Package ‘loon.tourr’

April 9, 2024
Type Package
Title Tour in 'Loon’
Version 0.1.4
Description Implement tour algorithms in interactive graphical system 'loon'.
License GPL-2
Depends R (>= 3.4.0), tcltk, loon (> 1.3.1), tourr, methods,
Imports stats, utils, grDevices, MASS, loon.ggplot, tibble
Suggests class, magrittr, tidyverse, testthat, knitr, rmarkdown,

markdown, covr

BugReports https://github.com/z267xu/loon.tourr/issues
Encoding UTF-8
RoxygenNote 7.3.1
VignetteBuilder knitr
NeedsCompilation no

Author Zehao Xu [aut, cre],
R. Wayne Oldford [aut]

Maintainer Zehao Xu <z267xu@gmail.com>
Repository CRAN
Date/Publication 2024-04-09 09:40:02 UTC

R topics documented:

LgetPlots.l_tour. e
LgetProjection
Ilayer_callback
Ilayer_density2d e
Llayer_hull e
Llayer_trails e
LtOUr . . . o e e
TOUT_PAITS .« . . o v v o e

Index

https://github.com/z267xu/loon.tourr/issues

I_getProjection

1_getPlots.1_tour Query a loon widget

Description

A generic function to query the loon (tcl) widget from the given target

Usage

S3 method for class 'l_tour'
1_getPlots(target)

Arguments

target a loon object

Value

a loon widget

Examples

if(interactive()) {
p <- 1l_tour(iris[, -51)
1_islLoonWidget(p) # FALSE
q <- 1_getPlots(p)
1_islLoonWidget(q) # TRUE

“1_compound® widget

p <- 1_tour_pairs(tourr::fleal, -71)
1_islLoonWidget(p) # FALSE

q <- 1_getPlots(p)

1_islLoonWidget(q) # FALSE

is(q, "l_compound”) # TRUE

1_getProjection Query the matrix of projection vectors

Description

Query the matrix of projection vectors

Usage

1_getProjection(target, data)

I _layer_callback 3

Arguments
target A object returned by 1_tour
data Original data set

Value

a matrix of projection vectors

Examples

if(interactive()) {
dat <- iris[,-5]
p <- 1_tour(dat, color = iris$Species,
as.l_tour = FALSE)
scroll the bar
proj <- 1_getProjection(p, dat)
projected_object <- as.matrix(dat) %x% proj
it will not be exactly the same
plot(projected_object[,1], projected_object[,2],
col = hex12tohex6(p['color']))

1_layer_callback Tour Layer Configuration

Description

Mainly used in the 2D (or 1D) tour interactive layer configuration

Usage
1_layer_callback(target, layer, ...)
Arguments
target either a ‘1_tour‘ object or a loon widget
layer the layer need to be modified
some useful info for the layer configuration (i.e. tours, projections, etc)
Details

It is a S3 method. The object class is determined by the layer **label**

Value

this callback function does not return any object. As the slider bar is scrolled, for the specified layer,
the callback function will be fired and the layer will be configured.

4 I_layer_density2d

Examples

if(interactive() && requireNamespace("tourr”)) {
1D tour
p <- 1l_tour(iris[, -5], tour = tourr::grand_tour(1L))
add layer density
1 <- 1_layer(l_getPlots(p),
stats::density(p['x']),
label = "density")

as we scroll the bar, the density curve does not change
unless the following function is executed

1_layer_callback.density <- function(target, layer, ...) {

layer <- loon::1_create_handle(c(l_getPlots(target), layer))
den <- stats::density(target['x'])

loon::1_configure(layer,

x = den$x,
y = den$y)
invisible()
3
3
1_layer_density2d 2D density layer
Description

Two-dimensional kernel density estimation with an axis-aligned bivariate normal kernel

Usage

1_layer_density2d(
widget,
X)
Y,
h,
n = 25L,
lims = NULL,
color = "black”,
linewidth = 1,
nlevels = 10,
levels = NULL,
label = "density2d”,
parent = "root”,
index = 0,

I_layer_density2d

group = NULL,
active = TRUE

Arguments
widget
X

y
h

lims
color
linewidth

nlevels

levels

label
parent
index
group

active

Value

an 1_layer widget

Examples

if(interactive())
p <- 1_plot(iris,
1 <- 1_layer_dens

}

’

‘loon‘ widget path name as a string
The coordinates of x. See details
The coordinates of y. See details

vector of bandwidths for x and y directions. Defaults to normal reference band-
width (see bandwidth.nrd). A scalar value will be taken to apply to both direc-
tions.

