Package ‘matchFeat’

December 13, 2022

Type Package

Title One-to-One Feature Matching

Version 1.0
Date 2022-12-10
Author David Degras

Maintainer David Degras <david.degras@umb.edu>

Description Statistical methods to match feature vectors between multiple datasets in a one-to-

one fashion. Given a fixed number of classes/distributions, for each unit, exactly one vec-

tor of each class is observed without label. The goal is to label the feature vectors using each la-
bel exactly once so to produce the best match across datasets, e.g. by minimizing the variabil-
ity within classes. Statistical solutions based on empirical loss functions and probabilistic model-
ing are provided. The 'Gurobi' software and its 'R’ interface package are re-

quired for one of the package functions (match.2x()) and can be ob-

tained at <https://www.gurobi.com/> (free academic license). For more details, refer to De-
gras (2022) <doi:10.1080/10618600.2022.2074429> **Scalable feature match-

ing for large data collections" and Ban-

delt, Maas, and Spieksma (2004) <doi:10.1057/palgrave.jors.2601723> *"Local search heuris-
tics for multi-index assignment problems with decomposable costs".

License GPL-2
Depends R (>=3.5.0)

Imports clue, foreach, methods, utils

Suggests gurobi

NeedsCompilation no
Repository CRAN
Date/Publication 2022-12-13 12:30:07 UTC

R topics documented:

matchFeat-package L 2
match.2X L L 3
match.bca L L 4

https://www.gurobi.com/
https://doi.org/10.1080/10618600.2022.2074429
https://doi.org/10.1057/palgrave.jors.2601723

2 matchFeat-package

match.bca.gen L. e 6
match.gaussmix 8
match.kmeans L 10
matcharec L L e e 12
match.template e 13
objective.fun L. e 15
objective.gen.fun 16
optdigits L e e e 17
predictmatchFeat 18
printmatchFeat 19
Rand.index e 20
summary.matchFeat 21

Index 23

matchFeat-package One-to-One Feature Matching
Description

Statistical methods to match feature vectors between multiple datasets in a one-to-one fashion.
Given a fixed number of classes/distributions, for each unit, exactly one vector of each class is
observed without label. The goal is to label the feature vectors using each label exactly once so to
produce the best match across datasets, e.g. by minimizing the variability within classes. Statistical
solutions based on empirical loss functions and probabilistic modeling are provided. The *Gurobi’
software and its 'R’ interface package are required for one of the package functions (match.2x())
and can be obtained at <https://www.gurobi.com/> (free academic license). For more details, refer
to Degras (2022) <doi:10.1080/10618600.2022.2074429> "Scalable feature matching for large data
collections" and Bandelt, Maas, and Spieksma (2004) <doi:10.1057/palgrave.jors.2601723> "Local
search heuristics for multi-index assignment problems with decomposable costs".

Details

This package serves to match feature vectors across a collection of datasets in a one-to-one fash-
ion. This task is formulated as a multidimensional assignment problem with decomposable costs
(MDADC). We propose fast algorithms with time complexity roughly linear in the number n of
datasets and space complexity a small fraction of the data size.

* Initialization methods: match.rec (recursive) and match. template (template-based).

* Main matching algorithms: match.bca, match.bca.gen (for unbalanced data), and match.kmeans
(k-means matching).

» Refinement methods (post-processing): match. 2x (pairwise interchange) and match. gaussmix
(Gaussian mixture model with permutation constraints).

match.2x 3

Author(s)

Author: David Degras
Maintainer: David Degras <david.degras @umb.edu>

References

Degras (2022) "Scalable feature matching across large data collections." doi:10.1080/10618600.2022.2074429
Wright (2015). Coordinate descent algorithms. https://arxiv.org/abs/1502.04759
McLachlan and Krishnan (2008). The EM Algorithm and Extensions

match.2x Pairwise Interchange Heuristic (2-Assignment-Exchange)

Description
This function implements the Pairwise Interchange Heuristic for the multidimensional assignment
problem with decomposable costs (MDADC).

