
Package ‘locits’
September 5, 2023

Type Package

Title Test of Stationarity and Localized Autocovariance

Version 1.7.7

Date 2023-09-04

Depends R (>= 3.3), wavethresh, igraph

Description Provides test of second-order stationarity for time
series (for dyadic and arbitrary-n length data). Provides
localized autocovariance, with confidence intervals,
for locally stationary (nonstationary) time series.
See Nason, G P (2013) ``A test for second-order stationarity and
approximate confidence intervals for localized autocovariance
for locally stationary time series.'' Journal of the Royal Statistical
Society, Series B, 75, 879-904. <doi:10.1111/rssb.12015>.

License GPL (>= 2)

NeedsCompilation yes

Author Guy Nason [aut, cre]

Maintainer Guy Nason <g.nason@imperial.ac.uk>

Repository CRAN

Date/Publication 2023-09-05 15:10:02 UTC

R topics documented:
locits-package . 2
AutoBestBW . 5
covI . 6
covIwrap . 7
Cvarip2 . 9
EstBetaCov . 10
ewspec3 . 13
ewspecHaarNonPer . 16
getridofendNA . 18
HwdS . 19

1

https://doi.org/10.1111/rssb.12015

2 locits-package

hwt . 20
hwtos . 22
hwtos2 . 26
idlastzero . 29
lacf . 30
littlevar . 32
mkcoef . 33
plot.hwtANYN . 34
plot.lacf . 36
plot.lacfCI . 38
plot.tos . 41
plot.tosANYN . 42
print.hwtANYN . 44
print.lacf . 45
print.lacfCI . 47
print.tos . 48
print.tosANYN . 49
runmean . 50
Rvarlacf . 51
StoreStatistics . 54
summary.hwtANYN . 55
summary.lacf . 56
summary.lacfCI . 57
summary.tos . 58
summary.tosANYN . 60
tvar1sim . 61
varip2 . 62
whichlevel . 63
zeropad . 65

Index 66

locits-package New test of second-order stationarity and confidence intervals for lo-
calized autocovariance.

Description

Provides functionality to perform a new test of second-order stationarity for time series. The method
works by computing a wavelet periodogram and then examining its Haar wavelet coefficients for
significant ones. The other main feature of the software is to compute the localized autocovariance
and pointwise confidence intervals.

locits-package 3

Details

For the test of stationarity there are two main functions. The original is the hwtos2 function and
this returns a tos object. The hwtos2 function works on data sets whose length is a power of
two. Version 1.5 introduced a new function, hwtos which carries out the test on arbitrary length
data. The summary.tos function performs a Bonferroni and FDR statistical analysis to detect which
Haar wavelet coefficients are significant. The function plot.tos provides a plot of the original time
series with any non-stationarities clearly indicated on the plot (actually locations and scales of the
Haar wavelet coefficients).

For the localized autocovariance the main function is Rvarlacf. This computes the localized auto-
covariance values and approximate pointwise condifence intervals. The function plot.lacfCI can
then plot the localized autocovariance and its confidence intervals in a number of forms.

Author(s)

Guy Nason

Maintainer: Guy Nason

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for
localized autocovariances for locally stationary time series. J. R. Statist. Soc. B, 75, 879-904.
doi:10.1111/rssb.12015

See Also

Rvarlacf, hwtos2

Examples

#
Here's a simple simulated example.
#
A series which is a concatenation of two iid Gaussian series with
different variances.
#
x <- c(rnorm(256, sd=1), rnorm(256, sd=2))
#
Let's do a test of stationarity
#
st.test <- hwtos2(x)
#8 7 6 5 4 3
#
Ok, that's the computation gone, let's look at the results.
#
st.test

#Class 'tos' : Stationarity Object :
#~~~~ : List with 9 components with names
nreject rejpval spvals sTS AllTS AllPVal alpha x xSD
#

https://doi.org/10.1111/rssb.12015

4 locits-package

#
#summary(.):
#----------
#There are 186 hypothesis tests altogether
#There were 4 FDR rejects
#The rejection p-value was 0.0001376564
#Using Bonferroni rejection p-value is 0.0002688172
#And there would be 4 rejections.
#Listing FDR rejects... (thanks Y&Y!)
#P: 5 HWTlev: 0 indices on next line...[1] 1
#P: 6 HWTlev: 0 indices on next line...[1] 1
#P: 7 HWTlev: 0 indices on next line...[1] 1
#P: 8 HWTlev: 0 indices on next line...[1] 1
#
In the lines above if there are any rejects then the series is
deemed to be nonstationary, and note that there were 4 in both
the lines above (sometimes FDR rejects a few more).
#
You can also plot the object and it shows you where it thinks the
nonstationarities are
#
Not run: plot(st.test)
#
See the help page for the hwtos2 function, where there is an example
with a stationary series.
#
For the localized autocovariance...
#
Let's use the function tvar1sim which generates a time-varying AR model
with AR(1) paramter varying over the extent of the series from 0.9
to -0.9 (that is, near the start of the series it behaves like an
AR(1) with parameter 0.9, and near the end like an AR(1) with parameter
-0.9, and in between the parameter is somewhere between 0.9 and -0.9
figured linearly between the two.
#
x <- tvar1sim()
#
Plot it, so you know what the series looks like, should always do this.
#
Not run: ts.plot(x)
#
Now, let's compute the localized autocovariance and also confidence intervals
For the variance, let's look at the first 20 lags
#
Do it at t=50 and t=450, ie what is the localized autocovariance at these
two times.
#
x.lacf.50 <- Rvarlacf(x=x, nz=50, var.lag.max=20)
x.lacf.450 <- Rvarlacf(x=x, nz=450, var.lag.max=20)
#
Now plot the answers, you may want to do this on two different plots
so that you can compare the answers
#

AutoBestBW 5

#
Not run: plot(x.lacf.50, plotcor=FALSE, type="acf")
Not run: plot(x.lacf.450, plotcor=FALSE, type="acf")
#
Note that the plotcor argument is set so covariances and not correlations
are plotted. Also, the type is set to "acf" to make the plot *look* like
the regular acf plot. But DON'T be fooled, it is not the regular acf
that is plotted, but a time localized plot. The two plots should look
very different, both like AR(1) but with different parameters (from the
same time series).
#
You could also plot the regular acf and see how it gets it wrong!
#

AutoBestBW Choose a good bandwidth for running mean smoothing of a EWS spec-
tral estimator.

Description

Computes running mean estimator closest to wavelet estimator of evolutionary wavelet spectrum.
The idea is to obtain a good linear bandwidth.

Usage

AutoBestBW(x, filter.number = 1, family = "DaubExPhase",
smooth.dev = var, AutoReflect = TRUE, tol = 0.01, maxits = 200,
plot.it = FALSE, verbose = 0, ReturnAll = FALSE)

Arguments

x Time series you want to analyze.
filter.number The wavelet filter used to carry out smoothing operations.
family The wavelet family used to carry out smoothing operations.
smooth.dev The deviance estimate used for the smoothing (see ewspec help)
AutoReflect Mitigate periodic boundary conditions of wavelet transforms by reflecting time

series about RHS end before taking transforms (and is undone before returning
the answer).

tol Tolerance for golden section search for the best bandwidth
maxits Maximum number of iterations for the golden section search
plot.it Plot the values of the bandwidth and its closeness of the linear smooth to the

wavelet smooth, if TRUE.
verbose If nonzero prints out informative messages about the progress of the golden

section search. Higher integers produce more messages.
ReturnAll If TRUE then return the best bandwidth (in the ans component), the wavelet

smooth (in EWS.wavelet) and the closest linear smooth (EWS.linear). If FALSE
then just the bandwidth is returned.

6 covI

Details

Tries to find the best running mean fit to an estimated spectrum obtained via wavelet shrinkage. The
goal is to try and find a reasonable linear bandwidth.

Value

If ReturnAll argument is FALSE then the best bandwidth is returned.

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for
localized autocovariances for locally stationary time series. J. R. Statist. Soc. B, 75, 879-904.
doi:10.1111/rssb.12015

See Also

Rvarlacf

Examples

#
Generate synthetic data
#
x <- rnorm(256)
#
Compute best linear bandwidth
#
tmp <- AutoBestBW(x=x)
#
Printing it out in my example gives:
tmp
[1] 168

covI Compute the covariance between two wavelet periodogram ordinates
at the same scale, but different time locations.

Description

Computes cov(I`,m, I`,n) using the formula given in Nason (2012) in Theorem 1. Note: one usually
should use the covIwrap function for efficiency.

Usage

covI(II, m, n, ll, ThePsiJ)

https://doi.org/10.1111/rssb.12015

covIwrap 7

Arguments

II Actually the *spectral* estimate S, not the periodogram values. This is for an
assumed stationary series, so this is just a vector of length J, one for each scale
of S.

m Time location m

n Time location n

ll Scale of the raw wavelet periodogram

ThePsiJ Autocorrelation wavelet corresponding to the wavelet that computed the raw
peridogram (also assumed to underlie the time series

Value

The covariance is returned.

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for
localized autocovariances for locally stationary time series. J. R. Statist. Soc. B, 75, 879-904.
doi:10.1111/rssb.12015

See Also

covIwrap

Examples

P1 <- PsiJ(-5, filter.number=1, family="DaubExPhase")
#
Compute the covariance
#
covI(II=c(1/2, 1/4, 1/8, 1/16, 1/32), m=1, n=3, ll=5, ThePsiJ=P1)
#
[1] 0.8430809

covIwrap A wrapper for the covI function.

Description

Computation of the covI function is intensive. This function permits values of covI to be stored in
an object, and then if these values are requested again the values can be obtained from a store rather
than being computed from scratch.

https://doi.org/10.1111/rssb.12015

8 covIwrap

Usage

covIwrap(S, m, n, ll, storewrap, P)

Arguments

S Same argument as for covI, a spectral estimate (for a stationary series).

m The same argument as in covI.

n The same argument as in covI.

ll The same argument as in covI.

storewrap A list. On first call to this function the user should supply storewrap=NULL.
This causes the function to initialize the storage. On every return from this
function the storewrap component should be extracted from the list and then this
storewrap component should be resupplied to any future calls to this function.
In this way the function has access to previously computed values.

P Same argument as in covI. An autocorrelation wavelet computed using the PsiJ
function in wavethresh.

Details

Note: covIwrap could be removed from the function tree altogether. I.e. varip2 could call covI
directly. However, covIwrap considerably improves the efficiency of the algorithm as it stores
intermediate calculations that can be reused rather than being computed repeatedly.

Value

A list containing the following components:

ans The appropriate covariance

storewrap A list containing information about all previously computed covariances. This
list should be supplied as the storewrap argument to any future calls of this
function, so if the same covariance is requested it can be returned from storewrap
and not computed again.

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for
localized autocovariances for locally stationary time series. J. R. Statist. Soc. B, 75, 879-904.
doi:10.1111/rssb.12015

See Also

varip2, covI

https://doi.org/10.1111/rssb.12015

Cvarip2 9

Examples

P1 <- PsiJ(-5, filter.number=1, family="DaubExPhase")
#
First call to covIwrap
#
ans <- covIwrap(S=c(1/2, 1/4, 1/8, 1/16, 1/32), m=1, n=3, ll=5,

storewrap=NULL, P=P1)
#
Make sure you keep the storewrap component.
#
my.storewrap <- ans$storewrap
#
What is the answer?
#
ans$ans
#[1] 0.8430809
#
Issue next call to covIwrap: but storewrap argument is now the one we stored.
#
ans <- covIwrap(S=c(1/2, 1/4, 1/8, 1/16, 1/32), m=1, n=3, ll=5,

storewrap=my.storewrap, P=P1)
#
This call will reuse the stored value. However, if you change any of the
arguments then the store won't be used.

Cvarip2 Computes variance of Haar wavelet coefficients of wavelet peri-
odogram using C code.

Description

Performs precisely the same role as varip2 except it is implemented internally using C code and
hence is much faster.

