
Package ‘locaR’
February 16, 2023

Type Package

Title A Set of Tools for Sound Localization

Version 0.1.2

Maintainer Richard Hedley <rwhedley@gmail.com>

Description A set of functions and tools to conduct acoustic source localization, as well as orga-
nize and check localization data and results. The localization functions implement the modi-
fied steered response power algorithm described by Co-
bos et al. (2010) <doi:10.1109/LSP.2010.2091502>.

License MIT + file LICENSE

Encoding UTF-8

URL https://github.com/rhedley/locaR

BugReports https://github.com/rhedley/locaR/issues

RoxygenNote 7.2.3

Imports seewave, tuneR, matrixStats, oce, signal, SynchWave

Suggests testthat (>= 2.0.0), knitr, rmarkdown

Config/testthat/edition 2

VignetteBuilder knitr

NeedsCompilation no

Author Richard Hedley [cre],
Marcus Becker [aut],
Tim Huang [aut]

Repository CRAN

Date/Publication 2023-02-16 15:40:04 UTC

R topics documented:
checkSettings . 2
createSettings . 3
createWavList . 4

1

https://doi.org/10.1109/LSP.2010.2091502
https://github.com/rhedley/locaR
https://github.com/rhedley/locaR/issues

2 checkSettings

getFilepaths . 6
layoutMatrix . 7
localize . 8
localizeSingle . 11
locaR . 12
locHeatmap . 12
makeSearchMap . 14
MSRP_Init . 15
MSRP_RIJ_HT . 16
omniSpectro . 17
parseWAFileNames . 18
processSettings . 18
Rij_GCC . 19
setupSurvey . 20
surveyPaths . 21
validationSpec . 22

Index 24

checkSettings Check the validity of a settings file or data.frame.

Description

Several checks are run:

1. settings is either a valid file or a data.frame.
2. That the adjustments file is either an existing file or ""
3. That the channels file is either an existing file or NULL.
4. That the coordinates file exists.
5. That the detections file exists.
6. That the siteWavsFolder exists.
7. That buffer, margin, resolution, date, time, zMin, zMax and surveyLength can all be recog-

nized as numbers.
8. That tempC or soundSpeed have been defined.

Usage

checkSettings(settings)

Arguments

settings Character or data.frame. Either the path to a settingsFile (csv) or a data.frame
containing settings.

Value

Logical, indicating whether all checks were passed or not.

createSettings 3

createSettings Create settings file (csv) or data frame by defining the localization
settings.

Description

createSettings takes a series of arguments and creates a data frame (or csv) with standard struc-
ture that can be read by other functions in the locaR package.

Usage

createSettings(
projectName,
run = 1,
detectionsFile,
coordinatesFile,
siteWavsFolder,
adjustmentsFile,
channelsFile,
date,
time,
tempC = 15,
soundSpeed,
surveyLength,
margin = 10,
zMin = -1,
zMax = 10,
resolution = 1,
buffer = 0.2,
write.csv = FALSE

)

Arguments

projectName Character. A string specifying the name of a project.

run Numeric. Within each survey, start with run = 1, then count upwards. So, run 2
would be used to re-localize sounds that were poorly localized in run 1, etc. Run-
ning them again with slightly different settings (e.g. start/end times or low/high
frequencies) can improve results.

detectionsFile Character. File path to the detections file (csv).
coordinatesFile

Character. File path to the coordinates file (csv).

siteWavsFolder Character. Folder path of the directory containing audio files. The folder path
will be searched recursively if using localizeSingle or localizeMultiple.

adjustmentsFile

Character. File path to the adjustments file (csv). Not required to be specified.

4 createWavList

channelsFile Character. File path to the channels file (csv), specifying which channel (1 or 2)
to use for each recording unit.

date Numeric. Eight digit number representing a date in the format YYYYMMDD.

time Numeric. Five or six digit number representing the start time of a recording
session (90000 = 09:00:00, and 160000 = 16:00:00).

tempC Numeric. Temperature in degrees C, which is used to calculate the speed of
sound in air using the equation 331.45*sqrt(1+tempC/273.15).

soundSpeed Numeric. The speed of sound in meters per second. If missing, the speed of
sound is calculated based on the specified temperature (assuming the transmis-
sion medium is air). If soundSpeed is specified, the tempC value is over-ridden.

surveyLength Numeric. Length of the survey, in seconds.

margin distance (in meters) to extend the search grid beyond the x-y limits of the mi-
crophone locations. The same buffer is applied to x and y coordinates.

zMin distance (in meters) to begin grid search relative to the microphone with the low-
est elevation. Typically a small negative number to ensure that the grid search
begins slightly below the lowest microphone.

zMax distance (in meters) to end search relative to the microphone with the highest
elevation. Typically a positive number to ensure that the grid search ends well
above the highest microphone.

resolution resolution of the search map, in meters.

buffer Amount of time (in seconds) to expand each detection. This accounts for impre-
cise time boundaries, and also the differences imposed by time delays between
different microphones (e.g. two microphones separated by some amount will
receive the same sound at different times).

write.csv Logical. Whether or not to write a settingsFile csv. The csv will be written to
the same directory as the detections file.

