
Package ‘magi’
June 22, 2024

Type Package

Title MAnifold-Constrained Gaussian Process Inference

Version 1.2.4

Date 2024-06-21

Encoding UTF-8

Description
Provides fast and accurate inference for the parameter estimation problem in Ordinary Differential
Equations, including the case when there are unobserved system components. Imple-
ments the MAGI method
(MAnifold-constrained Gaussian process Infer-
ence) of Yang, Wong, and Kou (2021) <doi:10.1073/pnas.2020397118>.
A user guide is provided by the accompanying software pa-
per Wong, Yang, and Kou (2024) <doi:10.18637/jss.v109.i04>.

URL https://doi.org/10.18637/jss.v109.i04

License MIT + file LICENSE

VignetteBuilder knitr

Imports Rcpp (>= 1.0.6), gridExtra, gridBase, grid, methods, deSolve

LinkingTo Rcpp, RcppArmadillo, BH, roptim

RoxygenNote 7.3.1

Suggests testthat, mvtnorm, covr, knitr, MASS, rmarkdown, markdown

Depends R (>= 3.6.0)

NeedsCompilation yes

Author Shihao Yang [aut, cre] (<https://orcid.org/0000-0003-3910-4969>),
Samuel W.K. Wong [aut] (<https://orcid.org/0000-0002-7325-7267>),
S.C. Kou [ctb, cph] (Contributor of MAGI method development)

Maintainer Shihao Yang <shihao.yang@isye.gatech.edu>

Repository CRAN

Date/Publication 2024-06-22 17:30:02 UTC

1

https://doi.org/10.1073/pnas.2020397118
https://doi.org/10.18637/jss.v109.i04
https://doi.org/10.18637/jss.v109.i04
https://orcid.org/0000-0003-3910-4969
https://orcid.org/0000-0002-7325-7267

2 calCov

Contents

calCov . 2
FNdat . 4
fnmodelODE . 5
gpcov . 6
gpmean . 7
gpsmoothing . 8
gpsmoothllik . 9
hes1modelODE . 10
is.magioutput . 11
magi . 12
MagiPosterior . 13
MagiSolver . 14
plot.magioutput . 17
ptransmodelODE . 19
setDiscretization . 21
summary.magioutput . 22
testDynamicalModel . 23

Index 25

calCov Calculate stationary Gaussian process kernel

Description

Covariance calculations for Gaussian process kernels. Currently supports matern, rbf, compact1,
periodicMatern, generalMatern, and rationalQuadratic kernels. Can also return m_phi and other
additional quantities useful for ODE inference.

Usage

calCov(
phi,
rInput,
signrInput,
bandsize = NULL,
complexity = 3,
kerneltype = "matern",
df,
noiseInjection = 1e-07

)

calCov 3

Arguments

phi the kernel hyper-parameters. See details for hyper-parameter specification for
each kerneltype.

rInput the distance matrix between all time points s and t, i.e., |s - t|

signrInput the sign matrix of the time differences, i.e., sign(s - t)

bandsize size for band matrix approximation. See details.

complexity integer value for the complexity of the kernel calculations desired:

• 0 includes C only
• 1 additionally includes Cprime, Cdoubleprime, dCdphi
• 2 or above additionally includes Ceigen1over, CeigenVec, Cinv, mphi, Kphi,

Keigen1over, KeigenVec, Kinv, mphiLeftHalf, dCdphiCube

See details for their definitions.

kerneltype must be one of matern, rbf, compact1, periodicMatern, generalMatern,
rationalQuadratic. See details for the kernel formulae.

df degrees of freedom, for generalMatern and rationalQuadratic kernels only.
Default is df=2.01 for generalMatern and df=0.01 for rationalQuadratic.

noiseInjection a small value added to the diagonal elements of C and Kphi for numerical sta-
bility

Details

The covariance formulae and the hyper-parameters phi for the supported kernels are as follows.
Stationary kernels have C(s, t) = C(r) where r = |s − t| is the distance between the two time
points. Generally, the hyper-parameter phi[1] controls the overall variance level while phi[2]
controls the bandwidth.

matern This is the simplified Matern covariance with df = 5/2:

C(r) = phi[1] ∗ (1 +
√
5r/phi[2] + 5r2/(3phi[2]2)) ∗ exp(−

√
5r/phi[2])

rbf
C(r) = phi[1] ∗ exp(−r2/(2phi[2]2))

compact1
C(r) = phi[1] ∗max(1− r/phi[2], 0)4 ∗ (4r/phi[2] + 1)

periodicMatern Define r′ = | sin(rπ/phi[3]) ∗ 2|. Then the covariance is given by C(r′) using
the Matern formula.

generalMatern

C(r) = phi[1]∗2(1−df)/Γ(df)∗(
√
(2.0∗df)∗r/phi[2])df∗besselK(

√
(2.0∗df)∗r/phi[2], df)

where besselK is the modified Bessel function of the second kind.

rationalQuadratic
C(r) = phi[1] ∗ (1 + r2/(2dfphi[2]2))(− df)

The kernel calculations available and their definitions are as follows:

4 FNdat

C The covariance matrix corresponding to the distance matrix rInput.

