
Package ‘lpridge’
July 9, 2025

Version 1.1-1

VersionNote Released 1.1-0 on 2023-12-07

Date 2025-07-08

Title Local Polynomial (Ridge) Regression

Description Local Polynomial Regression with Ridging.

URL https://curves-etc.r-forge.r-project.org/,

https://r-forge.r-project.org/R/?group_id=846,

https://r-forge.r-project.org/scm/viewvc.php/pkg/lpridge/?root=curves-etc,
svn://svn.r-forge.r-project.org/svnroot/curves-etc/pkg/lpridge

BugReports https://r-forge.r-project.org/R/?group_id=846

License GPL (>= 2)

NeedsCompilation yes

Author Burkhardt Seifert [aut] (S original),
Martin Maechler [cre, aut] (Packaged for R; help files, etc, ORCID:
<https://orcid.org/0000-0002-8685-9910>)

Maintainer Martin Maechler <maechler@stat.math.ethz.ch>

Repository CRAN

Date/Publication 2025-07-09 09:40:02 UTC

Contents

lpepa . 2
lpridge . 4

Index 7

1

https://curves-etc.r-forge.r-project.org/
https://r-forge.r-project.org/R/?group_id=846
https://r-forge.r-project.org/scm/viewvc.php/pkg/lpridge/?root=curves-etc
https://r-forge.r-project.org/R/?group_id=846
https://orcid.org/0000-0002-8685-9910

2 lpepa

lpepa Local polynomial regression fitting with Epanechnikov weights

Description

Fast and stable algorithm for nonparametric estimation of regression functions and their derivatives
via local polynomials with Epanechnikov weight function.

Usage

lpepa(x, y, bandwidth, deriv = 0, n.out = 200, x.out = NULL,
order = deriv+1, mnew = 100, var = FALSE)

Arguments

x vector of design points, not necessarily ordered.

y vector of observations of the same length as x.

bandwidth bandwidth(s) for nonparametric estimation. Either a number or a vector of the
same length as x.out.

deriv order of derivative of the regression function to be estimated; defaults to deriv
= 0.

n.out number of output design points where the function has to be estimated. The
default is n.out=200.

x.out vector of output design points where the function has to be estimated. The de-
fault value is an equidistant grid of n.out points from min(x) to max(x).

order integer, order of the polynomial used for local polynomials. Must be ≤ 10 and
defaults to order = deriv+1.

mnew integer forcing to restart the algorithm after mnew updating steps. The default is
mnew = 100. For mnew = 1 you get a numerically “super-stable” algorithm (see
reference SBE&G below).

var logical flag: if TRUE, the variance of the estimator proportional to the residual
variance is computed (see details).

Details

More details are described in the first reference SBE&G (1994) below. In S&G, a bad finite sample
behaviour of local polynomials for random designs was found. For practical use, we therefore
propose local polynomial regression fitting with ridging, as implemented in the function lpridge.
In lpepa, several parameters described in SBE&G are fixed either in the fortran routine or in the
R-function. There, you find comments how to change them.

For var=TRUE, the variance of the estimator proportional to the residual variance is computed, i.e.,
the exact finite sample variance of the regression estimator is var(est) = est.var * sigma^2.

lpepa 3

Value

a list including used parameters and estimator.

x vector of ordered design points.

y vector of observations ordered according to x.

bandwidth vector of bandwidths actually used for nonparametric estimation.

deriv order of derivative of the regression function estimated.

x.out vector of ordered output design points.

order order of the polynomial used for local polynomials.

mnew force to restart the algorithm after mnew updating steps.

var logical flag: whether the variance of the estimator was computed.

est estimator of the derivative of order deriv of the regression function.

est.var estimator of the variance of est (proportional to residual variance).

References

Originally available from Biostats, University of Zurich under ‘Manuscripts’, but no longer.

- Numerical stability and computational speed:
B. Seifert, M. Brockmann, J. Engel and T. Gasser (1994) Fast algorithms for nonparametric curve
estimation. J. Computational and Graphical Statistics 3, 192–213.

- Statistical properties:
Seifert, B. and Gasser, T. (1996) Finite sample variance of local polynomials: Analysis and solu-
tions. J. American Statistical Association 91(433), 267–275.

Seifert, B. and Gasser, T. (2000) Data adaptive ridging in local polynomial regression. J. Computa-
tional and Graphical Statistics 9, 338–360.

Seifert, B. and Gasser, T. (1998) Ridging Methods in Local Polynomial Regression. in: S. Weis-
berg (ed), Dimension Reduction, Computational Complexity, and Information, Vol.30 of Computing
Science & Statistics, Interface Foundation of North America, 467–476.

Seifert, B. and Gasser, T. (1998) Local polynomial smoothing. in: Encyclopedia of Statistical
Sciences, Update Vol.2, Wiley, 367–372.

Seifert, B., and Gasser, T. (1996) Variance properties of local polynomials and ensuing modifica-
tions. in: Statistical Theory and Computational Aspects of Smoothing, W. Härdle, M. G. Schimek
(eds), Physica, 50–127.