Value

A data frame with columns Setting and Value specifying the value of each setting needed for local-
ization.

createWavList Create a list of Wave objects.

Description

This function reads in portions of a set of synchronized .wav files. It is intended to be used to load
sounds of interest for localization.

createWavList 5

Usage

createWavList(
paths,
names,
from,
to,
buffer,
adjustments,
channels,
index = "unknown"

)

Arguments

paths Character vector. File paths to the set of .wav files to be read.

names Character vector. Station names for the files. Must have the same length and the
names must occur in the same order as the paths variable.

from Numeric. Start time, in seconds, of the sound of interest, relative to the start of
the file.

to Numeric. End time, in seconds, of the sound of interest, relative to the start of
the file.

buffer Numeric. Amount of blank space around each sound of interest to be read.

adjustments Numeric vector. Amount, in seconds, to adjust the start times of recordings,
if not already synchronized. Vector must be of the same length as the paths
variable. If not specified, default is no adjustment.

channels Numeric vector. The channel to be read from each .wav file. Left = 1, Right =
2. If missing, default is left channel (channel 1) for all recordings.

index Numeric. If using this function within a loop, pass the index i to the function,
which can help with troubleshooting if an error occurs.

Value

Named list of Wave objects.

Examples

#list example mp3 files.
wavs <- list.files(system.file('extdata', package = 'locaR'),

pattern = 'mp3$', full.names = TRUE)
#get names of mp3 locations.
nms <- substr(basename(wavs), 1, 4)
#create wave list.
wl <- createWavList(paths = wavs, names = nms, from = 1, to = 2, buffer = 0.1)

6 getFilepaths

getFilepaths Get filepath information for a date and time.

Description

getFilepaths reads information from a settings file (csv) or a settings list and returns the file paths
and other information as a dataframe. It undertakes a recursive search within the site folder for files
matching the date and time.

Usage

getFilepaths(settings, types = "wav")

Arguments

settings Either a filepath to a settings file (csv) or a settings list. If a filepath, the filepath
will first be passed to processSettings.

types Character, specifying the file type to be searched for. Either ’wav’ or ’mp3’.

Value

A data frame with station names, coordinates, filepaths, and any recording start-time adjustments.

Examples

#Read example data
settings <- read.csv(system.file('extdata',

'Ex_20200617_090000_Settings.csv', package = 'locaR'),
stringsAsFactors = FALSE)

#Over-write default values for SiteWavsFolder, CoordinatesFile, and ChannelsFile
settings$Value[settings$Setting == 'SiteWavsFolder'] <-

system.file('extdata', package = 'locaR')
settings$Value[settings$Setting == 'CoordinatesFile'] <-

system.file('extdata', 'Vignette_Coordinates.csv',
package = 'locaR')

settings$Value[settings$Setting == 'ChannelsFile'] <-
system.file('extdata', 'Vignette_Channels.csv',

package = 'locaR')

#Run processSettings() function
st <- processSettings(settings = settings, getFilepaths = FALSE)

#Get filepaths.
fp <- getFilepaths(settings = st, types = 'mp3')

layoutMatrix 7

layoutMatrix Specify the spatial layout of microphones.

Description

layoutMatrix creates a matrix of station names, which correspond to the layout of stations in
space.This is passed to the omniSpectro function for the purposes of generating spectrograms that
align with the spatial orientation of stations. The four user-specified arguments indicate where the
first station occurs (e.g. topleft means the first station is in the northwest; the "first" station means
the one with the name that would appear first when sorted alphabetically). byrow means the stations
increase along rows (either left to right or right to left) and nrow and ncol indicate how many rows
and columns of microphones there are (assuming the array has a rectangular shape). Note that this
layout function is provided for convenience, but users can easily specify their own custom layouts
manually.

Usage

layoutMatrix(
st,
stationNames = NULL,
start = c("topleft", "topright", "bottomleft", "bottomright"),
byrow = TRUE,
nrow,
ncol

)

Arguments

st List. Localization settings object generated using processSettings.

stationNames Character vector. Vector of station names. Not required if st is provided.

start Character. When sorted alphabetically, the location of the first station name.

byrow Logical. An indicator of whether station names increase along rows (TRUE) or
along columns (FALSE)

nrow Numeric. The number of rows of microphones in the layout.

ncol Numeric. The number of columns of microphones in the layout.

