Package ‘leidenAlg’

April 19, 2025
Type Package

Title Implements the Leiden Algorithm via an R Interface
Version 1.1.5

Description
An R interface to the Leiden algorithm, an iterative community detection algorithm on net-
works. The algorithm is designed to converge to a partition in which all subsets of all communi-
ties are locally optimally assigned, yielding communities guaranteed to be connected. The imple-
mentation proves to be fast, scales well, and can be run on graphs of mil-
lions of nodes (as long as they can fit in memory). The original implementation was con-
structed as a python interface " " leide-
nalg" found here: <https://github.com/vtraag/leidenalg>. The algorithm was origi-
nally described in Traag, V.A., Waltman, L. & van Eck, N.J. * *From Louvain to Leiden: guaran-
teeing well-connected communities". Sci Rep 9, 5233 (2019) <doi:10.1038/s41598-019-41695-
7>,

License GPL-3

Copyright See the file COPYRIGHTS for various leidenAlg copyright
details

Encoding UTF-8
LazyData true
Depends R (>=3.5.0), Matrix

Imports graphics, grDevices, igraph, methods, parallel, Rcpp (>=
1.0.5), sccore, stats

Suggests pbapply, testthat (>=3.1.0)
LinkingTo Rcpp, ReppArmadillo, ReppEigen

SystemRequirements GNU make (optional), libxml2 (optional), glpk (>=
4.57, optional)

RoxygenNote 7.2.3
URL https://github.com/kharchenkolab/leidenAlg

BugReports https://github.com/kharchenkolab/leidenAlg/issues

NeedsCompilation yes

https://github.com/vtraag/leidenalg
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1038/s41598-019-41695-z
https://github.com/kharchenkolab/leidenAlg
https://github.com/kharchenkolab/leidenAlg/issues

2 as.dendrogram.fakeCommunities

Author Peter Kharchenko [aut],
Viktor Petukhov [aut],
Yichen Wang [aut],

V.A. Traag [ctb],

Gabor Csardi [ctb],

Tamas Nepusz [ctb],
Minh Van Nguyen [ctb],
Evan Biederstedt [cre, aut]

Maintainer Evan Biederstedt <evan.biederstedt@gmail.com>
Repository CRAN
Date/Publication 2025-04-19 20:12:02 UTC

Contents
as.dendrogram.fakeCommunities Lo oL 2
exampleGraph L 3
find_partition 3
find_partition_rcpp 4
find_partition_with_rep e 5
find_partition_with_rep_rcpp 6
leiden.community L e e 7
membership.fakeCommunities L oo 8
rleiden.community L. Lo 9

Index 10

as.dendrogram. fakeCommunities
Returns pre-calculated dendrogram

Description

Returns pre-calculated dendrogram

Usage
S3 method for class 'fakeCommunities'
as.dendrogram(object, ...)

Arguments
object fakeCommunities object

further parameters for generic

Value

dendrogram

exampleGraph

Examples

rLeidenComm =

suppressWarnings(rleiden.community(exampleGraph, n.cores=1))

as.dendrogram. fakeCommunities(rLeidenComm)

exampleGraph

Conos graph

Description

Conos graph

Usage

exampleGraph

Format

An object of class igraph of length 100.

find_partition

Finds the optimal partition using the Leiden algorithm

Description

Finds the optimal partition using the Leiden algorithm

Usage

find_partition(graph, edge_weights, resolution = 1, niter = 2)

Arguments

graph
edge_weights

resolution

niter

Value

The igraph graph to define the partition on

Vector of edge weights. In weighted graphs, a real number is assigned to each
(directed or undirected) edge. For an unweighted graph, this is set to 1. Refer to
igraph, weighted graphs.

Numeric scalar, resolution parameter controlling communities detected (default=1.0)
Higher resolutions lead to more communities, while lower resolutions lead to
fewer communities.