Cprime The cross-covariance matrix dC(s, t)/ds.

Cdoubleprime The cross-covariance matrix d2C(s, t)/dsdt.

dCdphi A list with the matrices dC/dphi for each element of phi.

Ceigen1over The reciprocals of the eigenvalues of C.

CeigenVec Matrix of eigenvectors of C.

Cinv The inverse of C.

mphi The matrix Cprime * Cinv.

Kphi The matrix Cdoubleprime - Cprime * Kinv * t(Cprime).

Keigen1over The reciprocals of the eigenvalues of Kphi.

Kinv The inverse of Kphi.

mphiLeftHalf The matrix Cprime * CeigenVec.

dCdphiCube dC/dphi as a 3-D array, with the third dimension corresponding to the elements of
phi.

If bandsize is a positive integer, additionally CinvBand, mphiBand, and KinvBand are provided in
the return list, which are band matrix approximations to Cinv, mphi, and Kinv with the specified
bandsize.

Value

A list containing the kernel calculations included by the value of complexity.

Examples

foo <- outer(0:40, t(0:40), '-')[, 1,]
r <- abs(foo)
signr <- -sign(foo)
calCov(c(0.2, 2), r, signr, bandsize = 20, kerneltype = "generalMatern", df = 2.01)

FNdat Dataset of noisy observations from the FitzHugh-Nagumo (FN) equa-
tions

Description

The classic FN equations model the spike potentials of neurons, where system components V and
R are the voltage and recovery variables, respectively.

V and R are governed by the following differential equations:

dV

dt
= c(V − V 3

3
+R)

fnmodelODE 5

dR

dt
= −1

c
(V − a+ bR)

where θ = (a, b, c) are system parameters. This dataset was generated by first numerically solving
these ODEs from t = 0 to t = 20, with initial conditions V (0) = −1 and R(0) = 1 and parameters
θ = (0.2, 0.2, 3). The system components were taken to be measured at 28 observation time points
(as indicated in time column) with additive Gaussian noise (standard deviation 0.2).

Usage

data(FNdat)

Format

A data frame with 28 rows and 3 columns (time, V , R).

References

FitzHugh, R (1961). Impulses and Physiological States in Theoretical Models of Nerve Membrane.
Biophysical Journal, 1(6), 445–466.

fnmodelODE The FitzHugh-Nagumo (FN) equations

Description

The classic FN equations model the spike potentials of neurons, where system components X =
(V,R) represent the voltage and recovery variables, respectively.

V and R are governed by the following differential equations:

dV

dt
= c(V − V 3

3
+R)

dR

dt
= −1

c
(V − a+ bR)

where θ = (a, b, c) are system parameters.

Usage

fnmodelODE(theta, x, tvec)

fnmodelDx(theta, x, tvec)

fnmodelDtheta(theta, x, tvec)

6 gpcov

Arguments

theta vector of parameters.
x matrix of system states (one per column) at the time points in tvec.
tvec vector of time points

Value

fnmodelODE returns an array with the values of the derivatives Ẋ .
fnmodelDx returns a 3-D array with the values of the gradients with respect to X .
fnmodelDtheta returns a 3-D array with the values of the gradients with respect to θ.

References

FitzHugh, R (1961). Impulses and Physiological States in Theoretical Models of Nerve Membrane.
Biophysical Journal, 1(6), 445–466.

Examples

theta <- c(0.2, 0.2, 3)
x <- matrix(1:10, nrow = 5, ncol = 2)
tvec <- 1:5

fnmodelODE(theta, x, tvec)

gpcov Conditional covariance of Gaussian process given observations

Description

Compute the conditional covariance of a Gaussian process, given a vector of observations, hyper-
parameters phi, and noise standard deviation sigma.

Usage

gpcov(yobs, tvec, tnew, phi, sigma, kerneltype = "generalMatern")

Arguments

yobs vector of observations
tvec vector of time points corresponding to observations
tnew vector of time points at which the conditional covariance should be computed
phi vector of hyper-parameters for the covariance kernel (kerneltype)
sigma the noise level (if known). By default, both phi and sigma are estimated. If a

value for sigma is supplied, then sigma is held fixed at the supplied value and
only phi is estimated.

kerneltype the covariance kernel, types matern, rbf, compact1, periodicMatern, generalMatern
are supported. See calCov for their definitions.

gpmean 7

Value

The conditional covariance matrix for the GP evaluated at the time points in tnew.

Examples

Load Fitzhugh-Nagumo dataset
data(FNdat)

tnew <- seq(15, 20, by = 0.5)

GP covariance of V component at time points in tnew given observations
gpcov(FNdat$V, FNdat$time, tnew, c(2.3, 1.2), 0.2)

gpmean Conditional mean of Gaussian process given observations

Description

Compute the conditional mean of a Gaussian process (and optionally, its derivative), given a vector
of observations, hyper-parameters phi, and noise standard deviation sigma.