Value

Matrix, containing the station names within the array. If done correctly, the matrix rows and
columns should align with the spatial layout of the stations in the field.

Examples

#Vector of station names, Ex-1 to Ex-9.
stationNames <- paste0('Ex-',1:9)

8 localize

#All options shown below.
#layoutMatrix starting from top left (NW) to bottom right (SE) by row.
layoutMatrix(stationNames = stationNames,

start = 'topleft', byrow = TRUE, ncol = 3, nrow = 3)

#layoutMatrix starting from top left (NW) to bottom right (SE) by column.
layoutMatrix(stationNames = stationNames,

start = 'topleft', byrow = FALSE, ncol = 3, nrow = 3)

#layoutMatrix starting from top right (NE) to bottom left (SW) by row.
layoutMatrix(stationNames = stationNames,

start = 'topright', byrow = TRUE, ncol = 3, nrow = 3)

#layoutMatrix starting from top right (NE) to bottom left (SW) by column.
layoutMatrix(stationNames = stationNames,

start = 'topright', byrow = FALSE, ncol = 3, nrow = 3)

#layoutMatrix starting from bottom left (SW) to top right (NE) by row.
layoutMatrix(stationNames = stationNames,

start = 'bottomleft', byrow = TRUE, ncol = 3, nrow = 3)

#layoutMatrix starting from bottom left (SW) to top right (NE) by column.
layoutMatrix(stationNames = stationNames,

start = 'bottomleft', byrow = FALSE, ncol = 3, nrow = 3)

#layoutMatrix starting from bottom right (SE) to top left (NW) by row.
layoutMatrix(stationNames = stationNames,

start = 'bottomright', byrow = TRUE, ncol = 3, nrow = 3)

#layoutMatrix starting from bottom right (SE) to top left (NW) by column.
layoutMatrix(stationNames = stationNames,

start = 'bottomright', byrow = FALSE, ncol = 3, nrow = 3)

localize Localize detected sounds

Description

localize and the related function localizeMultiple are the basic functions for localizing sounds.
They take audio data as inputs, alongside relevant metadata (e.g. coordinates and a variety of
settings), and estimate the location of the dominant sound source. The localize function takes as
arguments the minimal amount of information needed for localization. Localization is conducted
on the full duration of the Wave objects in wavList. Effectively this means the user must wrangle
the data and clip the audio themselves, but this affords the greatest flexibility in terms of how the
user chooses to organize their data. The localizeMultiple function, in contrast, automates much
of the data wrangling process, but requires data to be organized in a very specific way (e.g. folder
structure, file structures). Thus, the latter function trades off flexibility for increased automation.
Both functions use the same underlying localization algorithm - localizeMultiple passes its data
to localize after the data has been wrangled.

localize 9

Usage

localize(
wavList,
coordinates,
margin = 10,
zMin = -1,
zMax = 20,
resolution = 1,
F_Low = 2000,
F_High = 8000,
tempC = 15,
soundSpeed,
plot = TRUE,
locFolder,
jpegName = "000.jpeg",
InitData = NULL,
keep.InitData = TRUE,
keep.SearchMap = FALSE

)

localizeMultiple(st, indices = "all", plot = TRUE, InitData = NULL)

Arguments

wavList list of Wave objects. The name of the Wave objects MUST be present in the
coordinates data.frame.

coordinates data.frame. Must contain four required columns: column Station contains a
character string with names of each recording station, while Easting, Northing
and Elevation contain the x, y, and z coordinates of the station, in meters (E.g.
UTM coordinates).

margin, zMin, zMax, resolution

Arguments describing the area to be searched for sound sources. Passed to
makeSearchMap.

F_Low, F_High Numeric. The low and high frequency, in Hz, of the sound to be localized.

tempC Numeric. Temperature in degrees C, which is used to calculate the speed of
sound in air using the equation 331.45*sqrt(1+tempC/273.15).

soundSpeed Numeric. The speed of sound in meters per second. If missing, the speed of
sound is calculated based on the specified temperature (assuming the transmis-
sion medium is air). If soundSpeed is specified, the tempC value is over-ridden.

plot Logical. Whether to plot jpegs.

locFolder Character. File path to the folder where localization jpegs (heatmaps and spec-
trograms) are to be created. Only required if plot = TRUE.

jpegName Character. Name of the jpeg, ending in extension .jpeg. Only required if plot =
TRUE.

