indices of each element in descending
order

Usage

sortIndex(u)

Arguments

u is the input matrix with cardinal preferences

Value

a matrix with sorted indices (the agents’ ordinal preferences)

sortIndexOneSided Ranks elements with column of a matrix, assuming a one-sided market.

Description

Returns the rank of each element with each column of a matrix. So, if row 34 is the highest number
for column 3, then the first row of column 3 will be 34 – unless it is column 34, in which case it
will be 35, to adjust for the fact that this is a single-sided market.

Usage

sortIndexOneSided(u)

Arguments

u A matrix with agents’ cardinal preferences. Column i is agent i’s preferences.

Value

a matrix with the agents’ ordinal preferences

toptrading 25

toptrading Compute the top trading cycle algorithm

Description

This package implements the top trading cycle algorithm.

Usage

toptrading(utils = NULL, pref = NULL)

Arguments

utils is a matrix with cardinal utilities of all individuals in the market. If there are
n individuals, then this matrix will be of dimension n by n. The i,jth element
refers to the payoff that individual j receives from being matched to individual
i.

pref is a matrix with the preference order of all individuals in the market. This ar-
gument is only required when utils is not provided. If there are n individuals,
then this matrix will be of dimension n by n. The i,jth element refers to j’s ith
most favorite partner. Preference orders can either be specified using R-indexing
(starting at 1) or C++ indexing (starting at 0).

Details

The top trading algorithm solves the following problem: A set of n agents each currently own their
own home, and have preferences over the homes of other agents. The agents may trade their homes
in some way, the problem is to identify a set of trades between agents so that no subset of agents
can defect from the rest of the group, and by trading within themselves improve their own payoffs.

Roughly speaking, the top trading cycle proceeds by identifying cycles of agents, then eliminating
those cycles until no agents remain. A cycle is a sequence of agents such that each agent most
prefers the next agent’s home (out of the remaining unmatched agents), and the last agent in the
sequence most prefers the first agent in the sequence’s home.

The top trading cycle is guaranteed to produce a unique outcome, and that outcome is the unique
outcome in the core, meaning there is no other outcome with the stability property described above.

Value

A vector of length n corresponding to the matchings being made, so that e.g. if the 4th element is 6
then agent 4 was matched to agent 6.

Examples

example using cardinal utilities
utils <- matrix(c(

-1.4, -0.66, -0.45, 0.03,
0.72, 1.71, 0.59, 0.07,

26 toptrading.checkStability

0.44, 1.76, 1.71, -0.27,
0.26, 2.18, 1.4, 0.12

), byrow = TRUE, nrow = 4)
utils
results <- toptrading(utils = utils)
results

example using ordinal preferences
pref <- matrix(c(

2, 4, 3, 4,
3, 3, 4, 2,
4, 2, 2, 1,
1, 1, 1, 3

), byrow = TRUE, nrow = 4)
pref
results <- toptrading(pref = pref)
results

toptrading.checkStability

Check if there are any pairs of agents who would rather swap houses
with each other rather than be with their own two current respective
partners.

Description

Check if there are any pairs of agents who would rather swap houses with each other rather than be
with their own two current respective partners.

Usage

toptrading.checkStability(utils = NULL, pref = NULL, matchings)

Arguments

utils is a matrix with cardinal utilities of all individuals in the market. If there are
n individuals, then this matrix will be of dimension n by n. The i,jth element
refers to the payoff that individual j receives from being matched to individual
i.

pref is a matrix with the preference order of all individuals in the market. This ar-
gument is only required when utils is not provided. If there are n individuals,
then this matrix will be of dimension n by n. The i,jth element refers to j’s ith
most favorite partner. Preference orders can either be specified using R-indexing
(starting at 1) or C++ indexing (starting at 0).

matchings is a vector of length n corresponding to the matchings being made, so that e.g.
if the 4th element is 6 then agent 4 was matched to agent 6.

toptrading.checkStability 27

Value

true if the matching is stable, false otherwise

Examples

pref <- matrix(c(
2, 4, 3, 4,
3, 3, 4, 2,
4, 2, 2, 1,
1, 1, 1, 3

), byrow = TRUE, nrow = 4)
pref
results <- toptrading(pref = pref)
results
toptrading.checkStability(pref = pref, matchings = results)

Index

checkPreferenceOrder
(matchingR-deprecated), 18

checkPreferenceOrderOnesided
(matchingR-deprecated), 18

checkStability (matchingR-deprecated),
18

checkStabilityRoommate
(matchingR-deprecated), 18

checkStabilityTopTradingCycle
(matchingR-deprecated), 18

cpp_wrapper_galeshapley, 4, 18
cpp_wrapper_galeshapley_check_stability,

5
cpp_wrapper_irving, 6, 18
cpp_wrapper_irving_check_stability, 6,

18
cpp_wrapper_ttc, 7, 18
cpp_wrapper_ttc_check_stability, 8, 18

galeShapley
(galeShapley.marriageMarket),
14

galeShapley.checkPreferences, 8, 18
galeShapley.checkStability, 5, 9, 18
galeShapley.collegeAdmissions, 4, 11, 16,

18
galeShapley.marriageMarket, 4, 12, 14, 18
galeShapley.validate, 16, 18
galeShapleyMatching

(matchingR-deprecated), 18

many2one (matchingR-deprecated), 18
matchingR (matchingR-package), 2
matchingR-deprecated, 18
matchingR-package, 2

one2many (matchingR-deprecated), 18
one2one (matchingR-deprecated), 18
onesided (matchingR-deprecated), 18

rankIndex, 9, 18

repcol, 19
reprow, 19
roommate, 6, 18, 20, 23
roommate.checkPreferences, 18, 21
roommate.checkStability, 22
roommate.validate, 18, 23

sortIndex, 24
sortIndexOneSided, 24
stableRoommateMatching

(matchingR-deprecated), 18

toptrading, 7, 25
toptrading.checkStability, 26
topTradingCycle (matchingR-deprecated),

18

validateInputs (matchingR-deprecated),
18

validateInputsOneSided
(matchingR-deprecated), 18

28

	matchingR-package
	cpp_wrapper_galeshapley
	cpp_wrapper_galeshapley_check_stability
	cpp_wrapper_irving
	cpp_wrapper_irving_check_stability
	cpp_wrapper_ttc
	cpp_wrapper_ttc_check_stability
	galeShapley.checkPreferences
	galeShapley.checkStability
	galeShapley.collegeAdmissions
	galeShapley.marriageMarket
	galeShapley.validate
	matchingR-deprecated
	rankIndex
	repcol
	reprow
	roommate
	roommate.checkPreferences
	roommate.checkStability
	roommate.validate
	sortIndex
	sortIndexOneSided
	toptrading
	toptrading.checkStability
	Index

