
Package ‘literanger’
July 13, 2025

Title Fast Serializable Random Forests Based on 'ranger'

Version 0.2.0

Description An updated implementation of R package 'ranger' by Wright et al,
(2017) <doi:10.18637/jss.v077.i01> for training and predicting from random
forests, particularly suited to high-dimensional data, and for embedding in
'Multiple Imputation by Chained Equations' (MICE) by van Buuren (2007)
<doi:10.1177/0962280206074463>. Ensembles of classification and regression
trees are currently supported. Sparse data of class 'dgCMatrix' (R package
'Matrix') can be directly analyzed. Conventional bagged predictions are
available alongside an efficient prediction for MICE via the algorithm
proposed by Doove et al (2014) <doi:10.1016/j.csda.2013.10.025>. Trained
forests can be written to and read from storage. Survival and probability
forests are not supported in the update, nor is data of class 'gwaa.data'
(R package 'GenABEL'); use the original 'ranger' package for these analyses.

Depends R (>= 3.6.0)

License GPL-3

Encoding UTF-8

BugReports https://gitlab.com/stephematician/literanger/-/issues

URL https://gitlab.com/stephematician/literanger

Suggests Matrix (>= 1.5.3), testthat (>= 3.0.0), tibble (>= 3.2.1)

Imports stats

LinkingTo cpp11 (>= 0.4.7), Rcereal (>= 1.3.2)

RoxygenNote 7.3.2

NeedsCompilation yes

Author Stephen Wade [aut, cre] (ORCID:
<https://orcid.org/0000-0002-2573-9683>),

Marvin N Wright [ctb]

Maintainer Stephen Wade <stephematician@gmail.com>

Repository CRAN

Date/Publication 2025-07-13 07:30:02 UTC

1

https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.1177/0962280206074463
https://doi.org/10.1016/j.csda.2013.10.025
https://gitlab.com/stephematician/literanger/-/issues
https://gitlab.com/stephematician/literanger
https://orcid.org/0000-0002-2573-9683


2 merge.literanger

Contents
merge.literanger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
predict.literanger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
read_literanger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
train . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
write_literanger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Index 13

merge.literanger Merge two random forests

Description

Copy the trees from two forests to construct a new random forest object.

Usage

## S3 method for class 'literanger'
merge(x, y, save_memory = FALSE, verbose = FALSE, ...)

Arguments

x A trained random forest literanger object.

y A trained random forest literanger object.

save_memory Ignored, only used in training (perhaps future use).

verbose Print additional debug output from merging procedure.

... Ignored.

Details

This is a naive implementation of a random-forest merge procedure. The trees from each forest are
copied and then used to construct a new random forest object.

Classification and regression forests cannot be mixed together. The response type and levels (if a
factor) must match.

The predictor names, type, and levels (if a factor) must match, although they can be provided in a
different order.

There is no requirement that the forests were trained on the same data; just the same data types.

Internally, literanger will ’map’ any differences in the order of the predictors (or its internal repre-
sentation of response values) between x and y so that the result has the same ordering as x.

The out-of-bag error is discarded, along with the training information, as the result is a merged
forest (not a trained one). It is up to you, the user, to keep track of the training parameters of x and
y if they are still of use to you.



predict.literanger 3

Value

Object of class literanger with a copy of the trees from x and y held in the cpp11_ptr item, and
the following items:

tree_type The type of tree in the forest, either ’classification’ or ’regression’.

n_tree The sum of the number of trees in x and y.

training An empty list; as the result is due to merging, not training.

predictors A list with the names of the predictors, the names of the unordered predictors, and the
levels of any factors.

response The levels and type indicator (e.g. logical, factor, etc) of the response.

oob_error NULL, as there is no consensus on how to merge OOB estimates

cpp11_ptr An external pointer to the merged forest. DO NOT MODIFY.

Author(s)

stephematician stephematician@gmail.com.

