
Package ‘lokern’
July 30, 2024

Version 1.1-12

Date 2024-07-30

Title Kernel Regression Smoothing with Local or Global Plug-in
Bandwidth

Imports grDevices, graphics, stats, utils, sfsmisc (>= 1.0-12)

Description Kernel regression smoothing with adaptive local or global plug-in
bandwidth selection.

BuildResaveData no

URL https://curves-etc.r-forge.r-project.org/,

https://r-forge.r-project.org/R/?group_id=846,

https://r-forge.r-project.org/scm/viewvc.php/pkg/lokern/?root=curves-etc,
svn://svn.r-forge.r-project.org/svnroot/curves-etc/pkg/lokern

BugReports https://r-forge.r-project.org/R/?group_id=846

License GPL (>= 2)

NeedsCompilation yes

Author Eva Herrmann [aut] (F77 & S original),
Martin Maechler [cre, aut] (Packaged for R and enhanced quite a bit,
<https://orcid.org/0000-0002-8685-9910>)

Maintainer Martin Maechler <maechler@stat.math.ethz.ch>

Repository CRAN

Date/Publication 2024-07-30 09:30:06 UTC

Contents
glkerns . 2
KernS-methods . 6
lokerns . 8
varNPreg . 12
xSim . 13

Index 15

1

https://curves-etc.r-forge.r-project.org/
https://r-forge.r-project.org/R/?group_id=846
https://r-forge.r-project.org/scm/viewvc.php/pkg/lokern/?root=curves-etc
https://r-forge.r-project.org/R/?group_id=846
https://orcid.org/0000-0002-8685-9910

2 glkerns

glkerns Kernel Regression Smoothing with Adaptive Plug-in Bandwidth

Description

Nonparametric estimation of regression functions and their derivatives with kernel regression esti-
mators and automatically adapted (global) plug-in bandwidth.

Usage

glkerns(x, ...)

Default S3 method:
glkerns(x, y=NULL, deriv = 0, n.out = 300, x.out=NULL, x.inOut = TRUE,

korder= deriv + 2, hetero=FALSE, is.rand=TRUE,
inputb = is.numeric(bandwidth) && all(bandwidth > 0),
m1 = 400, xl=NULL, xu=NULL,
s=NULL, sig=NULL, bandwidth=NULL, trace.lev = 0, ...)

S3 method for class 'formula'
glkerns(formula, data, subset, na.action, ...)

Arguments

x vector of design points, not necessarily ordered.

y vector of observations of the same length as x.

deriv order of derivative of the regression function to be estimated. Only deriv =
0,1,2 are allowed for automatic smoothing, whereas deriv = 0,1,2,3,4 is
possible when smoothing with a global input bandwidth. By default, deriv=0.

n.out number of output design points where the function has to be estimated; default
is n.out=300.

x.out vector of output design points where the function has to be estimated. The de-
fault is an equidistant grid of n.out points from min(x) to max(x).

x.inOut logical or character string indicating if x.out should contain the input x values.
Note that this argument did not exist, equivalently to being FALSE, up to lokern
version 1.0-9.
In order for residuals() or fitted() methods to be applicable, it must be
TRUE or a character string specifying one of the methodss of seqXtend (package
sfsmisc). The default, TRUE corresponds to method "aim".

korder nonnegative integer giving the kernel order k; it defaults to korder = deriv+2
or k = ν + 2 where k − ν must be even. The maximal possible values are
for automatic smoothing, k ≤ 4, whereas for smoothing with input bandwidth,
k ≤ 6.

https://CRAN.R-project.org/package=sfsmisc

glkerns 3

hetero logical: if TRUE, heteroscedastic error variables are assumed for variance es-
timation, if FALSE the variance estimation is optimized for homoscedasticity.
Default value is hetero=FALSE.

is.rand logical: if TRUE (default), random x are assumed and the s-array of the convo-
lution estimator is computed as smoothed quantile estimators in order to adapt
this variability. If FALSE, the s-array is choosen as mid-point sequences as the
classical Gasser-Mueller estimator, this will be better for equidistant and fixed
design.