Usage

gpmean(
yobs,
tvec,
tnew,
phi,
sigma,
kerneltype = "generalMatern",
deriv = FALSE

)

Arguments

yobs vector of observations

tvec vector of time points corresponding to observations

tnew vector of time points at which the conditional mean should be computed

phi vector of hyper-parameters for the covariance kernel (kerneltype)

sigma the noise level (if known). By default, both phi and sigma are estimated. If a
value for sigma is supplied, then sigma is held fixed at the supplied value and
only phi is estimated.

kerneltype the covariance kernel, types matern, rbf, compact1, periodicMatern, generalMatern
are supported. See calCov for their definitions.

deriv logical; if true, the conditional mean of the GP’s derivative is also computed

8 gpsmoothing

Value

A vector with the values of the conditional mean function evaluated at the time points in tnew. If
deriv = TRUE, returned with an additional attribute deriv that contains the values of the conditional
mean of the GP derivative evaluated at the time points in tnew.

Examples

Load Fitzhugh-Nagumo dataset
data(FNdat)

tnew <- seq(0, 20, by = 0.5)

GP mean of V component at time points in tnew given observations
gpmean(FNdat$V, FNdat$time, tnew, c(2.3, 1.2), 0.2)

gpsmoothing Gaussian process smoothing

Description

Estimate hyper-parameters phi and noise standard deviation sigma for a vector of observations
using Gaussian process smoothing.

Usage

gpsmoothing(yobs, tvec, kerneltype = "generalMatern", sigma = NULL)

Arguments

yobs vector of observations

tvec vector of time points corresponding to observations

kerneltype the covariance kernel, types matern, rbf, compact1, periodicMatern, generalMatern
are supported. See calCov for their definitions.

sigma the noise level (if known). By default, both phi and sigma are estimated. If a
value for sigma is supplied, then sigma is held fixed at the supplied value and
only phi is estimated.

Value

A list containing the elements phi and sigma with their estimated values.

gpsmoothllik 9

Examples

Sample data and observation times
tvec <- seq(0, 20, by = 0.5)
y <- c(-1.16, -0.18, 1.57, 1.99, 1.95, 1.85, 1.49, 1.58, 1.47, 0.96,
0.75, 0.22, -1.34, -1.72, -2.11, -1.56, -1.51, -1.29, -1.22,
-0.36, 1.78, 2.36, 1.78, 1.8, 1.76, 1.4, 1.02, 1.28, 1.21, 0.04,
-1.35, -2.1, -1.9, -1.49, -1.55, -1.35, -0.98, -0.34, 1.9, 1.99, 1.84)

gpsmoothing(y, tvec)

gpsmoothllik Marginal log-likelihood for Gaussian process smoothing

Description

Marginal log-likelihood and gradient as a function of GP hyper-parameters phi and observation
noise standard deviation sigma. For use in Gaussian process smoothing where values of phi and
sigma may be optimized.

Usage

gpsmoothllik(phisig, yobs, rInput, kerneltype = "generalMatern")

Arguments

phisig vector containing GP hyper-parameters phi and observation noise SD sigma.
See calCov for the definitions of the hyper-parameters.

yobs vector of observations

rInput distance matrix between all time points of yobs

kerneltype the covariance kernel, types matern, rbf, compact1, periodicMatern, generalMatern
are supported. See calCov for their definitions.

Value

A list with elements value and grad, which are the log-likelihood value and gradient with respect
to phisig, respectively.

Examples

Suppose phi[1] = 0.5, phi[2] = 3, sigma = 0.1
gpsmoothllik(c(0.5, 3, 0.1), rnorm(10), abs(outer(0:9, t(0:9), '-')[, 1,]))

10 hes1modelODE

hes1modelODE Hes1 equations: oscillation of mRNA and protein levels

Description

The Hes1 equations model the oscillatory cycles of protein and messenger ribonucleic acid (mRNA)
levels in cultured cells. The system components X = (P,M,H) represent the concentrations of
protein, mRNA, and the Hes1-interacting factor that provides a negative feedback loop.

P , M , and H are governed by the following differential equations:

dP

dt
= −aPH + bM − cP

dM

dt
= −dMM +

e

1 + P 2

dH

dt
= −aPH +

f

1 + P 2
− gH

where θ = (a, b, c, dM , e, f, g) are system parameters.

Usage

hes1modelODE(theta, x, tvec)

hes1modelDx(theta, x, tvec)

hes1modelDtheta(theta, x, tvec)

hes1logmodelODE(theta, x, tvec)

hes1logmodelDx(theta, x, tvec)

hes1logmodelDtheta(theta, x, tvec)

Arguments

theta vector of parameters.

x matrix of system states (one per column) at the time points in tvec.

tvec vector of time points

Value

hes1modelODE returns an array with the values of the derivatives Ẋ .

hes1modelDx returns a 3-D array with the values of the gradients with respect to X .

hes1modelDtheta returns a 3-D array with the values of the gradients with respect to θ.

hes1logmodelODE, hes1logmodelDx, and hes1logmodelDtheta are the log-transformed versions
of hes1modelODE, hes1modelDx, and hes1modelDtheta, respectively.

is.magioutput 11

References

Hirata H, Yoshiura S, Ohtsuka T, Bessho Y, Harada T, Yoshikawa K, Kageyama R (2002). Os-
cillatory Expression of the bHLH Factor Hes1 Regulated by a Negative Feedback Loop. Science,
298(5594), 840–843.