Usage

match.2x(x, sigma = NULL, unit = NULL, w = NULL, control = list())

Arguments
X data: matrix of dimensions (mn, p) or 3D array of dimensions (p, m,n) with
m = number of labels/classes, n = number of sample units, and p = number of
variables)
sigma permutations: matrix of dimensions (m,n)
unit integer (=number of units) or vector mapping rows of x to sample units (length
mn). Must be specified only if x is a matrix.
w weights for loss function: single positive number, p-vector of length, or (p, p)
positive definite matrix
control tuning parameters
Details

Use of this function requires to have the GUROBI software and its R interface package installed.

Both can be downloaded from https://www.gurobi.com after obtaining a free academic license.
Value

A list of class matchFeat with components

sigma best assignment as set of permutations ((m, n) matrix)
cluster best assignment as a cluster membership vector

objective minimum objective value

https://doi.org/10.1080/10618600.2022.2074429
https://arxiv.org/abs/1502.04759
https://www.gurobi.com

4 match.bca

mu mean vector for each class/label ((p, m) matrix)
V covariance matrix for each class/label ((p, p, m) array)

call function call

References

Degras (2022) "Scalable feature matching across large data collections." doi:10.1080/10618600.2022.2074429

See Also

match.bca, match.bca.gen, match.gaussmix, match.kmeans, match.rec, match. template

Examples

if (require(gurobi)) {
Generate small example
m <- 3 # number of classes
n <- 10 # number of statistical units
p <- 5 # number of variables
mu <- matrix(rnorm(p*m),p,m) # mean vectors
sigma <- 0.1
x <- array(as.vector(mu) + rnorm(p*m*n,sigma), c(p,m,n))

Match all feature vectors
result <- match.2x(x)

Display results
result$cost # objective value = assignment cost
result$sigma # solution permutations
xmatched <- array(dim=dim(x))

Matched feature vectors
for (i in 1:n)
xmatched[,,i] <- x[,result$sigmal,i],i]

match.bca Block Coordinate Ascent Method

Description

This function solves the multidimensional assignment problem with decomposable costs (MDADC)
by block coordinate ascent. The dissimilarity function is the squared Euclidean distance.

Usage

match.bca(x, unit = NULL, w = NULL,
method = c("cyclical”, "random”), control = list())

https://doi.org/10.1080/10618600.2022.2074429

match.bca 5

Arguments
X data: matrix of dimensions (mn, p) or 3D array of dimensions (p, m,n) with
m = number of labels/classes, n = number of sample units, and p = number of
variables)
unit integer (=number of units) or vector mapping rows of x to sample units (Ilength
mn). Must be specified only if x is a matrix.
w weights for loss function: single positive number, p-vector of length, or (p, p)
positive definite matrix
method sweeping method for block coordinate ascent: cyclical or random (simple
random sampling without replacement)
control tuning parameters
Details

Given a set of n statistical units, each having m possibly mislabeled feature vectors, the one-to-one
matching problem is to find a set of n label permutations that produce the best match of feature vec-
tors across units. The objective function to minimize is the sum of (weighted) squared Euclidean
distances between all pairs of feature vectors having the same (new) label. This amounts to min-
imizing the sum of the within-label variances. The sample means and sample covariances of the
matched feature vectors are calculated as a post-processing step.

The block-coordinate ascent (BCA) algorithm successively sweeps through the statistical units
(=blocks), each time relabeling the m feature vectors of a unit to best match those of the other
n — 1 units.

If x is a matrix, the rows should be sorted by increasing unit label and unit should be a nonde-
creasing sequence of integers, for example (1,...,1,2,...,2,....n,...,n) with each integer 1,...,n
replicated m times.

The argument w can be specified as a vector of positive numbers (will be recycled to length p if
needed) or as a positive definite matrix of size (p, p).

The optional argument control is a list with three fields: sigma, starting point for the optimization
((m,n) matrix of permutations; maxit, maximum number of iterations; and equal.variance,
logical value that specifies whether the returned sample covariance matrices V for matched features
should be equal between labels/classes (TRUE) or label-specific (FALSE, default).

