Package 'ltsspca'

October 13, 2022

Type Package
Title Sparse Principal Component Based on Least Trimmed Squares
Version 0.1.0
Date 2019-09-13
Depends R (>= 3.2.0)
Maintainer Yixin Wang <wangyixin07@outlook.com></wangyixin07@outlook.com>
Description Implementation of robust and sparse PCA algorithm of Wang and Van Aelst (2019) <doi:10.1080 00401706.2019.1671234="">.</doi:10.1080>
License GPL (>= 2)
Encoding UTF-8
LazyData yes
VignetteBuilder knitr
Suggests robustbase, rrcov, stats, mvtnorm, graphics, knitr, rmarkdown, testthat
Imports Rcpp (>= 1.0.1),pracma
LinkingTo Rcpp, RcppArmadillo
RoxygenNote 6.1.1
NeedsCompilation yes
 Author Yixin Wang [aut, cre], Stefan Van Aelst [aut], Holger Cevallos Valdiviezo [ctb] (Original R code for the LTS-PCA algorithm), Tom Reynkens [ctb] (Original R code for angle in the rospca package)
Repository CRAN
Date/Publication 2019-10-09 13:20:02 UTC

R topics documented:

Angle	. 2
dataSim	. 3

Angle

Glass	4
ltspca	5
ltsspca	6
ltsspcaRw	7
mydiagPlot	8
sPCA_rSVD	9
	11

Index

Angle

Standardized last principal angle

Description

Standardised last principal angle between the subspaces generated by the columns of A and B.

Usage

Angle(A, B)

Arguments

A	numerical matrix of size p by k
В	numerical matrix of size q by l

Value

Standardised last principal angle between A and B.

Author(s)

Tom Reynkens

References

Bjorck, A. and Golub, G. H. (1973), "Numerical Methods for Computing Angles Between Linear Subspaces," *Mathematics of Computation*, 27, 579–594.

Hubert, M., Rousseeuw, P. J., and Vanden Branden, K. (2005), "ROBPCA: A New Approach to Robust Principal Component Analysis," *Technometrics*, 47, 64–79.

Hubert, M., Reynkens, T., Schmitt, E. and Verdonck, T. (2016), "Sparse PCA for High-Dimensional Data With Outliers," *Technometrics*, 58, 424–434.

dataSim

Description

the function that generates the simulation data set

Usage

```
dataSim(n = 200, p = 20, bLength = 4, a = c(0.9, 0.5, 0),
SD = c(10, 5, 2), eps = 0, eta = 25, setting = "3", seed = 123,
vc = NULL)
```

Arguments

n	number of observations
р	number of variables
bLength	the number of correlated variables in the first k blocks
а	numveric vector of length $k+1$ that contains the correlations between the variables in each block (the last block contains uncorrelated variables); by default is $(0.9, 0.5, 0)$
SD	numveric vector of length $k+1$ that contains the standard deviation of the variables in each block (the last block contains uncorrelated variables); by default is $(10, 5, 2)$
eps	proportion of outliers, default is 0
eta	parameter that contols the outlyingness, default is 25
setting	type of outliers: setting="1" generates the outliers which are outlying in the first two variables in the second block; setting="2" generates score outliers; setting="3" generates the orthogonal outliers which are easy to detect (the setting used in Hubert, et al (2016)); default is "3"
seed	random seed used to simulate the data
vc	controls the direction of the score outliers within the PC subspace, default is NULL

Value

a list with components

data	generated data matrix
ind	row indices of outliers
R	Correlation matrix of the data
Sigma	Covariance matrix of the data

Glass

Description

Glass data of Lemberge et al. (2000) containing Electron Probe X-ray Microanalysis (EPXMA) intensities for different wavelengths of 16–17th century archaeological glass vessels. This dataset was also used in Hubert et al. (2005) and Hubert et al. (2016).

Usage

Glass

Format

A data frame with columns:

A data frame with 180 observations and 750 variables. These variables correspond to EPXMA intensities for different wavelengths and are indicated by V1, V2, ..., V750.