Examples

theta <- c(0.022, 0.3, 0.031, 0.028, 0.5, 20, 0.3)
x <- matrix(1:15, nrow = 5, ncol = 3)
tvec <- 1:5

hes1modelODE(theta, x, tvec)

is.magioutput MagiSolver output (magioutput) object

Description

Check for and create a magioutput object

Usage

is.magioutput(object)

magioutput(...)

Arguments

object an R object
... arguments required to create a magioutput object. See details.

Details

Using the core MagiSolver function returns a magioutput object as output, which is a list that
contains the following elements:

theta matrix of MCMC samples for the system parameters θ, after burn-in.
xsampled array of MCMC samples for the system trajectories at each discretization time point,

after burn-in.
sigma matrix of MCMC samples for the observation noise SDs σ, after burn-in.
phi matrix of estimated GP hyper-parameters, one column for each system component.
lp vector of log-posterior values at each MCMC iteration, after burn-in.
y, tvec, odeModel from the inputs to MagiSolver.

Printing a magioutput object displays a brief summary of the settings used for the MagiSolver
run. The summary method for a magioutput object prints a table of parameter estimates, see
summary.magioutput for more details. Plotting a magioutput object by default shows the inferred
trajectories for each component, see plot.magioutput for more details.

12 magi

Value

logical. Is the input a magioutput object?

Examples

Set up odeModel list for the Fitzhugh-Nagumo equations
fnmodel <- list(

fOde = fnmodelODE,
fOdeDx = fnmodelDx,
fOdeDtheta = fnmodelDtheta,
thetaLowerBound = c(0, 0, 0),
thetaUpperBound = c(Inf, Inf, Inf)

)

Example FN data
data(FNdat)

Create magioutput from a short MagiSolver run (demo only, more iterations needed for convergence)
result <- MagiSolver(FNdat, fnmodel, control = list(nstepsHmc = 5, niterHmc = 50))

is.magioutput(result)

magi magi: MAnifold-Constrained Gaussian Process Inference

Description

magi is a package that provides fast and accurate inference for the parameter estimation problem in
Ordinary Differential Equations, including the case when there are unobserved system components.
In the references below, please see our software paper Wong, Yang, and Kou (2024) for a detailed
user guide and Yang, Wong, and Kou (2021) for details of the MAGI method (MAnifold-constrained
Gaussian process Inference).

References

Wong, S. W. K., Yang, S., & Kou, S. C. (2024). magi: A Package for Inference of Dynamic Systems
from Noisy and Sparse Data via Manifold-Constrained Gaussian Processes. Journal of Statistical
Software, 109 (4), 1-47. doi:10.18637/jss.v109.i04

Yang, S., Wong, S. W. K., & Kou, S. C. (2021). Inference of Dynamic Systems from Noisy and
Sparse Data via Manifold-constrained Gaussian Processes. Proceedings of the National Academy
of Sciences, 118 (15), e2020397118. doi:10.1073/pnas.2020397118

https://doi.org/10.18637/jss.v109.i04
https://doi.org/10.1073/pnas.2020397118

MagiPosterior 13

MagiPosterior MAGI posterior density

Description

Computes the MAGI log-posterior value and gradient for an ODE model with the given inputs: the
observations Y , the latent system trajectories X , the parameters θ, the noise standard deviations σ,
and covariance kernels.

Usage

MagiPosterior(
y,
xlatent,
theta,
sigma,
covAllDimInput,
odeModel,
priorTemperatureInput = 1,
useBand = FALSE

)

Arguments

y data matrix of observations

xlatent matrix of system trajectory values

theta vector of parameter values θ

sigma vector of observation noise for each system component

covAllDimInput list of covariance kernel objects for each system component. Covariance calcu-
lations may be carried out with calCov.

odeModel list of ODE functions and inputs. See details.
priorTemperatureInput

vector of tempering factors for the GP prior, derivatives, and observations, in
that order. Controls the influence of the GP prior relative to the likelihood.
Recommended values: the total number of observations divided by the total
number of discretization points for the GP prior and derivatives, and 1 for the
observations.

useBand logical: should the band matrix approximation be used? If TRUE, covAllDimInput
must include CinvBand, mphiBand, and KinvBand as computed by calCov.

Value

A list with elements value for the value of the log-posterior density and grad for its gradient.

14 MagiSolver

Examples

Trajectories from the Fitzhugh-Nagumo equations
tvec <- seq(0, 20, 2)
Vtrue <- c(-1, 1.91, 1.38, -1.32, -1.5, 1.73, 1.66, 0.89, -1.82, -0.93, 1.89)
Rtrue <- c(1, 0.33, -0.62, -0.82, 0.5, 0.94, -0.22, -0.9, -0.08, 0.95, 0.3)

Noisy observations
Vobs <- Vtrue + rnorm(length(tvec), sd = 0.05)
Robs <- Rtrue + rnorm(length(tvec), sd = 0.1)

Prepare distance matrix for covariance kernel calculation
foo <- outer(tvec, t(tvec), '-')[, 1,]
r <- abs(foo)
r2 <- r^2
signr <- -sign(foo)