inputb logical: if true, a local input bandwidth array is used; if FALSE (by default when
bandwidth is not specified), a data-adaptive local plug-in bandwidths array is
calculated and used.

m1 integer, the number of grid points for integral approximation when estimating
the plug-in bandwidth. The default, 400, may be increased if a very large number
of observations are available.

xl, xu numeric (scalars), the lower and upper bounds for integral approximation and
variance estimation when estimating the plug-in bandwidth. By default (when
xl and xu are not specified), the 87% middle part of [xmin, xmax] is used.

s s-array of the convolution kernel estimator. If it is not given by input it is calcu-
lated as midpoint-sequence of the ordered design points for is.rand=FALSE or
as quantiles estimators of the design density for is.rand=TRUE.

sig variance of the error variables. If it is not given by input or if hetero=TRUE it is
calculated by a nonparametric variance estimator.

bandwidth global bandwidth for kernel regression estimation. If it is not given by input or
if inputb=FALSE a data-adaptive global plug-in bandwidth is used instead.

trace.lev integer indicating how much the internal (Fortran level) computations should be
“traced”, i.e., be reported. The default, 0, does not print anything.

formula a formula of the form y ~ pred, specifying the response variable y and predictor
variable pred which must be in data.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

... for the formula method: Optional arguments all passed to glkerns.default().

Details

This function calls an efficient and fast algorithm for automatically adaptive nonparametric regres-
sion estimation with a kernel method.

Roughly spoken, the method performs a local averaging of the observations when estimating the
regression function. Analogously, one can estimate derivatives of small order of the regression
function. Crucial for the kernel regression estimation used here is the choice of a global bandwidth.
Too small bandwidths will lead to a wiggly curve, too large ones will smooth away important

4 glkerns

details. The function glkerns calculates an estimator of the regression function or derivatives of the
regression function with an automatically chosen global plugin bandwidth. It is also possible to use
global bandwidths which are specified by the user.

Main ideas of the plugin method are to estimate the optimal bandwidths by estimating the asymp-
totically optimal mean integrated squared error optimal bandwidths. Therefore, one has to estimate
the variance for homoscedastic error variables and a functional of a smooth variance function for
heteroscedastic error variables, respectively. Also, one has to estimate an integral functional of the
squared k-th derivative of the regression function (k = korder) for the global bandwidth.

Here, a further kernel estimator for this derivative is used with a bandwidth which is adapted it-
eratively to the regression function. A convolution form of the kernel estimator for the regression
function and its derivatives is used. Thereby one can adapt the s-array for random design. Using
this estimator leads to an asymptotically minimax efficient estimator for fixed and random design.
Polynomial kernels and boundary kernels are used with a fast and stable updating algorithm for ker-
nel regression estimation. More details can be found in the references and previously at Biostats,
University of Zurich under ‘software/kernel.html’, but no longer.

Value

an object of class(es) c("glkerns", "KernS"), which is a list including used parameters and esti-
mator, containing among others

x vector of ordered design points.

y vector of observations ordered with respect to x.

bandwidth bandwidth which was used for kernel regression estimation.

x.out vector of ordered output design points.

est vector of estimated regression function or its derivative (at x.out).

sig variance estimation which was used for calculating the plug-in bandwidth

deriv derivative of the regression function which was estimated.

korder order of the kernel function which was used.

xl lower bound for integral approximation and variance estimation.

xu upper bound for integral approximation and variance estimation.

s vector of midpoint values used for the convolution kernel regression estimator.

Author(s)

- Eva Herrmann, TU Darmstadt(1995-1997): principal code (origianl Fortran and S+), see the ref-
erences.
- Martin Maechler, 2001 ff: translated to R, created the package, refactored ‘src/’, added class,
methods (predict, plot ..), arguments, docu, tweaks, help, examples, etc.
- The formula method was added in 2014 after proposals by Andri Signorell.

