Package ‘lavaan.mi’

March 10, 2025

Encoding UTF-8
Version 0.1-0
Title Fit Structural Equation Models to Multiply Imputed Data

Description The primary purpose of 'lavaan.mi' is to extend the functionality
of the R package 'lavaan', which implements structural equation modeling
(SEM). When incomplete data have been multiply imputed, the imputed data
sets can be analyzed by 'lavaan' using complete-data estimation methods,
but results must be pooled across imputations (Rubin, 1987, <doi:10.1002/9780470316696>).
The 'lavaan.mi' package automates the pooling of point and standard-error
estimates, as well as a variety of test statistics, using a familiar interface
that allows users to fit an SEM to multiple imputations as they would to a
single data set using the 'lavaan' package.

Depends R(>=4.0), lavaan(>= 0.6-18), methods
Imports stats, utils

Suggests Amelia, MASS, mice, parallel, testthat
License GPL (>=2)

LazyData yes

LazyLoad yes

URL https://github.com/TDJorgensen/lavaan.mi

BugReports https://github.com/TDJorgensen/lavaan.mi/issues
Date 2025-03-07

RoxygenNote 7.3.2

NeedsCompilation no

Author Terrence D. Jorgensen [aut, cre]
(<https://orcid.org/0000-0001-5111-6773>),
Yves Rosseel [ctb] (<https://orcid.org/0000-0002-4129-4477>)

Maintainer Terrence D. Jorgensen <TJorgensen314@gmail.com>
Repository CRAN
Date/Publication 2025-03-10 14:30:02 UTC

https://doi.org/10.1002/9780470316696
https://github.com/TDJorgensen/lavaan.mi
https://github.com/TDJorgensen/lavaan.mi/issues
https://orcid.org/0000-0001-5111-6773
https://orcid.org/0000-0002-4129-4477

2 binHS5imps

Contents
binHSSimps 2
calculate.D2 e 3
HS20imps e e e e 5
lavaan.mi e 6
lavaan.mi-class e 8
lavResiduals.mi e 13
lavTestLRT.mi e e 15
lavTestScore.mi e e e e e 19
lavTestWald.mi e 22
modindices.mi e e e 25
parameterEstimates.mi L L e 28
poolSat e 30
standardizedSolution.mi 34

Index 36

binHS5imps List of imputed Holzinger & Swineford (1939) dichotomized data
Description

A version of the classic Holzinger and Swineford (1939) dataset, with missing data imposed on
variables x5 and x9:
Details

* x5 is missing not at random (MNAR) by deleting the lowest 30% of x5 values.

* x9 is missing at random (MAR) conditional on age, by deleting x9 values for the youngest
30% of subjects in the data.

The data are then dichotomized using a median split, and imputed 5 times using the syntax shown
in the example. The data include only the 9 tests (x1 through x9) and school.
Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

Source

The lavaan package.

References

Holzinger, K., & Swineford, F. (1939). A study in factor analysis: The stability of a bifactor
solution. Supplementary Educational Monograph, no. 48. Chicago, IL: University of Chicago
Press.

calculate.D2 3

See Also

lavaan::HolzingerSwineford 1939

Examples

data(HolzingerSwineford1939, package = "lavaan")

impose missing data for example

HSMiss <- HolzingerSwineford1939[, c(paste(”x", 1:9, sep = ""),
"ageyr"”, "agemo","school”)]

set.seed(123)

HSMiss$x5 <- ifelse(HSMiss$x5 <= quantile(HSMiss$x5, .3), NA, HSMiss$x5)

age <- HSMiss$ageyr + HSMiss$agemo/12

HSMiss$x9 <- ifelse(age <= quantile(age, .3), NA, HSMiss$x9)

median split
HSbinary <- as.data.frame(lapply(HSMiss[, paste@(”x", 1:9)],

FUN = cut, breaks = 2, labels = FALSE))
HSbinary$school <- HSMiss$school

impute binary missing data using mice package

library(mice)

set.seed(456)

miceImps <- mice(HSbinary)

save imputations in a list of data.frames

binHS5imps <- list()

for (i in 1:miceImps$m) binHS5imps[[i]] <- complete(miceImps, action = i)

calculate.D2 Calculate the "D2" statistic

Description

This is a utility function used to calculate the "D2" statistic for pooling test statistics across mul-
tiple imputations. This function is called by several functions used for lavaan.mi objects, such as
lavTestLRT.mi(), lavTestWald.mi(), and lavTestScore.mi(). But this function can be used
for any general scenario because it only requires a vector of x? statistics (one from each imputation)
and the degrees of freedom for the test statistic. See Li, Meng, Raghunathan, & Rubin (1991) and
Enders (2010, chapter 8) for details about how it is calculated.

Usage

calculate.D2(w, DF = @OL, asymptotic = FALSE)

4 calculate.D2

Arguments
w numeric vector of Wald y? statistics. Can also be Wald z statistics, which will
be internally squared to make ? statistics with one df (must set DF = 0L).
DF degrees of freedom (df) of the x? statistics. If DF = 0L (default), w is assumed to
contain z statistics, which will be internally squared.
asymptotic logical. If FALSE (default), the pooled test will be returned as an F-distributed
statistic with numerator (df1) and denominator (df2) degrees of freedom. If
TRUE, the pooled F statistic will be multiplied by its df1 on the assumption that
its df2 is sufficiently large enough that the statistic will be asymptotically x?
distributed with df1.
Value

A numeric vector containing the test statistic, df, its p value, and 2 missing-data diagnostics: the
relative invrease in variance (RIV, or average for multiparameter tests: ARIV) and the fraction
missing information (FMI = ARIV / (1 + ARIV)).

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Enders, C. K. (2010). Applied missing data analysis. New York, NY: Guilford.

Li, K.-H., Meng, X.-L., Raghunathan, T. E., & Rubin, D. B. (1991). Significance levels from
repeated p-values with multiply-imputed data. Statistica Sinica, 1(1), 65-92. Retrieved from
https://www. jstor.org/stable/24303994

See Also

lavTestLRT.mi(), lavTestWald.mi(), lavTestScore.mi()

Examples

generate a vector of chi-squared values, just for example
DF <- 3 # degrees of freedom

M <- 20 # number of imputations

CHI <- rchisq(M, DF)

pool the "results”
calculate.D2(CHI, DF) # by default, an F statistic is returned
calculate.D2(CHI, DF, asymptotic = TRUE) # asymptotically chi-squared

generate standard-normal values, for an example of Wald z tests
Z <= rnorm(M)

calculate.D2(Z) # default DF = @ will square Z to make chisq(DF = 1)
F test is equivalent to a t test with the denominator DF

https://www.jstor.org/stable/24303994

HS20imps 5

HS20@imps List of imputed Holzinger & Swineford (1939) datasets

Description

A version of the classic Holzinger and Swineford (1939) dataset, with missing data imposed on
variables x5 and x9:

Details

* x5 is missing not at random (MNAR) by deleting the lowest 30% of x5 values.

* x9 is missing at random (MAR) conditional on age, by deleting x5 values for the youngest
30% of subjects in the data.

The data are imputed 20 times using the syntax shown in the example. The data include only age
and school variables, along with 9 tests (x1 through x9).
Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

Source

The lavaan package.