Choose some hyperparameter values to illustrate
rphi <- c(0.95, 3.27)
vphi <- c(1.98, 1.12)
phiTest <- cbind(vphi, rphi)

Covariance computations
curCovV <- calCov(phiTest[,1], r, signr, kerneltype = "generalMatern")
curCovR <- calCov(phiTest[,2], r, signr, kerneltype = "generalMatern")

Y and X inputs to MagiPosterior
yInput <- data.matrix(cbind(Vobs, Robs))
xlatentTest <- data.matrix(cbind(Vtrue, Rtrue))

Create odeModel list for FN equations
fnmodel <- list(

fOde = fnmodelODE,
fOdeDx = fnmodelDx,
fOdeDtheta = fnmodelDtheta,
thetaLowerBound = c(0, 0, 0),
thetaUpperBound = c(Inf, Inf, Inf)

)

MagiPosterior(yInput, xlatentTest, theta = c(0.2, 0.2, 3), sigma = c(0.05, 0.1),
list(curCovV, curCovR), fnmodel)

MagiSolver MAnifold-constrained Gaussian process Inference (MAGI)

Description

Core function of the MAGI method for inferring the parameters and trajectories of dynamic systems
governed by ordinary differential equations.

MagiSolver 15

Usage

MagiSolver(y, odeModel, tvec, control = list())

Arguments

y data matrix of observations

odeModel list of ODE functions and inputs. See details.

tvec vector of discretization time points corresponding to rows of y. If missing,
MagiSolver will use the column named ‘time‘ in y.

control list of control variables, which may include ‘sigma‘, ‘phi‘, ‘theta‘, ‘xInit‘, ‘mu‘,
‘dotmu‘, ‘priorTemperature‘, ‘niterHmc‘, ‘nstepsHmc‘, ‘burninRatio‘, ‘step-
SizeFactor‘, ‘bandSize‘, ‘useFixedSigma‘, ‘kerneltype‘, ‘skipMissingCompo-
nentOptimization‘, ‘positiveSystem‘, ‘verbose‘. See details.

Details

The data matrix y has a column for each system component, and optionally a column ‘time‘ with
the discretization time points. If the column ‘time‘ is not provided in y, a vector of time points must
be provided via the tvec argument. The rows of y correspond to the discretization set I at which the
GP is constrained to the derivatives of the ODE system. To set the desired discretization level for
inference, use setDiscretization to prepare the data matrix for input into MagiSolver. Missing
observations are indicated with NA or NaN.

The list odeModel is used for specification of the ODE system and its parameters. It must include
five elements:

fOde function that computes the ODEs, specified with the form f(theta, x, tvec). fOde should
return a matrix where columns correspond to the system components of x, see examples.

fOdeDx function that computes the gradients of the ODEs with respect to the system components.
fOdeDx should return a 3-D array, where the slice [, i, j] is the partial derivative of the ODE
for the j-th system component with respect to the i-th system component, see examples.

fOdeDtheta function that computes the gradients of the ODEs with respect to the parameters θ.
fOdeDtheta should return a 3-D array, where the slice [, i, j] is the partial derivative of the
ODE for the j-th system component with respect to the i-th parameter in θ, see examples.

thetaLowerBound a vector indicating the lower bounds of each parameter in θ.

thetaUpperBound a vector indicating the upper bounds of each parameter in θ.

Additional control variables can be supplied to MagiSolver via the optional list control, which
may include the following:

sigma a vector of noise levels (observation noise standard deviations) σ for each component, at
which to initialize MCMC sampling. By default, MagiSolver computes starting values for
sigma via Gaussian process (GP) smoothing. If the noise levels are known, specify sigma
together with useFixedSigma = TRUE.

phi a matrix of GP hyper-parameters for each component, with rows for the kernel hyper-parameters
and columns for the system components. By default, MagiSolver estimates phi via an opti-
mization routine.

16 MagiSolver

theta a vector of starting values for the parameters θ, at which to initialize MCMC sampling. By
default, MagiSolver uses an optimization routine to obtain starting values.

xInit a matrix of values for the system trajectories of the same dimension as y, at which to ini-
tialize MCMC sampling. Default is linear interpolation between the observed (non-missing)
values of y and an optimization routine for entirely unobserved components of y.

mu a matrix of values for the mean function of the GP prior, of the same dimension as y. Default is
a zero mean function.

dotmu a matrix of values for the derivatives of the GP prior mean function, of the same dimension
as y. Default is zero.

priorTemperature the tempering factor by which to divide the contribution of the GP prior, to
control the influence of the GP prior relative to the likelihood. Default is the total number of
observations divided by the total number of discretization points.

niterHmc MCMC sampling from the posterior is carried out via the Hamiltonian Monte Carlo
(HMC) algorithm. niterHmc specifies the number of HMC iterations to run. Default is 20000
HMC iterations.

nstepsHmc the number of leapfrog steps per HMC iteration. Default is 200.

burninRatio the proportion of HMC iterations to be discarded as burn-in. Default is 0.5, which
discards the first half of the MCMC samples.