Usage

Cvarip2(i, p, ll, S, Pmat, PsiJL)

Arguments

i Scale parameter of Haar wavelet analyzing periodogram. Scale 1 is the finest
scale.

p Location parameter of Haar wavelet analyzing periodogram
ll Scale of the raw wavelet periodogram being analyzed.
S Estimate of the spectrum, under the assumption of stationarity. So, this is just a

vector of (possibly) J scales (which is often the usual spectral estimate averaged
over time). Note: that the main calling function, hwtos2, actually passes maxD
levels.

10 EstBetaCov

Pmat Matrix version of autocorrelation wavelet computed using the PsiJmat function
in wavethresh

PsiJL True length of the autocorrelation wavelets in the Pmat matrix. This can be
obtained simply by using the list version of the ac wavelet (computed by PsiJ)
and applying sapply.

Value

The list returned from the .C calling function. The only object of real interest is the ans component
which contains the variance.

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for
localized autocovariances for locally stationary time series. J. R. Statist. Soc. B, 75, 879-904.
doi:10.1111/rssb.12015

See Also

hwtos2, varip2

Examples

#
See example from varip2
#
#
my.Pmat <- PsiJmat(-5, filter.number=1, family="DaubExPhase")
my.PsiJ <- PsiJ(-5, filter.number=1, family="DaubExPhase")
my.PsiJL <- sapply(my.PsiJ, "length")
Cvarip2(i=1, p=10, ll=2, S=c(1/2,1/4,1/8,1/16,1/32),

Pmat=my.Pmat, PsiJL=my.PsiJL)
#
Gives answer 1.865244, which is the same as given in the example for varip2

EstBetaCov Compute estimate of wavelet periodogram and the estimate’s covari-
ance matrix.

Description

An estimate of the wavelet periodogram at a location nz is generated. This is obtained by first
computing the empirical raw wavelet periodogram by squaring the results of the nondecimated
wavelet transform of the time series. Then a running mean smooth is applied.

https://doi.org/10.1111/rssb.12015

EstBetaCov 11

Usage

EstBetaCov(x, nz, filter.number = 1, family = "DaubExPhase", smooth.dev = var,
AutoReflect = TRUE, WPsmooth.type = "RM", binwidth = 0, mkcoefOBJ,
ThePsiJ, Cverbose = 0, verbose = 0, OPLENGTH = 10^5, ABB.tol = 0.1,
ABB.plot.it = FALSE, ABB.verbose = 0, ABB.maxits = 10, do.init = TRUE,
truedenom=FALSE, ...)

Arguments

x The time series for which you wish to have the estimate for.

nz The time point at which you want the estimate computed at. This is an integer
ranging from one up to the length of the time series.

filter.number The analysis wavelet (the wavelet periodogram is computed using this to form
the nondecimated wavelet coefficients)

family The family of the analysis wavelet.

smooth.dev The deviance function used in smoothing via the internal call to the ewspec3
function.

AutoReflect Whether better smoothing is to be obtained by AutoReflection to mitigate the
effects of using periodic transforms on non-periodic data. See ewspec3

WPsmooth.type The type of wavelet periodogram smoothing. For here leave the option at "RM"
otherwise unpredictable results can occur

binwidth The running mean length. If zero then a good bandwidth will be chosen using
the AutoBestBW function.

mkcoefOBJ If this argument is missing then it is computed internally using the mkcoef func-
tion which computes discrete wavelets. If this function is going to be repeatedly
called then it is more efficient to supply this function with a precomputed ver-
sion.

ThePsiJ As for mkcoefOBJ argument but for the autocorrelation wavelet and the function
PsiJ.

Cverbose This function called the C routine CstarIcov if you set Cverbose to true then
the routine instructs the C code to produce debugging messages.

verbose If TRUE then debugging messages from the R code are produced.

OPLENGTH Subsidiary parameters for potential call to PsiJ function

ABB.tol Tolerance to be passed to AutoBestBW function.

ABB.plot.it Argument to be passed to AutoBestBW plot.it argument.

ABB.verbose Argument to be passed to AutoBestBW verbose argument.

ABB.maxits Argument to be passed to AutoBestBW maxits argument.

do.init Initialize stored statistics, for cache hit rate info.

truedenom If TRUE use the actual number of terms in the sum as the denominator in the
formula for the calculation of the covariance of the smoothed periodogram. If
FALSE use the (2s+1)

... Other arguments that are passed to the ewspec3 function.

12 EstBetaCov

Details

First optionally computes a good bandwidth using the AutoBestBW function. Then computes raw
wavelet periodogram using ewspec3 using running mean smoothing with the binwidth bandwith
(which might be automatically chosen). This computes the estimate of the wavelet periodogram at
time nz. The covariance matrix of this estimate is then computed in C using the CstarIcov function
and this is returned.

Value

A list with two components:

betahat A vector of length J (the number of scales in the wavelet periodogram, which is
log2 of the number of observations T

Sigma A matrix of dimensions J × J which is the covariance of β̂j with β̂`.

Author(s)

Guy Nason

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for
localized autocovariances for locally stationary time series. J. R. Statist. Soc. B, 75, 879-904.
doi:10.1111/rssb.12015

See Also

AutoBestBW, ewspec3

Examples

#
Small example, not too computationally demanding on white noise
#
myb <- EstBetaCov(rnorm(64), nz=32)
#
Let's see the results (of my run)
#
Not run: myb$betahat
#[1] 0.8323344 0.7926963 0.7272328 1.3459313 2.1873395 0.8364632
#
For white noise, these values should be 1 (they're estimates)
Not run: myb$Sigma
[,1] [,2] [,3] [,4] [,5] [,6]
#[1,] 0.039355673 0.022886994 0.008980497 0.01146325 0.003211176 0.001064377
#[2,] 0.022886994 0.054363333 0.035228164 0.06519112 0.017146883 0.006079162
#[3,] 0.008980497 0.035228164 0.161340373 0.38326812 0.111068916 0.040068318
#[4,] 0.011463247 0.065191118 0.383268115 1.31229598 0.632725858 0.228574601
#[5,] 0.003211176 0.017146883 0.111068916 0.63272586 1.587765187 0.919247252
#[6,] 0.001064377 0.006079162 0.040068318 0.22857460 0.919247252 2.767615374
#

https://doi.org/10.1111/rssb.12015

ewspec3 13

Here's an example for T (length of series) bigger, T=1024
#
Not run: myb <- EstBetaCov(rnorm(1024), nz=512)
#
Let's look at results
#
Not run: myb$betahat
[1] 1.0276157 1.0626069 0.9138419 1.1275545 1.4161028 0.9147333 1.1935089
[8] 0.6598547 1.1355896 2.3374615
#
These values (especially for finer scales) are closer to 1
#

ewspec3 Compute evolutionary wavelet spectrum of a time series.

Description

This function is a development of the ewspec function from wavethresh but with more features.
The two new features are: the addition of running mean smoothing and autoreflection which mit-
igates the problems caused in ewspec which performed periodic transforms on data (time series)
which were generally not periodic.

Usage

ewspec3(x, filter.number = 10, family = "DaubLeAsymm",
UseLocalSpec = TRUE, DoSWT = TRUE, WPsmooth = TRUE,
WPsmooth.type = "RM", binwidth = 5, verbose = FALSE,
smooth.filter.number = 10, smooth.family = "DaubLeAsymm",
smooth.levels = 3:WPwst$nlevels - 1, smooth.dev = madmad,
smooth.policy = "LSuniversal", smooth.value = 0,
smooth.by.level = FALSE, smooth.type = "soft",
smooth.verbose = FALSE, smooth.cvtol = 0.01,
smooth.cvnorm = l2norm, smooth.transform = I,
smooth.inverse = I, AutoReflect = TRUE)

Arguments

x The time series you want to compute the evolutionary wavelet spectrum for.

filter.number Wavelet filter number underlying the analysis of the spectrum (see filter.select
or wd for more details).

family Wavelet family. Again, see filter.select or wd for more details.

UseLocalSpec As ewspec, should usually leave as is.

DoSWT As ewspec, should usually leave as is.

WPsmooth If TRUE then smoothing is applied to the wavelet periodogram (and hence spec-
trum).

14 ewspec3

WPsmooth.type The type of periodogram smoothing. If this argument is "RM" then running mean
linear smoothing is used. Otherwise, wavelet shrinkage as in ewspec is used.

binwidth If the periodogram smoothing is "RM" then the this argument supplies the binwidth
or number of consecutive observations used in the running mean smooth.

verbose If TRUE then messages are produced. If FALSE then they are not.
smooth.filter.number

If wavelet smoothing of the wavelet periodogram is used then this specifies the
index number of wavelet to use, exactly as ewspec.

smooth.family If wavelet smoothing of the wavelet periodogram is used then this specifies the
family of wavelet to use, exactly as ewspec.

smooth.levels If wavelet smoothing of the wavelet periodogram is used then this specifies the
levels to smooth, exactly as ewspec.

smooth.dev If wavelet smoothing of the wavelet periodogram is used then this specifies de-
viance used to compute smoothing thresholds, exactly as ewspec.

smooth.policy If wavelet smoothing of the wavelet periodogram is used then this specifies the
policy of wavelet shrinkage to use, exactly as ewspec.

smooth.value If wavelet smoothing of the wavelet periodogram is used then this specifies the
value of the smoothing parameter for some policies, exactly as ewspec.

smooth.by.level

If wavelet smoothing of the wavelet periodogram is used then this specifies
whether level-by-level thresholding is applied, or one threshold is applied to
all levels, exactly as ewspec.

smooth.type If wavelet smoothing of the wavelet periodogram is used then this specifies the
type of thresholding, "hard" or "soft", exactly as ewspec.

smooth.verbose If wavelet smoothing of the wavelet periodogram is used then this specifies
whether or not verbose messages are produced during the smoothing, exactly
as ewspec.

smooth.cvtol If wavelet smoothing of the wavelet periodogram is used then this specifies a tol-
erance for the cross-validation algorithm if it is specified in the smooth.policy,
exactly as ewspec.

smooth.cvnorm Ditto to the previous argument, but this one supplies the norm used by the cross-
validation.

smooth.transform

If wavelet smoothing of the wavelet periodogram is used then this specifies
whether a transform is used to transform the periodogram before smoothing,
exactly as ewspec.

smooth.inverse Should be the mathematical inverse of the smooth.transform argument.

AutoReflect Whether the series is internally reflected before application of the wavelet trans-
forms. So, x becomes c(x, rev(x)) which is a periodic sequence. After estima-
tion of the spectrum the second-half of the spectral estimate is junked (because
it is a reflection of the first half). However, the estimate is better. This argument
improves over ewspec where poor estimates near boundaries were obtained be-
cause the transforms assume periodicity but most time series are not (and X_1
and X_T are very different, etc).

ewspec3 15

Value

Precisely the same kind of output as ewspec.

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for
localized autocovariances for locally stationary time series. J. R. Statist. Soc. B, 75, 879-904.
doi:10.1111/rssb.12015

See Also

AutoBestBW, lacf

Examples

#
Generate time series
#
x <- tvar1sim()
#
Compute its evolutionary wavelet spectrum, with linear running mean smooth
#
x.ewspec3 <- ewspec3(x)
#
Plot the answer, probably its a bit variable, because the default bandwidth
is 5, which is probably inappropriate for many series
#
Not run: plot(x.ewspec3$S)
#
Try a larger bandwidth
#
x.ewspec3 <- ewspec3(x, binwidth=100)
#
Plot the answer, should look a lot smoother
#
Note, a lot of high frequency power on the right hand side of the plot,
which is expected as process looks like AR(1) with param of -0.9
#
Not run: plot(x.ewspec3$S)
#
Do smoothing like ewspec (but additionally AutoReflect)
#
x.ewspec3 <- ewspec3(x, WPsmooth.type="wavelet")
#
Plot the results
#
Not run: plot(x.ewspec3$S)
#

https://doi.org/10.1111/rssb.12015

16 ewspecHaarNonPer

Another possibility is to use AutoBestBW which tries to find the best
linear smooth closest to a wavelet smooth. This makes use of ewspec3
#

ewspecHaarNonPer Compute evolutionary wavelet spectrum (EWS) estimate based on the
Haar wavelet transform.

Description

This function uses the special HwdS function to compute the Haar wavelet transform with out bound-
ary conditions (neither periodic, interval, mirror reflection). This is so all coefficients are genuine
Haar coefficients without involving extra/repeated data.