Source

Lemberge, P., De Raedt, I., Janssens, K. H., Wei, F., and Van Espen, P. J. (2000), "Quantitative Z-Analysis of the 16–17th Century Archaelogical Glass Vessels using PLS Regression of EPXMA and μ -XRF Data," *Journal of Chemometrics*, 14, 751–763.

References

Hubert, M., Rousseeuw, P. J., and Vanden Branden, K. (2005), "ROBPCA: A New Approach to Robust Principal Component Analysis," *Technometrics*, 47, 64–79.

Hubert, M., Reynkens, T., Schmitt, E. and Verdonck, T. (2016), "Sparse PCA for High-Dimensional Data With Outliers," *Technometrics*, 58, 424–434.

Examples

```
## Not run:
   data(Glass)
```

End(Not run)

ltspca

Description

the function that computes LTS-PCA

Usage

```
ltspca(x, q, alpha = 0.5, b.choice = NULL, tol = 1e-06, N1 = 3,
N2 = 2, N2bis = 10, Npc = 10)
```

Arguments

х	the input data matrix
q	the dimension of the PC subspace
alpha	the robust parameter which takes value between 0 to 0.5, default is 0.5
b.choice	intial loading matrix; by default is NULL and the deterministic starting values will be computed by the algorithm
tol	convergence criterion
N1	the number controls the updates for a without updating b in the concentration step
N2	the number controls outer loop in the concentration step
N2bis	the number controls the outer loop for the selected b
Npc	the number controls the inner loop

Value

the object of class "Itspca" is returned

b	the unnormalized loading matrix
mu	the center estimate
WS	if the observation in included in the h-subset ws=1; otherwise ws=0
best.cand	the method which computes the best deterministic starting value in the concen- tration step

Author(s)

Cevallos Valdiviezo

References

Cevallos Valdiviezo, H., Van Aelst, S. (2019), "Fast computation of robust subspace estimators", *Computational Statistics & Data Analysis*, 134, 171–185.

ltsspca

Examples

```
## Not run:
ltspcaM <- ltspca(x = x, q = 2, alpha = 0.5)
## End(Not run)
```

ltsspca

Sparse Principal Component Analysis Based on Least Trimmed Squaers (LTS-SPCA)

Description

the function that computes the initial LTS-SPCA

Usage

```
ltsspca(x, kmax, alpha = 0.5, mu.choice = NULL, l.search = NULL,
ls.min = 1, tol = 1e-06, N1 = 3, N2 = 2, N2bis = 10,
Npc = 10)
```

Arguments

x	the input data matrix
kmax	the maximal number of PCs searched by the intial LTS-SPCA
alpha	the robust parameter which takes value between 0 to 0.5, default is 0.5
mu.choice	the center estimate fixed by the user; by default, the center will be estimated automatically by the algorithm
l.search	a list of length kmax which contains the search grids chosen by the user; default is NULL
ls.min	the smallest grid step when searching for the sparsity of each PC; default is 1
tol	convergence criterion
N1	the number controls the updates for a without updating b in the concentration step for LTS-PCA
N2	the number controls outer loop in the concentration step for LTS-PCA
N2bis	the number controls the outer loop for the selected b for both LTS-PCA and LTS-SPCA
Npc	the number controls the inner loop for both LTS-PCA and LTS-SPCA

6

ltsspcaRw

Value

the object of class "ltsspca" is returned

loadings	the initially estimated loading matrix by LTS-SPCA
mu	the center estimates associated with each PC
spca.it	the list that contains the results of LTS-SPCA when searching for the individual PCs
ls	the list that contains the final search grid for each PC direction

Author(s)

Yixin Wang

References

Wang, Y., Van Aelst, S. (2019), "Sparse Principal Component Based On Least Trimmed Squares", *Technometrics, accepted*.