Number of grid points in each direction. Can be scalar or a length-2 integer
vector.

The limits of the rectangle covered by the grid as c(x1, xu, y1, yu).
color of each contour
the line width

As described in grDevices: : contourLines: number of contour levels desired
iff levels is not supplied.

As described in grDevices: : contourLines: numeric vector of levels at which
to draw contour lines.

label used in the layers inspector

parent group layer

of the newly added layer in its parent group
separate X vector or y vector into a list by group

alogical determining whether points appear or not (default is TRUE for all points).
If a logical vector is given of length equal to the number of points, then it iden-
tifies which points appear (TRUE) and which do not (FALSE).

other arguments to modify 1_layer_line.

{
color = iris$Species)
ity2d(p)

6 I _layer_hull
1_layer_hull Layer a hull for 1oon
Description
Creates a layer which is the subset of points lying on the hull (convex or alpha) of the set of points
specified.
Usage
1_layer_hull(
widget,
X ’
Y,
color = "black”,
linewidth = 1,
label = "hull”,
parent = "root",
index = 0,
group = NULL,
active = TRUE,
)
Arguments
widget ‘loon‘ widget path name as a string
X The coordinates of x. See details
y The coordinates of y. See details
color the line color of each hull
linewidth the line width
label label used in the layers inspector
parent parent group layer
index of the newly added layer in its parent group
group separate X vector or y vector into a list by group
active alogical determining whether points appear or not (default is TRUE for all points).
If a logical vector is given of length equal to the number of points, then it iden-
tifies which points appear (TRUE) and which do not (FALSE).
other arguments to modify 1_layer_line.
Details

Coordinates: the x or y can be a list or a vector.

* If they are vectors, the argument group will be used to set the groups.

* If they are not provided, the x will be inherited from the widget

1 layer_trails

Value

an 1_layer widget

Examples

if(interactive()) {
p <- 1_plot(iris, color = iris$Species)
1 <- 1_layer_hull(p, group = iris$Species)

3

1_layer_trails

Display tour path with trails

Description

A 2D tour path with trails

Usage

1_layer_trails(

widget,
X,

y)
xpre,
ypre,

color = "black”,
linewidth = 1,
label = "trails”,
parent = "root”,
index = 0,

active = TRUE,

Arguments
widget
X
y
xpre
ypre
color
linewidth
label

‘loon‘ widget path name as a string

The coordinates of x representing the current state
The coordinates of y representing the current state
the same length of x representing the last state

the same length of y representing the last state

the color of the trail

the line width

label used in the layers inspector

parent
index

active

Value

an 1_layer widget

Examples

1 tour

parent group layer
of the newly added layer in its parent group

alogical determining whether points appear or not (default is TRUE for all points).
If a logical vector is given of length equal to the number of points, then it iden-
tifies which points appear (TRUE) and which do not (FALSE).

other arguments to modify 1_layer_line.

if(interactive()) {
p <- 1_tour(iris[, -51, color = iris$Species)
1 <- 1_layer_trails(p, color = "grey50")

}

1_tour

Tour in loon

Description

An interactive tour in loon

Usage

1_tour(
data,
scaling = c("data", "variable"”, "observation”, "sphere"),
by = NULL,
on,
as.l_tour = TRUE,
color = loon::1_getOption("color”),
tour_path = tourr::grand_tour(),
group = "color”,
start = NULL,

slicing = FALSE,
slicingDistance = NULL,

numOfTours
interpolation

30L,

= 4oL,

parent = NULL,

envir

parent.frame(),

1 _tour 9

Arguments

data a data frame with numerical data only

scaling one of ’variable’, data’, *observation’, ’sphere’, or ‘none’ to specify how the
data is scaled. See Details

by loon plot can be separated by some variables into multiple panels. This argument
can take a formula, n dimensional state names (see 1_nDimStateNames) an n-
dimensional vector and data.frame or a 1ist of same lengths n as input.

on if the x or by is a formula, an optional data frame containing the variables in the
x or by. If the variables are not found in data, they are taken from environment,
typically the environment from which the function is called.

as.1l_tour return a 1_tour object; see details

color vector with line colors. Default is given by 1_getOption(”color"”).