References

- global plug-in bandwidth estimator:
Theo Gasser, Alois Kneip & Walter Koehler (1991) A flexible and fast method for automatic
smoothing. Journal of the American Statistical Association 86, 643–652. doi:10.2307/2290393

https://doi.org/10.2307/2290393

glkerns 5

Muller, H.-G. (1984) Smooth optimum kernel estimators of densities, regression curves and modes.
The Annals of Statistics 12, 766–774.

- variance estimation:
Theo Gasser, Lothar Sroka & Christine Jennen-Steinmetz (1986) Residual Variance and Residual
Pattern in Nonlinear Regression. Biometrika 73, 625–633. doi:10.2307/2336527

- adapting heteroscedasticity:
E. Herrmann (1997) Local bandwidth choice in kernel regression estimation. Journal of Graphical
and Computational Statistics 6, 35–54.

- fast algorithm for kernel regression estimator:
T. Gasser & A. Kneip (1989) discussion of Buja, A., Hastie, T. and Tibshirani, R.: Linear smoothers
and additive models, The Annals of Statistics 17, 532–535.

B. Seifert, M. Brockmann, J. Engel & T. Gasser (1994) Fast algorithms for nonparametric curve
estimation. J. Computational and Graphical Statistics 3, 192–213.

- on the special kernel estimator for random design point:
E. Herrmann (1996) On the convolution type kernel regression estimator; Preprint 1833, FB Math-
ematik, Technische Universitaet Darmstadt; currently available from https://citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.32.6383

See Also

lokerns for local bandwidth computation. plot.KernS documents all the methods for "KernS"
classed objects.

The demo for computing derivatives, demo("glk-derivs").

Examples

data(xSim)## linear plus an exponential peak, see help(xSim)
n <- length(xSim)
tt <- ((1:n) - 1/2)/n # equidistant x ==> is.rand = FALSE
gk <- glkerns(tt, xSim, is.rand = FALSE)
gk # print method
plot(gk) # nice plot() method
if(require("sfsmisc")) {

TA.plot(gk)
} else { plot(residuals(gk) ~ fitted(gk)); abline(h = 0, lty=2) }
qqnorm(residuals(gk), ylab = "residuals(gk)")

cat("glkerns() bandwidth:",format(gk$bandwidth, dig=10),"\n")
local bandwidth: fit is very similar :
(lk <- lokerns(tt, xSim, is.rand = FALSE))
nobs(lk)

cols <- c(gl="PaleGreen", lo="Firebrick")
plot(lk$x.out, lk$bandwidth, axes = FALSE, xlab="", ylab="",

ylim=c(0,max(lk$bandwidth)), type="h", col = "gray90")
axis(4); mtext("bandwidth(s)", side=4)
lines(lk$x.out, lk$bandwidth, col = cols["lo"], lty = 3)
abline(h = gk$bandwidth, col = cols["gl"], lty = 4)
par(new=TRUE)

https://doi.org/10.2307/2336527
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.32.6383
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.32.6383

6 KernS-methods

plot(tt, xSim, main = "global and local bandwidth kernel regression")
lines(gk$x.out, gk$est, col = cols["gl"], lwd = 1.5)
lines(lk$x.out, lk$est, col = cols["lo"])
the red curve (local bw) is very slightly better
legend(0.7,4.4, c("global bw","local bw"), col = cols, lwd=1)

This should look
op <- par(mfrow = c(3,1), mar = .1 + c(4,4,2,1), oma = c(0,0,3,0),

mgp = c(1.5, 0.6,0))
plot(gk, main = expression(paste("Data & ", hat(f))))
calling extra plot() method
gk1 <- glkerns(tt, xSim, deriv = 1, is.rand = FALSE)
plot(gk1$x.out, gk1$est, col = "green", lwd = 1.5, type = "l",

main = expression(widehat(paste(f,"'"))))
abline(h=0, col="gray", lty = 3)
gk2 <- glkerns(tt, xSim, deriv = 2, is.rand = FALSE)
plot(gk2$x.out, gk2$est, col = "orange", lwd = 1.5, type = "l",