Usage

ewspecHaarNonPer(x, filter.number = 1, family = "DaubExPhase",
UseLocalSpec = TRUE, DoSWT = TRUE, WPsmooth = TRUE,
verbose = FALSE, smooth.filter.number = 10,
smooth.family = "DaubLeAsymm",
smooth.levels = 3:WPwst$nlevels - 1, smooth.dev = madmad,
smooth.policy = "LSuniversal", smooth.value = 0,
smooth.by.level = FALSE, smooth.type = "soft",
smooth.verbose = FALSE, smooth.cvtol = 0.01,
smooth.cvnorm = l2norm, smooth.transform = I,
smooth.inverse = I)

Arguments

x A vector of dyadic length that contains the time series you want to form the
EWS of.

filter.number Should always be 1 (for Haar)

family Should always be "DaubExPhase", for Haar.

UseLocalSpec Should always be TRUE.

DoSWT Should always be TRUE

WPsmooth Should alway be TRUE to do smoothing. If FALSE then not smoothed.

verbose If TRUE informative messages are printed during the progress of the algorithm.
smooth.filter.number

Wavelet filter number for doing the wavelet smoothing of the EWS estimate.

smooth.family Wavelet family for doing the wavelet smoothing of the EWS estimate.

smooth.levels Which levels of the EWS estimate to apply smoothing to.

smooth.dev What kind of deviance to use. The default is madmad, an alternative might be
var.

smooth.policy What kind of smoothing to use. See help page for ewspec

ewspecHaarNonPer 17

smooth.value If a manual value has to be supplied according to the smooth.policy then this
is it.

smooth.by.level

If TRUE then all levels are smoothed independently with different smoothing,
otherwise all levels are smoothed together (eg one threshold for all levels).

smooth.type The type of wavelet smoothing "hard" or "soft"

smooth.verbose If TRUE then informative messages about the smoothing are printed.

smooth.cvtol If cross-validation smoothing is used, this is the tolerance

smooth.cvnorm If cross-validation smoothing used, this is the norm that’s used

smooth.transform

A transform is applied before smoothing

smooth.inverse The inverse transform is applied after smoothing

Details

This function is very similar to ewspec from wavethresh, and many arguments here perform the
same function as there.

Value

The same value as for the ewspec function.

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for
localized autocovariances for locally stationary time series. J. R. Statist. Soc. B, 75, 879-904.
doi:10.1111/rssb.12015

See Also

hwtos2, HwdS

Examples

#
Requires wavethresh, so not run directly in installation of package
#
ewspecHaarNonPer(rnorm(512))

https://doi.org/10.1111/rssb.12015

18 getridofendNA

getridofendNA Replaces all NAs in vector by 0

Description

Replaces all NAs in vector by 0

Usage

getridofendNA(x)

Arguments

x Vector that might contain NAs

Details

Originally, this function did something more complex, but now it merely replaces NAs by 0

Value

The same vector as x but with NAs replaced by 0

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for
localized autocovariances for locally stationary time series. J. R. Statist. Soc. B, 75, 879-904.
doi:10.1111/rssb.12015

See Also

HwdS

Examples

#
#
#
x <- c(3, 4, 6, NA, 3)
getridofendNA(x)
#[1] 3 4 6 0 3

https://doi.org/10.1111/rssb.12015

HwdS 19

HwdS Compute the non-decimated Haar wavelet transform without using pe-
riodic boundary conditions.

Description

Function uses the filter function to achieve its aims.

Usage

HwdS(x)

Arguments

x A vector of dyadic length that you wish to transform.

Details

The regular wd function that can compute the non-decimated transform uses different kinds of
boundary conditions, which can result in coefficients being used multiply for consideration in a
test of stationarity, and distort results. This function only computes Haar coefficients on the data it
can, without wrapround.

Value

An object of class wd which contains the nondecimated Haar transform of the input series, x without
periodic boundary conditions (nor interval, nor reflection).

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for
localized autocovariances for locally stationary time series. J. R. Statist. Soc. B, 75, 879-904.
doi:10.1111/rssb.12015

See Also

ewspecHaarNonPer, getridofendNA

https://doi.org/10.1111/rssb.12015

20 hwt

Examples

#
Apply Haar transform to Gaussian data
#
HwdS(rnorm(32))
#Class 'wd' : Discrete Wavelet Transform Object:
~~ : List with 8 components with names
C D nlevels fl.dbase filter type bc date
#
#$C and $D are LONG coefficient vectors
#
#Created on : Tue Jul 17 15:14:59 2012
#Type of decomposition: station
#
#summary(.):
#----------
#Levels: 5
#Length of original: 32
#Filter was: Haar wavelet
#Boundary handling: periodic
#Transform type: station
#Date: Tue Jul 17 15:14:59 2012

hwt Compute a Haar wavelet transform for data of arbitrary n length

Description

Function computes Haar wavelet and scaling function coefficients for data set of any length. Algo-
rithm computes every possible coefficient that it can for both decimated and nondecimated versions
of the transform.

Usage

hwt(x, type = c("wavelet", "station"), reindex = FALSE)

Arguments

x A vector of length n, where n is a positive integer. This is the data that you wish
to compute the Haar wavelet transform for.

type The type of transform, either the decimated or nondecimated algorithm.

reindex If TRUE then the routine attempts to match scales with the usual dyadic trans-
form, wd. If FALSE then the coefficients that are returned are "as is"

hwt 21

Details

Essentially, this algorithm attempts to compute every possible Haar wavelet coefficient. For exam-
ple, if the length of the input series was 6 then this means that three coefficients at the finest scale
can be computed using the first, second and third pair of input data points using the weights c(1,
-1)/sqrt(2). However, from the three coefficients that result from this, there is only one pair, so
only one "next coarser" coefficient can be computed.

The reindex option is subtle. Essentially, it tries to ensure that the returned coefficients end up at
the same scales as if a data set of the next highest dyadic length was analyzed by the wd function.
E.g. if the length of the series was 10 then with reindex=FALSE (default) only three levels are
returned for each of the wavelet and scaling coefficients. If reindex=TRUE then the number of
levels returned would be as if wd analysed a data set of length 16 (the smallest dyadic number larger
than 10). The wd levels would be zero to three and this is what would be returned in this function
if reindex=TRUE. However, note, in this case, the coarsest level coefficient happens to be NULL
(or not computable). One can view the algorithm as computing a partial transform of 10 of the 16
elements and substituting NA for anything it can’t compute.

Value

An object of class hwtANYN which is a list with the following components.

c The scaling function coefficients. This is a list of length nlevels which con-
tains the scaling function coefficients. The coarsest scale coefficients are to be
found in the lowest-indexed slots of the list (e.g. c[[1]]) and increasing slot in-
dex corresponds to finer scales. So, c[[length(c)]] corresponds to the finest
coefficients. Note, an entry in the slot can also be NULL. This indicates that no
coefficients could be calculated at this scale, usually the coarsest.

d A for c but for wavelet coefficients.

nlevels The number of scale levels in the Haar wavelet decomposition. if reindex=TRUE
then this number will be the log to base 2 of the smallest power of two larger
than the length of the input vector x.

type Whether a decimated wavelet transform has been computed ("wavelet") or a
nondecimated transform ("station"). Note, the name of the argument "station"
has been chosen to coincide with the type in the regular wavelet transform com-
puted by wd.

reindex Either TRUE or FALSE. If TRUE then the scale levels correspond directly to those
computed by wd, the regular wavelet transform. If FALSE then the levels returned
in c and d are just indexed from the first non-null level.

Author(s)

G. P. Nason

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for
localized autocovariances for locally stationary time series. J. R. Statist. Soc. B, 75, 879-904.
doi:10.1111/rssb.12015

https://doi.org/10.1111/rssb.12015

22 hwtos

Priestley, M.B. and Subba Rao (1969) A test for non-stationarity of time series. J. R. Statist. Soc.
B, 31, 140-149.

von Sachs, R. and Neumann, M.H. (2000) A wavelet-based test for stationarity. J. Time Ser. Anal.,
21, 597-613.

See Also

hwtos, plot.hwtANYN, print.hwtANYN, summary.hwtANYN

Examples

#
Generate test data set of length 5 (note, NOT a power of two)
#
v2 <- rnorm(5)
#
Compute its Haar transform
#
v2hwt <- hwt(v2)
#
How many levels does it have?
#
nlevelsWT(v2hwt)
#
What are the coarsest scale wavelet coefficients
#
v2hwt$d[[1]]
#
What are the finest scale scaling function coefficients
#
v2hwt$c[[nlevels(v2hwt$c)-1]]

hwtos Haar wavelet test for (second-order) stationarity for arbitrary length
time series.

Description

NOTE: CURRENTLY THIS FUNCTION IS NOT INCLUDED IN THE PACKAGE. USE hwtos2.
This function computes the raw wavelet periodogram of the arbitrary time series vector x. The
periodogram is then subject to a hypothesis test to see if its expectation over time, for different
scales, is constant. The constancy test is carried out using tests on its Haar wavelet coefficients. The
overall test is for second-order stationarity (e.g. constant variance, constant acf function, mean is
assumed zero).

Usage

hwtos(x, alpha = 0.05, lowlev = 1, WTscale = NULL, maxSD = NULL,
verbose = FALSE, silent = FALSE, UseCForVarip2 = TRUE, OPLENGTH = 1e+05,
mc.method = p.adjust.methods)

hwtos 23

Arguments

x The time series you wish to test for second-order stationarity. Minimum length
series that this function will operate for is 20. However, for short series the
power of the test might not be good and could be investigated via simulation
that reflect your particular circumstances. This should be a stochastic series.
The function will report an error if x is a constant function. The function might
not work properly if it contains a significant trend or patches of non-stochastic
observations.

alpha The (nominal) size of the hypothesis test.

lowlev Controls the lowest scale of the wavelet periodogram that gets analyzed. Gener-
ally, leave this parameter alone.

WTscale Controls the finest scale of the Haar wavelet transform of a particular wavelet
periodogram scale. Generally, we have to stay away from the finest Haar wavelet
transform scales of the periodogram as the test relies on a central limit theorem
effect which only "kicks in" when the Haar wavelet scale is medium-to-coarse.
Generally, leave this argument alone.

maxSD Parameter which controls which scales go towards overall variance calculation.
Generally, leave alone.

verbose If TRUE then informative messages are printed. If FALSE only limited informa-
tional messages are printed unless silent=TRUE.

silent If TRUE then no messages are printed during the operation of the function at all.

UseCForVarip2 If TRUE then fast C code is used for the variance calculation, otherwise slower R
code is used.

OPLENGTH Some of the internal functions require workspace to perform their calculations.
In exceptional circumstances more static workspace might be required and so
this argument might need to be higher than the default. However, the code will
tell you how high this number will need to be. The code can, with default
arguments, handle series that are up to 30000 in length. However, at 35000
the OPLENGTH parameter will need to be increased.

mc.method Method to control overall size for test taking into account multiple comparisons.
The default argument is p.adjust.methods which is the same as the default
argument to the p.adjust function in R. This includes a number of the popular
methods such as "Holm", "Bonferonni" and "FDR", for example.

Details

This function computes all possible Haar wavelet coefficients of the time series x. Then, squares
those to obtain the raw wavelet periodogram. Then the test of stationarity works by taking each level
of the raw wavelet periodogram and subjecting it to another (decimated) Haar wavelet transform
and then assessing whether any of those coefficients is significantly different to zero. It does this
by using a Gaussian approximation first introduced by Neumann and von Sachs (2000). This is a
multiple testing problem: many individual wavelet coefficients need to be assessed simultaneously
and the user can choose the type of assessment using the mc.method argument.

24 hwtos

Value

An object of class tosANYN. This is a list containing the following components.

nreject The number of wavelet coefficients that reject the null hypothesis of being zero.
mc.method The multiple comparison method used.
AllTS All the t-statistics. This is a list containing J levels, where J is the number of

periodogram levels. Each slot in the AllTS list itself contains a Haar wavelet
transform object (hwtANYN) which are the t-statistics associated with each Haar
wavelet coefficient of the Haar raw wavelet periodogram.