Value

A list of class matchFeat with components

sigma best set of permutations for feature vectors ((m,n) matrix)
cluster associated clusters (=inverse permutations)

objective minimum objective value

mu sample mean for each class/label ((p, m) matrix)

V sample covariance for each class/label ((p, m) matrix

call function call

6 match.bca.gen

References

Degras (2022) "Scalable feature matching across large data collections." doi:10.1080/10618600.2022.2074429
Wright (2015). Coordinate descent algorithms. https://arxiv.org/abs/1502.04759

See Also

match.2x, match.bca.gen, match.gaussmix, match.kmeans, match.rec, match.template

Examples

data(optdigits)
m <- length(unique(optdigits$label)) # number of classes
n <- nrow(optdigits$x) / m # number of units

Use function with data in matrix form
fitl <- match.bca(optdigits$x, unit=n)

Use function with data in array form
p <- ncol(optdigits$x)

X <- t(optdigits$x)

dim(x) <- c(p,m,n)

fit2 <- match.bca(x)

match.bca.gen Block Coordinate Ascent Method for General (Balanced or Unbal-
anced) Data

Description

Solve a feature matching problem by block coordinate ascent

Usage
match.bca.gen(x, unit = NULL, cluster = NULL, w = NULL,
method = c("cyclical”, "random”), control = list())
Arguments
X data matrix (rows=instances, columns=features)
unit vector of unit labels (length = number of rows of x)
cluster integer specifying the number of classes/clusters to assign the feature vectors to

OR integer vector specifiying the initial cluster assignment.

w feature weights in loss function. Can be specified as single positive number,
vector, or positive definite matrix

method sweeping method for block coordinate ascent: cyclical or random (simple
random sampling without replacement)

control optional list of tuning parameters

https://doi.org/10.1080/10618600.2022.2074429
https://arxiv.org/abs/1502.04759

match.bca.gen 7

Details

If cluster is an integer vector, it must have the same length as unit and its values must range
between 1 and the number of clusters.

The list control can contain a field maxit, an integer that fixes the maximum number of algorithm
iterations.

Value

A list of class matchFeat with components

cluster integer vector of cluster assignments (length = now(x))

objective minimum objective value

mu sample mean for each cluster/class (feature-by-cluster matrix)

V sample covariance for each cluster/class (feature-by-feature-by-cluster 3D array)
size integer vector of cluster sizes

call function call

References

Degras (2022) "Scalable feature matching across large data collections." doi:10.1080/10618600.2022.2074429
Wright (2015). Coordinate descent algorithms. https://arxiv.org/abs/1502.04759

See Also

match.2x, match.bca, match.bca.gen, match.gaussmix, match.kmeans, match.rec, match.template

Examples

data(optdigits)

nobs <- nrow(optdigits$x) # total number of observations

n <- length(unique(optdigits$unit)) # number of statistical units

rmv <- sample.int(nobs, n-1) # remove (n-1) observations to make data unbalanced
min.m <- max(table(optdigits$unit[-rmv])) # smallest possible number of clusters
lower values will result in an error message

m <- min.m

result <- match.bca.gen(optdigits$x[-rmv,], optdigits$unit[-rmv], m)

https://doi.org/10.1080/10618600.2022.2074429
https://arxiv.org/abs/1502.04759

8 match.gaussmix

match.gaussmix Gaussian Mixture Approach to One-To-One Feature Matching

Description

This function performs maximum likelihood estimation (MLE) for the one-to-one feature matching
problem represented as a multivariate Gaussian mixture model. MLE is carried out via the EM
algorithm.

Usage

match.gaussmix(x, unit = NULL, mu = NULL, V = NULL, equal.variance = FALSE,
method = c("exact”, "approx"), fixed = FALSE, control = list())

Arguments

X data: matrix of dimensions (mn,p) or array of dimensions (p, m,n) with m
= number of labels/classes, n = number of sample units, and p = number of
variables)

unit integer (=number of units) or vector mapping rows of x to sample units (length
mn). Must be specified only if x is a matrix.

mu matrix of initial estimates of mean vectors (dimension (p, m))

\% array of initial estimates of covariance matrices (dimension (p, p, m))

equal.variance logical: if TRUE, all covariance matrices are assumed to be equal

method method for calculating class probabilities of feature vectors
fixed logical; if TRUE, the model parameters mu and V are fixed to their initial values
control list of tuning parameters

Details

Given a sample of n statistical units, each having m possibly mislabeled feature vectors, the one-to-
one matching problem is to find a set of n label permutations that produce the best match of feature
vectors across units. This problem is sometimes referred to as "data association ambiguity".