InitData List. An InitData list created by running localization with keep.InitData = TRUE.
Providing an InitData list saves computation time, but is only possible if the

10 localize

SearchGrid and stations used for localization remain unchanged. Default is
NULL, which means the InitData will be calculated anew.

keep.InitData Logical. Whether to store the InitData list.

keep.SearchMap Logical. Whether to keep the SearchMap list with power estimates and coordi-
nates of each grid cell. Should only be set to TRUE if the SearchMap is needed
for some other reason (e.g. making a publication-ready figure or conducting
more involved analysis with overlapping sources, etc.).

st List. Localization settings object generated using processSettings. Only
needed for localizeSingle or localizeMultiple.

indices Numeric or ’all’. Indices to be localized within a detection file. Setting to 1
localizes the first row, c(7:10) localizes rows 7-10, and ’all’ localizes all rows
(ignoring rows that have no entry in the Station1 column).

Value

List, containing the location of the sound source (global maximum), and optionally the InitData and
SearchMap lists.

References

Cobos, M., Martí, A., & J.J. López. 2011. A modified SRP-PHAT functional for robust real-time
sound source localization with scalable spatial sampling. IEEE Signal Processing Letters. 18:71-74.
doi:10.1109/LSP.2010.2091502.

Examples

example for localize()
#Get filepaths for example data.

fp <- list.files(system.file('extdata', package = 'locaR'), pattern = '.mp3', full.names = TRUE)
#Add names.
names(fp) <- sapply(strsplit(basename(fp), '_'), '[[', 1)
#Load first row of detection data.
row <- read.csv(system.file('extdata',

'Vignette_Detections_20200617_090000.csv', package = 'locaR'),
stringsAsFactors = FALSE)[1,]

#Get non-empty Station columns.
stationSubset <- unlist(row[1,paste0('Station',1:6)])
stationSubset <- stationSubset[!is.na(stationSubset) & stationSubset != '']
#Create wav list.
wl <- createWavList(paths = fp[stationSubset], names = stationSubset,

from = row$From, to = row$To, buffer = 0.2, index=1)
#Read coordinates.
coordinates <- read.csv(system.file('extdata', 'Vignette_Coordinates.csv',

package = 'locaR'), stringsAsFactors = FALSE)
row.names(coordinates) <- coordinates$Station
#Subset coordinates.
crd <- coordinates[stationSubset,]
#Localize.
loc <- localize(wavList = wl, coordinates = crd, locFolder = tempdir(),

localizeSingle 11

F_Low = row$F_Low, F_High = row$F_High,
jpegName = '0001.jpeg', keep.SearchMap = TRUE)

Example for localizeMultiple().
#list mp3 files.

f.in <- list.files(system.file('extdata', package = 'locaR'), full.names = TRUE, pattern='mp3$')
#create wav names.
f.out <- file.path(tempdir(), basename(f.in))
#change extension.
substr(f.out, nchar(f.out)-2, nchar(f.out)) <- 'wav'
#Convert mp3 to wav, as required for this particular example.
for(i in 1:length(f.in)) {

y <- tuneR::readMP3(f.in[i])
tuneR::writeWave(y, filename = f.out[i])

}
#Set up survey.
survey <- setupSurvey(folder = tempdir(), projectName = 'Ex', run = 1,

coordinatesFile = system.file('extdata', 'Vignette_Coordinates.csv',
package = 'locaR'),

siteWavsFolder = tempdir(), date = '20200617', time = '090000', surveyLength = 7)
#read example detections.
dets <- read.csv(system.file('extdata', 'Vignette_Detections_20200617_090000.csv',

package = 'locaR'))
#over-write empty detections file.
write.csv(dets, file.path(tempdir(), '20200617_090000',

'Run1', 'Ex_20200617_090000_Run1_Detections.csv'), row.names = FALSE)
#Process settings.
st <- processSettings(settings = survey, getFilepaths = TRUE, types = 'wav')
#localize
locs <- localizeMultiple(st = st, indices = 1:2)

localizeSingle Localize detected sounds

Description

localizeSingle is an internal function implemented within localizeMultipe. Its basic function
is to take an index value corresponding to a detection, extract that detection, extract the relevant
coordinates, and feed all relevant metadata into the ‘localize()‘ function.

Usage

localizeSingle(
st,
index,
plot = TRUE,
InitData = NULL,
keep.InitData = TRUE,
keep.SearchMap = FALSE

)

12 locHeatmap

Arguments

st List. Localization settings object generated using processSettings.

index Numeric. Index to be localized within a detection file.

plot Logical. Whether to plot jpegs.

InitData List. An InitData list created by running localization with keep.InitData = TRUE.
Providing an InitData list saves computation time, but is only possible if the
SearchGrid and stations used for localization remain unchanged. Default is
NULL, which means the InitData will be calculated anew.

keep.InitData Logical. Whether to store the InitData list.

keep.SearchMap Logical. Whether to keep the SearchMap list with power estimates and coordi-
nates of each grid cell. Should only be set to TRUE if the SearchMap is needed
for some other reason (e.g. making a publication-ready figure or conducting
more involved analysis with overlapping sources, etc.).