Examples

## Train two classification forests
train_idx <- sample(nrow(iris), 2/3 * nrow(iris))
iris_train <- iris[train_idx, ]
iris_test <- iris[-train_idx, ]
lr_x <- train(data=iris_train, response_name="Species", n_tree=32)
lr_y <- train(data=iris_train, response_name="Species", n_tree=32)

## Merge
lr_iris <- merge(lr_x, lr_y)
pred_iris <- predict(lr_iris, newdata=iris_test)
table(iris_test$Species, pred_iris$values)

predict.literanger Literanger prediction

Description

’literanger’ provides different types of prediction that may be used in multiple imputation algo-
rithms with random forests. The usual prediction is the ’bagged’ prediction, the most frequent
value (or the mean) of the in-bag samples in a terminal node. Doove et al (2014) propose a pre-
diction that better matches the predictive distribution as needed for multiple imputation; take a
random draw from the observations in the terminal node from a randomly drawn tree in the for-
est for each predicted value needed. Alternatively, the usual most-frequent-value or mean of the
in-bag responses can be used as in missForest (Stekhoven et al, 2014) or miceRanger https://
cran.r-project.org/package=miceRanger and missRanger https://cran.r-project.org/
package=missRanger.

mailto:stephematician@gmail.com
https://cran.r-project.org/package=miceRanger
https://cran.r-project.org/package=miceRanger
https://cran.r-project.org/package=missRanger
https://cran.r-project.org/package=missRanger


4 predict.literanger

Usage

## S3 method for class 'literanger'
predict(
object,
newdata = NULL,
prediction_type = c("bagged", "inbag", "nodes"),
seed = 1L + sample.int(n = .Machine$integer.max - 1L, size = 1),
n_thread = 0,
verbose = FALSE,
...

)

Arguments

object A trained random forest literanger object.

newdata Data of class data.frame, matrix, or dgCMatrix (Matrix), for the latter two;
must have column names; all predictors named in object$predictor_names
must be present.

prediction_type

Name of the prediction algorithm; "bagged" is the most-frequent value among
in-bag samples for classification, or the mean of in-bag responses for regression;
"inbag" predicts by drawing one in-bag response from a random tree for each
row; "nodes" returns the node keys (ids) of the terminal node from every tree for
each row.

seed Random seed, an integer between 1 and .Machine$integer.max. Default gen-
erates the seed from R, set to 0 to ignore the R seed and use a C++ std::random_device.

n_thread Number of threads. Default is determined by system, typically the number of
cores.

verbose Show computation status and estimated runtime.

... Ignored.

Details

Forests trained by literanger retain information about the in-bag responses in each terminal node,
thus facilitating efficient predictions within a variation on multiple imputation proposed by Doove
et al (2014). This type of prediction can be selected by setting prediction_type="inbag", or the
usual prediction for classification and regression forests, the most-frequent-value and mean of in
bag samples respectively, is given by setting prediction_type="bagged".

A list is returned. The values item contains the predicted classes or values (classification and
regression forests, respectively). Factor levels are returned as factors with the levels as per the
original training data.

Compared to the original package ranger, literanger excludes certain features:

• Probability, survival, and quantile regression forests.

• Support for class gwaa.data.

• Standard error estimation.



predict.literanger 5

Value

Object of class literanger_prediction with elements:

values Predicted (drawn) classes/value for classification and regression (when prediction type is
not nodes).

tree_type Number of trees.

seed The seed supplied to the C++ library.

nodes When prediction type is nodes: a matrix of terminal node identifiers, with each row being a
prediction and each column being a tree.

Author(s)

stephematician stephematician@gmail.com, Marvin N Wright (original ranger package)

References

• Doove, L. L., Van Buuren, S., & Dusseldorp, E. (2014). Recursive partitioning for miss-
ing data imputation in the presence of interaction effects. Computational Statistics & Data
Analysis, 72, 92-104. doi:10.1016/j.csda.2013.10.025.

• Stekhoven, D.J. and Buehlmann, P. (2012). MissForest–non-parametric missing value im-
putation for mixed-type data. Bioinformatics, 28(1), 112-118. doi:10.1093/bioinformatics/
btr597.

• Wright, M. N., & Ziegler, A. (2017a). ranger: A Fast Implementation of Random Forests for
High Dimensional Data in C++ and R. Journal of Statistical Software, 77, 1-17. doi:10.18637/
jss.v077.i01.

See Also

train

Examples

## Classification forest
train_idx <- sample(nrow(iris), 2/3 * nrow(iris))
iris_train <- iris[ train_idx, ]
iris_test <- iris[-train_idx, ]
lr_iris <- train(data=iris_train, response_name="Species")
pred_iris_bagged <- predict(lr_iris, newdata=iris_test,

prediction_type="bagged")
pred_iris_inbag <- predict(lr_iris, newdata=iris_test,

prediction_type="inbag")
# compare bagged vs actual test values
table(iris_test$Species, pred_iris_bagged$values)
# compare bagged prediction vs in-bag draw
table(pred_iris_bagged$values, pred_iris_inbag$values)

mailto:stephematician@gmail.com
https://doi.org/10.1016/j.csda.2013.10.025
https://doi.org/10.1093/bioinformatics/btr597
https://doi.org/10.1093/bioinformatics/btr597
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.18637/jss.v077.i01


6 read_literanger

read_literanger De-serialize random forest

Description

Read the random forest from a file or connection using light-weight serialization for C++ objects.