References

Holzinger, K., & Swineford, F. (1939). A study in factor analysis: The stability of a bifactor
solution. Supplementary Educational Monograph, no. 48. Chicago, IL: University of Chicago
Press.

See Also

lavaan::HolzingerSwineford1939

Examples

data(HolzingerSwineford1939, package = "lavaan")

impose missing data for example

HSMiss <- HolzingerSwineford1939[, c(paste(”x", 1:9, sep = ""),
"ageyr","agemo","school")]

set.seed(123)

HSMiss$x5 <- ifelse(HSMiss$x5 <= quantile(HSMiss$x5, .3), NA, HSMiss$x5)

age <- HSMiss$ageyr + HSMiss$agemo/12

HSMiss$x9 <- ifelse(age <= quantile(age, .3), NA, HSMiss$x9)

impute missing data with Amelia
library(Amelia)

6 lavaan.mi

set.seed(456)
HS.amelia <- amelia(HSMiss, m = 20, noms = "school”, p2s = FALSE)
HS20imps <- HS.amelia$imputations

lavaan.mi Fit a lavaan Model to Multiple Imputed Data Sets

Description

This function fits a lavaan model to a list of imputed data sets.

Usage
lavaan.mi(model, data, ...)
cfa.mi(model, data, ...)
sem.mi(model, data, ...)
growth.mi(model, data, ...)
Arguments
model The analysis model can be specified using lavaan lavaan: :model.syntax()
or a parameter table (as generated by lavaan::lavaanify() or returned by
lavaan: :parTable()).
data A a list of imputed data sets, or an object class from which imputed data can
be extracted. Recognized classes are lavaan.mi (stored in the @DatalList slot),
amelia (created by the Amelia package), or mids (created by the mice package).
additional arguments to pass to lavaan: : lavaan() or lavaan: : lavaanList().
See also lavaan: :lavOptions(). Note that lavaanList provides parallel com-
puting options, as well as a FUN= argument so the user can extract custom output
after the model is fitted to each imputed data set (see Examples). TIP: If a cus-
tom FUN is used and parallel = "snow" is requested, the user-supplied function
should explicitly call 1ibrary or use :: for any functions not part of the base
distribution.
Value

A lavaan.mi object

Note

This functionality was originally provided via runMI() in the semTools package, but there are dif-
ferences. See the README file on the GitHub page for this package (find link in DESCRIPTION).

lavaan.mi 7

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Enders, C. K. (2010). Applied missing data analysis. New York, NY: Guilford.

Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York, NY: Wiley.
doi:10.1002/9780470316696

See Also

poolSat() for a more efficient method to obtain SEM results for multiple imputations

Examples

data(HS20imps) # import a list of 20 imputed data sets

specify CFA model from lavaan's ?cfa help page

HS.model <- '
visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9

fit model to imputed data sets
fit <- cfa.mi(HS.model, data = HS2Q@imps)

summary (fit, fit.measures = TRUE, fmi = TRUE)
summary(fit, standardized = "std.all"”, rsquare = TRUE)

You can pass other lavaanList() arguments, such as FUN=, which allows
you to save any custom output from each imputation's fitted model.

An example with ordered-categorical data:
data(binHS5imps) # import a list of 5 imputed data sets

Define a function to save a list with 2 custom outputs per imputation:
- zero-cell tables
- the obsolete "WRMR" fit index
myCustomFunc <- function(object) {
list(wrmr = lavaan::fitMeasures(object, "wrmr"),
zeroCells = lavaan::lavInspect(object, "zero.cell.tables"))
3
fit the model
catout <- cfa.mi(HS.model, data = binHS5imps, ordered = TRUE,
FUN = myCustomFunc)
pooled results

summary (catout)

https://doi.org/10.1002/9780470316696

8 lavaan.mi-class

extract custom output (per imputation)

sapply(catout@funList, function(x) x$wrmr) # WRMR for each imputation
catout@funList[[1]]$zeroCells # zero-cell tables for first imputation
catout@funList[[2]]$zeroCells # zero-cell tables for second imputation ...

lavaan.mi-class Class for a lavaan Model Fitted to Multiple Imputations

Description

This class extends the lavaan::lavaanList class, created by fitting a lavaan model to a list of data
sets. In this case, the list of data sets are multiple imputations of missing data.

Usage

S4 method for signature 'lavaan.mi'
show(object)

S4 method for signature 'lavaan.mi'
summary (
object,
header = TRUE,
fit.measures = FALSE,
fm.args = list(standard.test = "default”, scaled.test = "default”, rmsea.ci.level =
0.9, rmsea.h@.closefit = 0.05, rmsea.h@.notclosefit = 0.08, robust = TRUE,
cat.check.pd = TRUE),
estimates = TRUE,
ci = FALSE,
standardized = FALSE,
std = standardized,
cov.std = TRUE,
rsquare = FALSE,

fmi = FALSE,

asymptotic = FALSE,

scale.W = lasymptotic,

omit.imps = c("no.conv”, "no.se"),

remove.unused = TRUE,
modindices = FALSE,
nd = 3L,

S4 method for signature 'lavaan.mi'
nobs(object, total = TRUE)

lavaan.mi-class 9

S4 method for signature 'lavaan.mi'
coef(object, type = "free”, labels = TRUE, omit.imps = c("no.conv”, "no.se"))

S4 method for signature 'lavaan.mi'

veov (
object,
type = c("pooled”, "between”, "within”, "ariv"),
scale.W = TRUE,
omit.imps = c("no.conv”, "no.se")
)

S4 method for signature 'lavaan.mi'
fitted(object, omit.imps = c("no.conv”, "no.se"))

S4 method for signature 'lavaan.mi'
fitted.values(object, omit.imps = c("no.conv”, "no.se"))

S4 method for signature 'lavaan.mi'
fitMeasures(
object,
fit.measures = "all",
baseline.model = NULL,
h1.model = NULL,
fm.args = list(standard.test = "default”, scaled.test = "default”, rmsea.ci.level =
0.9, rmsea.h@.closefit = 0.05, rmsea.h@.notclosefit = 0.08, robust = 0.08,
cat.check.pd = TRUE),
output = "vector”,
omit.imps = c("no.conv”, "no.se"),

)

S4 method for signature 'lavaan.mi'
fitmeasures(
object,
fit.measures = "all”,
baseline.model = NULL,
h1.model = NULL,
fm.args = list(standard.test = "default”, scaled.test = "default”, rmsea.ci.level =
0.9, rmsea.h@.closefit = 0.05, rmsea.h@.notclosefit = 0.08, robust = 0.08,
cat.check.pd = TRUE),

output = "vector”,
omit.imps = c("no.conv”, "no.se"),
)
Arguments

object An object of class lavaan.mi

10

lavaan.mi-class

header, fit.measures, fm.args, estimates, ci, standardized, std, cov.std,

rsquare, remove.unused, modindices, nd, output
See descriptions of summary() arguments in the help page for lavaan::lavaan
class. Also see lavaan::fitMeasures() for arguments fit.measures and
fm.args.

fmi logical indicating whether to add the Fraction Missing Information (FMI) and
(average) relative increase in variance (ARIV) to the output.

asymptotic logical. If FALSE (typically a default, but see Value section for details using
various methods), pooled tests (of fit or pooled estimates) will be F or 7 statistics
with associated degrees of freedom (df). If TRUE, the (denominator) df are as-
sumed to be sufficiently large for a ¢ statistic to follow a normal distribution, so
it is printed as a z statistic; likewise, F times its numerator df is printed, assumed
to follow a 2 distribution.