main = expression(widehat(paste(f,"''"))))
abline(h=0, col="gray", lty = 3)
mtext("Example from www.unizh.ch/biostat/..../kernf77.html",side=3,

outer = TRUE, cex = 1, font = par("font.main"))

par(op)
data(cars)
plot(dist ~ speed, data = cars,

main = "Global Plug-In Bandwidth")
these two are equivalent
m1glk <- glkerns(dist ~ speed, data = cars)
m.glk <- glkerns(cars$ speed, cars$ dist)
lines(m.glk, col=2) # using the lines() method
mtext(paste("bandwidth = ", format(m.glk$bandwidth, dig = 4)))
ii <- names(m1glk) != "call"
stopifnot(all.equal(m1glk[ii], m.glk[ii], tol = 1e-15))

KernS-methods Methods for ("KernS" classed) Results of lokerns() and glkerns()

Description

Methods for results of glkerns() and lokerns() which are of (S3) class "KernS".

Usage

S3 method for class 'KernS'
fitted(object, ...)
S3 method for class 'KernS'
plot(x, type = "l", lwd = 2.5, col = 3, ...)
S3 method for class 'KernS'
predict(object, x, deriv = object[["deriv"]],

korder = deriv+2, trace.lev = 0, ...)

KernS-methods 7

S3 method for class 'KernS'
print(x, digits = getOption("digits"), ...)
S3 method for class 'KernS'
residuals(object, ...)

Arguments

x, object an R object, of S3 class "KernS", typically result either from glkerns() or
lokerns().

type, lwd, col arguments for plot() only for the case when x$deriv is not 0.

deriv integer, ≥ 0, specifiying order of derivative that should be predicted.

korder nonnegative integer giving the kernel order; see lokerns or glkerns.

digits number of significant digits, see print.

trace.lev integer; level of tracing of Fortran level computations; see lokerns.

... potentially further arguments passed to and from methods. For the plot(*,
deriv=0) method, these are passed to plotDS from package sfsmisc.

Details

Note that fitted() and residuals() rely on x.inOut having been true or x.out having contained
the data x, in the lokerns or glkerns call.

The plot() method calls plotDS from package sfsmisc.

predict(object, x, deriv) when either some x are not in x.out or deriv is not 0, basically
recalls the original lokerns or glkerns function (keeping the bandwidths for lokerns).

Value

(differing, depending on the generic function)

See Also

glkerns, lokerns.

Examples

"interesting" artificial data:
set.seed(47)
x <- sort(round(10*runif(250),2))
fn <- function(x) 5 - x/2 + 3*exp(-(x-5)^2)
y <- fn(x) + rnorm(x)/4
plot(x,y)
Tracing the phases in the Fortran code: trace=1 gives some, trace=3 gives *much*
lof <- lokerns(x,y, trace=2)
plot(lof)
plot(lof, cex = 1/4)# maybe preferable
plot(fn, 0, 10, add=TRUE, col=adjustcolor("gray40",1/2), lwd=2, lty=2)
Simpler, using the lines() method:
plot(x,y); lines(lof, lwd=2, col=2)

https://CRAN.R-project.org/package=sfsmisc
https://CRAN.R-project.org/package=sfsmisc

8 lokerns

qqnorm(residuals(lof)) # hmm... overfitting?
stopifnot(all.equal(y, fitted(lof) + residuals(lof), tolerance = 1e-15),

predict(lof)$y == fitted(lof))
lof$iter # negative ?
tt <- seq(0, 10, by=1/32)
again with 'tracing' [not for the average user]
p0 <- predict(lof, x=tt, trace=1)
p1 <- predict(lof, x=tt, deriv=1, trace=1)
p2 <- predict(lof, x=tt, deriv=2)
plot(p2, type="l"); abline(h=0, lty=3) # not satisfactory, but lokerns(*,deriv=2) is
lof2 <- lokerns(x,y, deriv=2)
plot(lof2, ylim = c(-12,4), main=