Value

List, containing the location of the sound source (global maximum), and optionally the InitData and
SearchMap lists.

locaR locaR: A Set of Tools for Sound Localization.

Description

The locaR package contains functions for localizing sounds using R. Localizations are carried out
using the modified steered response power algorithm of Cobos et al. (2011) which carries out a grid-
search to find the location in three dimensions where a sound was most likely to have originated.

References

Cobos, M., Martí, A., & J.J. López. 2011. A modified SRP-PHAT functional for robust real-time
sound source localization with scalable spatial sampling. IEEE Signal Processing Letters. 18:71-74.
doi:10.1109/LSP.2010.2091502.

locHeatmap Create a heatmap to visualize localization output.

Description

This function can be used to create a heatmap from the localization grid search. In general, this
function should only be used internally, but it could be useful for making customized figures.

locHeatmap 13

Usage

locHeatmap(SearchMap, SMap, NodeInfo, location, mar)

Arguments

SearchMap An array created by the localize() function containing x, y and z coordinates.
Created by setting keep.SearchMap = TRUE when running the localize() func-
tion.

SMap An array created by the localize() function containing the power values. Created
by setting keep.SearchMap = TRUE when running the localize() function.

NodeInfo A list with two elements. First element Num is numeric, specifying the number
of microphones used for localization. Second element Pos is a matrix of co-
ordinates with column names Easting, Northing and Elevation, and row names
corresponding to the Station (i.e. location) names.

location Data frame. The location estimate of the sound source. Four columns: Easting,
Northing, Elevation, Power. Data frame should only contain one row.

mar Numeric vector with four elements. Passed to oce::imagep() for plotting.

Value

No return value.

Examples

#Get filepaths for example data.
fp <- list.files(system.file('extdata', package = 'locaR'), pattern = '.mp3', full.names = TRUE)
#Add names.
names(fp) <- sapply(strsplit(basename(fp), '_'), '[[', 1)
#Load first row of detection data.
row <- read.csv(system.file('extdata',

'Vignette_Detections_20200617_090000.csv', package = 'locaR'),
stringsAsFactors = FALSE)[1,]

#Get non-empty Station columns.
stationSubset <- unlist(row[1,paste0('Station',1:6)])
stationSubset <- stationSubset[!is.na(stationSubset) & stationSubset != '']
#Create wav list.
wl <- createWavList(paths = fp[stationSubset], names = stationSubset,

from = row$From, to = row$To, buffer = 0.2, index=1)
#Read coordinates.
coordinates <- read.csv(system.file('extdata',

'Vignette_Coordinates.csv', package = 'locaR'),
stringsAsFactors = FALSE)

row.names(coordinates) <- coordinates$Station
#Subset coordinates.
crd <- coordinates[stationSubset,]
#Localize.
loc <- localize(wavList = wl, coordinates = crd, locFolder = tempdir(),

F_Low = row$F_Low, F_High = row$F_High,
jpegName = '0001.jpeg', keep.SearchMap = TRUE)

14 makeSearchMap

#Convert crd (coordinates) to matrix called NodePos.
NodePos <- as.matrix(crd[,c('Easting', 'Northing', 'Elevation')])
colnames(NodePos) <- c('Easting', 'Northing', 'Elevation')
row.names(NodePos) <- crd$Station
#Plot heatmap with locHeatmap().
locHeatmap(SearchMap = loc$SearchMap, SMap = loc$SMap,

NodeInfo = list(Num = 5, Pos = NodePos), location = loc$location,
mar = c(0,0,0,0))

makeSearchMap Create a grid over which to search for sound sources.

Description

makeSearchMap creates the three-dimensional array over which to search for sound sources.

Usage

makeSearchMap(
easting,
northing,
elevation,
margin = 10,
zMin = -1,
zMax = 10,
resolution = 1

)

Arguments

easting vector of x coordinates of microphones.

northing vector of y coordinates of microphones.

elevation vector of z coordinates of microphones.

margin distance (in meters) to extend the search grid beyond the x-y limits of the mi-
crophone locations. The same buffer is applied to x and y coordinates.

zMin distance (in meters) to begin search relative to the microphone with the low-
est elevation. Typically a small negative number to ensure that the grid search
begins slightly below the lowest microphone.

zMax distance (in meters) to end search relative to the microphone with the highest
elevation. Typically a positive number to ensure that the grid search ends well
above the highest microphone.

resolution resolution of the search map, in meters.

MSRP_Init 15

Details

The localization algorithms used in this package can search for sound sources over areas with arbi-
trary size and with arbitrary resolution. However, speed can sometimes be slow. Generally speak-
ing, the speed of localization calculations correlates directly with the number of grid cells to be
searched. Speed can therefore be increased by searching a smaller area (i.e. by reducing the mar-
gin, increasing zMin, or decreasing zMax), or by searching with a coarser grain (i.e. by increasing
the resolution).