scale.W logical. If TRUE (default), the vcov method will calculate the pooled covari-
ance matrix by scaling the within-imputation component by the ARIV (see En-
ders, 2010, p. 235, for definition and formula). Otherwise, the pooled ma-
trix is calculated as the weighted sum of the within-imputation and between-
imputation components (see Enders, 2010, ch. 8, for details). This in turn af-
fects how the summary method calculates its pooled standard errors, as well as
the Wald test (1avTestWald.mi()).

omit.imps character vector specifying criteria for omitting imputations from pooled re-
sults. Can include any of c("no.conv”, "no.se”, "no.npd"), the first 2 of
which are the default setting, which excludes any imputations that did not con-
verge or for which standard errors could not be computed. The last option
("no.npd"”) would exclude any imputations which yielded a nonpositive defi-
nite covariance matrix for observed or latent variables, which would include any
"improper solutions" such as Heywood cases. NPD solutions are not excluded
by default because they are likely to occur due to sampling error, especially in
small samples. However, gross model misspecification could also cause NPD
solutions, users can compare pooled results with and without this setting as a
sensitivity analysis to see whether some imputations warrant further investiga-
tion. Specific imputation numbers can also be included in this argument, in case
users want to apply their own custom omission criteria (or simulations can use
different numbers of imputations without redundantly refitting the model).

Additional arguments passed to lavTestLRT.mi(), or subsequently to lavaan: :1lavTestLRT().
This is how users can specify a pool .method= for the model’s x? statistic (op-
tionally used in any fit.measures=), or set pool.method="D1" when summary (modindices=TRUE).

total logical (default: TRUE) indicating whether the nobs() method should return
the total sample size or (if FALSE) a vector of group sample sizes.

type The meaning of this argument varies depending on which method it it used for.
Find detailed descriptions in the Value section under coef () and vcov ().

labels logical indicating whether the coef () output should include parameter labels.
Default is TRUE.

baseline.model, h1.model
See lavaan: : fitMeasures().

lavaan.mi-class 11

Value
coef signature(object = "lavaan.mi”, type = "free"”, labels = TRUE, omit.imps
=c("no.conv”,"no.se")): See argument description on the help page for
lavaan::lavaan class. Returns the pooled point estimates (i.e., averaged across
imputed data sets; see Rubin, 1987).
vcov signature(object = "lavaan.mi"”, scale.W=TRUE, omit.imps =c("no.conv”,"no.se"),

n on non

type = c("pooled”, "between”, "within", "ariv")): By default, returns the
pooled covariance matrix of parameter estimates (type = "pooled"), the within-
imputations covariance matrix (type = "within"), the between-imputations co-
variance matrix (type = "between"), or the average relative increase in variance
(type = "ariv") due to missing data.

n on

fitted.values signature(object ="lavaan.mi”, omit.imps =c("no.conv”,"no.se")): See
corresponding lavaan::lavaan method. Returns model-implied moments, evalu-
ated at the pooled point estimates.

fitted alias for fitted.values

nobs signature(object = "lavaan.mi", total = TRUE): either the total (default)
sample size or a vector of group sample sizes (total = FALSE).

fitMeasures signature(object = "lavaan.mi”, fit.measures = "all"”, baseline.model
=NULL, h1.model =NULL, fm.args = list(standard.test = "default”, scaled. test
= "default”, rmsea.ci.level =0.90, rmsea.h@.closefit =0.05, rmsea.h@.notclosefit
=0.08, robust = TRUE, cat.check.pd =TRUE), output = "vector”, omit.imps

=c("no.conv"”,"no.se"), ...): See lavaan: : fitMeasures() for details. Pass
additional arguments to lavTestLRT.mi() via

fitmeasures alias for fitMeasures.

show signature(object = "lavaan.mi”): returns a message about convergence rates
and estimation problems (if applicable) across imputed data sets.

summary signature(object = "lavaan.mi”, header = TRUE, fit.measures = FALSE,fm.args
=list(standard.test = "default”, scaled.test = "default”, rmsea.ci.level
=0.90, rmsea.h@.closefit =0.05, rmsea.h@.notclosefit =0.08, robust
=TRUE, cat.check.pd =TRUE), estimates = TRUE, ci = FALSE, standardized
= FALSE, std = standardized, cov.std = TRUE, rsquare = FALSE, fmi = FALSE,
asymptotic = FALSE, scale.W=!asymptotic, omit.imps =c("no.conv”,"no.se"),
remove.unused = TRUE, modindices = FALSE, nd = 3L, ...): Analogous to summary ()
for lavaan-class objects. By default, summary returns output from parameterEstimates.mi(),
with some cursory information in the header. Setting fit.measures=TRUE will
additionally run fitMeasures(), and setting modindices=TRUE will addition-
ally run modindices.mi().

Slots

coeflList list of estimated coefficients in matrix format (one per imputation) as output by lavInspect(fit,
n es t n)

phiList list of model-implied latent-variable covariance matrices (one per imputation) as output
by lavInspect(fit, "cov.1lv")

miList list of modification indices output by lavaan: :modindices()

12 lavaan.mi-class

lavListCall call to lavaan::lavaanlList() used to fit the model to the list of imputed data sets
in @atalist, stored as a 1ist of arguments

convergence list of logical vectors indicating whether, for each imputed data set, (1) the model
converged on a solution, (2) SEs could be calculated, (3) the (residual) covariance matrix of
latent variables () is non-positive-definite, and (4) the residual covariance matrix of observed
variables (©) is non-positive-definite.

version Named character vector indicating the lavaan and lavaan.mi version numbers.
DataList The list of imputed data sets

SampleStatsList Listof output from lavInspect(fit, "sampstat”) applied to each fitted model.
ParTablelList,vcovList,testList,baselinelList See lavaan::lavaanList

h1List See lavaan::lavaanList. An additional element is added to the 1ist: $PT is the "saturated"
model’s parameter table, returned by lavaan: :lav_partable_unrestricted().

call,Options,ParTable,pta,Data,Model,meta,timinglList,CachelList,optimList,impliedList,loglikList,int
By default, 1avaan.mi () does not populate the remaining @*List slots from the lavaan::lavaanList
class. But they can be added to the call using the store.slots=argument (passed to lavaan: : lavaanList ()
via...).

Objects from the Class
See the lavaan.mi() function for details. Wrapper functions include cfa.mi(), sem.mi(), and
growth.mi().

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Enders, C. K. (2010). Applied missing data analysis. New York, NY: Guilford.

Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York, NY: Wiley.
doi:10.1002/9780470316696

Examples

data(HS20imps) # import a list of 20 imputed data sets

specify CFA model from lavaan's ?cfa help page

HS.model <- '
visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9

fit model to imputed data sets
fit <- cfa.mi(HS.model, data = HS20@imps)

vector of pooled coefficients
coef(fit)

https://doi.org/10.1002/9780470316696

lavResiduals.mi 13

their pooled asymptotic covariance matrix

veov(fit)

which is the weighted sum of within- and between-imputation components
veov(fit, type = "within")

veov(fit, type = "between”)

covariance matrix of observed variables,
as implied by pooled estimates
fitted(fit)

custom null model for CFI
HS.parallel <- '

visual =~ x1 + 1%x2 + 1*x3
textual =~ x4 + 1xx5 + 1*x6
speed =~ x7 + 1xx8 + 1%x9

fit@ <- cfa.mi(HS.parallel, data = HS20@imps, orthogonal = TRUE)
fitMeasures(fit, baseline.model = fit@, fit.measures = "default”,
output = "text")

See ?lavaan.mi help page for more examples

lavResiduals.mi Covariance and Correlation Residuals

Description

This function calculates residuals for sample moments (e.g., means and (co)variances, means) from
a lavaan model fitted to multiple imputed data sets, along with summary and inferential statistics
about the residuals.