"lokerns(*, deriv=2) -- much more smooth than predict(*,deriv=2)")
mtext("as lokerns(*, deriv=2) chooses larger bandwidths[] !")
lines(predict(lof2, x=tt), col=adjustcolor("tomato", 1/3), lwd=5)
lines(p2, col="gray50"); abline(h=0, lty=3)
add 2nd derivative of underlying fn():
f2 <- fn; body(f2) <- D(D(body(fn), "x"),"x")
lines(tt, f2(tt), col="blue")

lokerns Kernel Regression Smoothing with Local Plug-in Bandwidth

Description

Nonparametric estimation of regression functions and their derivatives with kernel regression esti-
mators and automatically adapted local plug-in bandwidth function.

Usage

lokerns(x, ...)

Default S3 method:
lokerns(x, y=NULL, deriv = 0, n.out=300, x.out=NULL, x.inOut = TRUE,

korder = deriv + 2, hetero=FALSE, is.rand=TRUE,
inputb = is.numeric(bandwidth) && all(bandwidth > 0),
m1 = 400, xl=NULL, xu=NULL,
s=NULL, sig=NULL, bandwidth=NULL, trace.lev = 0, ...)

S3 method for class 'formula'
lokerns(formula, data, subset, na.action, ...)

Arguments

x vector of design points, not necessarily ordered.

y vector of observations of the same length as x.

lokerns 9

deriv order of derivative of the regression function to be estimated. Only deriv =
0,1,2 are allowed for automatic smoothing, whereas deriv = 0,1,2,3,4 is
possible when smoothing with an input bandwidth array. By default, deriv=0.

n.out number of output design points where the function has to be estimated; default
is n.out=300.

x.out vector of output design points where the function has to be estimated. The de-
fault is an equidistant grid of n.out points from min(x) to max(x).

x.inOut logical or character string indicating if x.out should contain the input x values.
Note that this argument did not exist, equivalently to being FALSE, up to lokern
version 1.0-9.
In order for residuals() or fitted() methods to be applicable, it must be
TRUE or a character string specifying one of the methodss of seqXtend (package
sfsmisc). The default, TRUE corresponds to method "aim".

korder nonnegative integer giving the kernel order k; it defaults to korder = deriv+2
or k = ν + 2 where k − ν must be even. The maximal possible values are
for automatic smoothing, k ≤ 4, whereas for smoothing with input bandwidth
array, k ≤ 6.

hetero logical: if TRUE, heteroscedastic error variables are assumed for variance es-
timation, if FALSE the variance estimation is optimized for homoscedasticity.
Default value is hetero=FALSE.

is.rand logical: if TRUE (default), random x are assumed and the s-array of the convo-
lution estimator is computed as smoothed quantile estimators in order to adapt
this variability. If FALSE, the s-array is choosen as mid-point sequences as the
classical Gasser-Mueller estimator, this will be better for equidistant and fixed
design.

inputb logical: if true, a local input bandwidth array is used; if FALSE (by default when
bandwidth is not specified), a data-adaptive local plug-in bandwidths array is
calculated and used.

m1 integer, the number of grid points for integral approximation when estimating
the plug-in bandwidth. The default, 400, may be increased if a very large number
of observations are available.

xl, xu numeric (scalars), the lower and upper bounds for integral approximation and
variance estimation when estimating the plug-in bandwidth. By default (when
xl and xu are not specified), the 87% middle part of [xmin, xmax] is used.

s s-array of the convolution kernel estimator. If it is not given by input it is calcu-
lated as midpoint-sequence of the ordered design points for is.rand=FALSE or
as quantiles estimators of the design density for is.rand=TRUE.

sig variance of the error variables. If it is not given by input or if hetero=TRUE it is
calculated by a nonparametric variance estimator.

bandwidth local bandwidth array for kernel regression estimation. If it is not given by
input or if inputb=FALSE a data-adaptive local plug-in bandwidth array is used
instead.

trace.lev integer indicating how much the internal (Fortran level) computations should be
“traced”, i.e., be reported. The default, 0, does not print anything.

https://CRAN.R-project.org/package=sfsmisc

10 lokerns

formula a formula of the form y ~ pred, specifying the response variable y and predictor
variable pred which must be in data.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

... for the formula method: Optional arguments all passed to lokerns.default().