The feature vectors of all units are represented as independent realizations of m multivariate normal
distributions with unknown parameters. For each sample unit, exactly one vector from each distri-
bution is observed and the m corresponding labels are randomly permuted. The goal is to estimate
the true class of each feature vector, as well as the mean vector and covariance matrix of each dis-
tribution. These quantities are evaluated by ML estimation via the Expectation-Maximization (EM)
algorithm.

If x is a matrix, the rows should be sorted by increasing unit label and unit should be a nonde-
creasing sequence of integers, for example (1,...,1,2,...,2,....n,...,n) with each integer 1,...,n
replicated m times.

The arguments mu and V should be specified only if a good guess is available for these parameters.

Otherwise bad starting values may cause the EM algorithm to converge to a local maximum of the
likelihood function quite far from the global maximum.

match.gaussmix 9

If method is set to exact (default), the class probabilities of the feature vectors (given the data) are
calculated exactly at each iteration of the EM algorithm. This operation can be slow as it involves
calculating the permanent of matrices. The argument method can be set to approximate to speed
up calculations, but this option is not recommended in general as the approximations used are very
crude and may produce "bad" EM solutions.

The optional argument control can be specified with these fields: maxit, maximum number of
EM iterations (default=1e4); eps, relative tolerance for EM convergence (default=1e-8), the EM
algorithm stops if the relative increase in log-likelihood between two iterations is less than this
tolerance; verbose, set to TRUE to display algorithm progress (default=FALSE).

Value

A list of class matchFeat with fields

sigma permutations that best match feature vectors across units ((m2, n) matrix)

cluster associated clusters (=inverse permutations)

P conditional probability that a feature vector is assigned to its “true’ label ((m, n) matrix)

mu MLE of true mean vectors ((p, m) matrix)

V MLE of true covariance matrices ((p, p, m) array or (p, p)matrix if equal.variance=TRUE)

loglik Maximum value of log-likelihood

References

Degras (2022) "Scalable feature matching across large data collections." doi:10.1080/10618600.2022.2074429
‘McLachlan and Krishnan (2008). The EM Algorithm and Extensions. ¢

See Also

match.2x, match.bca, match.bca.gen, match.kmeans, match.rec, match. template

Examples

data(optdigits)

x <- optdigits$x

label <- optdigits$label

m <- length(unique(label))

n <- length(unique(optdigits$unit))

Randomly permute labels to make problem harder
for (i in 1:n)

{

idx <- seq.int((i-1) * m+ 1, i * m)

sigma <- sample.int(m)

x[idx,] <- x[idx[sigmal,]

label[idx] <- label[idx[sigmall]

3

Fit Gaussian mixture model

https://doi.org/10.1080/10618600.2022.2074429

10 match.kmeans

fit <- match.gaussmix(x, unit = n)

Calculate Rand index
Rand.index(fit$cluster,label)

match.kmeans K-Means Matching Algorithm

Description
This function matches collections of feature vectors in a one-to-one fashion using a k-means-like
method.

Usage

match.kmeans(x, unit = NULL, w = NULL, method = c("hungarian”, "bruteforce"),
control = list())

Arguments
X data: matrix of dimensions (mn, p) or 3D array of dimensions (p, m,n) with
m = number of labels/classes, n = number of sample units, and p = number of
variables)
unit integer (= number of units) or vector mapping rows of x to sample units (length
mn). Must be specified only if x is a matrix.
w weights for the (squared Euclidean) loss function. Can be specified as single
positive number, p-vector, or p X p positive definite matrix
method method for linear assignment problem: hungarian algorithm or bruteforce
control optional list of tuning parameters
Details

Given a set of n units or datasets, each having m unlabeled feature vectors, the one-to-one matching
problem is to find a set of n labels that produce the best match of feature vectors across units. The
objective function to minimize is the sum of (weighted) squared Euclidean distances between all
pairs of feature vectors having the same label. This amounts to minimizing the sum of the within-
label variances. The sample means and sample covariances of the matched feature vectors are
calculated as a post-processing step.

If x is a matrix, the rows should be sorted by increasing unit label and unit should be a nonde-
creasing sequence of integers, for example (1,...,1,2,...,2,....n,...,n) with each integer 1,...,n
replicated m times.

The argument w can be specified as a vector of positive numbers (will be recycled to length p if
needed) or as a positive definite matrix of size (p, p).