Usage

S4 method for signature 'lavaan.mi'

residuals(object, type = "raw”, omit.imps = c("no.conv”, "no.se"), ...)

S4 method for signature 'lavaan.mi'

resid(object, type = "raw”, omit.imps = c("no.conv”, "no.se"), ...)
lavResiduals.mi(object, omit.imps = c(”"no.conv”, "no.se"), ...)
Arguments
object An object of class lavaan.mi
type character indicating whether/how to standardize the covariance residuals. If

type = "raw”, the raw (= unscaled) difference between the observed and ex-
pected (model-implied) summary statistics are returned. The observed summary
statistics are averaged across imputations, and the model-implied statistics are

14 lavResiduals.mi

calculated from pooled parameter estimates (as returned by fitted.values()).
If type = "cor” or "cor.bollen”, the observed and model-implied covariance
matrices are first transformed to correlation matrices (using stats: : cov2cor());
then correlation residuals are computed. If type = "cor.bentler”, both the
observed and model-implied covariance matrices are rescaled by dividing the
elements by the square roots of the corresponding variances of the observed
covariance matrix.

omit.imps character indicating criteria for excluding imputations from pooled results.
See lavaan.mi for argument details.

Arguments passed to lavaan: :lavResiduals().

Value

A list of residuals and other information (see lavaan: : 1avResiduals()). The standard residuals()
(and resid() alias) method simply calls lavResiduals.mi(. .., zstat=FALSE, summary=FALSE).

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

See Also

lavaan: :lavResiduals() for details about other arguments.

Examples

data(HS2@imps) # import a list of 20 imputed data sets

specify CFA model from lavaan's ?cfa help page

HS.model <- '
visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9

fit model to 20 imputed data sets
fit <- cfa.mi(HS.model, data = HS2Q@imps)

default type = "cor.bentler” (standardized covariance residuals)
lavResiduals.mi(fit, zstat = FALSE)
SRMR is in the $summary

correlation residuals
lavResiduals.mi(fit, zstat = FALSE, type = "cor")
CRMR is in the $summary

raw covariance residuals

lavResiduals.mi(fit, type = "raw") # zstat=TRUE by default
RMR is in the $summary

"normalized” residuals are in $cov.z

lavTestLRT.mi 15

The standard resid() and residuals() method simply call lavResiduals.mi()
with arguments to display only the residuals ("raw” by default).

resid(fit)
residuals(fit, type = "cor.bollen") # same as type = "cor”
lavTestLRT.mi Likelihood Ratio Test for Multiple Imputations
Description

Likelihood ratio test (LRT) for lavaan models fitted to multiple imputed data sets.

Usage

lavTestLRT.mi(
object,
modnames = NULL,
asANOVA = TRUE,
pool.method = c("D4", "D3", "D2"),
omit.imps = c("no.conv”, "no.se"),
asymptotic = FALSE,
pool.robust = FALSE

)
S4 method for signature 'lavaan.mi'
anova(object, ...)
Arguments
object An object of class lavaan.mi

Additional objects of class lavaan.mi, as well as arguments passed to lavaan: : lavTestLRT()
when pool .method = "D2" and pool.robust = TRUE.

modnames Optional character of model names to use as row names in the resulting matrix
of results (when more than 2 models are compared)

asANOVA logical indicating whether to return an object of class "anova”. If FALSE,
a numeric vector is returned for one (pair of) model(s), or a data.frame is
returned for multiple pairs of models.

pool.method character indicating which pooling method to use.

e "D4", "new.LRT", "cm", or "chan.meng" requests the method described by
Chan & Meng (2022). This is currently the default.

e "D3", "old.LRT", "mr"”, or "meng.rubin” requests the method described
by Meng & Rubin (1992).

16

omit.imps

asymptotic

pool.robust

Details

lavTestLRT.mi

e "D2", "LMRR", or "Li.et.al"” requests the complete-data LRT statistic
should be calculated using each imputed data set, which will then be pooled
across imputations, as described in Li, Meng, Raghunathan, & Rubin (1991).

Find additional details in Enders (2010, chapter 8).

character vector specifying criteria for omitting imputations from pooled re-
sults. Can include any of c("no.conv”, "no.se”, "no.npd"), the first 2 of
which are the default setting, which excludes any imputations that did not con-
verge or for which standard errors could not be computed. The last option
("no.npd") would exclude any imputations which yielded a nonpositive defi-
nite covariance matrix for observed or latent variables, which would include any
"improper solutions" such as Heywood cases. Specific imputation numbers can
also be included in this argument, in case users want to apply their own cus-
tom omission criteria (or simulations can use different numbers of imputations
without redundantly refitting the model).

logical. If FALSE (default), the pooled test will be returned as an F-distributed
statistic with numerator (df1) and denominator (df2) degrees of freedom. If
TRUE, the pooled F statistic will be multiplied by its df 1 on the assumption that
its df2 is sufficiently large enough that the statistic will be asymptotically x?
distributed with df1.

logical. Ignored unless pool.method = "D2" and a robust test was requested.
If pool. robust = TRUE, the robust test statistic is pooled, whereas pool . robust
= FALSE will pool the naive test statistic (or difference statistic) and apply the
average scale/shift parameter to it. The harmonic mean is applied to the scaling
factor, whereas the arithmetic mean is applied to the shift parameter.

The "D2" method is available using any estimator and test statistic. When using a likelihood-based
estimator, 2 additional methods are available to pool the LRT.

* The Meng & Rubin (1992) method, commonly referred to as "D3". This method has many
problems, discussed in Chan & Meng (2022).

e The Chan & Meng (2022) method, referred to as "D4" by Grund et al. (2023), resolves
problems with "D3".

When "D2" is not explicitly requested in situations it is the only applicable method, (e.g., DWLS
for categorical outcomes), users are notified that pool .method was set to "D2".

pool.method = "Mplus” implies "D3" and asymptotic = TRUE (see Asparouhov & Muthen, 2010).

Note that the anova() method simply calls lavTestLRT.mi().

Value

* When asANOVA=TRUE, returns an object of class stats::anova with a a test of model fit for
a single model (object) or test(s) of the difference(s) in fit between nested models passed
via ... (either an F or x? statistic, depending on the asymptotic argument), its degrees of
freedom, its p value, and 2 missing-data diagnostics: the relative increase in variance (RIV =
FMI/ (1 — FMI)) and the fraction of missing information (FMI = RIV / (1 + RIV)).

lavTestLRT.mi 17

* When asANOVA=FALSE, returns a vector containing the LRT statistic for a single model or
comparison of a single pair of models, or a data. frame of multiple model comparisons. Ro-
bust statistics will also include the average (across imputations) scaling factor and (if relevant)
shift parameter(s), unless pool.robust = TRUE. When using pool.method = "D3" or "D4",
the vector for a single model also includes its average log-likelihood and information criteria.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

Based on source code for 1avaan: :lavTestLRT() by Yves Rosseel.