Usage

read_literanger(file, verbose = FALSE, ...)

Arguments

file A connection or the name of a file containing a serialized literanger object.

verbose Show additional serialization information (not implemented).

... Further arguments passed to readRDS().

Details

This function uses ’cereal’ light-weight serialization to read a literanger object (random forest) from
a file or connection. The file is usually the result of a call to write_literanger(). The random
forest returned can be used for prediction immediately upon return, and does not require the original
training data or training environment.

Value

A literanger random forest object

Author(s)

stephematician <stephematician@gmail.com

See Also

write_literanger() readRDS

https://uscilab.github.io/cereal/


train 7

train Train forest using ranger for multiple imputation algorithms.

Description

’literanger’ trains random forests for use in multiple imputation problems via an adaptation of the
’ranger’ R package. ranger is a fast implementation of random forests (Breiman, 2001) or recursive
partitioning, particularly suited for high dimensional data (Wright et al, 2017a). literanger supports
prediction used in algorithms such as "Multiple Imputation via Chained Equations" (Van Buuren,
2007).

Usage

train(
data = NULL,
response_name = character(),
predictor_names = character(),
x = NULL,
y = NULL,
case_weights = numeric(),
classification = NULL,
n_tree = 10,
replace = TRUE,
sample_fraction = ifelse(replace, 1, 0.632),
n_try = NULL,
draw_predictor_weights = numeric(),
names_of_always_draw = character(),
split_rule = NULL,
max_depth = 0,
min_split_n_sample = 0,
min_leaf_n_sample = 0,
unordered_predictors = NULL,
response_weights = numeric(),
n_random_split = 1,
alpha = 0.5,
min_prop = 0.1,
seed = 1L + sample.int(n = .Machine$integer.max - 1L, size = 1),
save_memory = FALSE,
n_thread = 0,
verbose = FALSE

)

Arguments

data Training data of class data.frame, matrix, or dgCMatrix (Matrix), for the
latter two; must have column names.

response_name Name of response (dependent) variable if data was provided.



8 train

predictor_names

Names of predictor (independent) variables if data was provided; default is all
variables that are not the response.

x Predictor data (independent variables), alternative interface to data and response_name.
y Response vector (dependent variable), alternative interface to data and response_name.
case_weights Weights for sampling of training observations. Observations with larger weights

will be selected with higher probability in the bootstrap (or sub-sampled) sam-
ples for each tree.

classification Set to TRUE to grow a classification forest if the response is numeric (including
if data is a matrix), else, a regression forest is grown.

n_tree Number of trees (default 10).
replace Sample with replacement to train each tree.
sample_fraction

Fraction of observations to sample to train each tree. Default is 1 for sampling
with replacement and 0.632 for sampling without replacement. For classifica-
tion, this can be a vector of class-specific values.

n_try Number of variables (predictors) to draw that are candidates for splitting each
node by. Default is the (rounded down) square root of the number of predictors.
Alternatively, a single argument function returning an integer, given the number
of predictors.

draw_predictor_weights

For predictor-drawing weights shared by all trees; a numeric vector of non-
negative weights for each predictor. For tree-specific predictor-drawing weights;
a list of size n_tree containing (non-negative) vectors with length equal to the
number of predictors.

names_of_always_draw

Character vector with predictor (variable) names to be selected in addition to the
n_try predictors drawn as candidates to split by.

split_rule Splitting rule. For classification estimation "gini", "extratrees" or "hellinger"
with default "gini". For regression "variance", "extratrees", "maxstat" or "beta"
with default "variance".

max_depth Maximal tree depth. A value of NULL or 0 (the default) corresponds to unlim-
ited depth, 1 to tree stumps (1 split per tree).

min_split_n_sample

Minimal number of in-bag samples a node must have in order to be split. Default
1 for classification and 5 for regression.

min_leaf_n_sample

Minimum number of in-bag samples in a leaf node.
unordered_predictors

Handling of unordered factor predictors. One of "ignore", "order" and "parti-
tion". For the "extratrees" splitting rule the default is "partition" for all other
splitting rules "ignore".

response_weights

Classification only: Weights for the response classes (in order of the factor lev-
els) in the splitting rule e.g. cost-sensitive learning. Weights are also used by
each tree to determine majority vote.



