Package 'lineup2'

October 13, 2022

Version 0.6

Date 2021-06-14

Title Lining Up Two Sets of Measurements

Description Tools for detecting and correcting sample mix-ups between two sets of measurements, such as between gene expression data on two tissues. This is a revised version of the 'lineup' package, to be more general and not tied to the 'qtl' package.

Author Karl W Broman [aut, cre] (<https://orcid.org/0000-0002-4914-6671>)

Maintainer Karl W Broman <broman@wisc.edu>

Depends R (>= 3.5.0)

Imports parallel, Rcpp (>= 0.12.12)

Suggests knitr, rmarkdown, testthat, devtools, roxygen2

License GPL-3

URL https://github.com/kbroman/lineup2

BugReports https://github.com/kbroman/lineup2/issues

LinkingTo Rcpp

VignetteBuilder knitr

LazyData true

Encoding UTF-8

ByteCompile true

RoxygenNote 7.1.1

NeedsCompilation yes

Repository CRAN

Date/Publication 2021-06-15 05:10:03 UTC

R topics documented:

align_matrix_cols		2
align_matrix_rows		3
corr_betw_matrices		4
dist_betw_arrays		5
dist_betw_matrices		6
get_2ndbest		
get_best		
get_nonself		
get_problems		
get_self		
hist_self_nonself		
lineup2ex		
plot_sample		
which_2ndbest		
which best		
	• • •	10
		17

Index

align_matrix_cols Align the columns of two matrices

Description

Align the columns of two matrices using their column names, omitting columns that are not present in both.

Usage

align_matrix_cols(x, y)

Arguments

х	A matrix
У	Another matrix

Value

A list with the input x and y matrices, with the columns aligned using their names. Columns not in both matrices are omitted.

See Also

align_matrix_rows()

align_matrix_rows

Examples

```
# using the provided lineup2ex data (a list of two matrices)
# reduces to the common columns and puts the columns in the same order
# (using the column names)
aligned <- align_matrix_cols(lineup2ex$gastroc, lineup2ex$islet)</pre>
```

align_matrix_rows Align the rows of two matrices

Description

Align the rows of two matrices using their row names, omitting rows that are not present in both.

Usage

align_matrix_rows(x, y)

Arguments

х	A matrix
у	Another matrix

Value

A list with the input x and y matrices, with the rows aligned using their names. Rows not in both matrices are omitted.

See Also

align_matrix_cols()

Examples

using the provided lineup2ex data (a list of two matrices)
reduces to the common rows and puts the rows in the same order
(using the row names)
aligned <- align_matrix_rows(lineup2ex\$gastroc, lineup2ex\$islet)</pre>

corr_betw_matrices Calculate correlations between columns of two matrices

Description

For matrices x and y, calculate the correlation between columns of x and columns of y.

Usage

```
corr_betw_matrices(
    x,
    y,
    what = c("paired", "bestright", "bestpairs", "all"),
    corr_threshold = 0.9,
    align_rows = TRUE,
    cores = 1
)
```

Arguments

х	A numeric matrix.
У	A numeric matrix with the same number of rows as x.
what	Indicates which correlations to calculate and return. See value, below.
corr_threshold	Threshold on correlations if what="bestpairs".
align_rows	If TRUE, align the rows in the two matrices by the row names.
cores	Number of CPU cores to use, for parallel calculations. (If 0, use parallel::detectCores().) Alternatively, this can be links to a set of cluster sockets, as produced by parallel::makeCluster().

Details

Missing values (NA) are ignored, and we calculate the correlation using all complete pairs, as in stats::cor() with use="pairwise.complete.obs".

Value

If what="paired", the return value is a vector of correlations, between columns of x and the corresponding column of y. x and y must have the same number of columns.

If what="bestright", we return a data frame of size ncol(x) by 3, with the *i*th row being the maximum correlation between column *i* of x and a column of y, and then the y-column index and y-column name with that correlation. (In case of ties, we give the first one.)

If what="bestpairs", we return a data frame with five columns, containing all pairs of columns (with one in x and one in y) with correlation \geq corr_threshold. Each row corresponds to a column pair, and contains the correlation and then the x- and y-column indices followed by the x- and y-column names.