References

Asparouhov, T., & Muthen, B. (2010). Chi-square statistics with multiple imputation. Technical
Report. Retrieved from http://www. statmodel.com/

Chan, K. W., & Meng, X. L. (2022). Multiple improvements of multiple imputation likelihood ratio
tests. Statistica Sinica, 32, 1489-1514. doi:10.5705/ss.202019.0314

Enders, C. K. (2010). Applied missing data analysis. New York, NY: Guilford.

Grund, S., Liidtke, O., & Robitzsch, A. (2023). Pooling methods for likelihood ratio tests in multi-
ply imputed data sets. Psychological Methods, 28(5), 1207-1221. doi:10.1037/met0000556

Li, K.-H., Meng, X.-L., Raghunathan, T. E., & Rubin, D. B. (1991). Significance levels from
repeated p-values with multiply-imputed data. Statistica Sinica, 1(1), 65-92. Retrieved from
https://www.jstor.org/stable/24303994

Meng, X.-L., & Rubin, D. B. (1992). Performing likelihood ratio tests with multiply-imputed data
sets. Biometrika, 79(1), 103—111. doi:10.2307/2337151

Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York, NY: Wiley.
doi:10.1002/9780470316696

See Also

lavaan: :lavTestLRT() for arguments that can be passed via. .., and use lavaan: : fitMeasures()
to obtain fit indices calculated from pooled test statistics.

Examples

data(HS2@imps) # import a list of 20 imputed data sets

specify CFA model from ?lavaan::cfa help page

HS.model <- '
visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9

fit1l <- cfa.mi(HS.model, data = HS2Q@imps, estimator = "mlm")

By default, pool.method = "D4".
Must request an asymptotic chi-squared statistic

http://www.statmodel.com/
https://doi.org/10.5705/ss.202019.0314
https://doi.org/10.1037/met0000556
https://www.jstor.org/stable/24303994
https://doi.org/10.2307/2337151
https://doi.org/10.1002/9780470316696

18

lavTestLRT.mi

in order to accommodate a robust correction.
lavTestLRT.mi(fit1, asymptotic = TRUE)
or anova(fitl, asymptotic = TRUE)

Comparison with more constrained (nested) models: parallel indicators
HS.parallel <- '

visual =~ x1 + 1%x2 + 1*x3
textual =~ x4 + 1xx5 + 1*x6
speed =~ x7 + 1xx8 + 1%x9

fitp <- cfa.mi(HS.parallel, data = HS2Q@imps, estimator = "mlm")

Even more constrained model: orthogonal factors
fit@ <- cfa.mi(HS.parallel, data = HS2Q@imps, estimator = "mlm”,
orthogonal = TRUE)

Compare 3 models, and pass the lavTestLRT(method=) argument

lavTestLRT.mi(fit1, fite, fitp, asymptotic = TRUE,
method = "satorra.bentler.2010")

For a single model, you can request a vector instead of an anova-class
table in order to see naive information criteria (only using D3 or D4),
which are calculated using the average log-likelihood across imputations.
lavTestLRT.mi(fit1, asANOVA = FALSE)

When using a least-squares (rather than maximum-likelihood) estimator,
only the D2 method is available. For example, ordered-categorical data:
data(binHS5imps) # import a list of 5 imputed data sets

fit model using default DWLS estimation

fitlc <- cfa.mi(HS.model , data = binHS5imps, ordered

fitoc <- cfa.mi(HS.parallel, data = binHS5imps, ordered
orthogonal = TRUE)

TRUE)
TRUE,

Using D2, you can either robustify the pooled naive statistic ...

lavTestLRT.mi(fit1c, fit@c, asymptotic = TRUE, pool.method = "D2")

... or pool the robust chi-squared statistic (NOT recommended)

lavTestLRT.mi(fit1c, fit@c, asymptotic = TRUE, pool.method = "D2",
pool.robust = TRUE)

When calculating fit indices, you can pass lavTestLRT.mi() arguments:
fitMeasures(fitlc, output = "text”,

lavTestLRT.mi() arguments:

pool.method = "D2", pool.robust = TRUE)

lavTestScore.mi

19

lavTestScore.mi

Score Test for Multiple Imputations

Description

Score test (or "Lagrange multiplier" test) for lavaan models fitted to multiple imputed data sets.
Statistics for releasing one or more fixed or constrained parameters in model can be calculated
by pooling the gradient and information matrices pooled across imputed data sets in a method
proposed by Mansolf, Jorgensen, & Enders (2020)—analogous to the "D1" Wald test proposed by
Li, Meng, Raghunathan, & Rubin’s (1991)—or by pooling the complete-data score-test statistics
across imputed data sets (i.e., "D2"; Li et al., 1991).

Usage

lavTestScore.mi(

object,
add = NULL,

release = NULL,
pool.method = c("D2", "D1"),

scale.W = lasymptotic,

omit.imps = c("no.conv”, "no.se"),
asymptotic = is.null(add),
univariate = TRUE,

cumulative = FALSE,

epc = FALSE,

standardized = epc,

cov.std = epc,
verbose = FALSE,

warn = TRUE,
information = "expected”
)
Arguments
object An object of class lavaan.mi.
add Either a character string (typically between single quotes) or a parameter table
containing additional (currently fixed-to-zero) parameters for which the score
test must be computed.
release Vector of integers. The indices of the equality constraints that should be re-

pool.method

leased. The indices correspond to the order of the equality constraints as they
appear in the parameter table.

character indicating which pooling method to use. "D1" requests Mansolf,
Jorgensen, & Enders’ (2020) proposed Wald-like test for pooling the gradient
and information, which are then used to calculate score-test statistics in the usual
manner. "D2" (default because it is less computationall intensive) requests to
pool the complete-data score-test statistics from each imputed data set, then pool
them across imputations, described by Li et al. (1991) and Enders (2010).

20

scale.W

omit.imps

asymptotic

univariate

cumulative

epc

standardized

cov.std
verbose
warn

information

Value

lavTestScore.mi

logical. If FALSE, the pooled information matrix is calculated as the weighted
sum of the within-imputation and between-imputation components. Otherwise,
the pooled information is calculated by scaling the within-imputation compo-
nent by the average relative increase in variance (ARIV; Enders, 2010, p. 235),
which is only consistent when requesting the F test (i.e., asymptotic = FALSE.
Ignored (irrelevant) if pool.method = "D2".

character vector specifying criteria for omitting imputations from pooled re-
sults. Can include any of c("no.conv”, "no.se”, "no.npd"), the first 2 of
which are the default setting, which excludes any imputations that did not con-
verge or for which standard errors could not be computed. The last option
("no.npd") would exclude any imputations which yielded a nonpositive defi-
nite covariance matrix for observed or latent variables, which would include any
"improper solutions" such as Heywood cases. Specific imputation numbers can
also be included in this argument, in case users want to apply their own cus-
tom omission criteria (or simulations can use different numbers of imputations
without redundantly refitting the model).

logical. If FALSE (default when using add to test adding fixed parameters to
the model), the pooled test will be returned as an F-distributed variable with
numerator (df 1) and denominator (df2) degrees of freedom. If TRUE, the pooled
F statistic will be multiplied by its df1 on the assumption that its df2 is suffi-
ciently large enough that the statistic will be asymptotically x? distributed with
df1. When using the release argument, asymptotic will be set to TRUE be-
cause (A)RIV can only be calculated for added parameters.

logical. If TRUE, compute the univariate score statistics, one for each con-
straint.

logical. If TRUE, order the univariate score statistics from large to small, and
compute a series of multivariate score statistics, each time including an addi-
tional constraint in the test.

logical. If TRUE, and we are releasing existing constraints, compute the ex-
pected parameter changes for the existing (free) parameters (and any specified
with add), if all constraints were released. For EPCs associated with a partic-
ular (1-df) constraint, only specify one parameter in add or one constraint in
release.