train 9

n_random_split "extratrees" split metric only: Number of random splits to consider for each
candidate splitting variable, default is 1.

alpha "maxstat" splitting rule only: Significance threshold to allow splitting, default is
0.5, must be in the interval (0,1].

min_prop "maxstat" splitting rule only: Lower quantile of covariate distribution to be con-
sidered for splitting, default is 0.1, must be in the interval [0,0.5].

seed Random seed, an integer between 1 and .Machine$integer.max. Default gen-
erates the seed from R, set to 0 to ignore the R seed and use a C++ std::random_device.

save_memory Use memory saving (but slower) splitting mode. Warning: This option slows
down the tree growing, use only if you encounter memory problems.

n_thread Number of threads. Default is determined by system, typically the number of
cores.

verbose Show computation status and estimated runtime.

Details

literanger trains classification and regression forests using the original Random Forest (Breiman,
2001) or extremely randomized trees (Geurts et al, 2006) algorithms. The trained forest retains
information about the in-bag responses in each terminal node, thus facilitating a variation on the
algorithm for multiple imputation with random forests proposed by Doove et al (2014). This algo-
rithm should match the predictive distribution more closely than using predictive mean matching.

The default split metric for classification trees is the Gini impurity, which can be extended to use
the extra-randomized trees rule (Geurts et al, 2006). For binary responses, the Hellinger distance
metric may be used instead (Cieslak et al, 2012).

The default split metric for regression trees is the estimated variance, which can be extended to
include the extra-randomized trees rule, too. Alternatively, the beta log-likelihood (Wright et al,
2017b) or maximally selected rank statistics (Wright et al, 2019) are available.

When the data and response_name arguments are supplied the response variable is identified by
its corresponding column name. The type of response may be used to determine the type of tree. If
the response is a factor then classification trees are used. If the response is numeric then regression
trees are used. The classification argument can be used to override the default tree type when
the response is numeric. Alternatively, use x and y arguments to specify response and predictor;
this can avoid conversions and save memory. If memory usage issues persist, consider setting
save_memory=TRUE but be aware that this option slows down the tree growing.

The min_split_n_sample rule can be used to control the minimum number of in-bag samples re-
quired to split a node; thus, as in the original algorithm, nodes with fewer samples than min_split_n_sample
are possible. To put a floor under the number of samples per node, the min_leaf_n_sample argu-
ment is used.

When drawing candidate predictors for splitting a node on, the predictors identified by names_of_always_draw
are included in addition to the n_try predictors that are randomly drawn. Another way to modify
the way predictors are selected is via the draw_predictor_weights argument, which are nor-
malised and interpreted as probabilities when drawing candidates. The weights are assigned in
the order they appear in the data. Weights assigned by draw_predictor_weights to variables in
names_of_always_draw are ignored. The usage of draw_predictor_weights can increase the
computation times for large forests.

Unordered-factor predictors can be handled in 3 different ways by using unordered_predictors:



10 train

• For "ignore" all factors are regarded ordered;

• For "partition" all possible 2-partitions are considered for splitting.

• For "order" and 2-class classification the factor levels are ordered by their proportion falling
in the second class, for regression by their mean response, as described in Hastie et al. (2009),
chapter 9.2.4. For multi-class classification the factor levels are ordered by the first principal
component of the weighted covariance matrix of the contingency table (Coppersmith et al,
1999).

The use of "order" is recommended, as it computationally fast and can handle an unlimited number
of factor levels. Note that the factors are only reordered once and not again in each split.

Compared to the original package ranger, literanger excludes certain features:

• Formula interface.

• Probability, survival, and quantile regression forests.

• Support for class gwaa.data.

• Measures of variable importance.

• Regularisation of importance.

• Access to in-bag data via R.

• Support for user-specified hold-out data.

Value

Object of class literanger with elements:

tree_type The type of tree in the forest, either classification or regression.

n_tree The number of trees in the forest.

training The parameters for training that were passed at the time the forest was trained.

predictors A list with the names of the predictors, the names of the unordered predictors, and the
levels of any factors.

response The levels and type indicator (e.g. logical, factor, etc) of the response.

oob_error The misclassification rate or the mean square error using out-of-bag samples.

cpp11_ptr An external pointer to the trained forest. DO NOT MODIFY.

Author(s)

stephematician stephematician@gmail.com, Marvin N Wright (original ranger package)

References

• Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32. doi:10.1023/A:1010933404324.