The optional argument control is a list with three fields: sigma, starting point for the optimization
((m,n) matrix of permutations; maxit, maximum number of iterations; and equal.variance,
logical value that specifies whether the returned sample covariance matrices V for matched features
should be equal between labels/classes (TRUE) or label-specific (FALSE, default).

match.kmeans 11

Value

A list of class matchFeat with components

sigma best set of permutations for feature vectors ((m,n) matrix)
cluster associated clusters (= inverse permutations)

cost minimum objective value

mu sample mean for each class/label ((p, m) matrix)

V sample covariance for each class/label ((p, m) matrix

call function call

References

Degras (2022) "Scalable feature matching across large data collections." doi:10.1080/10618600.2022.2074429
https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/Assignment_problem
https://en.wikipedia.org/wiki/Hungarian_algorithm

See Also

match.2x, match.bca, match.bca.gen, match.gaussmix, match.rec, match.template

Examples

Generate data

m<-3
n<-10
p<-5

mu <- matrix(rnorm(p*m),p,m)
sigma <- 0.1
x <- array(as.vector(mu) + rnorm(p*m*n,sigma), c(p,m,n))

Match all feature vectors
result <- match.kmeans(x)

Display results
result$objective # cost function
xmatched <- array(dim=dim(x))

re-arranged (matched) feature vectors
for (i in 1:n){
xmatched[,,i] <- x[,result$sigmal,i],i]}

https://doi.org/10.1080/10618600.2022.2074429
https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/Assignment_problem
https://en.wikipedia.org/wiki/Hungarian_algorithm

12 match.rec

match.rec Recursive Initialization Method

Description

RECURI algorithm of Bandelt et al (2004) to find starting point in the multidimensional assignment
problem with decomposable costs (MDADC)

Usage

match.rec(x, unit = NULL, w = NULL, control = list())

Arguments
X data: matrix of dimensions (mn, p) or 3D array of dimensions (p, m,n) with
m = number of labels/classes, n = number of sample units, and p = number of
variables)
unit integer (=number of units) or vector mapping rows of x to sample units (Iength
mn). Must be specified only if x is a matrix.
w weights for loss function: single positive number, p-vector of length, or (p, p)
positive definite matrix
control tuning parameters
Value

A list of class matchFeat with components

sigma best set of permutations for feature vectors ((m, n) matrix)
cluster associated clusters (= inverse permutations)

cost minimum objective value

mu sample mean for each class/label ((p, m) matrix)

V sample covariance for each class/label ((p, m) matrix

call function call

References

Degras (2022) "Scalable feature matching across large data collections." doi:10.1080/10618600.2022.2074429
Bandelt, Maas, and Spieksma (2004), "Local search heuristics for multi-index assignment problems
with decomposable costs." doi:10.1057/palgrave.jors.2601723

See Also

match.2x, match.bca, match.gaussmix, match.template, match.kmeans

https://doi.org/10.1080/10618600.2022.2074429
https://doi.org/10.1057/palgrave.jors.2601723

match.template

Examples

data(optdigits)

13

m <- length(unique(optdigits$label)) # number of classes
n <- nrow(optdigits$x) / m # number of units

Use function with data in matrix form
fitl <- match.rec(optdigits$x, unit=n)

Use function with data in array form
p <- ncol(optdigits$x)

x <- t(optdigits$x)

dim(x) <- c(p,m,n)

fit2 <- match.rec(x)

match.template

Template Matching

Description

This function solves the multidimensional assignment problem with decomposable costs (MDADC)
by matching the data to a pre-specified set of vectors (the template). The dissimilarity function is
the squared Euclidean distance.

Usage

match.template(x, template = 1L, unit = NULL, w = NULL,
method = c("hungarian”, "bruteforce”), equal.variance = FALSE)

Arguments

X

template

unit

method

equal.variance

data: matrix of dimensions mn x p or 3D array of dimensions (p, m,n) with
m = number of labels/classes, n = number of sample units, and p = number of
variables)

integer (= which sample unit to take as template) or (p, m) matrix

integer (=number of units/datasets) or vector mapping rows of x to sample units
(length mn). Must be specified only if x is a matrix.

weights for the loss function. Can be specified as a p-vector of diagonal weights
or as a full p x p (positive definite) matrix

method for the linear assignment problem: hungarian algorithm or bruteforce

logical; if TRUE, resp. FALSE, return common, resp. label-specific, covariance
of matched features

14 match.template

Details

Given n datasets or statistical units, each containing m feature vectors, the one-to-one matching
problem is to find a set of n label permutations that produce the best match of feature vectors across
units. The objective function to minimize is the sum of squared (Euclidean) distances between all
feature vectors having the same (new) label. This amounts to minimizing the sum of the within-label
variances.