If TRUE, two extra columns (sepc.1lv and sepc.all) in the $epc table will con-
tain standardized values for the EPCs. See lavaan::lavTestScore().

logical. See lavaan: :standardizedSolution().
logical. Not used for now.

logical. If TRUE, print warnings if they occur.

character indicating the type of information matrix to use (check lavaan: : lavInspect()

for available options). "expected” information is the default, which provides
better control of Type I errors.

A list containing at least one data. frame:

lavTestScore.mi 21

* $test: The total score test, with columns for the score test statistic (X2), its degrees of freedom
(df), its p value under the x? distribution (p.value), and if asymptotic=FALSE, the average
relative invrease in variance (ARIV) used to calculate the denominator df is also returned as
a missing-data diagnostic, along with the fraction missing information (FMI = ARIV / (1 +
ARIV)).

e $uni: Optional (if univariate=TRUE). Each 1-df score test, equivalent to modification in-
dices. Also includes EPCs if epc=TRUE, and RIV and FMI if asymptotic=FALSE.

* $cumulative: Optional (if cumulative=TRUE). Cumulative score tests, with ARIV and FMI
if asymptotic=FALSE.

* $epc: Optional (if epc=TRUE). Parameter estimates, expected parameter changes, and expected
parameter values if ALL the tested constraints were freed.

See lavaan: :lavTestScore() for details.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)
Based on source code for lavaan: :lavTestScore() by Yves Rosseel

pool.method = "D1" method proposed by Maxwell Mansolf (University of California, Los Ange-
les; <mamansolf@gmail . com>)

References

Bentler, P. M., & Chou, C.-P. (1992). Some new covariance structure model improvement statistics.
Sociological Methods & Research, 21(2), 259-282. doi:10.1177/0049124192021002006

Enders, C. K. (2010). Applied missing data analysis. New York, NY: Guilford.

Li, K.-H., Meng, X.-L., Raghunathan, T. E., & Rubin, D. B. (1991). Significance levels from
repeated p-values with multiply-imputed data. Statistica Sinica, 1(1), 65-92. Retrieved from
https://www. jstor.org/stable/24303994

Mansolf, M., Jorgensen, T. D., & Enders, C. K. (2020). A multiple imputation score test for model
modification in structural equation models. Psychological Methods, 25(4), 393—411. doi:10.1037/
met0000243

See Also

lavaan::lavTestScore()

Examples

data(HS20imps) # import a list of 20 imputed data sets

specify CFA model from lavaan's ?cfa help page
HS.model <- '
speed =~ c(L1, L1)*x7 + c(L1, L1)*x8 + c(L1, L1)*x9

fit <- cfa.mi(HS.model, data = HS2Q@imps, group = "school”, std.lv = TRUE)

https://doi.org/10.1177/0049124192021002006
https://www.jstor.org/stable/24303994
https://doi.org/10.1037/met0000243
https://doi.org/10.1037/met0000243

22 lavTestWald.mi

Mode 1: Score test for releasing equality constraints

default test: Li et al.'s (1991) "D2" method
lavTestScore.mi(fit, cumulative = TRUE)

Li et al.'s (1991) "D1" method,
adapted for score tests by Mansolf et al. (2020)

lavTestScore.mi(fit, pool.method = "D1")

Mode 2: Score test for adding currently fixed-to-zero parameters
lavTestScore.mi(fit, add = 'x7 ~~ x8 + x9')

lavTestWald.mi Wald Test for Multiple Imputations

Description

Wald test for testing a linear hypothesis about the parameters of lavaan models fitted to multiple
imputed data sets. Statistics for constraining one or more free parameters in a model can be calcu-
lated from the pooled point estimates and asymptotic covariance matrix of model parameters using
Rubin’s (1987) rules, or by pooling the Wald test statistics across imputed data sets (Li, Meng,
Raghunathan, & Rubin, 1991).

Usage
lavTestWald.mi(
object,
constraints = NULL,
pool.method = c("D1", "D2"),

asymptotic = FALSE,

scale.W = l!asymptotic,
omit.imps = c("no.conv”, "no.se"),
verbose = FALSE,
warn = TRUE
)
Arguments
object An object of class lavaan.mi.
constraints A character string (typically between single quotes) containing one or more
equality constraints. See examples for more details
pool.method character indicating which pooling method to use. "D1" or "Rubin” (default)

indicates Rubin’s (1987) rules will be applied to the point estimates and the
asymptotic covariance matrix of model parameters, and those pooled values

lavTestWald.mi 23

will be used to calculate the Wald test in the usual manner. "D2", "LMRR", or
"Li.et.al” indicate that the complete-data Wald test statistic should be calcu-
lated using each imputed data set, which will then be pooled across imputations,
as described in Li, Meng, Raghunathan, & Rubin (1991) and Enders (2010,
chapter 8).

asymptotic logical. If FALSE (default), the pooled test will be returned as an F-distributed
statistic with numerator (df1) and denominator (df2) degrees of freedom. If
TRUE, the pooled F statistic will be multiplied by its df1 on the assumption that
its df2 is sufficiently large enough that the statistic will be asymptotically x?
distributed with df1.

scale.W logical. If FALSE, the pooled asymptotic covariance matrix of model param-
eters is calculated as the weighted sum of the within-imputation and between-
imputation components. Otherwise, the pooled asymptotic covariance matrix
of model parameters is calculated by scaling the within-imputation component
by the average relative increase in variance (ARIV; see Enders, 2010, p. 235),
which is only consistent when requesting the F test (i.e., asymptotic = FALSE.
Ignored (irrelevant) if pool.method = "D2".

omit.imps character vector specifying criteria for omitting imputations from pooled re-
sults. Can include any of c("no.conv”, "no.se”, "no.npd"), the first 2 of
which are the default setting, which excludes any imputations that did not con-
verge or for which standard errors could not be computed. The last option
("no.npd”) would exclude any imputations which yielded a nonpositive defi-
nite covariance matrix for observed or latent variables, which would include any
"improper solutions" such as Heywood cases. Specific imputation numbers can
also be included in this argument, in case users want to apply their own cus-
tom omission criteria (or simulations can use different numbers of imputations
without redundantly refitting the model).

verbose logical. If TRUE, print the restriction matrix and the estimated restricted values.
warn logical. If TRUE, print warnings if they occur.

Details
The constraints are specified using the "==" operator. Both the left-hand side and the right-hand side

of the equality can contain a linear combination of model parameters, or a constant (like zero). The
model parameters must be specified by their user-specified labels from the 1ink[lavaan]{model. syntax}.
Names of defined parameters (using the ":=" operator) can be included too.