Details

This function calls an efficient and fast algorithm for automatically adaptive nonparametric regres-
sion estimation with a kernel method.

Roughly spoken, the method performs a local averaging of the observations when estimating the
regression function. Analogously, one can estimate derivatives of small order of the regression
function. Crucial for the kernel regression estimation used here is the choice the local bandwidth
array. Too small bandwidths will lead to a wiggly curve, too large ones will smooth away important
details. The function lokerns calculates an estimator of the regression function or derivatives of
the regression function with an automatically chosen local plugin bandwidth function. It is also
possible to use a local bandwidth array which are specified by the user.

Main ideas of the plugin method are to estimate the optimal bandwidths by estimating the asymptot-
ically optimal mean squared error optimal bandwidths. Therefore, one has to estimate the variance
for homoscedastic error variables and a functional of a smooth variance function for heteroscedas-
tic error variables, respectively. Also, one has to estimate an integral functional of the squared k-th
derivative of the regression function (k = korder) for the global bandwidth and the squared k-th
derivative itself for the local bandwidths.

Some more details are in glkerns.

Value

an object of class(es) c("lokerns", "KernS"), which is a list including used parameters and esti-
mator, containing among others

x vector of ordered design points.

y vector of observations ordered with respect to x.

bandwidth local bandwidth array which was used for kernel regression estimation.

x.out vector of ordered output design points.

est vector of estimated regression function or its derivative (at x.out).

sig variance estimation which was used for calculating the plug-in bandwidths if
hetero=TRUE (default) and either inputb=FALSE (default) or is.rand=TRUE
(default).

deriv derivative of the regression function which was estimated.

korder order of the kernel function which was used.

xl lower bound for integral approximation and variance estimation.

lokerns 11

xu upper bound for integral approximation and variance estimation.

s vector of midpoint values used for the convolution kernel regression estimator.

References

All the references in glkerns.

See Also

glkerns for global bandwidth computation. plot.KernS documents all the methods for "KernS"
classed objects.

Examples

data(cars)
lofit <- lokerns(dist ~ speed, data=cars)
lofit # print() method

if(require("sfsmisc")) {
TA.plot(lofit)

} else { plot(residuals(lofit) ~ fitted(lofit)); abline(h = 0, lty=2) }
qqnorm(residuals(lofit), ylab = "residuals(lofit)")

nice simple plot of data + smooth
plot(lofit)

(sb <- summary(lofit$bandwidth))
op <- par(fg = "gray90", tcl = -0.2, mgp = c(3,.5,0))
plot(lofit$band, ylim=c(0,3*sb["Max."]), type="h",#col="gray90",

ann = FALSE, axes = FALSE)

boxplot(lofit$bandwidth, add = TRUE, at = 304, boxwex = 8,
col = "gray90",border="gray", pars = list(axes = FALSE))

axis(4, at = c(0,pretty(sb)), col.axis = "gray")
par(op)
par(new=TRUE)
plot(dist ~ speed, data = cars,

main = "Local Plug-In Bandwidth Vector")
lines(lofit, col=4, lwd=2)
mtext(paste("bandwidth in [",

paste(format(sb[c(1,6)], dig = 3),collapse=","),
"]; Median b.w.=",formatC(sb["Median"])))

using user-specified bandwidth array
myBW <- round(2*lofit$bandwidth, 2)
(lofB <- lokerns(dist ~ speed, data=cars, bandwidth = myBW)) # failed (for a while)
can use deriv=3 (and 4) here:
lofB3 <- lokerns(dist ~ speed, data=cars, bandwidth = myBW, deriv=3)
plot(lofB)
lines(lofB3, col=3)
stopifnot(inherits(lofB3, "KernS"), identical(lofB3$korder, 5L))

12 varNPreg

varNPreg Nonparametric Variance Estimator

Description

Estimates the error variance σ2 nonparametrically in the model

Yi = m(xi) + Ei,

where Ei ∼ (0, σ2), i.i.d.