stepSizeFactor initial leapfrog step size factor for HMC. Can be a specified as a scalar (applied
to all posterior dimensions) or a vector (with length corresponding to the dimension of the
posterior). Default is 0.01, and the leapfrog step size is automatically tuned during burn-in to
achieve an acceptance rate between 60-90%.

bandSize a band matrix approximation is used to speed up matrix operations, with default band
size 20. Can be increased if MagiSolver returns an error indicating numerical instability.

useFixedSigma logical, set to TRUE if sigma is known. If useFixedSigma = TRUE, the known
values of σ must be supplied via the sigma control variable. Default is FALSE.

kerneltype the GP covariance kernel, generalMatern is the default and recommended choice.
Other available choices are matern, rbf, compact1, periodicMatern. See calCov for their
definitions.

skipMissingComponentOptimization logical, set to TRUE to skip automatic optimization for
missing components. If skipMissingComponentOptimization = TRUE, values for xInit and
phi must be supplied for all system components. Default is FALSE.

positiveSystem logical, set to TRUE if the system cannot be negative. Default is FALSE.

verbose logical, set to TRUE to output diagnostic and progress messages to the console. Default is
FALSE.

Value

MagiSolver returns an object of class magioutput which contains the following elements:

theta matrix of MCMC samples for the system parameters θ, after burn-in.

xsampled array of MCMC samples for the system trajectories at each discretization time point,
after burn-in.

sigma matrix of MCMC samples for the observation noise SDs σ, after burn-in.

plot.magioutput 17

phi matrix of estimated GP hyper-parameters, one column for each system component.

lp vector of log-posterior values at each MCMC iteration, after burn-in.

y, tvec, odeModel from the inputs to MagiSolver.

References

Wong, S. W. K., Yang, S., & Kou, S. C. (2024). ‘magi‘: A Package for Inference of Dynamic
Systems from Noisy and Sparse Data via Manifold-Constrained Gaussian Processes. *Journal of
Statistical Software*, 109 (4), 1-47. doi:10.18637/jss.v109.i04

Yang, S., Wong, S. W. K., & Kou, S. C. (2021). Inference of Dynamic Systems from Noisy and
Sparse Data via Manifold-constrained Gaussian Processes. *Proceedings of the National Academy
of Sciences*, 118 (15), e2020397118. doi:10.1073/pnas.2020397118

Examples

Set up odeModel list for the Fitzhugh-Nagumo equations
fnmodel <- list(

fOde = fnmodelODE,
fOdeDx = fnmodelDx,
fOdeDtheta = fnmodelDtheta,
thetaLowerBound = c(0, 0, 0),
thetaUpperBound = c(Inf, Inf, Inf)

)

Example noisy data observed from the FN system
data(FNdat)

Set discretization for a total of 81 equally-spaced time points from 0 to 20
yinput <- setDiscretization(FNdat, by = 0.25)

Run MagiSolver
Short sampler run for demo only, more iterations needed for convergence
MagiSolver(yinput, fnmodel, control = list(nstepsHmc = 5, niterHmc = 101))

Use 3000 HMC iterations with 100 leapfrog steps per iteration
FNres <- MagiSolver(yinput, fnmodel, control = list(nstepsHmc = 100, niterHmc = 3000))
Summary of parameter estimates
summary(FNres)
Plot of inferred trajectories
plot(FNres, comp.names = c("V", "R"), xlab = "Time", ylab = "Level")

plot.magioutput Generate plots from magioutput object

Description

Plots inferred system trajectories or diagnostic traceplots from the output of MagiSolver

https://doi.org/10.18637/jss.v109.i04
https://doi.org/10.1073/pnas.2020397118

18 plot.magioutput

Usage

S3 method for class 'magioutput'
plot(
x,
type = "traj",
obs = TRUE,
ci = TRUE,
ci.col = "skyblue",
comp.names,
par.names,
est = "mean",
lower = 0.025,
upper = 0.975,
sigma = FALSE,
lp = TRUE,
nplotcol = 3,
...

)

Arguments

x a magioutput object.

type string; the default type = "traj" plots inferred trajectories, while setting type
= "trace" generates diagnostic traceplots for the MCMC samples of the param-
eters and log-posterior values.

obs logical; if true, points will be added on the plots for the observations when type
= "traj".

ci logical; if true, credible bands/intervals will be added to the plots.

ci.col string; color to use for credible bands.

comp.names vector of system component names, when type = "traj". If provided, should
be the same length as the number of system components in X .

par.names vector of parameter names, when type = "trace". If provided, should be the
same length as the number of parameters in θ, or the combined length of θ and
σ when sigma = TRUE.

est string specifying the posterior quantity to plot as the estimate. Can be "mean",
"median", "mode", or "none". Default is "mean", which plots the posterior mean
of the MCMC samples.

lower the lower quantile of the credible band/interval, default is 0.025. Only used if
ci = TRUE.

upper the upper quantile of the credible band/interval, default is 0.975. Only used if
ci = TRUE.

sigma logical; if true, the noise levels σ will be included in the traceplots when type =
"trace".

lp logical; if true, the values of the log-posterior will be included in the traceplots
when type = "trace".

ptransmodelODE 19

nplotcol the number of subplots per row.

... additional arguments to plot.