The template-based method consists in relabeling successively each sample unit to best match a
template matrix of feature vectors. This method is very fast but its optimization performance is
only as good as the template. For best results, the template should be representative of the collected
data.

If x is a matrix, the rows should be sorted by increasing unit label and unit should be a nonde-
creasing sequence of integers, for example (1,...,1,2,...,2,....n,...,n) with each integer 1,...,n
replicated m times.

The argument w can be specified as a vector of positive numbers (will be recycled to length p if
needed) or as a positive definite matrix of size (p, p).

Value

A list of class matchFeat with fields

sigma best assignement as set of permutations (mm X n matrix)
cluster best assignement as cluster indicators (m X n matrix)
objective minimum objective value

mu mean vector for each class/label (p X m matrix)

V covariance matrix for each class/label (p x p x m array if equal.variance is FALSE, p x p
matrix otherwise

call function call

References

Degras (2022) "Scalable feature matching across large data collections." doi:10.1080/10618600.2022.2074429
https://en.wikipedia.org/wiki/Assignment_problem
https://en.wikipedia.org/wiki/Hungarian_algorithm

See Also

match.2x, match.bca, match.bca.gen, match.gaussmix, match.kmeans, match.rec

Examples

Generate data

n<-10
k <- 3
d<-5

mu <- matrix(1:k, nrow=d, ncol=k, byrow=TRUE)
sigma <- 0.3
x <- array(mu, c(d,k,n)) + rnorm(dxk*n,sigma)

https://doi.org/10.1080/10618600.2022.2074429
https://en.wikipedia.org/wiki/Assignment_problem
https://en.wikipedia.org/wiki/Hungarian_algorithm

objective.fun 15

Match all feature vectors with first case as template
result <- match.template(x,1)

Display results

result$cost # cost function

xmatched <- array(dim=dim(x))

re-arranged (matched) feature vectors

for (i in 1:n)

xmatched[,,i] <- x[,result$sigmal,i],i]

objective.fun Calculate Cost of Multidimensional Assignment

Description
Calculates the objective value in the multidimensional assignment problem with decomposable
costs (MDADC). The dissimilarity function used in this problem is the squared Euclidean distance.
Usage

objective.fun(x, sigma = NULL, unit = NULL, w = NULL)

Arguments
X data: matrix of dimensions (mn, p) or 3D array of dimensions (p, m,n) with
m = number of labels/classes, n = number of sample units, and p = number of
variables)
sigma permutations: matrix of dimensions (m,n)
unit integer (=number of units) or vector mapping rows of x to sample units (length
mn). Must be specified only if x is a matrix.
w weights for loss function: single positive number, p-vector of length, or (p, p)
positive definite matrix
Details
Given n datasets having each m vectors of same size, Say T11, ..., T1my s Tnls ---s Tnm, and permu-

tations o1, ..., 0, of 1, ..., m, the function calculates 1/(n(n—1))sum; jsumg||2; sigma, (k) -z, -
; I

where ¢ and n run from 1 to n and & runs from 1 to m. This is the objective value (1) of Degras
(2021), up to the factor 1/(n(n — 1)).

Value

Objective value

References

Degras (2022) "Scalable feature matching across large data collections." doi:10.1080/10618600.2022.2074429

https://doi.org/10.1080/10618600.2022.2074429

16 objective.gen.fun

See Also

objective.gen.fun

Examples

data(optdigits)

m<- 10

n <- 100

sigma <- matrix(1:m,m,n) # identity permutations
objective.fun(optdigits$x, sigma, optdigits$unit)

objective.gen.fun Objective Value in One-To-One Feature Matching with Balanced or
Unbalanced Data

Description

Calculates the objective value in the multidimensional assignment problem with decomposable
costs (MDADC). The dissimilarity function used in this problem is the squared Euclidean distance.
The data can be balanced OR unbalanced.