The final list defining the search map includes three arrays containing x, y and z coordinates of each
grid cell, as well as the resolution and range of values in the x, y and z directions. This list is passed
to other functions for localization.

Value

A list defining the search map.

Examples

#read coordinates.
coords <- read.csv(system.file('extdata', 'Vignette_Coordinates.csv', package = 'locaR'),

stringsAsFactors = FALSE)
#make search map.
sm <- makeSearchMap(easting = coords$Easting,

northing = coords$Northing,
elevation = coords$Elevation)

MSRP_Init Create InitData.

Description

Internal function which creates the InitData list.

Usage

MSRP_Init(NodeInfo, SearchMap, Para, LevelFlag)

Arguments

NodeInfo List with elements Num, Pos.

SearchMap List with elements XDen, YDen, ZDen, XMap, YMap, ZMap

Para List with Fs, Vc (speed of sound), and DataLen

LevelFlag Integer. Only value currently supported is 2.

Value

List.

16 MSRP_RIJ_HT

Author(s)

Tim Huang.

MSRP_RIJ_HT Internal function for localization.

Description

This function uses the InitData and other info to calculate the likelihood of sound sources coming
from each location. Note: the LevelFlag argument is currently redundant because there is only one
option. Similarly, the MSRP_HT_Level2 function could be rolled into the MSRP_RIJ_HT function
in the future, but for now is kept separate.

Usage

MSRP_RIJ_HT(NodeInfo, SearchMap, Data, Para, LevelFlag, InitData)

MSRP_HT_Level2(NodeInfo, SearchMap, Data, Para, InitData)

Arguments

NodeInfo List with elements Num, Pos.

SearchMap List with elements XDen, YDen, ZDen, XMap, YMap, ZMap

Data Matrix containing the wave samples.

Para List with Fs, Vc (speed of sound), and DataLen

LevelFlag Integer. Only value currently supported is 2.

InitData List. Created with the MSRP_Init function.

Value

List.

Author(s)

Tim Huang.

omniSpectro 17

omniSpectro Generate grid of spectrograms for detecting sounds of interest.

Description

omniSpectro creates a grid of time-synchronized spectrograms, to facilitate the manual detection
of birds across a microphone array. By opening the resulting jpeg images in an image viewing
program (e.g. the standard Microsoft Photos app), short clips of sounds can be viewed across an
entire microphone array at once. The authors of this package have found this to be an efficient
way to view spectrograms, while effectively eliminating the likelihood of double-counting sound
sources that may be clearly detectable on many microphones at the same time. At the present time,
this function only works when a settings object, st, is provided.

Usage

omniSpectro(st, lm, intervalLength = 5, intervals = "all")

Arguments

st List. Localization settings object generated using processSettings.

lm layout matrix generated using the ‘layoutMatrix()‘ function, or a user-generated
matrix in the same format. This matrix controls how the spectrograms from each
station are mapped to rows and columns.

intervalLength Integer The length of each view interval to be generated, in seconds. Consecu-
tive windows overlap, by default by 1 second. Setting intervalLength = 5 will
therefore create 6-second spectrogram views, with one second overlap (e.g. 0 to
6, then 5 to 11, 10 to 16, etc.).

intervals Integer or ’all’. Which intervals to write to jpeg. For testing purposes, it is often
desirable to set this to, e.g. intervals = 1:5, which will create only the first five
view windows, to ensure the function is working.

Value

No return value.

Examples

#First need to convert mp3 example data to wav.
#list mp3 files.

f.in <- list.files(system.file('extdata', package = 'locaR'), full.names = TRUE, pattern='mp3$')
#create wav names.
f.out <- file.path(tempdir(), basename(f.in))
#change extension.
substr(f.out, nchar(f.out)-2, nchar(f.out)) <- 'wav'
#Convert mp3 to wav, as required for this particular example.
for(i in 1:length(f.in)) {

18 processSettings

y <- tuneR::readMP3(f.in[i])
tuneR::writeWave(y, filename = f.out[i])

}
#Set up survey.
survey <- setupSurvey(folder = tempdir(), projectName = 'Ex', run = 1,

coordinatesFile = system.file('extdata', 'Vignette_Coordinates.csv',
package = 'locaR'),

siteWavsFolder = tempdir(), date = '20200617', time = '090000', surveyLength = 7)
#Process settings.
st <- processSettings(settings = survey, getFilepaths = TRUE, types = 'wav')
#Set up layout matrix.
lm <- layoutMatrix(st = st, start = 'topleft', byrow = TRUE, nrow = 3, ncol = 3)
#create detection spectrograms.
omniSpectro(st, lm, intervalLength = 7)

parseWAFileNames Parse Wildlife Acoustics-type file names.