Details

Plots the inferred system trajectories (when type = "traj") or diagnostic traceplots of the parame-
ters and log-posterior (when type = "trace") from the MCMC samples. By default, the posterior
mean is treated as the estimate of the trajectories and parameters (est = "mean"). Alternatives
are the posterior median (est = "median", taken component-wise) and the posterior mode (est =
"mode", approximated by the MCMC sample with the highest log-posterior value).

The default type = "traj" produces plots of the inferred trajectories and credible bands from the
MCMC samples, one subplot for each system component. By default, lower = 0.025 and upper =
0.975 produces a central 95% credible band when ci = TRUE. Adding the observed data points (obs
= TRUE) can provide a visual assessment of the inferred trajectories.

Setting type = "trace" generates diagnostic traceplots for the MCMC samples of the system pa-
rameters and the values of the log-posterior, which is a useful tool for informally assessing conver-
gence. In this case, the est and ci options add horizontal lines to the plots that indicate the estimate
(in red) and credible interval (in green) for each parameter.

Examples

Set up odeModel list for the Fitzhugh-Nagumo equations
fnmodel <- list(

fOde = fnmodelODE,
fOdeDx = fnmodelDx,
fOdeDtheta = fnmodelDtheta,
thetaLowerBound = c(0, 0, 0),
thetaUpperBound = c(Inf, Inf, Inf)

)

Example FN data
data(FNdat)
y <- setDiscretization(FNdat, by = 0.25)

Create magioutput from a short MagiSolver run (demo only, more iterations needed for convergence)
result <- MagiSolver(y, fnmodel, control = list(nstepsHmc = 20, niterHmc = 500))

Inferred trajectories
plot(result, comp.names = c("V", "R"), xlab = "Time", ylab = "Level")

Parameter trace plots
plot(result, type = "trace", par.names = c("a", "b", "c", "sigmaV", "sigmaR"), sigma = TRUE)

ptransmodelODE Protein transduction model

20 ptransmodelODE

Description

The protein transduction equations model a biochemical reaction involving a signaling protein that
degrades over time. The system components X = (S, Sd, R, SR, Rpp) represent the levels of
signaling protein, its degraded form, inactive state of R, S −R complex, and activated state of R.

S, Sd, R, SR and Rpp are governed by the following differential equations:

dS

dt
= −k1 · S − k2 · S ·R+ k3 · SR

dSd

dt
= k1 · S

dR

dt
= −k2 · S ·R+ k3 · SR +

V ·Rpp

Km +Rpp

dSR

dt
= k2 · S ·R− k3 · SR − k4 · SR

dRpp

dt
= k4 · SR − V ·Rpp

Km +Rpp

where θ = (k1, k2, k3, k4, V,Km) are system parameters.

Usage

ptransmodelODE(theta, x, tvec)

ptransmodelDx(theta, x, tvec)

ptransmodelDtheta(theta, x, tvec)

Arguments

theta vector of parameters.

x matrix of system states (one per column) at the time points in tvec.

tvec vector of time points

Value

ptransmodelODE returns an array with the values of the derivatives Ẋ .

ptransmodelDx returns a 3-D array with the values of the gradients with respect to X .

ptransmodelDtheta returns a 3-D array with the values of the gradients with respect to θ.

References

Vyshemirsky, V., & Girolami, M. A. (2008). Bayesian Ranking of Biochemical System Models.
Bioinformatics, 24(6), 833-839.

setDiscretization 21

Examples

theta <- c(0.07, 0.6, 0.05, 0.3, 0.017, 0.3)
x <- matrix(1:25, nrow = 5, ncol = 5)
tvec <- 1:5

ptransmodelODE(theta, x, tvec)

setDiscretization Set discretization level

Description

Set the discretization level of a data matrix for input to MagiSolver, by inserting time points where
the GP is constrained to the derivatives of the ODE system.

Usage

setDiscretization(dat, level, by)

Arguments

dat data matrix. Must include a column with name ‘time‘.

level discretization level (a positive integer). 2^level - 1 equally-spaced time points
will be inserted between each row of dat.

by discretization interval. As an alternative to level, time points will be inserted
(as needed) to form an equally-spaced discretization set from the first to last
observations of dat, with interval by between successive discretization points.
This can be useful when the time points in dat are unevenly spaced.

Details

Specify the desired discretization using level or by.

Value

Returns a data matrix with the same columns as dat, with rows added for the inserted discretization
time points.

Examples

dat <- data.frame(time = 0:10, x = rnorm(11))
setDiscretization(dat, level = 2)
setDiscretization(dat, by = 0.2)

22 summary.magioutput

summary.magioutput Summary of parameter estimates from magioutput object

Description

Computes a summary table of parameter estimates from the output of MagiSolver

Usage

S3 method for class 'magioutput'
summary(
object,
sigma = FALSE,
par.names,
est = "mean",
lower = 0.025,
upper = 0.975,
digits = 3,
...