If what="all", the output is a matrix of size ncol(x) by ncol(y), with all correlations between columns of x and columns of y.

dist_betw_arrays

See Also

```
dist_betw_matrices(), dist_betw_arrays()
```

Examples

```
# use the provided data, and first align the rows
aligned <- align_matrix_rows(lineup2ex$gastroc, lineup2ex$islet)
# correlations for each column in x with each in y
result_pairs <- corr_betw_matrices(aligned[[1]], aligned[[2]], "paired")
# subset columns to those with correlation > 0.75
gastroc <- lineup2ex$gastroc[,result_pairs > 0.75]
islet <- lineup2ex$islet[,result_pairs > 0.75]
# similarity matrix for the two sets of rows
# (by transposing and using what="all")
corr_betw_samples <- corr_betw_matrices(t(gastroc), t(islet), "all")
# for each column in x, find most correlated column in y
# (max in each row of result_all)
bestright <- corr_betw_matrices(t(gastroc), t(islet), "bestright")
# correlations that exceed a threshold
```

bestpairs <- corr_betw_matrices(t(gastroc), t(islet), "bestpairs", corr_threshold=0.8)</pre>

dist_betw_arrays Distance between rows of two arrays

Description

Calculate the distances between the rows of two multi-dimensional arrays.

Usage

```
dist_betw_arrays(x, y, distance = c("rmsd", "mad", "propdiff"), cores = 1)
```

Arguments

x	A numeric array.
У	A second numeric array, with the same dimensions as x.
distance	Indicates whether to use Euclidean distance ("rmsd" for root mean square dif- ference), the mean absolute difference ("mad"), or the proportion of differences ("propdiff").
cores	Number of CPU cores to use, for parallel calculations. (If 0, use parallel::detectCores().) Alternatively, this can be links to a set of cluster sockets, as produced by parallel::makeCluster().

Details

The two arrays need to have the same dimensions, except for the leading dimension (rows). They are turned into matrices by merging all but the leading dimension, and then they're sent to dist_betw_matrices().

Value

If x and y have m and n rows, respectively, the result is an m by n matrix whose (i,j)th element is the distance between the ith row of x and the jth row of y.

See Also

dist_betw_matrices(), corr_betw_matrices()

Examples

```
p <- 10
k <- 6
n <- 5
m <- 3
x <- array(stats::rnorm(n*k*p), dim=c(n,k,p))
rownames(x) <- LETTERS[1:n]
y <- array(stats::rnorm(m*k*p), dim=c(m,k,p))
rownames(y) <- letters[1:m]</pre>
```

d <- dist_betw_arrays(x, y)

dist_betw_matrices Distance between rows of two matrices

Description

Calculate the distances between the rows of one matrix and the rows of a second matrix.

Usage

```
dist_betw_matrices(
    x,
    y,
    distance = c("rmsd", "mad", "propdiff"),
    align_cols = TRUE,
    cores = 1
)
```

get_2ndbest

Arguments

х	A numeric matrix.
У	A second numeric matrix, with the same number of columns as x.
distance	Indicates whether to use Euclidean distance ("rmsd" for root mean square dif- ference), the mean absolute difference ("mad"), or the proportion of differences ("propdiff").
align_cols	If TRUE, align the columns in the two matrices by the column names.
cores	Number of CPU cores to use, for parallel calculations. (If 0, use parallel::detectCores().) Alternatively, this can be links to a set of cluster sockets, as produced by parallel::makeCluster().

Value

If x is m by p and y is n by p, then the result is an m by n matrix whose (i,j)th element is the distance between the ith row of x and the jth row of y.

See Also

corr_betw_matrices(), dist_betw_arrays()

Examples

```
p <- 10
n <- 5
m <- 3
x <- matrix(stats::rnorm(n*p), ncol=p)
rownames(x) <- LETTERS[1:n]
y <- matrix(stats::rnorm(m*p), ncol=p)
rownames(y) <- letters[1:m]</pre>
```

d <- dist_betw_matrices(x, y)</pre>

get_2ndbest

Get 2nd-smallest distance for each individual

Description

For each individual represented in a distance matrix, find the 2nd-smallest entry (with NAs for individuals present in only the rows or only the columns).