Value

A vector containing the Wald test statistic (either an F or x? statistic, depending on the asymptotic
argument), the degrees of freedom (numerator and denominator, if asymptotic = FALSE), and a p
value. If asymptotic = FALSE, the relative invrease in variance (RIV, or average for multiparameter
tests: ARIV) used to calculate the denominator df is also returned as a missing-data diagnostic,
along with the fraction missing information (FMI = ARIV / (1 + ARIV)).

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

24 lavTestWald.mi

Based on source code for lavaan: :lavTestWald() by Yves Rosseel

References

Enders, C. K. (2010). Applied missing data analysis. New York, NY: Guilford.

Li, K.-H., Meng, X.-L., Raghunathan, T. E., & Rubin, D. B. (1991). Significance levels from
repeated p-values with multiply-imputed data. Statistica Sinica, 1(1), 65-92. Retrieved from
https://www. jstor.org/stable/24303994

Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York, NY: Wiley.
doi:10.1002/9780470316696

See Also

lavaan::lavTestWald()

Examples
data(HS2@imps) # import a list of 20 imputed data sets

specify CFA model from lavaan's ?cfa help page
HS.model <- '

visual =~ x1 + b1*x2 + x3

textual =~ x4 + b2*x5 + x6

speed =~ x7 + b3*x8 + x9

fit <- cfa.mi(HS.model, data = HS20@imps)

Testing whether a single parameter equals zero yields the 'chi-square'’

version of the Wald z statistic from the summary() output, or the

'F' version of the t statistic from the summary() output, depending

whether asymptotic = TRUE or FALSE

lavTestWald.mi(fit, constraints = "bl == 0") # default D1 statistic
lavTestWald.mi(fit, constraints = "b1 == 0", pool.method = "D2") # D2 statistic

The real advantage is simultaneously testing several equality
constraints, or testing more complex constraints:
con <- '
2%b1 == b3
b2 - b3 ==
lavTestWald.mi(fit, constraints = con) # default F statistic
lavTestWald.mi(fit, constraints = con, asymptotic = TRUE) # chi-squared

https://www.jstor.org/stable/24303994
https://doi.org/10.1002/9780470316696

modindices.mi 25

modindices.mi Modification Indices for Multiple Imputations

Description

Modification indices (1-df Lagrange multiplier tests) from a latent variable model fitted to multiple
imputed data sets. Statistics for releasing one or more fixed or constrained parameters in model can
be calculated by pooling the gradient and information matrices across imputed data sets in a method
proposed by Mansolf, Jorgensen, & Enders (2020)—analogous to the "D1" Wald test proposed by
Li, Meng, Raghunathan, & Rubin (1991)—or by pooling the complete-data score-test statistics
across imputed data sets (i.e., "D2"; Li et al., 1991).

Usage
modindices.mi(
object,
pool.method = c(”"D2", "D1"),
omit.imps = c("no.conv”, "no.se"),

standardized = TRUE,
cov.std = TRUE,

information = "expected”,
power = FALSE,

delta = 0.1,

alpha = 0.05,

high.power = 0.75,

sort. = FALSE,

minimum.value = 0,
maximum.number = nrow(LIST),
na.remove = TRUE,

op = NULL
)
modificationIndices.mi(
object,
pool.method = c(”D2", "D1"),
omit.imps = c("no.conv”, "no.se"),

standardized = TRUE,
cov.std = TRUE,

information = "expected”,
power = FALSE,

delta = 0.1,

alpha = 0.05,

high.power = 0.75,

sort. = FALSE,

minimum.value = 0,
maximum.number = nrow(LIST),
na.remove = TRUE,

26

op = NULL
)

modindices.mi

modificationindices.mi(

object,

pool.method = c(”"D2", "D1"),
omit.imps = c("no.conv”, "no.se"),
standardized = TRUE,

cov.std = TRUE,

information = "expected”,

power = FALSE,

delta = 0.1,
alpha =
high.power

0.05,

.75,

sort. = FALSE,

minimum.value

:@)

maximum.number = nrow(LIST),

na.remove
op = NULL

Arguments

object
pool.method

omit.imps

standardized

cov.std

TRUE,

An object of class lavaan.mi

character indicating which pooling method to use. "D1" requests Mansolf,
Jorgensen, & Enders’ (2020) proposed Wald-like test for pooling the gradient
and information, which are then used to calculate score-test statistics in the usual
manner. "D2" (default because it is less computationally intensive) requests to
pool the complete-data score-test statistics from each imputed data set, then pool
them across imputations, described by Li et al. (1991) and Enders (2010).

character vector specifying criteria for omitting imputations from pooled re-
sults. Can include any of c("no.conv”, "no.se”, "no.npd"), the first 2 of
which are the default setting, which excludes any imputations that did not con-
verge or for which standard errors could not be computed. The last option
("no.npd") would exclude any imputations which yielded a nonpositive defi-
nite covariance matrix for observed or latent variables, which would include any
"improper solutions" such as Heywood cases. Specific imputation numbers can
also be included in this argument, in case users want to apply their own cus-
tom omission criteria (or simulations can use different numbers of imputations
without redundantly refitting the model).

logical. If TRUE, two extra columns ($sepc.1lv and $sepc.all) will contain
standardized values for the EPCs. In the first column ($sepc. 1v), standardiziza-
tion is based on the variances of the (continuous) latent variables. In the second
column ($sepc.all), standardization is based on both the variances of both
(continuous) observed and latent variables. (Residual) covariances are standard-
ized using (residual) variances.

logical. TRUE if pool.method == "D2". If TRUE (default), the (residual) ob-
served covariances are scaled by the square-root of the diagonal elements of

modindices.mi 27

the © matrix, and the (residual) latent covariances are scaled by the square-root
of the diagonal elements of the W matrix. If FALSE, the (residual) observed
covariances are scaled by the square-root of the diagonal elements of the model-
implied covariance matrix of observed variables (3), and the (residual) latent
covariances are scaled by the square-root of the diagonal elements of the model-
implied covariance matrix of the latent variables.

information character indicating the type of information matrix to use (check lavaan: : lavInspect()
for available options). "expected” information is the default, which provides
better control of Type I errors.

power logical. If TRUE, the (post-hoc) power is computed for each modification index,
using the values of delta and alpha.

delta The value of the effect size, as used in the post-hoc power computation, currently
using the unstandardized metric of the $epc column.

alpha The significance level used for deciding if the modification index is statistically
significant or not.

high.power If the computed power is higher than this cutoff value, the power is considered
“high’. If not, the power is considered ’low’. This affects the values in the
$decision column in the output.

sort. logical. If TRUE, sort the output using the values of the modification index
values. Higher values appear first.

minimum.value numeric. Filter output and only show rows with a modification index value
equal or higher than this minimum value.

maximum.number integer. Filter output and only show the first maximum number rows. Most
useful when combined with the sort. option.

na.remove logical. If TRUE (default), filter output by removing all rows with NA values for
the modification indices.
op character string. Filter the output by selecting only those rows with operator
op.
Value

A data. frame containing modification indices and (S)EPCs.