)

Arguments

object a magioutput object.

sigma logical; if true, the noise levels σ will be included in the summary.

par.names vector of parameter names for the summary table. If provided, should be the
same length as the number of parameters in θ, or the combined length of θ and
σ when sigma = TRUE.

est string specifying the posterior quantity to treat as the estimate. Default is est
= "mean", which treats the posterior mean as the estimate. Alternatives are
the posterior median (est = "median", taken component-wise) and the poste-
rior mode (est = "mode", approximated by the MCMC sample with the highest
log-posterior value).

lower the lower quantile of the credible interval, default is 0.025.

upper the upper quantile of the credible interval, default is 0.975.

digits integer; the number of significant digits to print.

... additional arguments affecting the summary produced.

Details

Computes parameter estimates and credible intervals from the MCMC samples. By default, the pos-
terior mean is treated as the parameter estimate, and lower = 0.025 and upper = 0.975 produces a
central 95% credible interval.

testDynamicalModel 23

Value

Returns a matrix where rows display the estimate, lower credible limit, and upper credible limit of
each parameter.

Examples

Set up odeModel list for the Fitzhugh-Nagumo equations
fnmodel <- list(

fOde = fnmodelODE,
fOdeDx = fnmodelDx,
fOdeDtheta = fnmodelDtheta,
thetaLowerBound = c(0, 0, 0),
thetaUpperBound = c(Inf, Inf, Inf)

)

Example FN data
data(FNdat)

Create magioutput from a short MagiSolver run (demo only, more iterations needed for convergence)
result <- MagiSolver(FNdat, fnmodel, control = list(nstepsHmc = 5, niterHmc = 100))

summary(result, sigma = TRUE, par.names = c("a", "b", "c", "sigmaV", "sigmaR"))

testDynamicalModel Test dynamic system model specification

Description

Given functions for the ODE and its gradients (with respect to the system components and parame-
ters), verify the correctness of the gradients using numerical differentiation.

Usage

testDynamicalModel(modelODE, modelDx, modelDtheta, modelName, x, theta, tvec)

Arguments

modelODE function that computes the ODEs, specified with the form f(theta, x, tvec).
See examples.

modelDx function that computes the gradients of the ODEs with respect to the system
components. See examples.

modelDtheta function that computes the gradients of the ODEs with respect to the parameters
θ. See examples.

modelName string giving a name for the model
x data matrix of system values, one column for each component, at which to test

the gradients
theta vector of parameter values for θ, at which to test the gradients
tvec vector of time points corresponding to the rows of x

24 testDynamicalModel

Details

Calls test_that to test equality of the analytic and numeric gradients.

Value

A list with elements testDx and testDtheta, each with value TRUE if the corresponding gradient
check passed and FALSE if not.

Examples

ODE system and gradients for Fitzhugh-Nagumo equations: fnmodelODE, fnmodelDx, fnmodelDtheta

Example of incorrect gradient with respect to parameters theta
fnmodelDthetaWrong <- function(theta, x, tvec) {

resultDtheta <- array(0, c(nrow(x), length(theta), ncol(x)))

V = x[, 1]
R = x[, 2]

resultDtheta[, 3, 1] = V - V^3 / 3.0 - R

resultDtheta[, 1, 2] = 1.0 / theta[3]
resultDtheta[, 2, 2] = -R / theta[3]
resultDtheta[, 3, 2] = 1.0 / (theta[3]^2) * (V - theta[1] + theta[2] * R)

resultDtheta
}

Sample data for testing gradient correctness
data(FNdat)

Correct gradients
testDynamicalModel(fnmodelODE, fnmodelDx, fnmodelDtheta,

"FN equations", FNdat[, c("V", "R")], c(.5, .6, 2), FNdat$time)

Incorrect theta gradient (test fails)
testDynamicalModel(fnmodelODE, fnmodelDx, fnmodelDthetaWrong,

"FN equations", FNdat[, c("V", "R")], c(.5, .6, 2), FNdat$time)

Index

∗ datasets
FNdat, 4

calCov, 2, 6–9, 13, 16

FNdat, 4
fnmodelDtheta (fnmodelODE), 5
fnmodelDx (fnmodelODE), 5
fnmodelODE, 5

gpcov, 6
gpmean, 7
gpsmoothing, 8
gpsmoothllik, 9

hes1logmodelDtheta (hes1modelODE), 10
hes1logmodelDx (hes1modelODE), 10
hes1logmodelODE (hes1modelODE), 10
hes1modelDtheta (hes1modelODE), 10
hes1modelDx (hes1modelODE), 10
hes1modelODE, 10

is.magioutput, 11

magi, 12
magioutput, 16
magioutput (is.magioutput), 11
MagiPosterior, 13
MagiSolver, 11, 14, 21

plot.magioutput, 11, 17
ptransmodelDtheta (ptransmodelODE), 19
ptransmodelDx (ptransmodelODE), 19
ptransmodelODE, 19

setDiscretization, 15, 21
summary.magioutput, 11, 22

test_that, 24
testDynamicalModel, 23

25

	calCov
	FNdat
	fnmodelODE
	gpcov
	gpmean
	gpsmoothing
	gpsmoothllik
	hes1modelODE
	is.magioutput
	magi
	MagiPosterior
	MagiSolver
	plot.magioutput
	ptransmodelODE
	setDiscretization
	summary.magioutput
	testDynamicalModel
	Index