tour_path tour path generator, defaults to 2d grand tour

group only used for layers. As we scroll the bar, the layers are re-calculated. This
argument is used to specify which state is used to set groups (i.e. "color",
"linewidth", etc).

start projection to start at, if not specified, uses default associated with tour path

slicing whether to show a sliced scatter plot

slicingDistance
the slicing distance that if the distance between points and the projected plane
is less than this distance, points will be preserved; else points will be invisible.
The default is NULL and a suggested value will be given. See details

numOfTours the number of tours

interpolation the steps between two serial projections. The larger the value is, the smoother
the transitions would be.

parent a valid Tk parent widget path. When the parent widget is specified (i.e. not
NULL) then the plot widget needs to be placed using some geometry manager
like tkpack or tkplace in order to be displayed. See the examples below.

envir the environment to use.

named arguments to modify the serialaxes states or layouts, see details.

Details

* tour_path is a tour generator; available tours are grand_tour, dependence_tour, frozen_tour,
guided_tour, planned_tour, and etc

e Argument as.1_tour

— If set to TRUE, the function returns an 1_tour (or an 1_tour_compound) object. Essen-
tially, this object is a list with the first element being a 1oon (Tcl) widget and the second
element a matrix of projection vectors. The advantage of this setup is that the matrix
of projection vectors can be easily accessed using the *[* function (or the 1_cget func-
tion). However, a limitation is that it does not constitute a valid 1loon (Tcl) widget-calling
1_isLoonWidget would return FALSE. Consequently, many of loon’s functionalities re-
main inaccessible.

10 1 tour

— If set to FALSE, the function returns either a 1oon (Tcl) widget (where calling 1_isLoonWidget
would return TRUE) or an 1_compound object. In this case, the matrix of projection vec-
tors is not directly accessible from it. However, the 1_getProjection function can be
used to retrieve an estimated matrix of projection vectors.

* The scaling state defines how the data is scaled. The axes display O at one end and 1 at the
other. For the following explanation assume that the data is in a n x p dimensional matrix. The
scaling options are then

variable per column scaling

observation per row scaling

data whole matrix scaling

sphere transforming variables to principal components

* The default slidingDistance is suggested by Laa, U., Cook, D., & Valencia, G. (2020).
First, find the maximum Euclidean distance of each observation (centralized), say maxD. Then,
compute the "relative volume" that vRel = (maxD”(d - 2))/10, where d is the dimension of this
data set. In the end, the suggested slidingDistance is given by vRel”(1/(d - 2))

Value

an 1_tour or an 1_tour_compound object that one can query the 1oon states and a matrix projection
vectors

See Also

1_getProjection

Examples

if(interactive() && requireNamespace('tourr')) {

2D projection
fl <- tourr::fleal[, 1:6]
different scaling will give very different projections
in this dataset, scaling 'variable' will give the best separation
p <- 1_tour(fl, scaling = 'variable',

color = tourr::flea$species)
10 <- 1_layer_hull(p, group = p["color"],

color = "red", linewidth = 4)

11 <- 1_layer_density2d(p)
a ‘1_tour® object
class(p)

query the matrix of projection vectors
proj <- p['projection'] # or ‘1_getProjection(p)®
suppose the scaling is still 'observation'
new_xy <- as.matrix(

loon::1_getScaledData(data = f1,

scaling = 'observation')) %*%

proj

plot(new_xy, xlab = "V1", ylab = "V2",
col = loon::hex12tohex6(p['color']))

tour_pairs 11

A higher dimension projection

turn the “tour® to 4 dimensional space

s <= 1_tour(fl, color = tourr::flea$species,
scaling = "observation”,
tour_path = tourr::grand_tour(4L))

set ‘as.l_tour® FALSE

p <- 1l_tour(fl, scaling = 'observation',
color = tourr::flea$species)

class(p)

ERROR

p["projection”]

query the estimated matrix of projection vectors
1_getProjection(p)

facet by region

olive <- tourr::olive

p <- with(olive, 1_tour(olive[, -c(1, 2)1,
by = region,
color = area))

tour_pairs Tour Pairs Plot

Description

A nD tour path with a scatterplot matrix (the default tour is a 4D tour; by setting ‘tour_path‘ to
modify the dimension)