AllPVal As AllTS but for p-values
alpha The size of the test
x The time series that was analyzed
xSD The estimated mean spectrum value for each level of the spectrum, mean over

time that is.
allTS A vector containing all of the test statistics. So, the information in AllTS but

arranged as a single vector
allpvals As allTS but for p-values. These values have been adjusted to take account of

the multiple comparisons. See the vaector allpvals.unadjust for an unad-
justed set.

allbigscale The wavelet periodogram scale associated with each t-statistic in allTS.
alllitscale As for allbigscale but for the wavelet transform of the wavelet periodogram.
allindex As for allbigscale but the wavelet coefficient index in the Haar wavelet trans-

form of the wavelet periodogram
alllv The maximum number of wavelet coefficients in a particular Haar wavelet scale

of a particular scale of the wavelet periodogram. Note, this information is useful
because the wavelet transforms are computed on arbitrary length objects and
so keeping track of the number of coefficients per scale is useful later, e.g. for
plotting purposes. This information is not required in the dyadic case because
the coefficient vector lengths are completely predictable.

allpvals.unadjust

A vector of p-values that has not been adjusted by a multiple hypothesis test
technique.

Author(s)

G. P. Nason

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for
localized autocovariances for locally stationary time series. J. R. Statist. Soc. B, 75, 879-904.
doi:10.1111/rssb.12015

Priestley, M.B. and Subba Rao (1969) A test for non-stationarity of time series. J. R. Statist. Soc.
B, 31, 140-149.

von Sachs, R. and Neumann, M.H. (2000) A wavelet-based test for stationarity. J. Time Ser. Anal.,
21, 597-613.

https://doi.org/10.1111/rssb.12015

hwtos 25

See Also

link{hwt}, hwtos2, plot.tosANYN, print.tosANYN, summary.tosANYN

Examples

#
Generate test data set of non-dyadic length
#
v3 <- rnorm(300)
#
Run the test of stationarity
#
Not run: v3.TOS <- hwtos(v3)
#
#Scales get printed
#8 7 6 5 4 3 2
#
Not run: print(v3.TOS)
#Class 'tosANYN' : Stationarity Object for Arbitrary Length Data :
~~~~~~~ : List with 14 components with names
nreject mc.method AllTS AllPVal alpha x xSD allTS
allpvals allbigscale alllitscale allindex alllv
allpvals.unadjust
#
#
#summary(.):
#----------
#There are 54 hypothesis tests altogether
#There were 0 reject(s)
#P-val adjustment method was: holm
#
Note, nothing got rejected. So accept the H_0 null hypothesis of stationarity.
This is precisely what you'd expect operating on iid Gaussians.
#
Let's construct obvious example of non-stationarity.
#
v4 <- c(rnorm(150), rnorm(150,sd=3))
#
I.e. v4 has sharp variance change halfway along
Now compute test of stationarity
#
Not run: v4.TOS <- hwtos(v4)
#
Print out results
#
Not run: print(v4.TOS)
#
#Class 'tosANYN' : Stationarity Object for Arbitrary Length Data :
~~~~~~~ : List with 14 components with names
nreject mc.method AllTS AllPVal alpha x xSD allTS
allpvals allbigscale alllitscale allindex alllv
allpvals.unadjust

26 hwtos2

#
#
#summary(.):
#----------
#There are 54 hypothesis tests altogether
#There were 5 reject(s)
#P-val adjustment method was: holm
#Listing rejects...
#P: 7 HWTlev: 2 Max Poss Ix: 2 Indices: 2
#P: 7 HWTlev: 1 Max Poss Ix: 1 Indices: 1
#P: 6 HWTlev: 1 Max Poss Ix: 1 Indices: 1
#P: 5 HWTlev: 1 Max Poss Ix: 1 Indices: 1
#P: 4 HWTlev: 1 Max Poss Ix: 1 Indices: 1

hwtos2 Test of second-order stationarity using wavelets.

Description

The main function to perform a test of second-order stationarity as outlined in Nason (2012). Essen-
tially, this routine computes an evolutionary wavelet spectral estimate and then computes the Haar
wavelet coefficients of each scale of the spectral estimate. Any large Haar coefficients are indicative
of nonstationarity. A multiple hypothesis test assesses whether any of the Haar coefficients are large
enough to reject the null hypothesis of stationarity.

Usage

hwtos2(x, alpha = 0.05, filter.number = 1, family = "DaubExPhase",
lowlev = 3, WTscale = NULL, maxSD = NULL, verbose = FALSE,
silent = FALSE, UseCForVarip2 = TRUE, OPLENGTH = 1e+05)

Arguments

x The time series you want to test for second order stationarity. This should be
a stochastic series. The function will report an error if x is a constant function.
The function might not work properly if it contains a significant trend or patches
of non-stochastic observations.

alpha The overall (nominal) size of the test.
filter.number The index number of the wavelet used to compute the evolutionary spectral es-

timate with.
family The family of wavelet used to compute the evolutionary spectral estimate.
lowlev Do not compute Haar wavelet coefficients on evolutionary wavelet spectra at

level lower than lowlev.
WTscale The theory of the test shows that the Haar wavelet coefficients of the raw wavelet

periodogram are asymptotically normal as long as the scale of the Haar wavelet
is ‘coarse’ enough. Roughly, speaking WTscale is internally coded to be the log
of the square root of T, the length of the series (J/2), but you can set another
value.

hwtos2 27

maxSD As part of its execution, this function computes an evolutionary wavelet spectral
estimate from the time series. Since the test is based on the assumption of sta-
tionarity, the EWS is averaged over time. There will be J = log2 T scale levels
and, if maxSD = NULL then all of the J levels get used for later functions, such
as computing the variance of Haar wavelet coefficients. This argument permits
you to restrict the number of coarse scales going into further calculations (e.g.
removes the coarser scales from further examination). Mostly, the default will
be fine and maximises the use of the available information.

verbose If TRUE then informative error messages are printed. If FALSE they are not.
silent If TRUE then no informative messages are printed. If FALSE then a limited amout

of informative is printed.
UseCForVarip2 If TRUE then fast C code is use to compute wavelet coefficients’ variance. If

FALSE then R code is used wholly throughout, but the execution will be much
slower.

OPLENGTH The PsiJ and PsiJmat routines both used preallocated storage. This argument
can be provided to increase the amount of storage. Note, you should not need
to change this unless the routine as whole stops and tells you to rerun it with
increased storage.

Details

This function looks at the Haar wavelet coefficients of an evolutionary wavelet spectrum. This is
a modification of the principle of von Sachs and Neumann (2000) which worked with the Haar
wavelet coefficients of a local Fourier spectrum.

See also, the stationarity test which implements the Priestley-Subba Rao (1969) test. This func-
tion is contained in the fractal package.

Value

An object of class tos, a list containing the following components:

nreject The number of FDR rejections
rejpval The p-value associated with FDR rejections
spvals A vector of p-values from all of the tests, sorted in ascending order.
sTS A vector of sorted test statistics from all of the tests, sorted into the same order

as spvals
AllTS A list containing all of the test statistics. The first entry contains test statistics

corresponding to the coarsest scale, the last entry corresponds to the finest scale.
Each component in the list is either empty (because the scale was omitted be-
cause it was less than lowlev) or contains a wd class object. The wd class object
contains the test statistics for each Haar wavelet coefficient (not the coefficients).
Hence, the value of the test statistic for any scale/location or level of the wavelet
periodogram can easily be extracted.

AllPVal As AllTS except the values stored are the p-values, not the test statistics.
alpha The nominal size of the overall hypothesis test.
x The original time series that was analyzed
xSD A vector containing J levels, which is the EWS estimate averaged across time.

28 hwtos2

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for
localized autocovariances for locally stationary time series. J. R. Statist. Soc. B, 75, 879-904.
doi:10.1111/rssb.12015

Priestley, M.B. and Subba Rao (1969) A test for non-stationarity of time series. J. R. Statist. Soc.
B, 31, 140-149.

von Sachs, R. and Neumann, M.H. (2000) A wavelet-based test for stationarity. J. Time Ser. Anal.,
21, 597-613.

See Also

varip2, stationarity

Examples

#
First, test a set of iid Gaussians: should be stationary!
#
hwtos2(rnorm(256))
8 7 6 5 4 3
#Class 'tos' : Stationarity Object :
~~~~ : List with 9 components with names
nreject rejpval spvals sTS AllTS AllPVal alpha x xSD
#
#
#summary(.):
#----------
#There are 186 hypothesis tests altogether
#There were 0 FDR rejects
#No p-values were smaller than the FDR val of:
#Using Bonferroni rejection p-value is 0.0002688172
#And there would be 0 rejections.
#
NOTE: the summary indicates that nothing was rejected: hence stationary!
#
Second, example. Concatenated Gaussians with different variances
#
hwtos2(c(rnorm(256), rnorm(256,sd=2)))
9 8 7 6 5 4 3
#Class 'tos' : Stationarity Object :
~~~~ : List with 9 components with names
nreject rejpval spvals sTS AllTS AllPVal alpha x xSD
#
#
#summary(.):
#----------
#There are 441 hypothesis tests altogether

https://doi.org/10.1111/rssb.12015

idlastzero 29

#There were 5 FDR rejects
#The rejection p-value was 3.311237e-06
#Using Bonferroni rejection p-value is 0.0001133787
#And there would be 5 rejections.
#Listing FDR rejects... (thanks Y&Y!)
#P: 5 HWTlev: 0 indices on next line...[1] 1
#P: 6 HWTlev: 0 indices on next line...[1] 1
#P: 7 HWTlev: 0 indices on next line...[1] 1
#P: 8 HWTlev: 0 indices on next line...[1] 1
#P: 9 HWTlev: 0 indices on next line...[1] 1
#
NOTE: This time 5 Haar wavelet coefficients got rejected: hence series
is not stationary.

idlastzero Return the index of the last zero in a vector

Description

Return the index of the last zero in a vector, otherwise stop and return errror message. A helper
routine for mkcoef.

Usage

idlastzero(v)

Arguments

v Vector you wish to investigate

Value

The index within v of the last (right-most or one with the largest index) zero.

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for
localized autocovariances for locally stationary time series. J. R. Statist. Soc. B, 75, 879-904.
doi:10.1111/rssb.12015

See Also

mkcoef

https://doi.org/10.1111/rssb.12015

30 lacf

Examples

idlastzero(c(3,4,5,0,9))
#[1] 4

lacf Compute localized autocovariance.

Description

Compute localized autocovariance function for nonstationary time series. Note: this function is
borrowed from the costat package, and modified to have linear smoothing, and when that package
is complete, it will be removed from this package.

Usage

lacf(x, filter.number = 10, family = "DaubLeAsymm", smooth.dev = var,
AutoReflect = TRUE, lag.max = NULL, WPsmooth.type = "RM",
binwidth, tol=0.1, maxits=5, ABBverbose=0, verbose=FALSE, ...)

Arguments

x The time series you wish to analyze

filter.number Wavelet filter number you wish to use to analyse the time series (to form the
wavelet periodogram, etc) See filter.select for more details.

family Wavelet family to use, see filter.select for more details.

smooth.dev Change variance estimate for smoothing. Note: var is good for this purpose.

AutoReflect If TRUE then an internal reflection method is used to repackage the time series
so that it can be analyzed by the periodic-assuming wavelet transforms.

lag.max The maximum lag of acf required. If NULL then the same default as in the
regular acf function is used.

WPsmooth.type The type of smoothing used to produce the estimate. See ewspec3 for more
advice on this.

binwidth If necessary, the binwidth for the spectral smoothing, see ewspec3 for more
info. If WTsmooth.type=="RM" then this argument specifies the binwidth of the
kernel smoother applied to the wavelet periodogram. If the argument is missing
or zero then an automatic bandwidth is calculated by AutoBestBW.

tol Tolerance argument for AutoBestBW

maxits Maximum iterations argument for AutoBestBW

ABBverbose Verbosity of execution of AutoBestBW

verbose If TRUE then informative message is printed

... Other arguments for ewspec3.

lacf 31

Details

In essence, this routine is fairly simple. First, the EWS of the time series is computed. Then
formula (14) from Nason, von Sachs and Kroisandr (2000) is applied to obtain the time-localized
autocovariance from the spectral estimate.