Usage

objective.gen.fun(x, unit, cluster)

Arguments
X data matrix with feature vectors in rows
unit vector of unit labels (length should equal number of rows in x)
cluster vector of cluster labels (length should equal number of rows in x)
Details

See equation (2) in Degras (2022). This function gives the same value as objective. fun when the
data are balanced.

Value

Objective value

References

Degras (2022) "Scalable feature matching across large data collections." doi:10.1080/10618600.2022.2074429

See Also

objective.fun

https://doi.org/10.1080/10618600.2022.2074429

optdigits 17

Examples

data(optdigits)
m<- 10
n <- 100

Balanced example: both 'objective.fun' and 'objective.gen.fun' work
sigma <- matrix(1:m,m,n)

cluster <- rep(1:m,n)

objective.fun(optdigits$x, sigma, optdigits$unit)
objective.gen.fun(optdigits$x, optdigits$unit, cluster)

Unbalanced example
idx <- 1:999
objective.gen.fun(optdigits$x[idx,], optdigits$unit[idx], cluster[idx])

optdigits Handwritten Digits Data

Description

Digitized images of handwritten digits used in optical recognition tasks

Usage

data("optdigits")

Format

The format is:

List of 2

$x:int[1:1000, 1:6410000000000 ...
$ label: int [1:100010123456789 ...

Details

This is a subset of a larger dataset containing handwritten digits contributed by 30 people on a
preprinted form. The forms were converted to normalized bitmaps of size 32x32 which were divided
into nonoverlapping blocks of size 4x4. The number of pixels was counted in each block, producing
a matrix of size 8x8 with integer coefficients ranging in 0..16. These matrix are vectorized in
the rows of optdigits$x. The corresponding digits are in optdigits$label. 100 examples are
available for each digit 0..9.

Source

UCI Machine Learning Repository. https://archive.ics.uci.edu/ml/datasets/Optical+
Recognitiontof+Handwritten+Digits

https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits

18

References

predict.matchFeat

Alpaydin and Kaynak (1998). Cascading Classifiers. ftp://ftp.icsi.berkeley.edu/pub/ai/

ethem/kyb.ps.Z

Examples

data(optdigits)

Quick visualization
oldpar <- par(no.readonly = TRUE)

par(mfrow=c(2,5))
for (i in 1:10) {

mat <- matrix(optdigits$x[i,],8,8)

image(mat[,8:117,

xaxt="n", yaxt="n")

title(optdigits$labell[i])

}

par(oldpar)

predict.matchFeat

Match New Feature Vectors To Existing Clusters

Description

predict method for class "matchFeat”

Usage
S3 method for class 'matchFeat’
predict(object, newdata, unit = NULL, ...)
Arguments
object an object of class "matchFeat"”.
newdata new dataset of feature vectors
unit unit labels for new data. Only necessary if newdata is a matrix
for compatibility with the generic predict method; argument not currently
used.
Details

The function predict.matchFeat finds the best matching for new feature vectors relative to an
existing set of cluster/class centers. If codeobject results from a call to match. gaussmix, the same
function is used for prediction (with fixed mean vectors and covariance matrices). In other cases,
the function match. template is used for prediction.

ftp://ftp.icsi.berkeley.edu/pub/ai/ethem/kyb.ps.Z
ftp://ftp.icsi.berkeley.edu/pub/ai/ethem/kyb.ps.Z

print.matchFeat 19

Value

A list of class matchFeat with fields

sigma best matching as set of permutations ((m, n) matrix)
cluster best matching as cluster indicators ((m, n)-matrix)
objective minimum objective value

mu mean vector for each class/label ((p, m) matrix)

V covariance matrix for each class/label ((p, p, m) array if equal.variance is FALSE, (p, p) ma-
trix otherwise

call function call

See Also

print.matchFeat, summary.matchFeat

Examples

data(optdigits)

train.result <- match.bca(optdigits$x[1:900,], optdigits$unit[1:900])

test.result <- predict(train.result, optdigits$x[901:1000,], optdigits$unit[901:1000])
test.result

print.matchFeat Print a matchFeat Object

Description

print method for class "matchFeat”.