See Also

lpridge, and also lowess and loess which do local linear and quadratic regression quite a bit
differently.

https://www.ebpi.uzh.ch/

4 lpridge

Examples

data(cars)
attach(cars)

epa.sd <- lpepa(speed,dist, bandw=5) # local polynomials

plot(speed, dist, main = "data(cars) & lp epanechnikov regression")
lines(epa.sd$x.out, epa.sd$est, col="red")
lines(lowess(speed,dist, f= .5), col="orange")
detach()

lpridge Local polynomial regression fitting with ridging

Description

Fast and stable algorithm for nonparametric estimation of regression functions and their derivatives
via local polynomials and local polynomial ridge regression with polynomial weight functions.

Usage

lpridge(x, y, bandwidth, deriv=0, n.out=200, x.out=NULL,
order = NULL, ridge = NULL, weight = "epa", mnew = 100,
var = FALSE)

Arguments

x vector of design points, not necessarily ordered.

y vector of observations of the same length as x.

bandwidth bandwidth for nonparametric estimation. Either a number or a vector of the
same length as x.out.

deriv order of derivative of the regression function to be estimated; default is 0.

n.out number of output design points at which to evaluate the estimator; defaults to
200.

x.out vector of output design points at which to evaluate the estimator; By default, an
equidistant grid of n.out points from min(x) to max(x).

order order of the polynomial used for local polynomials. The default value is deriv
+ 1.

ridge ridging parameter. The default value performs a slight ridging (see "Details").
ridge = 0 leads to the local polynomial estimator without ridging.

weight kernel weight function. The default value is weight = "epa" for Epanechnikov
weights. Other weights are "bi" for biweights (square of "epa") and "tri" for
triweights (cube of "epa"). If weight is a vector, it is interpreted as vector of co-
efficients of the polynomial weight function. Thus, weight = "epa" is equivalent
to weight = c(1,0,-1).

lpridge 5

mnew force to restart the algorithm after mnew updating steps. The default value is
mnew = 100. For mnew = 1 you get a numerically "super-stable" algorithm (see
reference SBE&G below).

var logical flag: if TRUE, the variance of the estimator proportional to the residual
variance is computed (see "Details" below).

Details

described in the reference SBE&G below. Several parameters described there are fixed either in the
fortran routine or in the R-function. There, you find comments how to change them.

In S&G, a bad finite sample behavior of local polynomials for random design was found, and
ridging of the estimator was proposed. In lpridge(), we use a ridging matrix corresponding to the
smoothness assumption “The squared difference of the derivative of order deriv of the regression
function at the point of estimation and the weighted mean of design points is bounded by the residual
variance divided by the ridge parameter.”

Thus, without any smoothness assumption, ridge = 0 would be appropriate, and for a nearly con-
stant derivative of order deriv, a ridge parameter going to infinity behaves well. For equidistant
design, ridging influences the estimator only at the boundary. Asymptotically, the influence of any
non-increasing ridge parameter vanishes.

So far, our experience with the choice of a ridging parameter is limited. Therefore we have chosen
a default value which performs a slight modification of the local polynomial estimator (with denota-
tions h = bandwidth, d = deriv, and where n0 = length(x)*mean(bandwidth)/diff(range(x))
is a mean number of observations in a smoothing interval):

ridge = 5
√
n0h

2d/((2d+ 3)(2d+ 5))

For var=TRUE, the variance of the estimator proportional to the residual variance is computed, i.e.,
the exact finite sample variance of the regression estimator is var(est) = est.var * sigma^2.

Value

a list including used parameters and estimator.

x vector of ordered design points.

y vector of observations ordered according to x.

bandwidth vector of bandwidths actually used for nonparametric estimation.

deriv order of derivative of the regression function estimated.

x.out vector of ordered output design points.

order order of the polynomial used for local polynomials.

ridge ridging parameter used.

weight vector of coefficients of the kernel weight function.

mnew force to restart the algorithm after mnew updating steps.

var logical flag: whether the variance of the estimator was computed.

est estimator of the derivative of order deriv of the regression function.

est.var estimator of the variance of est (proportional to residual variance).

6 lpridge

References

The same as for lpepa.

Examples

data(cars)
attach(cars)
plot(speed, dist, main = "data(cars) & lpRIDGE Regression")

myfit <- lpridge(speed,dist,bandw = 5, ridge=0) # local polynomials
lines(myfit$x.out,myfit$est,col=2)

myridge <- lpridge(speed,dist,bandw = 5) # local pol. ridge
lines(myridge$x.out,myridge$est,col=3)
mtext("bandw = 5")
legend(5,120, c("ridge = 0", "default ridging"), col = 2:3, lty = 1)
detach()

Index

∗ smooth
lpepa, 2
lpridge, 4

loess, 3
lowess, 3
lpepa, 2, 6
lpridge, 2, 3, 4

7

	lpepa
	lpridge
	Index