Usage

```
get_2ndbest(d, dimension = c("row", "column"), get_min = TRUE)
```

Arguments

d	A distance matrix
dimension	Whether to get the 2nd-best by row or by column
get_min	If TRUE, get the 2nd-minimum; if FALSE, get the 2nd-maximum

Value

A vector with **all** distinct individuals, with the 2nd-smallest (or largest) value by row or column. We include all individuals so that the results are aligned with the results of get_self().

See Also

get_self(), get_best(), which_2ndbest(), get_nonself()

Examples

get_best

Get smallest distance for each individual

Description

For each individual represented in a distance matrix, find the smallest entry (with NAs for individuals present in only the rows or only the columns).

Usage

```
get_best(d, dimension = c("row", "column"), get_min = TRUE)
```

Arguments

d	A distance matrix
dimension	Whether to get the minimum by row or by column
get_min	If TRUE, get the minimum; if FALSE, get the maximum

get_nonself

Value

A vector with **all** distinct individuals, with the minimum (or maximum) value by row or column. We include all individuals so that the results are aligned with the results of get_self().

See Also

get_self(), get_2ndbest(), which_best(), get_nonself()

Examples

```
# maximum value by column
best_bycol <- get_best(similarity, get_min=FALSE, dimension="column")</pre>
```

get_nonself Get self-nonself distances

Description

Return the distance matrix with all self-self distances replaced with NAs (and so just containing the self-self distances).

Usage

get_nonself(d)

Arguments d

A distance matrix

Value

The input distance matrix with all self-self distances replaced with NAs.

See Also

get_self(), get_best(), get_2ndbest()

Examples

get_problems

Summarize potential problems in a distance matrix

Description

For the inviduals represented in a distance matrix, collect the self-self, best, and 2nd best distances, and summarize the results in a data frame.

Usage

```
get_problems(
    d,
    dimension = c("row", "column"),
    get_min = TRUE,
    subset = c("problems", "all"),
    threshold = 0
)
```

Arguments

d	A distance or similarity matrix
dimension	Whether to determine the best distances within rows or columns
get_min	If TRUE, get the minimum (for a distance matrix); if FALSE, get the maximum (for a similarity matrix)
subset	Whether to return just the rows with potential problems, or all of the rows.
threshold	If subset="problems", the threshold on the difference between the self and best distances.

Value

A data frame containing individual ID, distance to self, best distance and corresponding individual, 2nd best distance and the corresponding individual.

10

get_self

See Also

get_self(), get_best(), get_2ndbest(), which_best(), get_nonself()

Examples

get_self

Get self-self distance

Description

For each individual represented in a distance matrix, pull the self-self entry (with NAs for individuals present in only the rows or only the columns).

Usage

get_self(d)

Arguments d

A distance matrix

Value

A vector with all distinct individuals, with the self-self values

See Also

get_best(), get_2ndbest(), get_nonself()

Examples

hist_self_nonself Plot histograms of self-self and self-nonself distances

Description

Plot histograms of self-self and self-nonself distances

Usage

```
hist_self_nonself(d, breaks = NULL, rug = TRUE, xlabel = "distance")
```

Arguments

d	A distance matrix
breaks	Histogram breaks (default is to use 100 intervals)
rug	If TRUE, use graphics::rug() to plot tick marks at the observed values, below the histograms.
xlabel	Label on x-axes (e.g., "similarity" vs "distance")

Details

We use the mfrow arg for graphics::par() to make a two-panel figure.

Value

None.

See Also

get_self(), get_nonself()

12

lineup2ex

Examples

lineup2ex

Example dataset for lineup2 package

Description

Example dataset for lineup2 package, with gene expression data for a selected set of 200 genes on two tissues on a set of about 500 mice, with 100 genes chosen to be highly correlated between the two tissues and 100 chosen at random.

Usage

data(lineup2ex)

Format

List of two matrices, with gene expression data for gastrocnemius muscle (gastroc) and pancreatic islets (islet), at a selected set of 200 genes (100 are highly correlated between the two tissues, and 100 others chosen at random). The matrices have samples as rows and genes as columns. The row names are sample identifiers. There are 498 samples for gastroc and 499 samples for islet, with 497 samples in common.