Description

This function parses the information in file names that are structured according to Wildlife Acous-
tics’ naming convention. Specifically, the format prefix_date_time.wav or prefix_mic_date_time.wav.

Usage

parseWAFileNames(filenames)

Arguments

filenames Character vector of file names.

Value

A data frame with prefix, channels, date, time and extension information.

processSettings Process settings file to extract relevant information.

Description

processSettings reads information from a settings file (csv) and combines them into a list for
subsequent localization.

Usage

processSettings(settingsFile, settings, getFilepaths = FALSE, types = "wav")

Rij_GCC 19

Arguments

settingsFile Filepath to the settings file (csv).

settings data.frame created either by reading a settings file (csv) or using the createSettings
function. Not needed if settingsFile is specified.

getFilepaths Logical, indicating whether to add filepath information using getFilepaths.

types Character. If getFilepaths is TRUE, which types of files to look for (’wav’ or
’mp3’).

Value

A list with information needed for sound localization, including microphone coordinates, the ex-
isting detections, channels to use for each recording unit, and information specifying the size and
resolution of the grid within which to localize sound sources.

Examples

#Read example data
settings <- read.csv(system.file('extdata', 'Ex_20200617_090000_Settings.csv',

package = 'locaR'), stringsAsFactors = FALSE)

#Over-write default values for SiteWavsFolder, CoordinatesFile, and ChannelsFile
settings$Value[settings$Setting == 'SiteWavsFolder'] <-

system.file('extdata', package = 'locaR')
settings$Value[settings$Setting == 'CoordinatesFile'] <-

system.file('extdata', 'Vignette_Coordinates.csv', package = 'locaR')
settings$Value[settings$Setting == 'ChannelsFile'] <-

system.file('extdata', 'Vignette_Channels.csv', package = 'locaR')

#Run processSettings() function
st <- processSettings(settings = settings, getFilepaths = FALSE)

Rij_GCC Generalized cross-correlation.

Description

Internal function that calculates the generalized cross correlation.

Usage

Rij_GCC(data1, data2, Para)

Arguments

data1, data2 Wave samples.

Para List with GCCMethod, FL, FH, Fs

20 setupSurvey

Value

Numeric vector.

Author(s)

Tim Huang

setupSurvey Set up a new "survey" with a standardized structure recognized by the
package.

Description

setupSurvey sets up the folder structure for a new "survey", which corresponds to a single record-
ing session. By setting up a standardized folder structure, the package functions can carry out much
of the data wrangling automatically using the localizeSingle and localizeMultiple functions.
The extra work required to set up surveys in a standard format can save time later on.

Usage

setupSurvey(
folder,
projectName,
run = 1,
coordinatesFile,
siteWavsFolder,
adjustmentsFile,
channelsFile,
date,
time,
tempC = 15,
soundSpeed,
surveyLength,
margin = 10,
zMin = -1,
zMax = 20,
resolution = 1,
buffer = 0.2

)

Arguments

folder Character. Path to the directory where the survey will be created.
projectName, run, coordinatesFile, siteWavsFolder

Arguments passed to createSettings

adjustmentsFile

Character. File path to the adjustments file (csv). Optional argument.

surveyPaths 21

channelsFile Character. File path to the adjustments file (csv). If missing, an empty channels
file (csv) will be created.

date Numeric. Eight digit number representing a date in the format YYYYMMDD.

time Numeric. Five or six digit number representing the start time of a recording
session (90000 = 09:00:00, and 160000 = 16:00:00).

tempC Numeric. Temperature in degrees C, which is used to calculate the speed of
sound in air using the equation 331.45*sqrt(1+tempC/273.15).

soundSpeed Numeric. The speed of sound in meters per second. If missing, the speed of
sound is calculated based on the specified temperature (assuming the transmis-
sion medium is air). If soundSpeed is specified, the tempC value is over-ridden.

surveyLength, margin, zMin, zMax, resolution, buffer

Arguments describing the area to be searched for sound sources. Passed to
createSettings.

Value

data.frame containing the settings generated using createSettings. This data.frame is identical to
that produced by reading the settingsFile csv, which is also written to file.

Examples

survey <- setupSurvey(folder = tempdir(), projectName = 'Ex', run = 1,
coordinatesFile = system.file('extdata', 'Vignette_Coordinates.csv', package = 'locaR'),

siteWavsFolder = tempdir(),
date = '20200617', time = '090000', surveyLength = 7)

surveyPaths Get paths for standardized survey workflow.

Description

Function that takes arguments of a base folder and a project name, date, time, and run, and returns
the appropriate filepaths for a standardized survey workflow.