Usage
1_tour_pairs(
data,
scaling = c("data", "variable"”, "observation”, "sphere"),

tour_path = tourr::grand_tour(4L),
numOfTours = 30L,

interpolation = 40L,

as.l_tour = TRUE,

connectedScales = c("none”, "cross"),
linkingGroup,

linkingKey,

showItemLabels = TRUE,

itemLabel,

showHistograms = FALSE,
histLocation = c("edge", "diag"),
histHeightProp = 1,

12 tour_pairs

histArgs = list(),
showSerialAxes = FALSE,
serialAxesArgs = list(),
color = "grey60",

group = "color”,
start = NULL,
parent = NULL,
span = 10L,

envir = parent.frame(),

)
Arguments
data a data frame with numerical data only
scaling one of ’variable’, ’data’, ’observation’, ’sphere’, or 'none’ to specify how the
data is scaled. See Details
tour_path tour path generator, defaults to 2d grand tour
numOfTours the number of tours

interpolation the steps between two serial projections. The larger the value is, the smoother
the transitions would be.

as.1l_tour return a 1_tour object; see details
connectedScales
Determines how the scales of the panels are to be connected.

e "cross”: only the scales in the same row and the same column are con-
nected;

nyn nen

* "none": neither "x" nor "y" scales are connected in any panels.

linkingGroup string giving the linkingGroup for all plots. If missing, a default 1inkingGroup
will be determined from deparsing the data.

linkingKey a vector of strings to provide a linking identity for each row of the data data.frame.
If missing, a default linkingKey will be @: (nrows(data)-1).

showItemLabels TRUE, logical indicating whether its itemLabel pops up over a point when the
mouse hovers over it.

itemLabel a vector of strings to be used as pop up information when the mouse hovers over
a point. If missing, the default itemLabel will be the row.names(data).

showHistograms logical (default FALSE) to show histograms of each variable or not
histlLocation one "edge" or "diag", when showHistograms = TRUE

histHeightProp a positive number giving the height of the histograms as a proportion of the
height of the scatterplots

histArgs additional arguments to modify the ‘1_hist states

showSerialAxes logical (default FALSE) indication of whether to show a serial axes plot in the
bottom left of the pairs plot (or not)

serialAxesArgs additional arguments to modify the ‘1_serialaxes* states

tour_pairs

color

group

start

parent

span

envir

Value

13

vector with line colors. Default is given by 1_getOption("”color™).

only used for layers. As we scroll the bar, the layers are re-calculated. This
argument is used to specify which state is used to set groups (i.e. "color",
"linewidth", etc).

projection to start at, if not specified, uses default associated with tour path

a valid Tk parent widget path. When the parent widget is specified (i.e. not
NULL) then the plot widget needs to be placed using some geometry manager
like tkpack or tkplace in order to be displayed. See the examples below.

How many column/row occupies for each widget
the environment to use.

named arguments to modify the serialaxes states or layouts, see details.

an 1_tour_compound object that one can query the loon states and a matrix projection vectors

See Also

1_pairs, 1_tour

Examples

if(interactive() && requireNamespace('tourr')) {
g is a ‘1_pairs® object
g <- 1_tour_pairs(olivel[, -c(1:2)],

color = olive$region)

query the matrix of projection vectors

proj <- q["projection”]

query the “1_compound® widget

lc <- 1_getPlots(q)

pack the ‘density2d‘ layers

layer_pack <- lapply(lc, function(w) 1_layer_density2d(w))

set ‘as.l_tour = FALSE®

g is a ‘1_pairs® object

g <- 1_tour_pairs(tourr::fleal, 1:6],
as.l_tour = FALSE,
color = tourr::flea$species,
showHistogram = TRUE,
showSerialAxes = TRUE)

proj <- q["projection”] # Return a list of “‘NA®
query estimated matrix of projection vectors
proj <- 1l_getProjection(q, tourr::fleal[, 1:6])

Index

bandwidth.nrd, 5
dependence_tour, 9
environment, 9, 13

formula, 9
frozen_tour, 9

grand_tour, 9
guided_tour, 9

1_getOption, 9, 13
1_getPlots.1_tour, 2
1_getProjection, 2, 10
1_layer_callback, 3
1_layer_density2d, 4
1_layer_hull, 6
1_layer_trails, 7
1_nDimStateNames, 9
1_pairs, 13

1_tour, 8,13
1_tour_pairs (tour_pairs), 11

planned_tour, 9
tkpack, 9, 13

tkplace, 9, 13
tour_pairs, 11

14

	l_getPlots.l_tour
	l_getProjection
	l_layer_callback
	l_layer_density2d
	l_layer_hull
	l_layer_trails
	l_tour
	tour_pairs
	Index