Value

An object of class lacf which contains the autocovariance. This object can be handled by functions
from the costat package. The idea in this package is that the function gets used internally and
much of the same functionality can be achieved by running Rvarlacf and plot.lacfCI. However,
running lacf on its own is much faster than Rvarlacf as the CI computation is intenstive.

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for
localized autocovariances for locally stationary time series. J. R. Statist. Soc. B, 75, 879-904.
doi:10.1111/rssb.12015

Nason, G.P., von Sachs, R. and Kroisandt, G. (2000) Wavelet processes and adaptive estimation of
the evolutionary wavelet spectrum. J. R. Statist. Soc. Ser B, 62, 271-292.

See Also

Rvarlacf

Examples

#
With wavethresh attached, note binwidth is fabricated here,
just to make the example work. The lacf implementation in
the costat package performs wavelet (ie maybe better) smoothing automatically
#
v <- lacf(rnorm(256), binwidth=40)
#
With costat attached also
#
Not run: plot(v)

https://doi.org/10.1111/rssb.12015

32 littlevar

littlevar Subsidiary helper function for hwtos2

Description

Computes a variance estimate for hwtos2 Merely takes a wavelet periodogram (actually wd class
object), and a level argument. Then extracts the wavelet periodogram coefficients at that level and
returns twice the mean of their squares.

Usage

littlevar(WP, ll)

Arguments

WP The wavelet periodogram that you wish to analyze (actually a wd class object,
type="station"

ll A valid level for the periodogram

Value

Twice the mean of the square of the coefficients at the level extracted.

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for
localized autocovariances for locally stationary time series. J. R. Statist. Soc. B, 75, 879-904.
doi:10.1111/rssb.12015

See Also

hwtos2

Examples

#
Not intended for direct user use
#

https://doi.org/10.1111/rssb.12015

mkcoef 33

mkcoef Compute discrete wavelets.

Description

For a given wavelet computes a list with each entry of the list containing that discrete wavelet at a
different scale. The first entry corresponds to the finest wavelet, the next entry to the next finest,
and so on.

Usage

mkcoef(J, filter.number = 10, family = "DaubLeAsymm")

Arguments

J A NEGATIVE integer. -J is the maximum number of levels to compute.

filter.number The filter number (number of vanishing moments) of the underlying wavelet to
use.

family The family of the wavelet. See wd help for further info.

Value

A list of length J. The first entry contains the discrete wavelet at the finest scale, the 2nd entry
contains the next most finest wavelet, and so on.

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for
localized autocovariances for locally stationary time series. J. R. Statist. Soc. B, 75, 879-904.
doi:10.1111/rssb.12015

See Also

Rvarlacf, whichlevel

Examples

#
E.g. compute discrete Haar wavelets on scales 1, 2, 3.
#
mkcoef(-3, 1, "DaubExPhase")
#[[1]]
#[1] 0.7071068 -0.7071068
#

https://doi.org/10.1111/rssb.12015

34 plot.hwtANYN

#[[2]]
#[1] 0.5 0.5 -0.5 -0.5
#
#[[3]]
#[1] 0.3535534 0.3535534 0.3535534 0.3535534 -0.3535534 -0.3535534 -0.3535534
#[8] -0.3535534

plot.hwtANYN Plots the transform contained in an hwtANYN object.

Description

An hwtANYN object contains the results of a Haar wavelet transform computed on an object of non-
dyadic length. It is the equivalent of the wd object for non-dyadic vectors for Haar wavelets. Note,
the plot can only be carried out where the reindex slot of the object is TRUE.

Usage

S3 method for class 'hwtANYN'
plot(x, xlabvals, xlabchars, ylabchars, first.level = 1,

main = "Haar Wavelet Coefficients", scaling = c("global", "by.level"),
rhlab = FALSE, sub, NotPlotVal = 0.005, xlab = "Translate",
ylab = "wd-equivalent Resolution Level", miss.coef.col = 2,
miss.coef.cex = 0.5, miss.coef.pch = 2, ...)

Arguments

x The hwtANYN object containing the Haar wavelet transform coefficients you wish
to plot.

xlabvals Coordinates of x-axis labels you wish to add.

xlabchars Labels to be printed at the x-axis labels specified.

ylabchars Y-axis labels

first.level Specifies the coarsest level to be plotted.

main Specify a different main title for the plot.

scaling How coefficients will be scaled on the plot. This can be two arguments "global"
where all coefficients are plotted to the same scale and "by.level" where all
coefficients on the same resolution level are plotted to the same scale, but coef-
ficients on different resolution levels might be of different scales.

rhlab If TRUE then the scale factor used for each level is shown.

sub Specify a different subtitle for the plot.

NotPlotVal Coefficients will not be plotted if their scaled height is less than NotPlotVal in
absolute value. This is a useful way to completely suppress very small coeffi-
cient values.

xlab Specify the x-axis label.

plot.hwtANYN 35

ylab Specify the y-axis label.

miss.coef.col What color to plot "missing coefficients" in.

miss.coef.cex How big to plot the "missing coefficients" symbol.

miss.coef.pch The type of plotting character used to plot the "missing coefficients".

... Other arguments to plot.

Details

A plot of the different wavelet coefficients at the scales ranging from first.level to the finest
scale. Note, in this plot the coefficients are NOT aligned with time at different scales in the same
way as in the wd type plot - except the finest scale.

The Haar wavelet transform objects that this function plots are obtained originally from vectors of
non-dyadic length. One can think of such a vector as a sub-vector of a longer vector of dyadic
length. E.g. if your vector is of length 35 then it is a sub-vector of a vector of 64 (the next highest
power of two). So, you can think of the Haar wavelet transform being of a vector of length 64 where
64-35=29 of the observations are missing. These missing observations "contribute" to wavelet (and
scaling function) coefficients that are missing. This function has the ability to plot the "missing"
coefficients, by default as small red triangles. The user can control the colour, size and plotting
character of the missing observations.

Value

A single vector of length the number of levels plotted containing the value of the maximum absolute
coefficient value.

Author(s)

G. P. Nason

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for
localized autocovariances for locally stationary time series. J. R. Statist. Soc. B, 75, 879-904.
doi:10.1111/rssb.12015

Priestley, M.B. and Subba Rao (1969) A test for non-stationarity of time series. J. R. Statist. Soc.
B, 31, 140-149.

von Sachs, R. and Neumann, M.H. (2000) A wavelet-based test for stationarity. J. Time Ser. Anal.,
21, 597-613.

See Also

hwt, print.hwtANYN

https://doi.org/10.1111/rssb.12015

36 plot.lacf

Examples

#
Generate test data of length 82
#
v3 <- rnorm(82)
#
Compute Haar wavelet transform, note reindex has to be true for subsequent
plot.
#
v3.hwt <- hwt(v3, reindex=TRUE)
#
#
Not run: plot(v3.hwt)

plot.lacf Plot localized autocovariance (lacf) object.

Description

Produces various ways of looking at a localized autocovariance (lacf) object.

Usage

S3 method for class 'lacf'
plot(x, plotcor = TRUE, type = "line",

lags = 0:min(as.integer(10 * log10(nrow(x$lacf))), ncol(x$lacf) - 1),
tcex = 1, lcol = 1, llty = 1, the.time = NULL, plot.it=TRUE,

xlab, ylab, ...)

Arguments

x The localized autocovariance object you want to plot (lacf)

plotcor If TRUE then plot autocorrelations, otherwise plot autocovariances.

type The lacf objects are fairly complex and so there are different ways you can plot
them. The types are line, persp or acf, see the details for description. Note
that the line plot only works with correlations currently.

lags The lags that you wish included in the plot. The default is all the lags from 0
up to the maximum that is used in the R acf plot

tcex In the line plot lines are plotted that indicate the time-varying correlation. Each
lag gets a different line and the lines are differentiated by the lag id being placed
at intervals along the line. This argument changes the size of those ids (num-
bers).

lcol Controls the colours of the lines in the line plot.

llty Controls the line types of the lines in the line plot.

plot.lacf 37

the.time If the acf plot is chosen then you have to specify a time point about which to
plot the acf. I.e. in general this funcion’s lacf argument is a 2D function: c(t, τ),
the acf plot produces a plot like the regular acf function and so you have to turn
the 2D c(t, τ) into a 1D function c(t0, τ) by specifying a fixed time point t0.

plot.it If TRUE the plot is produced and displayed. If FALSE then no plot is produced
but the autocovariance or autocorrelation values that would have been produced
are returned as numerical values instead. This means that this function is an
extractor function for the lacf class object.

xlab X-axis label, constructed internally if not supplied

ylab Y-axis label, constructed internally if not supplied

... Other arguments to plot.

Details

This function produces pictures of the two-dimensional time-varying autocovariance or autocorre-
lation, c(t, τ), of a locally stationary time series. There are three types of plot depending on the
argument to the type argument.

The line plot draws the autocorrelations as a series of lines, one for each lag, as lines over time.
E.g. a sequence #of lines c(t, τi) is drawn, one for each τi. The zeroth lag line is the autocorrelation
at lag 0 which is always 1. By default all the lags are drawn which can result in a confusing picture.
Often, one is only interested in the low level lags, so only these can be plotted by changing the lags
argument and any selection of lags can be plotted. The colour and line type of the plotted lines can
be changed with the lcol and the llty arguments.

The acf plot produces pictures similar to the standard R acf() function plot. However, the regular
acf is a 1D function, since it is defined to be constant over all time. The time-varying acf supplied
to this function is not constant over all time (except for stationary processes, theoretically). So, this
type of plot requires the user to specify a fixed time at which to produce the plot, and this is supplied
by the the.time argument.

The persp plot plots the 2D function c(t, τ) as a perspective plot.

Value

For the acf type plot the acf values are returned invisibly. For the other types nothing is returned.

Author(s)

G.P. Nason

References

Cardinali, A. and Nason, G.P. (2012) Costationarity of Locally Stationary Time Series using costat.

Cardinali, A. and Nason, G.P. (2010) Costationarity of locally stationary time series. J. Time Series
Econometrics, 2, Issue 2, Article 1.

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for
localized autocovariances for locally stationary time series. J. R. Statist. Soc. B, 75, 879-904.
doi:10.1111/rssb.12015

https://doi.org/10.1111/rssb.12015

38 plot.lacfCI

See Also

lacf

Examples

#
Make some dummy data, e.g. white noise
#
v <- rnorm(256)
#
Compute the localized autocovariance (ok, the input is stationary
but this is just an example. More interesting things could be achieved
by putting the results of simulating from a LSW process, or piecewise
stationary by concatenating different stationary realizations, etc.
#
vlacf <- lacf(v, lag.max=30)
#
Now let's do some plotting of the localized autocovariance
#
Not run: plot(vlacf, lags=0:6)
#
Should get a plot where lag 0 is all up at value 1, and all other
autocorrelations are near zero (since its white noise).
#
#
How about just looking at lags 0, 2 and 4, and some different colours.
#
Not run: plot(vlacf, lags=c(0,2,4), lcol=c(1,2,3))
#
O.k. Let's concentrate on time t=200, let's look at a standard acf
plot near there.
#
Not run: plot(vlacf, type="acf", the.time=200)
#
Now plot the autocovariance, rather than the autocorrelation.
#
Not run: plot(vlacf, type="acf", the.time=200, plotcor=FALSE)
#
Actually, the plot doesn't look a lot different as the series is white
noise, but it is different if you look closely.

plot.lacfCI Plot confidence intervals for localized autocovariance for locally sta-
tionary time series.

Description

Plot the localized autocovariance and approximate confidence intervals.

plot.lacfCI 39

Usage

S3 method for class 'lacfCI'
plot(x, plotcor = TRUE, type = "line",

lags = 0:as.integer(10 * log10(nrow(x$lacf))), tcex = 1,
lcol = 1, llty = 1, ylim = NULL, segwid = 1,
segandcross = TRUE, conf.level = 0.95, plot.it = TRUE,
xlab, ylab, sub, ...)