Computes leave-one-out residuals (local linear approximation followed by reweighting) and their
variance.

Usage

varNPreg(x, y)

Arguments

x abscissae values, ordered increasingly.

y observations at y[i] at x[i].

Value

A list with components

res numeric; residuals at x[] of length n.

snr explained variance of the true curve, i.e., an R2, defined as 1 − σ̂2/σ̂2
0 , where

σ̂2 =sigma2, and σ̂2
0 := var(Y) = E[Y 2]− (E[Y])2, see the example below.

sigma2 estimation of residual variance, σ̂2.

Note

This is an R interface to the resest Fortran subroutine, used in lokerns and glkerns, see the
latter’s help page for references and context.

Earlier version of the lokern package accidentally contained varest() which has been an identical
copy of varNPreg().

Author(s)

Martin Maechler

See Also

lokerns, glkerns.

xSim 13

Examples

n <- 100
x <- sort(runif(n))
y <- sin(pi*x) + rnorm(n)/10
str(ve <- varNPreg(x,y))

plot(x, y)
"fitted" = y - residuals:
lines(x, y - ve$res, col=adjustcolor(2, 1/2), lwd=3)
segments(x,y,x,y-ve$res, col=3:4, lty=2:3, lwd=1:2)

sigma2 := 1/n sum_i res_i^2 :
with(ve, c(sigma2, sum(res^2)/n))

stopifnot(with(ve, all.equal(sigma2, sum(res^2)/n)))

show how 'snr' is computed, given 'sigma2' { in ../src/auxkerns.f }
dx2 <- diff(x, 2) # (x[i+1] - x[i-1]) i= 2..{n-1}
dx.n <- c(x[2]-x[1], dx2, x[n]-x[n-1])
SY <- sum(dx.n * y)
SY2 <- sum(dx.n * y^2)
rx <- 2*(x[n]-x[1]) # 'dn'
(sigm2.0 <- SY2/rx - (SY/rx)^2)
(R2 <- 1 - ve$sigma2 / sigm2.0)
stopifnot(all.equal(ve$snr, R2))

xSim Simulated Linear plus Exponential Peak

Description

This is simulated data, a linear plus an exponential peak. In similar form, data like this appears in
the smoothing literature since at least the eighties.

Usage

data(xSim)

Format

A vector of 75 numbers between -3.1323 and 4.4505, all rounded to 4 digits after the decimal.

Source

https://www.biostat.uzh.ch/en/research/software/kernel.html

See Also

The example in glkerns replicates the computations and plots from the source given.

https://www.biostat.uzh.ch/en/research/software/kernel.html

14 xSim

Examples

data(xSim)
plot(xSim, main = "`xSim' - N=75 simulated linear + peak")

Index

∗ datasets
xSim, 13

∗ nonparametric
varNPreg, 12

∗ regression
varNPreg, 12

∗ smooth
glkerns, 2
lokerns, 8

∗ utilities
KernS-methods, 6

demo, 5

fitted, 2, 9
fitted.KernS (KernS-methods), 6
formula, 3, 10

glkerns, 2, 6, 7, 10–13

KernS-methods, 6

lines.KernS (KernS-methods), 6
lokerns, 5–7, 8, 12

methods, 5
model.frame, 3, 10

plot.KernS, 5, 11
plot.KernS (KernS-methods), 6
plotDS, 7
predict.KernS (KernS-methods), 6
print, 7
print.KernS (KernS-methods), 6

residuals, 2, 9
residuals.KernS (KernS-methods), 6

seqXtend, 2, 9

varest (varNPreg), 12
varNPreg, 12

xSim, 13

15

	glkerns
	KernS-methods
	lokerns
	varNPreg
	xSim
	Index