Number of iterations that the algorithm should be run for (default=2)

A vector of membership values

4 find_partition_rcpp

Examples

library(igraph)
library(leidenAlg)

g <- make_star(10)
E(g)$weight <- seq(ecount(g))
find_partition(g, E(g)$weight)

find_partition_rcpp Refer to the R function find_partition() For notes of the graph object,
refer to https://igraph.org/c/doc/igraph-Basic.html

Description

Refer to the R function find_partition() For notes of the graph object, refer to https://igraph.org/c/doc/igraph-
Basic.html

Usage

find_partition_rcpp(
edgelist,
edgelist_length,
num_vertices,
direction,
edge_weights,
resolution = 1,
niter = 2L

Arguments

edgelist The graph edge list
edgelist_length

integer The length of the graph edge list
num_vertices integer The number of vertices in the graph
direction boolean Whether the graph is directed or undirected

edge_weights Vector of edge weights. In weighted graphs, a real number is assigned to each
(directed or undirected) edge. For an unweighted graph, this is set to 1. Refer to
igraph, weighted graphs.

resolution Numeric scalar, resoluiton parameter controlling communities detected (default=1.0)
Higher resolutions lead to more communities, while lower resolutions lead to
fewer communities.

niter Number of iterations that the algorithm should be run for (default=2)

find_partition_with_rep 5

Value

A vector of membership values

Examples

library(igraph)

edgelist <- as.vector(t(igraph::as_edgelist(exampleGraph, names=FALSE))) - 1

edgelist_length <- length(edgelist)

num_vertices <- length(igraph::V(exampleGraph)) - 1

direction <- igraph::is_weighted(exampleGraph)

find_partition_rcpp(edgelist, edgelist_length, num_vertices, direction, E(exampleGraph)$weight)

find_partition_with_rep

Finds the optimal partition using the Leiden algorithm with replicate
starts

Description

This function performs Leiden algorithm nrep times and returns the result from the run with the
maximum quality.

Since Leiden algorithm has stochastic process, repeating stochastically may improve the result.
However, users should be aware of whether there is indeed a community structure with exploration,
rather than blindly trusting the returned result that comes with the highest quality value.

The random number generator (RNG) is not re-seeded at each new start of community detection,
in order to keep the independence of each replicate. To get reproducible result, users can run
set.seed() before calling these functions.

find_partition only performs the community detection once and the reproducibility can also be
ensured with set.seed().

Usage

find_partition_with_rep(
graph,
edge_weights,
resolution = 1,

niter = 2,
nrep = 10
)
Arguments
graph The igraph graph to define the partition on

edge_weights Vector of edge weights. In weighted graphs, a real number is assigned to each
(directed or undirected) edge. For an unweighted graph, this is set to 1. Refer to
igraph, weighted graphs.

6 find_partition_with_rep_rcpp

resolution Numeric scalar, resolution parameter controlling communities detected (default=1.0)
Higher resolutions lead to more communities, while lower resolutions lead to
fewer communities.

niter Number of iterations that the algorithm should be run for (default=2)

nrep Number of replicate starts with random number being updated. (default=10)
The result with the best quality will be returned.

Value

A vector of membership values

Examples

library(igraph)

To run 10 replicates and get the partitioning with the highest quality
membership <- find_partition_with_rep(exampleGraph, E(exampleGraph)$weight, nrep = 10)

To get reprodicible result for every function call, do “set.seed()” right before calling
set.seed(233)

resl <- find_partition_with_rep(exampleGraph, E(exampleGraph)$weight, resolution = 2)

Here, no seed was set...

res2 <- find_partition_with_rep(exampleGraph, E(exampleGraph)$weight, resolution = 2)
set.seed(233)

res3 <- find_partition_with_rep(exampleGraph, E(exampleGraph)$weight, resolution = 2)
identical(res1, res2) # FALSE (usually), as no seed as set

identical(res1, res3) # TRUE (always), as set.seed() was used directly before the function call

find_partition_with_rep_rcpp
Finds the optimal partition using the Leiden algorithm

Description

Finds the optimal partition using the Leiden algorithm

Usage

find_partition_with_rep_rcpp(
edgelist,
edgelist_length,
num_vertices,
direction,
edge_weights,
resolution = 1,
niter = 2L,
nrep = 1L

leiden.community 7

Arguments

edgelist The graph edge list
edgelist_length

integer The length of the graph edge list
num_vertices integer The number of vertices in the graph

direction boolean Whether the graph is directed or undirected

edge_weights Vector of edge weights. In weighted graphs, a real number is assigned to each
(directed or undirected) edge. For an unweighted graph, this is set to 1. Refer to
igraph, weighted graphs.

resolution Numeric scalar, resoluiton parameter controlling communities detected (default=1.0)
Higher resolutions lead to more communities, while lower resolutions lead to
fewer communities.

niter Number of iterations that the algorithm should be run for (default=2)

nrep Number of replicate starts with random number being updated. (default=10)
The result with the best quality will be returned.