Examples

ltsspcaRw

Reweighted LTS-SPCA

Description

the function that computes the reweighted LTS-SPCA

Usage

```
ltsspcaRw(x, obj, k = NULL, alpha = 0.5, co.sd = 0.25)
```

Arguments

х	the input data matrix
obj	initial LTS-SPCA object given by Itsspca function
k	dimension of the PC subspace; by default is NULL then k takes the value of kmax in the initial LTS-SPCA
alpha	the robust parameter which takes value between 0 to 0.5, default is 0.5
co.sd	cutoff value for score outlier weight, default is 0.25

Value

the object of class "ltsspcaRw" is returned

the sparse loading matrix estimated with reweighted LTS-SPCA
the estimated score matrix
the estimated eigenvalues
the center estimate
the list that contains the results of sPCA_rSVD on the reduced data
the orthonal distances with respect to the initially estimated PC subspace with all the noisy variables removed
the cutoff value for the orthogonal distances
if the observation is outlying in the orthgonal complement of the initially estimated PC subspace ws.od=0; otherwise ws.od=1
the score outlier weight, which is compared with 0.25 (by default) to flag score outliers
the cutoff value for score outlier weight, default is 0.25
if the observation is outlying with the PC subspace ws.sd=0; otherwise ws.sd=1
the retruned object when computing the score outlier weights

mydiag	Plot

Make diagnostic plot using the estimated PC subspace

Description

Make diagnostic plot using the estimated PC subspace

Usage

```
mydiagPlot(x, obj, k, alpha = 0.5, co.sd = 0.25)
```

Arguments

х	the input data matrix
obj	the returned output from rwltsspca
k	dimension of the PC subspace
alpha	the robust parameter which takes value between 0 to 0.5 , default is 0.5
co.sd	cutoff value for score outlier weight, default is 0.25

sPCA_rSVD

Value

the diagnostics of outliers

od	the orthgonal distances with respect to the k-dimensional PC subspace
ws.od	if the observation is outlying in the orthgonal complement of the PC subspace ws.od=0; otherwise ws.sd=1
co.od	the cutoff value for orthogonal distances
sc.wt	the score outlier weight, which is compared with 0.25 (by default) to flag score outliers
ws.sd	if the observation is outlying with the PC subspace ws.sd=0; otherwise ws.sd=1
co.sd	the cutoff value for score outlier weight, default is 0.25
sc.out	the retruned object when computing the score outlier weights

sPCA_rSVD	Sparse Principal Component Analysis via Regularized Singular Value
	Decompsition (sPCA-rSVD)

Description

the function that computes $sPCA_rSVD$

Usage

```
sPCA_rSVD(x, k, method = "hard", center = FALSE, scale = FALSE,
l.search = NULL, ls.min = 1)
```

Arguments

х	the input data matrix
k	the maximal number of PC's to seach for in the initial stage
method	threshold method used in the algorithm; If method = "hard" (defauls), the hard threshold function is used; if method = "soft", the soft threshold function is used; if method = "scad", the scad threshold function is used
center	if center = TRUE the data will be centered by the columnwise means; default is center = FALSE
scale	if scale = TRUE the data will be scaled by the columnwise standard deviations; default is scaled = FALSE
l.search	a list of length kmax which contains the search grids chosen by the user; default is NULL
ls.min	the smallest grid step when searching for the sparsity of each PC; default is 1

Value

an object of class "sPCA_rSVD" is returned

loadings	the sparse loading matrix estimated with sPCA_rSVD
scores	the estimated score matrix
eigenvalues	the estimated eigenvalues
spca.it	the list that contains the results of sPCA_rSVD when searching for the individ- ual PCs
ls	the list that contains the final search grid for each PC direction

References

Shen, H. and Huang, J. (2008), "Sparse principal component anlysis via regularized low rank matrix decomposition", *Journal of Multivariate Analysis*, 99, 1015–1034.

Shen, D., Shen, H., and Marron, J. (2013). "Consistency of sparse PCA in high dimensional low sample size context", *Journal of Multivariate Analysis*, 115, 315–333.

Examples

```
## Not run:
nonrobM <- sPCA_rSVD(x = x, k = 2, center = T, scale = F)
## End(Not run)
```

10

Index

* datasets Glass, 4 Angle, 2 dataSim, 3 Glass, 4 ltspca, 5 ltsspca, 6 ltsspcaRw, 7 mydiagPlot, 8 sPCA_rSVD, 9