Arguments

x The lacfCI object you wish to plot, e.g. produced by the Rvarlacf function.

plotcor If TRUE then autocorrelations are plotted, if FALSE then autocovariances are.
Note: not all combinations of types of plot and plotcor are valid, but many are.

type This can be one of three values "line", "persp" or "acf". The value "acf"
produces a plot like the regular acf function, but note, the values plotted are
from a localized autocovariance function centred at the time location contained
in the object object (and that time appears in the subtitle). This is the only plot
that also plots the confidence intervals. The "line" plot plots autocorrelations
(only) for the specified lags and does this over all time for the whole extent of
the series. This plot is useful to see if the autocorrelations are changing over
time. The final option, "persp" produces a perspective plot of the autocovari-
ance or autocorrelations. Arguments can be supplied (theta, phi) to rotate the
perspective plot, as it can be sometimes hard to visualize the plot.

lags The lags that you wish to display. This should be a list of non-negative integers,
but not necessarily consecutive.

tcex On the "line" plot this argument controls the expansion of the font for the
labels on the lines. So, setting tcex=2, for example, will double the size of
these. These labels visually indicate which line corresponds to which lag.

lcol On the "line" plot, this argument controls the colour of the lines that are used
to show the acfs.

llty As lcol but for line types.

ylim The vertical limits of the plot.

segwid On the "acf" plot, this argument controls the widths of the little acf segments
that connect the x-axis with the acf values.

segandcross If TRUE then a small diamond is plotted at the location of the acf, to make it
clearer.

conf.level The confidence level of the confidence intervals.

plot.it If FALSE then no plot is produced. This can be used if you merely want to extract
the relevant acf values (which are returned).

xlab X-axis label, constructed internally if not supplied

ylab Y-axis label, constructed internally if not supplied

sub A subtitle for the plot

... Other arguments to the main plot command.

40 plot.lacfCI

Details

This function can plot the localized autocovariance in three ways. Like a regular acf plot (but
obviously a slice out of a time-varying autocovariance, not the regular acf), a line plot which shows
the acfs over time and a perspective plot which can plot the estimate of c(z, τ) as a 2D function.
Currently, the confidence intervals can only be displayed on the "acf" type plot.

Value

A vector of the extracted acfvals invisibly returned. Note: what is returned depends on the argu-
ments, what is returned is what would have been plotted if plot.it were TRUE

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for
localized autocovariances for locally stationary time series. J. R. Statist. Soc. B, 75, 879-904.
doi:10.1111/rssb.12015

See Also

Rvarlacf

Examples

#
Simulate a TVAR(1) process
#
x <- tvar1sim()
#
Computes its time-localized autocovariance and confidence intervals
Note: smoothing is done automatically!
#
x.lacf <- Rvarlacf(x=x, nz=50, var.lag.max=20)
#
Now plot this, plot covariances as an acf plot, with the CIs
#
Not run: plot(x.lacf, type="acf", plotcor=FALSE)
#
Now plot it as a line plot, as correlations and can't do CIs
#
Not run: plot(x.lacf)

https://doi.org/10.1111/rssb.12015

plot.tos 41

plot.tos Produces a graphical representation of the results of a test of station-
arity contained in a tos object.

Description

After a test of stationarity for dyadic data (e.g. hwtos2) is applied to a time series it generates
a results object of class tos. This function takes objects of that class and produces a graphical
representation of the test.

Usage

S3 method for class 'tos'
plot(x, mctype = "FDR", sub = NULL, xlab = "Time",

arrow.length = 0.05, verbose = FALSE, ...)

Arguments

x The tos class object, the results of the test of stationarity that you wish to plot.

mctype Whether you wish to see rejections (if they exist) according to a Bonferroni
assessment ("BON") or according to FDR ("FDR")

sub An argument to change the subtitle.

xlab An argument to change the x-axis label.

arrow.length The length of the edges of the arrow head (in inches). Note that this is the
argument that is supplied as the length argument of the arrow function that is
called by this routine to draw the arrows.

verbose If TRUE then some meaningless debugging information is printed.

... Other arguments to the main ts.plot routine that does the plotting.

Details

The following things are usually plotted. 1. The time series that was investigated. The left-hand
axes is that for the time series. The horizontal axis is time (but just integers indexing). If the series
was deemed stationary by the test then that’s it except that the subtitle indicates that no Haar wavelet
coefficients were rejected as being nonzero.

If the test indicated that the series was nonstationary then the subtitle indicates this by stating the
number of rejections (this might be according to FDR or Bonferroni depending on the setting of the
mctype argument. Then graphical representations of any significant Haar wavelet coefficients are
plotted as double-headed red horizontal arrows on the plot. The horizontal extent corresponds to
the support of the underlying wavelet. The vertical position of the arrows gives an indication of the
wavelet periodogram scale where the significant coefficient was found. The wavelet periodogram
scales are indexed by the right hand axis, and beware, the numbers might not be consecutive, but
they will be ordered (so e.g. if no signficant coefficients were discovered at wavelet periodogram
scale level 6, then that scale/axis label will not appear). The scale within the Haar wavelet transform
is indicated by the vertical position WITHIN ticks between wavelet periodogram scales (ie, there are

42 plot.tosANYN

TWO scales: the wavelet periodogram scale that is currently being analyzed, and the Haar wavelet
transform scale within the periodogram scale). So, if two right hand axis labels are, e.g., 4 and 5,
and horizontal arrows appear between these two they actually correspond to different Haar wavelet
transform scales AT wavelet periodogram level 4. It is not usually possible to tell precisely which
Haar wavelet transform scale the coefficients can come from, but the information can be extracted
from the summary.tos function which lists this.

Value

None.

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for
localized autocovariances for locally stationary time series. J. R. Statist. Soc. B, 75, 879-904.
doi:10.1111/rssb.12015

See Also

hwtos2, summary.tos

Examples

#
Produces an interesting plot with high probability
#
#
Note that the input time series is two concatenated white noise
sequences with very different variances.
#
answer <- hwtos2(c(rnorm(256), rnorm(256, sd=5)))
Not run: plot(answer)

plot.tosANYN Produces a graphical representation of the results of a test of station-
arity from a tosANYN object.

Description

After a test of stationarity (e.g. hwtos) is applied to a time series it generates a results object of
class tosANYN. This function takes objects of that class and produces a graphical representation of
the test.

https://doi.org/10.1111/rssb.12015

plot.tosANYN 43

Usage

S3 method for class 'tosANYN'
plot(x, sub = NULL, xlab = "Time",

arrow.length = 0.05, verbose = FALSE, ...)

Arguments

x The tosANYN class object, the results of the test of stationarity that you wish to
plot.

sub An argument to change the subtitle.

xlab An argument to change the x-axis label.

arrow.length The length of the edges of the arrow head (in inches). Note that this is the
argument that is supplied as the length argument of the arrow function that is
called by this routine to draw the arrows.

verbose If TRUE then some meaningless debugging information is printed.

... Other arguments to the main ts.plot routine that does the plotting.

Details

The following things are usually plotted. 1. The time series that was investigated. The left-hand
axes is that for the time series. The horizontal axis is time (but just integers indexing). If the series
was deemed stationary by the test then that’s it except that the subtitle indicates that no Haar wavelet
coefficients were rejected as being nonzero.

If the test indicated that the series was nonstationary then the subtitle indicates this by stating the
number of rejections. Then graphical representations of any significant Haar wavelet coefficients
are plotted as double-headed red horizontal arrows on the plot. The horizontal extent corresponds to
the support of the underlying wavelet. The vertical position of the arrows gives an indication of the
wavelet periodogram scale where the significant coefficient was found. The wavelet periodogram
scales are indexed by the right hand axis, and beware, the numbers might not be consecutive, but the
will be ordered (so e.g. if no signficant coefficients were discovered at wavelet periodogram scale
level 6, then that scale/axis label will not appear). The scale within the Haar wavelet transform is
indicated by the vertical position WITHIN ticks between wavelet periodogram scales (ie, there are
TWO scales: the wavelet periodogram scale that is currently being analyzed, and the Haar wavelet
transform scale within the periodogram scale). So, if two right hand axis labels are, e.g., 4 and 5,
and horizontal arrows appear between these two they actually correspond to different Haar wavelet
transform scales AT wavelet periodogram level 4. It is not usually possible to tell precisely which
Haar wavelet transform scale the coefficients can come from, but the information can be extracted
from the summary.tosANYN function which lists this.

Value

None.

Author(s)

Guy Nason.

44 print.hwtANYN

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for
localized autocovariances for locally stationary time series. J. R. Statist. Soc. B, 75, 879-904.
doi:10.1111/rssb.12015

See Also

hwtos, summary.tosANYN

Examples

#
Produces an interesting plot with high probability
#
#
Note that the input time series is two concatenated white noise
sequences with very different variances.
#
Not run: answer <- hwtos(c(rnorm(256), rnorm(256, sd=5)))
Not run: plot(answer)

print.hwtANYN Print out a hwtANYN class object, eg from the link{hwt} function.

Description

Prints out very basic information on an object that represents a Haar wavelet transform of a data set
of non-dyadic length.

Usage

S3 method for class 'hwtANYN'
print(x, ...)

Arguments

x The object you wish to print.

... Other arguments

Value

This function calls the summary.hwtANYN function as its last action. So, the return from this function
is the return from summary.hwtANYN

Author(s)

Guy Nason.

https://doi.org/10.1111/rssb.12015

print.lacf 45

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for
localized autocovariances for locally stationary time series. J. R. Statist. Soc. B, 75, 879-904.
doi:10.1111/rssb.12015

See Also

hwt, summary.hwtANYN

Examples

#
Generate test vector of length 5
#
v2 <- rnorm(5)
#
Compute Haar wavelet transform
#
v2.hwt <- hwt(v2)
#
Print out the answer
#
print(v2.hwt)
#Class 'hwtANYN' : Haar Wavelet for Arbitrary Length Data object:
~~~~~~~ : List with 5 components with names
c d nlevels type reindex
#
#
#summary(.):
#----------
#Levels: 2
#Filter was: Haar
#Transform type: wavelet
#Object was reindex to match wd: FALSE

print.lacf Print lacf class object

Description

Prints information about lacf class object.

Usage

S3 method for class 'lacf'
print(x, ...)

https://doi.org/10.1111/rssb.12015

46 print.lacf

Arguments

x The lacf class object you want to print

... Other arguments

Value

None

Author(s)

Guy Nason

References

Cardinali, A. and Nason, G.P. (2012) Costationarity of Locally Stationary Time Series using costat.

Cardinali, A. and Nason, G.P. (2010) Costationarity of locally stationary time series. J. Time Series
Econometrics, 2, Issue 2, Article 1.

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for
localized autocovariances for locally stationary time series. J. R. Statist. Soc. B, 75, 879-904.
doi:10.1111/rssb.12015

See Also

lacf, plot.lacf, summary.lacf

Examples

#
Make some dummy data, e.g. white noise
#
v <- rnorm(256)
#
Compute the localized autocovariance (ok, the input is stationary
but this is just an example. More interesting things could be achieved
by putting the results of simulating from a LSW process, or piecewise
stationary by concatenating different stationary realizations, etc.
#
vlacf <- lacf(v, lag.max=30)
#
Now let's print the lacf object
#
print(vlacf)
#Class 'lacf' : Localized Autocovariance/correlation Object:
~~~~ : List with 3 components with names
lacf lacr date
#
#
#summary(.):
#----------
#Name of originating time series:

https://doi.org/10.1111/rssb.12015

print.lacfCI 47

#Date produced: Thu Oct 25 12:11:29 2012
#Number of times: 256
#Number of lags: 30

print.lacfCI Print basic information about a lacfCI object.

Description

Prints basic information about a lacfCI object, which contains information on confidence intervals
for localized autocovariance.

Usage

S3 method for class 'lacfCI'
print(x, ...)

Arguments

x The lacfCI object.

... Other arguments

Value

The last action of this function is to compute summary.tos so the return code is whatever that
function returns.

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for
localized autocovariances for locally stationary time series. J. R. Statist. Soc. B, 75, 879-904.
doi:10.1111/rssb.12015

See Also

summary.lacfCI, Rvarlacf

Examples

#
See example on Rvarlacf help page

https://doi.org/10.1111/rssb.12015

48 print.tos

print.tos Print out a tos class object, eg from the link{hwtos2} function.

Description

Prints out very basic information on an object that represents the output from a test of stationarity.

Usage

S3 method for class 'tos'
print(x, ...)

Arguments

x The object you wish to print.