Details

For notes of the graph object, refer to https://igraph.org/c/doc/igraph-Basic.html

Examples

library(igraph)

edgelist <- as.vector(t(igraph::as_edgelist(exampleGraph, names=FALSE))) - 1

edgelist_len <- length(edgelist) ## The length of the graph edge list

n_vertices <- length(igraph::V(exampleGraph)) - 1 ## The number of vertices in the graph
direct <- igraph::is_weighted(exampleGraph) ## Whether the graph is directed or undirected
edge_weights <- E(exampleGraph)$weight

find_partition_with_rep_rcpp(edgelist, edgelist_len, n_vertices, direct, edge_weights, nrep = 10)

leiden.community Leiden algorithm community detection Detects communi-
ties using Leiden algorithm (implementation copied from
https://github.com/vtraag/leidenalg)

Description

Leiden algorithm community detection Detects communities using Leiden algorithm (implementa-
tion copied from https://github.com/vtraag/leidenalg)

Usage

leiden.community(graph, resolution = 1, n.iterations = 2)

8 membership.fakeCommunities

Arguments
graph graph on which communities should be detected
resolution resolution parameter (default=1.0) - higher numbers lead to more communities

n.iterations number of iterations that the algorithm should be run for (default=2)

Value

a fakeCommunities object that returns membership and dendrogram

Examples

leiden.community(exampleGraph)

membership.fakeCommunities
Returns pre-calculated membership factor

Description

Returns pre-calculated membership factor

Usage
S3 method for class 'fakeCommunities'
membership(communities, ...)

Arguments
communities fakeCommunities object

further parameters for generic

Value

membership factor

Examples

leidenComm = leiden.community(exampleGraph)
membership.fakeCommunities(leidenComm)

rleiden.community 9
rleiden.community Recursive leiden communities Constructs an n-step recursive cluster-
ing, using leiden.community
Description
Recursive leiden communities Constructs an n-step recursive clustering, using leiden.community
Usage
rleiden.community(
graph,
max.depth = 2,
n.cores = parallel::detectCores(logical = FALSE),
min.community.size = 10,
verbose = FALSE,
resolution = 1,
cur.depth = 1,
hierarchical = TRUE,
)
Arguments
graph graph
max.depth Recursive depth (default=2)
n.cores integer Number of cores to use (default = parallel::detectCores(logical=FALSE)).

If logical=FALSE, uses the number of physical CPUs/cores. If logical=TRUE,
uses the logical number of CPUS/cores. See parallel::detectCores()

min.community.size

integer Minimal community size parameter for the walktrap communities—
Communities smaller than that will be merged (default=10)

verbose boolean Whether to output progress messages (default=FALSE)
resolution resolution parameter passed to leiden.community (either a single value, or a

value equivalent to max.depth) (default=1)

cur.depth integer Current depth of clustering (default=1)
hierarchical boolean If TRUE, calculate hierarchy on the multilevel clusters (default=TRUE)

Value

passed to leiden.community

a fakeCommunities object that returns membership and dendrogram

Examples

rleiden.community(exampleGraph, n.cores=1)

Index

x datasets
exampleGraph, 3

as.dendrogram. fakeCommunities, 2
exampleGraph, 3
find_partition, 3,5
find_partition_rcpp, 4
find_partition_with_rep,5
find_partition_with_rep_rcpp, 6
leiden.community, 7

membership.fakeCommunities, 8

rleiden.community, 9

10

	as.dendrogram.fakeCommunities
	exampleGraph
	find_partition
	find_partition_rcpp
	find_partition_with_rep
	find_partition_with_rep_rcpp
	leiden.community
	membership.fakeCommunities
	rleiden.community
	Index