Usage
S3 method for class 'matchFeat’
print(x,...)
Arguments
X an object of class "matchFeat"”.
for compatibility with the generic print method; argument not currently used.
Details

The function print.matchFeat concisely displays the information of an object of class "matchFeat”.
More precisely it shows the data range, bandwidth used in local polynomial estimation, and key in-
formation on SCB and statistical tests.

20 Rand.index

Value

No return value, called for side effects

See Also

predict.matchFeat, summary.matchFeat

Examples

data(optdigits)
result <- match.bca(optdigits$x, optdigits$unit)
print(result)

Rand.index Rand Index of Agreement Between Two Partitions

Description

Calculates the Rand Index between two partitions of a set

Usage

Rand.index(x, y)

Arguments

X first partition vector

y second partition vector
Details

The two vectors x and y must have equal length. Given a set S and two partitions X and Y of S, the
Rand index is the proportion of pairs of elements in S’ (out of all pairs) that are either concordant
in both X and Y (i.e., they belong to the same member of X and to the same member of Y') or
discordant (i.e., not concordant) in both X and Y.

Value

The Rand index (not adjusted for chance)

References

W. M. Rand (1971). "Objective criteria for the evaluation of clustering methods"
https://en.wikipedia.org/wiki/Rand_index

https://en.wikipedia.org/wiki/Rand_index

summary.matchFeat

Examples

Example 1

X <- sample.int(3, 20, replace = TRUE)
y <- sample.int(3, 20, replace = TRUE)
table(x,y)

Rand.index(x,y)

Example 2

data(optdigits)

label <- optdigits$label

m <- length(unique(label)) # 10

n <- length(unique(optdigits$unit)) # 100
dim(label) <- c(m,n)

p <- ncol(optdigits$x) # 64

x <- array(t(optdigits$x),c(p,m,n))

Permute data and labels to make problem harder
for (i in 1:n) {

sigma <- sample.int(m)

x[,,i] <- x[,sigma,i]

label[,i] <- label[sigma,il]

3

Compare Rand indices of matching methods
Rand.index(match.bca(x)$cluster, label)
Rand.index(match.rec(x)$cluster, label)
Rand.index(match. template(x)$cluster, label)
Rand.index(match.kmeans(x)$cluster, label)

summary.matchFeat Summarize a matchFeat Object

Description

summary method for class "matchFeat”

Usage
S3 method for class 'matchFeat’
summary (object, ...)

Arguments
object an object of class "matchFeat”

additional arguments; not currently used.

22 summary.matchFeat

Details

The function summary.matchFeat displays all fields of a matchFeat object at the exception of X,
y, par, nonpar, normscb, and bootscb which are potentially big. It provides information on the
function call, data, local polynomial fit, SCB, and statistical tests.

Value

No return value, called for side effects

See Also

predict.matchFeat, print.matchFeat

Examples

data(optdigits)
result <- match.bca(optdigits$x, optdigits$unit)
summary (result)

Index

* EM algorithm
match.gaussmix, 8

+ datasets
optdigits, 17

+ methods
predict.matchFeat, 18
print.matchFeat, 19
summary .matchFeat, 21

+x models
match.gaussmix, 8

* optimize
match.gaussmix, 8

* predict
predict.matchFeat, 18

* print
print.matchFeat, 19

match.2x,2,3,6,7,9,11, 12, 14
match.bca, 2,4,4,7,9,11, 12, 14
match.bca.gen, 2,4,6,6,7,9,11, 14
match.gaussmix, 2,4,6, 7,8, 11, 12, 14, 18
match.kmeans, 2, 4,6, 7,9, 10, 12, 14
match.rec,2,4,6,7,9,11,12, 14
match.template, 2,4,6, 7,9, 11, 12,13, 18
matchFeat-package, 2

objective.fun, 15, 16
objective.gen.fun, 16, 16
optdigits, 17

predict.matchFeat, 18, 20, 22
print.matchFeat, 19, 19, 22

Rand.index, 20

summary .matchFeat, 19, 20, 21

23

	matchFeat-package
	match.2x
	match.bca
	match.bca.gen
	match.gaussmix
	match.kmeans
	match.rec
	match.template
	objective.fun
	objective.gen.fun
	optdigits
	predict.matchFeat
	print.matchFeat
	Rand.index
	summary.matchFeat
	Index