... Other arguments

Value

This function calls the summary.tos function as its last action. So, the return from this function is
the return from summary.tos

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for
localized autocovariances for locally stationary time series. J. R. Statist. Soc. B, 75, 879-904.
doi:10.1111/rssb.12015

See Also

hwtos2

Examples

#
See example at end of help for hwtos2
#

https://doi.org/10.1111/rssb.12015

print.tosANYN 49

print.tosANYN Print out a tosANYN class object, eg from the link{hwtos} function.

Description

Prints out very basic information on an object that represents the output from a test of stationarity.

Usage

S3 method for class 'tosANYN'
print(x, ...)

Arguments

x The object you wish to print.

... Other arguments

Value

This function calls the summary.tosANYN function as its last action. So, the return from this function
is the return from summary.tosANYN

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for
localized autocovariances for locally stationary time series. J. R. Statist. Soc. B, 75, 879-904.
doi:10.1111/rssb.12015

See Also

hwtos,summary.tosANYN

Examples

#
See example at end of help for hwtos
#

https://doi.org/10.1111/rssb.12015

50 runmean

runmean Compute a running mean of a vector

Description

This function essentially uses the running.mean function from the igraph package. However,
adjustments are made to ensure that the output is always the same length as the input (by fiddling at
the boundaries).

Usage

runmean(x, binwidth)

Arguments

x Vector that you wish to smooth using a running mean.

binwidth Number of ordinates over which you wish to average

Details

For example, if binwidth=2 and x=1:6 then the function averages each pair to get 1.5, 2.5, 3.5, 4.5,
5.5. However, this is only 5 numbers and the input had 6. So, in this case the function arranges for
the output to be extended (in this case 1 gets padded onto the front. For vectors of length > 3 the
padding depends on whether the vector is even or odd.

Value

The running mean of the input at the given bandwidth.

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for
localized autocovariances for locally stationary time series. J. R. Statist. Soc. B, 75, 879-904.
doi:10.1111/rssb.12015

See Also

ewspec3

https://doi.org/10.1111/rssb.12015

Rvarlacf 51

Examples

runmean(1:6, 2)
#
[1] 1.0 1.5 2.5 3.5 4.5 5.5
#
runmean(1:14, 4)
#
[1] 1.75 2.50 3.50 4.50 5.50 6.50 7.50 8.50 9.50 10.50 11.50 12.5
[13] 13.25 13.50
#

Rvarlacf Compute confidence intervals for localized autocovariance for locally
stationary time series.

Description

Compute a localized autocovariance and associated confidence intervals for a locally stationary time
series. The underlying theory assumes a locally stationary wavelet time series, but will work well
for other time series that are not too far away.

Usage

Rvarlacf(x, nz, filter.number = 1, family = "DaubExPhase",
smooth.dev = var, AutoReflect = TRUE, lag.max = NULL,
WPsmooth.type = "RM", binwidth = 0, mkcoefOBJ, ThePsiJ,
Cverbose = 0, verbose = 0, OPLENGTH = 10^5, var.lag.max = 3,
ABB.tol = 0.1, ABB.plot.it = FALSE, ABB.verbose = 0,
ABB.maxits = 10, truedenom=FALSE, ...)

Arguments

x The time series you wish to analyze

nz The time point at which you wish to compute the localized autocovariance for.

filter.number The analysis wavelet for many things, including smoothing. See wd for informa-
tion on the various types.

family The analysis wavelet family. See wd again.

smooth.dev The deviance function used to perform smoothing of the evolutionary wavelet
spectrum.

AutoReflect The internal wavelet transforms assume periodic boundary conditions. How-
ever, most time series are not periodic (in terms of their support, e.g. the series
at time 1 is not normally anywhere near the value of the series at time T). This
argument, if TRUE mitigates this by reflecting the whole series by the right-hand
end, computing the transform (for which periodic transforms are now valid) and
then junking the second half of the estimate. Although this is slightly more
computationally intensive, the results are better.

52 Rvarlacf

lag.max The maximum number of lags to compute the localized autocovariance for. The
default is the same as in the regular acf function.

WPsmooth.type The type of smoothing of the evolutionary wavelet spectrum and the localized
autocovariance. See the arguments to lacf.

binwidth The smoothing bandwidth associated with the smoothing controlled by WPsmooth.type.
If this value is zero then the binwidth is computed automatically by the routine.
And if verbose>0 the value is also printed.

mkcoefOBJ Optionally, the appropriate discrete wavelet transform object can be supplied. If
it is not supplied then the routine automatically computes it. There is a small
saving in providing it, so for everyday use probably not worth it.

ThePsiJ As for mkcoefOBJ but the autocorrelation wavelet object.

Cverbose If positive integer then the called C code produces verbose messages. Useful for
debugging.

verbose If positive integer >0 then useful messages are printed. Higher values give more
information.

OPLENGTH Parameter that controls storage allocated to the PsiJ routine. It is possible, for
large time series, you might be asked to increase this value.

var.lag.max Number of lags that you want to compute confidence intervals for. Usually, it is
quick to compute for more lags, so this could usually be set to be the value of
lag.max above.

ABB.tol The routine selects the automatic bandwidth via a golden section search. This
argument controls the optimization tolerance.

ABB.plot.it Whether or not to plot the iterations of the automatic bandwidth golden section
search. (TRUE/FALSE)

ABB.verbose Positive integer controlling the amount of detail from the automatic bandwidth
golden section search algorithm. If zero nothing is produced.

ABB.maxits The maximum number of iterations in the automatic bandwidth golden section
search.

truedenom If TRUE use the actual number of terms in the sum as the denominator in the
formula for the calculation of the covariance of the smoothed periodogram. If
FALSE use the eqn(2s+1)^-2 (this was the default in versions prior to 1.7.4)

... Other arguments

Details

1. If binwidth=0 the function first computes the ‘best’ linear running mean binwidth (bandwidth)
for the smooth of the localized autocovariance. 2. The function computes the localized autoco-
variance smoothed with a running mean with the selected binwidth. Then, the variance of ĉ(z, τ)
is computed for the selected value of time z=nz and for the lags specified (in var.lag.max). The
results are returned in an object of class lacfCI.

Note, this function computes and plots localized autocovariances for a particular and fixed time
location. Various other plots, including perspective plots or the localized autocovariance function
over all time can be found in the costat package. (Indeed, this function returns a lacfCI object
that contains a lacf object, and interesting plots can be plotted using the plot.lacf function within
costast.

Rvarlacf 53

Value

An object of class lacfCI. This is a list with the following components.

lag The lags for which the localized autocovariance variance is computed

cvar The variances associated with each localized autocovariance

the.lacf The lacf class object that contains the localized autocovariances themselves.
This object can be handled/plotted/etc using the functions in the costat package
although plot.lacfCI contains much of the functionality of plot.lacf.

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for
localized autocovariances for locally stationary time series. J. R. Statist. Soc. B, 75, 879-904.
doi:10.1111/rssb.12015

See Also

plot.lacfCI, print.lacfCI, summary.lacfCI

Examples

#
Do localized autocovariance on a iid Gaussian sequence
#
tmp <- Rvarlacf(rnorm(256), nz=125)
#
Plot the localized autocovariances over time (default plot, doesn't
produce CIs)
#
Not run: plot(tmp)
#
You should get a plot where the lag 0 acs are all near 1 and all the
others are near zero, the acfs over time.
#
Not run: plot(tmp, plotcor=FALSE, type="acf")
#
This plots the autocovariances (note: \code{plotcor=FALSE}) and the
type of plot is \code{"acf"} which means like a regular ACF plot, except
this is c(125, tau), ie the acf localized to time=125 The confidence
intervals are also plotted.
The plot subtitle indicates that it is c(125, tau) that is being plotted
#

https://doi.org/10.1111/rssb.12015

54 StoreStatistics

StoreStatistics Interogates calculation store to see how well we are reusing previous
calculations (debugging)

Description

The computation of the variance of the lacf estimator is intensive and we try to speed that up by
reusing calculations. These calculations are stored in internal C arrays. This function interrogates
those arrays and can provide details on how well the storage is working and provide hints if more
storage needs to be allocated. For very large time series it is possible that values need to be calcu-
lated that can be stored and this function can monitor this.

Usage

StoreStatistics()

Details

The function prints out the state of the storage. Three numbers are reported on. 1. The number of
values that were calculated but not stored "outside framework". Ideally you want this number to
be low, if it gets persistently high then more storage needs to be allocated in the C code (notably
MAXELL, MAXJ, MAXK, MAXD for the ThmStore and ValExists arrays).

The other two numbers are "Number stored" and "Number found". The first number corresponds to
the number of values calculated once and then stored. The second number contains the number of
times the software interogated the store and found a value that it did not have to then calculate. So,
ideally, you’d like the latter number to be a high percentage of the former number, as this means the
store is working efficiently.

Note, this function is definitely not intended for casual users. However, for users of very large
series, who have the computational resources, these storage parameters might need to be increased.

The values will be zero if Rvarlacf has not yet been called, and only refer to the last call to that
function (as the function zeroes the store on invocation).

Value

None.

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for
localized autocovariances for locally stationary time series. J. R. Statist. Soc. B, 75, 879-904.
doi:10.1111/rssb.12015

https://doi.org/10.1111/rssb.12015

summary.hwtANYN 55

See Also

Rvarlacf

Examples

#
Simulate some data
#
x <- tvar1sim()
#
Calculate lacf and confidence intervals
#
x.lacf <- Rvarlacf(x=x, nz=50, var.lag.max=20)
#
Find out how the store did
#
StoreStatistics()
#Number calculated outside framework: 0
#Number calculated then stored: 154440
#Number found in store: 14980680
#
#Overall % calculated: 1.020408
#% outside framework: 0

summary.hwtANYN Summarize the results of a Haar wavelet transform object computed
from an arbitrary length vector.

Description

This function summarizes the results of a hwtANYN object that contains the results of a Haar wavelet
transform that had been carried out on an original vector of (potentially) non-dyadic length.

Usage

S3 method for class 'hwtANYN'
summary(object, ...)

Arguments

object The object that you want a summary of. The object might be the results from,
e.g., hwt function.

... Other arguments

Value

None.

56 summary.lacf

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for
localized autocovariances for locally stationary time series. J. R. Statist. Soc. B, 75, 879-904.
doi:10.1111/rssb.12015

See Also

hwt, print.hwtANYN

Examples

#
See help for print.hwtANYN

summary.lacf Summarizes a lacf object

Description

Summarizes a lacf object

Usage

S3 method for class 'lacf'
summary(object, ...)

Arguments

object The lacf object you wish summarized.

... Other arguments

Value

None

Author(s)

Guy Nason

https://doi.org/10.1111/rssb.12015

summary.lacfCI 57

References

Cardinali, A. and Nason, G.P. (2012) Costationarity of Locally Stationary Time Series using costat.

Cardinali, A. and Nason, G.P. (2010) Costationarity of locally stationary time series. J. Time Series
Econometrics, 2, Issue 2, Article 1.

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for
localized autocovariances for locally stationary time series. J. R. Statist. Soc. B, 75, 879-904.
doi:10.1111/rssb.12015

See Also

lacf, plot.lacf, print.lacf

Examples

#
Make some dummy data, e.g. white noise
#
v <- rnorm(256)
#
Compute the localized autocovariance (ok, the input is stationary
but this is just an example. More interesting things could be achieved
by putting the results of simulating from a LSW process, or piecewise
stationary by concatenating different stationary realizations, etc.
#
vlacf <- lacf(v, lag.max=20)
#
Now let's summarize the lacf object
#
summary(vlacf)
#Name of originating time series:
#Date produced: Thu Oct 25 12:11:29 2012
#Number of times: 256
#Number of lags: 20

summary.lacfCI Produce a brief summary of the contents of a lacfCI object

Description

Produces brief summary of the contents of a lacfCI object.

Usage

S3 method for class 'lacfCI'
summary(object, ...)

https://doi.org/10.1111/rssb.12015

58 summary.tos

Arguments

object The lacfCI object that you wish to glean info on

... Other arguments.