• Cieslak, D. A., Hoens, T. R., Chawla, N. V., & Kegelmeyer, W. P. (2012). Hellinger distance
decision trees are robust and skew-insensitive. Data Mining and Knowledge Discovery, 24,
136-158. doi:10.1007/s1061801102221.

• Coppersmith, D., Hong, S. J., & Hosking, J. R. (1999). Partitioning nominal attributes in deci-
sion trees. Data Mining and Knowledge Discovery, 3, 197-217. doi:10.1023/A:1009869804967.

mailto:stephematician@gmail.com
https://doi.org/10.1023/A%3A1010933404324
https://doi.org/10.1007/s10618-011-0222-1
https://doi.org/10.1023/A%3A1009869804967


write_literanger 11

• Doove, L. L., Van Buuren, S., & Dusseldorp, E. (2014). Recursive partitioning for miss-
ing data imputation in the presence of interaction effects. Computational Statistics & Data
Analysis, 72, 92-104. doi:10.1016/j.csda.2013.10.025.

• Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine Learning,
63, 3-42. doi:10.1007/s1099400662261.

• Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). The elements of
statistical learning: data mining, inference, and prediction (Vol. 2). New York: Springer.
doi:10.1007/9780387216065.

• Van Buuren, S. (2007). Multiple imputation of discrete and continuous data by fully condi-
tional specification. Statistical Methods in Medical Research, 16(3), 219-242. doi:10.1177/
0962280206074463.

• Weinhold, L., Schmid, M., Wright, M. N., & Berger, M. (2019). A random forest ap-
proach for modeling bounded outcomes. arXiv preprint, arXiv:1901.06211. doi:10.48550/
arXiv.1901.06211.

• Wright, M. N., & Ziegler, A. (2017a). ranger: A Fast Implementation of Random Forests for
High Dimensional Data in C++ and R. Journal of Statistical Software, 77, 1-17. doi:10.18637/
jss.v077.i01.

• Wright, M. N., Dankowski, T., & Ziegler, A. (2017b). Unbiased split variable selection for
random survival forests using maximally selected rank statistics. Statistics in medicine, 36(8),
1272-1284. doi:10.1002/sim.7212.

See Also

predict.literanger

Examples

## Classification forest with default settings
train(data=iris, response_name="Species")

## Prediction
train_idx <- sample(nrow(iris), 2/3 * nrow(iris))
iris_train <- iris[train_idx, ]
iris_test <- iris[-train_idx, ]
lr_iris <- train(data=iris_train, response_name="Species")
pred_iris <- predict(lr_iris, newdata=iris_test)
table(iris_test$Species, pred_iris$values)

write_literanger Serialize random forest

Description

Write a random forest to a file or connection using light-weight serialization for C++ objects.

https://doi.org/10.1016/j.csda.2013.10.025
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1007/978-0-387-21606-5
https://doi.org/10.1177/0962280206074463
https://doi.org/10.1177/0962280206074463
https://doi.org/10.48550/arXiv.1901.06211
https://doi.org/10.48550/arXiv.1901.06211
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.1002/sim.7212


12 write_literanger

Usage

write_literanger(object, file, verbose = FALSE, ...)

Arguments

object A trained random forest literanger object.

file A connection or the name of the file where the literanger object will be saved.

verbose Show additional serialization information (not implemented).

... Further arguments passed to saveRDS().

Details

This function uses ’cereal’ light-weight serialization to write a literanger object (random forest) to
a file or connection. The file can be read in via read_literanger() and used for prediction with
no requirement for the original training data.

Author(s)

stephematician stephematician@gmail.com

See Also

read_literanger() saveRDS

Examples

## Classification forest
train_idx <- sample(nrow(iris), 2/3 * nrow(iris))
iris_train <- iris[ train_idx, ]
iris_test <- iris[-train_idx, ]
lr_iris <- train(data=iris_train, response_name="Species")
file <- tempfile()
write_literanger(lr_iris, file)
lr_copy <- read_literanger(file)
pred_bagged <- predict(lr_copy, newdata=iris_test, prediction_type="bagged")

https://uscilab.github.io/cereal/
mailto:stephematician@gmail.com


Index

merge.literanger, 2

predict.literanger, 3, 11

read_literanger, 6
read_literanger(), 12
readRDS, 6
readRDS(), 6

saveRDS, 12
saveRDS(), 12

train, 5, 7

write_literanger, 11
write_literanger(), 6

13


	merge.literanger
	predict.literanger
	read_literanger
	train
	write_literanger
	Index