Usage

surveyPaths(folder, projectName, date, time, run)

Arguments

folder Character. Path to the directory where the survey is to be created.

projectName Character. A string specifying the name of a project.

date Numeric. Eight digit number representing a date in the format YYYYMMDD.

time Numeric. Five or six digit number representing the start time of a recording
session (90000 = 09:00:00, and 160000 = 16:00:00).

22 validationSpec

run Numeric. Within each survey, start with run = 1, then count upwards. So, run 2
would be used to re-localize sounds that were poorly localized in run 1, etc. Run-
ning them again with slightly different settings (e.g. start/end times or low/high
frequencies) can improve results.

Value

Named vector of paths to surveyFolder, runFolder, specFolder, locFolder, detectionsFile, channels-
File, and settingsFile.

Examples

surveyPaths(folder = tempdir(), projectName = 'Ex', date = '20200617', time = '090000', run = 1)

validationSpec Create validation spectrograms.

Description

This function is used inside the localize function to create the panels of synchronized spectro-
grams for manual review.

Usage

validationSpec(
wavList,
coordinates,
locationEstimate,
from,
to,
tempC = 15,
soundSpeed,
F_Low,
F_High

)

Arguments

wavList list of Wave objects. The name of the Wave objects MUST be present in the
coordinates data.frame.

coordinates data.frame. Must contain four required columns: column Station contains a
character string with names of each recording station, while Easting, Northing
and Elevation contain the x, y, and z coordinates of the station, in meters (E.g.
UTM coordinates).

locationEstimate

Dataframe with one row containing columns Easting, Northing and Elevation,
specifying the estimated location of the sound source.

validationSpec 23

from, to Numeric. The portion of the wavs to plot. If missing, the whole wav will be
plotted.

tempC Numeric. The ambient temperature in celsius, which is used to calculate the
speed of sound in air if none is specified.

soundSpeed Numeric. The speed of sound. If missing, tempC will be used to calculate the
speed of sound in air.

F_Low, F_High Numeric. The low and high frequency, in Hz, of the sound to be localized.

Value

No return value.

Examples

#Get filepaths for example data.
fp <- list.files(system.file('extdata', package = 'locaR'),

pattern = '.mp3', full.names = TRUE)
#Add names.
names(fp) <- sapply(strsplit(basename(fp), '_'), '[[', 1)
#Load first row of detection data.
row <- read.csv(system.file('extdata',

'Vignette_Detections_20200617_090000.csv', package = 'locaR'),
stringsAsFactors = FALSE)[1,]

#Get non-empty Station columns.
stationSubset <- unlist(row[1,paste0('Station',1:6)])
stationSubset <- stationSubset[!is.na(stationSubset) & stationSubset != '']
#Create wav list.
wl <- createWavList(paths = fp[stationSubset], names = stationSubset,

from = row$From, to = row$To, buffer = 0.2, index=1)
#Read coordinates.
coordinates <- read.csv(system.file('extdata', 'Vignette_Coordinates.csv',

package = 'locaR'), stringsAsFactors = FALSE)
row.names(coordinates) <- coordinates$Station
#Subset coordinates.
crd <- coordinates[stationSubset,]
#Localize.
loc <- localize(wavList = wl, coordinates = crd, locFolder = tempdir(),

F_Low = row$F_Low, F_High = row$F_High, jpegName = '0001.jpeg',
keep.SearchMap = TRUE)

#Create validation spectrogram.
#Store old par
oldpar <- par()$mfrow
par(mfrow = c(6,1))
validationSpec(wavList = wl, coordinates = crd, locationEstimate = loc$location,

F_Low = row$F_Low, F_High = row$F_High)
#Reset old par values.
par(mfrow = oldpar)

Index

checkSettings, 2
createSettings, 3, 19–21
createWavList, 4

getFilepaths, 6, 19

layoutMatrix, 7
localize, 8
localizeMultiple, 3
localizeMultiple (localize), 8
localizeSingle, 3, 11
locaR, 12
locHeatmap, 12

makeSearchMap, 9, 14
MSRP_HT_Level2 (MSRP_RIJ_HT), 16
MSRP_Init, 15
MSRP_RIJ_HT, 16

omniSpectro, 17

parseWAFileNames, 18
processSettings, 6, 7, 10, 12, 17, 18

Rij_GCC, 19

setupSurvey, 20
surveyPaths, 21

validationSpec, 22

24

	checkSettings
	createSettings
	createWavList
	getFilepaths
	layoutMatrix
	localize
	localizeSingle
	locaR
	locHeatmap
	makeSearchMap
	MSRP_Init
	MSRP_RIJ_HT
	omniSpectro
	parseWAFileNames
	processSettings
	Rij_GCC
	setupSurvey
	surveyPaths
	validationSpec
	Index