Value

No value

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for
localized autocovariances for locally stationary time series. J. R. Statist. Soc. B, 75, 879-904.
doi:10.1111/rssb.12015

See Also

print.lacfCI,Rvarlacf

Examples

#
See example in the Rvarlacf function

summary.tos Summarize the results of a test of stationarity contained i a tos object.

Description

This function summarizes the results of a tos object that contains information about a test of sta-
tionarity. The summary function prints out information about how many individual hypothesis tests
there were, how many were rejected and what the (equivalent) rejection p-value was (in the last
cases both for FDR and Bonferroni). If the hypothesis of stationarity is rejected then the routine
also prints out a list of the Haar wavelet coefficients (and their scales, locations and scale of the
wavelet periodogram) that were significant. The function also returns a lot of this information (in-
visibly).

Usage

S3 method for class 'tos'
summary(object, size = 0.05, quiet = FALSE, mctype = "FDR", ...)

https://doi.org/10.1111/rssb.12015

summary.tos 59

Arguments

object The output from a function that carries out a test of stationarity, e.g. hwtos2.

size The nominal overall significance level of the test.

quiet If this argument is TRUE then nothing is printed to the screen, although the in-
formation is still returned as an object. If FALSE then this function prints out the
information about the hypothesis test.

mctype This argument can be "FDR" for false discovery rate or "BON" for Bonferroni.
This argument does not effect the basis printout. However, it does control
whether FDR or Bonferroni rejects are listed, and it does control the type of
information returned by the function (whether FDR or Bonferroni info).

... Other arguments

Value

The function returns a list which contain a list of the rejected coefficients. Each list item contains
the index of a particular rejected coefficient, which is a vector of at least three elements. The first
element corresponds to the scale of the wavelet periodogram, the second is the level of the Haar
wavelet transform, and all remaining values are the index of the significant wavelet coefficients at
that Haar wavelet transform scale. The list also contains the total number of Haar wavelet coeffi-
cients rejected and the mctype argument also.

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for
localized autocovariances for locally stationary time series. J. R. Statist. Soc. B, 75, 879-904.
doi:10.1111/rssb.12015

See Also

hwtos2, print.tos

Examples

#
See example for hwtos2, this contains two examples where
summary.tos (as summary(.) is used in the output.

https://doi.org/10.1111/rssb.12015

60 summary.tosANYN

summary.tosANYN Summarize the results of a test of stationarity contained in an tosANYN
class object.

Description

This function summarizes the results of a tosANYN object that contains information about a test of
stationarity. The summary function prints out information about how many individual hypothesis
tests there were, how many were rejected. If the hypothesis of stationarity is rejected then the
routine also prints out a list of the Haar wavelet coefficients (and their scales, locations and scale of
the wavelet periodogram) that were significant. The function also returns a lot of this information
(invisibly).

Usage

S3 method for class 'tosANYN'
summary(object, quiet = FALSE, ...)

Arguments

object The output from a function that carries out a test of stationarity, e.g. hwtos.

quiet If this argument is TRUE then nothing is printed to the screen, although the in-
formation is still returned as an object. If FALSE then this function prints out the
information about the hypothesis test.

... Other arguments

Value

The function returns a list which contain a list of the rejected coefficients. Each list item contains
the index of a particular rejected coefficient, which is a vector of at least three elements. The first
element corresponds to the scale of the wavelet periodogram, the second is the level of the Haar
wavelet transform, and all remaining values are the index of the significant wavelet coefficients at
that Haar wavelet transform scale. The list also contains the total number of Haar wavelet coeffi-
cients rejected and the mctype argument also.

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for
localized autocovariances for locally stationary time series. J. R. Statist. Soc. B, 75, 879-904.
doi:10.1111/rssb.12015

See Also

hwtos, print.tosANYN

https://doi.org/10.1111/rssb.12015

tvar1sim 61

Examples

#
See example for hwtos, this contains two examples where
summary.tosANYN (as summary(.) is used in the output.

tvar1sim Simulate a realization from a particular TVAR(1) model.

Description

Simulates a realization from a TVAR(1) model where the AR(1) parameter moves from 0.9 to -0.9
in equal steps over 512 time points. The realization is also of length 512. The innovations are
normally distributed with mean zero and standard deviation of sd.

Usage

tvar1sim(sd = 1)

Arguments

sd This is the standard deviation of the Gaussian innovation.

Details

This function is easily converted into one that does the same thing but for a different sample size.

Value

A realization of the aforementioned TVAR(1) process.

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for
localized autocovariances for locally stationary time series. J. R. Statist. Soc. B, 75, 879-904.
doi:10.1111/rssb.12015

See Also

Rvarlacf

https://doi.org/10.1111/rssb.12015

62 varip2

Examples

#
Generate realization from the TVAR(1) process
#
x <- tvar1sim()
#
Maybe plot it
#
Not run: ts.plot(x)

varip2 Direct computation of estimate of variance of v_ip, the Haar wavelet
coefficients of the periodogram.

Description

Performs a direct computation of an estimate of the variance of the Haar wavelet coefficients of the
raw wavelet periodogram of a time series.

Usage

varip2(i, p, ll, S, P)

Arguments

i Scale parameter of Haar wavelet analyzing periodogram. Scale 1 is the finest
scale.

p Location parameter of Haar wavelet analyzing periodogram

ll Scale of the raw wavelet periodogram being analyzed

S Estimate of the spectrum, under the assumption of stationarity. So, this is just a
vector of (possibly) J scales (which is often the usual spectral estimate averaged
over time). Note: that the main calling function, hwtos2, actually passes maxD
levels.

P Is an autocorrelation wavelet object, returned by the PsiJ function. The wavelet
concerned is the analyzing one underlying the raw wavelet periodogram of the
series.

Details

Computes the variance of the Haar wavelet coefficients of the raw wavelet periodogram. Note, that
this is merely an estimate of the variances.

whichlevel 63

Value

A list with the following components:

covAA A component of the variance

covAB A component of the variance

covBB A component of the variance

ans The actual variance

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for
localized autocovariances for locally stationary time series. J. R. Statist. Soc. B, 75, 879-904.
doi:10.1111/rssb.12015

See Also

Cvarip2,hwtos2, covIwrap

Examples

#
Generate autocorrelation wavelets
#
P1 <- PsiJ(-5, filter.number=1, family="DaubExPhase")
#
#
Now compute varip2: this is the variance of the Haar wavelet coefficient
at the finest scale, location 10 and P1 autocorrelation wavelet.
Note, I've used S to be the exact coefficients which would be for white noise.
In practice, S would be an *estimate* calculated from the data.
#
varip2(i=1, p=10, ll=2, S=c(1/2, 1/4, 1/8, 1/16, 1/32), P=P1)
#
Ans component is 1.865244

whichlevel Helper routine for mkcoef

Description

Helps mkcoef by finding out how many more levels are required to compute a set of discrete
wavelets to a given (other) level.

https://doi.org/10.1111/rssb.12015

64 whichlevel

Usage

whichlevel(J, filter.number = 10, family = "DaubLeAsymm")

Arguments

J The level that mkcoef wants to compute to.

filter.number The wavelet number (see wd)

family The wavelet family (see wd)

Details

When computing the discrete wavelets up to a given scale we use the inverse wavelet transform
to do this. However, to generate a wavelet within the range of a wavelet decomposition you have
to use more scales in the inverse wavelet transform than first requested. This is because wavelet
coefficients at the coarsest scales are associated with wavelets whose support is greater than the
whole extent of the series. Hence, you have to have a larger wavelet transform, with more levels,
insert a coefficient mid-level to generate a discrete wavelet whose support lies entirely within the
extent of the series. This function figures out what the extra number of levels should be.

Value

Simply returns the required number of levels

Author(s)

Guy Nason.

References

Nason, G.P. (2013) A test for second-order stationarity and approximate confidence intervals for
localized autocovariances for locally stationary time series. J. R. Statist. Soc. B, 75, 879-904.
doi:10.1111/rssb.12015

See Also

mkcoef

Examples

whichlevel(6)
[1] 11
#
E.g. mkcoef wanted to generate 6 levels of discrete wavelets and
whichlevel tells it that it needs to generate a wavelet transform
of at least 11 levels.

https://doi.org/10.1111/rssb.12015

zeropad 65

zeropad Intersperse zeroes in a vector.

Description

Take a vector of any length and then intersperse zeroes between existing elements (and add a further
zero to the end).

Usage

zeropad(x)

Arguments

x Vector that you want to intersperse zeros into.

Details

Title says it all.

Value

A vector whose odd elements are just x and whose even elements are zeroes.

Author(s)

G.P. Nason

See Also

hwt

Examples

#
Operate on a test set
#
v <- 1:3
zeropad(v)
#[1] 1 0 2 0 3 0

Index

∗ algebra
HwdS, 19
mkcoef, 33

∗ hplot
plot.hwtANYN, 34

∗ kwd2
covIwrap, 7

∗ manip
getridofendNA, 18
idlastzero, 29
littlevar, 32
whichlevel, 63
zeropad, 65

∗ math
hwt, 20

∗ nonlinear
hwt, 20

∗ smooth
AutoBestBW, 5
hwt, 20
plot.hwtANYN, 34
runmean, 50

∗ ts
covI, 6
covIwrap, 7
Cvarip2, 9
EstBetaCov, 10
ewspec3, 13
ewspecHaarNonPer, 16
hwtos, 22
hwtos2, 26
lacf, 30
locits-package, 2
plot.lacf, 36
plot.lacfCI, 38
plot.tos, 41
plot.tosANYN, 42
print.hwtANYN, 44
print.lacf, 45

print.lacfCI, 47
print.tos, 48
print.tosANYN, 49
Rvarlacf, 51
summary.hwtANYN, 55
summary.lacf, 56
summary.lacfCI, 57
summary.tos, 58
summary.tosANYN, 60
tvar1sim, 61
varip2, 62

∗ utilities
StoreStatistics, 54

AutoBestBW, 5, 11, 12, 15, 30

covI, 6, 7, 8
covIwrap, 6, 7, 7, 63
Cvarip2, 9, 63

EstBetaCov, 10
ewspec3, 11, 12, 13, 30, 50
ewspecHaarNonPer, 16, 19

getridofendNA, 18, 19

HwdS, 17, 18, 19
hwt, 20, 35, 45, 55, 56, 65
hwtos, 3, 22, 22, 42, 44, 49, 60
hwtos2, 3, 9, 10, 17, 25, 26, 32, 41, 42, 48, 59,

62, 63

idlastzero, 29

lacf, 15, 30, 38, 46, 52, 57
littlevar, 32
locits (locits-package), 2
locits-package, 2

mkcoef, 11, 29, 33, 63, 64

plot.hwtANYN, 22, 34

66

INDEX 67

plot.lacf, 36, 46, 57
plot.lacfCI, 3, 31, 38, 53
plot.tos, 3, 41
plot.tosANYN, 25, 42
print.hwtANYN, 22, 35, 44, 56
print.lacf, 45, 57
print.lacfCI, 47, 53, 58
print.tos, 48, 59
print.tosANYN, 25, 49, 60
PsiJ, 11

runmean, 50
Rvarlacf, 3, 6, 31, 33, 40, 47, 51, 54, 55, 58,

61

StoreStatistics, 54
summary.hwtANYN, 22, 44, 45, 55
summary.lacf, 46, 56
summary.lacfCI, 47, 53, 57
summary.tos, 3, 42, 47, 48, 58
summary.tosANYN, 25, 43, 44, 49, 60

tvar1sim, 61

varip2, 8–10, 28, 62

whichlevel, 33, 63

zeropad, 65

	locits-package
	AutoBestBW
	covI
	covIwrap
	Cvarip2
	EstBetaCov
	ewspec3
	ewspecHaarNonPer
	getridofendNA
	HwdS
	hwt
	hwtos
	hwtos2
	idlastzero
	lacf
	littlevar
	mkcoef
	plot.hwtANYN
	plot.lacf
	plot.lacfCI
	plot.tos
	plot.tosANYN
	print.hwtANYN
	print.lacf
	print.lacfCI
	print.tos
	print.tosANYN
	runmean
	Rvarlacf
	StoreStatistics
	summary.hwtANYN
	summary.lacf
	summary.lacfCI
	summary.tos
	summary.tosANYN
	tvar1sim
	varip2
	whichlevel
	zeropad
	Index