Source

https://phenome.jax.org/projects/Attie1

References

Broman KW, Keller MP, Broman AT, Kendziorski C, Yandell BS, Sen Ś, Attie AD (2015) Identification and correction of sample mix-ups in expression genetic data: A case study. G3 5:2177–2186

Tian J, Keller MP, Oler AT, Rabaglia ME, Schueler KL, Stapleton DS, Broman AT, Zhao W, Kendziorski C, Yandell BS, Hagenbuch B, Broman KW, Attie AD (2015) Identification of the bile acid transporter Slco1a6 as a candidate gene that broadly affects gene expression in mouse pancreatic islets. Genetics 201:1253–1262

Examples

```
data(lineup2ex)
common_ind <- align_matrix_rows(lineup2ex$gastroc, lineup2ex$islet)</pre>
```

plot_sample

Plot the distances for a given sample

Description

Plot the distances for a given sample, highlighting itself and the closest sample

Usage

```
plot_sample(
    d,
    sample,
    dimension = c("row", "column"),
    get_min = TRUE,
    add_labels = TRUE,
    ...
)
```

Arguments

d	A distance or similarity matrix
sample	Sample ID (in row or column names)
dimension	Whether to look at the row or column
get_min	If TRUE, get the minimum (for a distance matrix); if FALSE, get the maximum (for a similarity matrix)
add_labels	If TRUE, label the individual sample and the optimal sample
	Passed to points()

Value

None.

Examples

14

```
plot_sample(similarity, "Mouse3659", get_min=FALSE)
plot_sample(similarity, "Mouse3655", "column", get_min=FALSE)
```

which_2ndbest Determine which individual has 2nd-smallest distance to each individual

Description

For each individual represented in a distance matrix, find the individual giving the 2nd-smallest entry (with NAs for individuals present in only the rows or only the columns).

Usage

```
which_2ndbest(d, dimension = c("row", "column"), get_min = TRUE)
```

Arguments

d	A distance matrix
dimension	Whether to get the 2nd-best by row or by column
get_min	If TRUE, get the 2nd-minimum; if FALSE, get the 2nd-maximum

Value

A vector with **all** distinct individuals, with the character string labels for the individuals giving the 2nd-smallest (or largest) value by row or column. We include all individuals so that the results are aligned with the results of get_self().

See Also

get_2ndbest(), get_self(), get_best(), which_best()

Examples

```
# which sample gives second-biggest value by column
secbest_bycol <- which_2ndbest(similarity, get_min=FALSE, dimension="column")</pre>
```

which_best

Description

For each individual represented in a distance matrix, find the individual giving the smallest entry (with NAs for individuals present in only the rows or only the columns).

Usage

```
which_best(d, dimension = c("row", "column"), get_min = TRUE)
```

Arguments

d	A distance matrix
dimension	Whether to get the minimum by row or by column
get_min	If TRUE, get the minimum; if FALSE, get the maximum

Value

A vector with **all** distinct individuals, with the character string labels for the individuals giving the minimum (or maximum) value by row or column. We include all individuals so that the results are aligned with the results of get_self().

See Also

get_best(), get_self(), get_2ndbest(), which_2ndbest()

Examples

```
# which sample gives maximum value by column
best_bycol <- which_best(similarity, get_min=FALSE, dimension="column")</pre>
```

Index

* datasets lineup2ex, 13 align_matrix_cols, 2 align_matrix_cols(), 3 align_matrix_rows, 3 align_matrix_rows(), 2 corr_betw_matrices, 4 corr_betw_matrices(), 6, 7 dist_betw_arrays, 5 dist_betw_arrays(), 5, 7 dist_betw_matrices, 6 dist_betw_matrices(), 5, 6 get_2ndbest, 7 get_2ndbest(), 9, 11, 15, 16 get_best, 8 get_best(), 8, 9, 11, 15, 16 get_nonself, 9 get_nonself(), 8, 9, 11, 12 get_problems, 10 get_self, 11 get_self(), 8, 9, 11, 12, 15, 16 graphics::par(), 12 graphics::rug(), 12 hist_self_nonself, 12 lineup2ex, 13 parallel::detectCores(), 4, 5, 7 parallel::makeCluster(), 4, 5, 7 plot_sample, 14 stats::cor(), 4 which_2ndbest, 15 which_2ndbest(), 8, 16 which_best, 16 which_best(), 9, 11, 15