Note

When pool.method = "D2", each (S)EPC will be pooled by taking its average across imputations.
When pool.method = "D1", EPCs will be calculated in the standard way using the pooled gradient
and information, and SEPCs will be calculated by standardizing the EPCs using model-implied
(residual) variances.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)
Based on source code for 1avaan: :modindices() by Yves Rosseel

pool.method = "D1" method proposed by Maxwell Mansolf (University of California, Los Ange-
les; <mamansolf@gmail.com>)

28 parameterEstimates.mi

References

Enders, C. K. (2010). Applied missing data analysis. New York, NY: Guilford.

Li, K.-H., Meng, X.-L., Raghunathan, T. E., & Rubin, D. B. (1991). Significance levels from
repeated p-values with multiply-imputed data.Statistica Sinica, 1(1), 65-92. Retrieved from https:
//www.jstor.org/stable/24303994

Mansolf, M., Jorgensen, T. D., & Enders, C. K. (2020). A multiple imputation score test for model
modification in structural equation models. Psychological Methods, 25(4), 393-411. doi:10.1037/
met0000243

See Also

lavTestScore.mi()

Examples

data(HS20imps) # import a list of 20 imputed data sets

specify CFA model from lavaan's ?cfa help page

HS.model <- '
visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9

fit <- cfa.mi(HS.model, data = HS2@imps)
modindices.mi(fit) # default: Li et al.'s (1991) "D2" method
Li et al.'s (1991) "D1" method,

adapted for score tests by Mansolf et al. (2020)
modindices.mi(fit, pool.method = "D1")

parameterEstimates.mi Pooled Parameter Estimates

Description

This function pools parameter estimates from a lavaan model fitted to multiple imputed data sets.

Usage

parameterEstimates.mi(
object,
se = TRUE,
zstat = se,
pvalue = zstat,

https://www.jstor.org/stable/24303994
https://www.jstor.org/stable/24303994
https://doi.org/10.1037/met0000243
https://doi.org/10.1037/met0000243

parameterEstimates.mi

ci = TRUE,
level = 0.95,
fmi = FALSE,

29

standardized = FALSE,

cov.std = TRUE,

rsquare = FALSE,

asymptotic = FALSE,

scale.W = lasymptotic,

omit.imps = c("no.conv”, "no.se"),

remove
remove
remove.
remove
remove.
remove
output
header

Arguments

object

se, zstat,

.system.eq = TRUE,
.eq = TRUE,

ineq = TRUE,

.def = FALSE,

nonfree = FALSE,

.unused = FALSE,
"data.frame”,
FALSE

An object of class lavaan.mi

pvalue, ci, level, standardized, cov.std, rsquare,

remove.system.eq, remove.eq, remove.ineq, remove.def, remove.nonfree,
remove.unused, output, header

fmi

asymptotic

scale.W

omit.imps

See lavaan: :parameterEstimates().
logical indicating whether to add 2 columns:

* the fraction of missing information ($fmi), which is the ratio of between-
imputation variance to total (pooled) sampling variance

* the relative increase in variance ($riv), which is the ratio of between-
imputation variance to within-imputation variance

Thus, RIV = FMI / (1 — FMI) and FMI = RIV / (1 + RIV). Ignored when
se=FALSE.

logical. When FALSE, pooled Wald tests will be ¢ statistics with associated
degrees of freedom (df). When TRUE, the df are assumed to be sufficiently large
for a t statistic to approximate a standard normal distribution, so it is printed as
a z statistic.

logical. If TRUE (default), the vcov method will calculate the pooled covari-
ance matrix by scaling the within-imputation component by the ARIV (see En-
ders, 2010, p. 235, for definition and formula). Otherwise, the pooled ma-
trix is calculated as the weighted sum of the within-imputation and between-
imputation components (see Enders, 2010, ch. 8, for details).

character indicating criteria for excluding imputations from pooled results.
See lavaan.mi for argument details.

30 poolSat

Value

A data.frame, analogous to lavaan: :parameterEstimates(), but estimates, SEs, and tests are
pooled across imputations.
Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Enders, C. K. (2010). Applied missing data analysis. New York, NY: Guilford.

Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York, NY: Wiley.
doi:10.1002/9780470316696

See Also

standardizedSolution.mi() to obtain inferential statistics for pooled standardized parameter es-
timates.

Examples

data(HS20imps) # import a list of 20 imputed data sets

specify CFA model from lavaan's ?cfa help page

HS.model <- '
visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9

fit model to 20 imputed data sets
fit <- cfa.mi(HS.model, data = HS2Q@imps)

pooled estimates, with various optional features:
parameterEstimates.mi(fit, asymptotic = TRUE, rsquare = TRUE)

parameterEstimates.mi(fit, ci = FALSE, fmi = TRUE, output = "text")
parameterEstimates.mi(fit, standardized = "std.all”, se = FALSE)

poolSat Fit a Saturated 1avaan Model to Multiple Imputed Data Sets

Description

This function fits a saturated model to a list of imputed data sets, and returns a list of pooled
summary statistics to treat as data.

https://doi.org/10.1002/9780470316696

poolSat 31

Usage

poolSat(
data,
return.fit = FALSE,
scale.W = TRUE,
omit.imps = c("no.conv”, "no.se")

Arguments

data A list of imputed data sets, or an object class from which imputed data can be
extracted. Recognized classes are lavaan.mi (list of imputations stored in the
@atalist slot), amelia (created by the Amelia package), or mids (created by
the mice package).

Additional arguments passed to lavaan: :lavCor() or to lavaan.mi().

return.fit logical indicating whether to return a lavaan.mi object containing the results
of fitting the saturated model to multiple imputed data. Could be useful for
diagnostic purposes.

scale.W logical. If TRUE (default), the within- and between-imputation components
will be pooled by scaling the within-imputation component by the ARIV (see
Enders, 2010, p. 235, for definition and formula). Otherwise, the pooled ma-
trix is calculated as the weighted sum of the within-imputation and between-
imputation components (see Enders, 2010, ch. 8, for details).

omit.imps character vector specifying criteria for omitting imputations from pooled re-
sults of saturated model. Can include any of c("no.conv"”, "no.se"”, "no.npd"),
the first 2 of which are the default setting, which excludes any imputations that
did not converge or for which standard errors could not be computed. The last
option ("no.npd") would exclude any imputations which yielded a nonpositive
definite covariance matrix for observed or latent variables, which would include
any "improper solutions" such as Heywood cases. NPD solutions are not ex-
cluded by default because they are likely to occur due to sampling error, espe-
cially in small samples. However, gross model misspecification could also cause
NPD solutions, users can compare pooled results with and without this setting
as a sensitivity analysis to see whether some imputations warrant further inves-
tigation. Specific imputation numbers can also be included in this argument, in
case users want to apply their own custom omission criteria (or simulation stud-
ies can use different numbers of imputations without redundantly refitting the
model).

Value

If return.fit=TRUE, a lavaan.mi object. Otherwise, an object of class lavMoments, which is
a list that contains at least $sample.cov and $sample.nobs, potentially also $sample.mean,
$sample. th, $NACOV, and $WLS.V. Also contains $1avOptions that will be passed to lavaan(. . .).

32 poolSat

Note

The $lavOptions list will always set fixed.x=FALSE and conditional.x=FALSE. Users should
not override those options when calling lavaan: : 1avaan() because doing so would yield incorrect
SEs and test statistics. Computing the correct $NACOV argument would depend on which specific
variables are treated as fixed, which would require an argument to poolSat () for users to declare
names of exogenous variables. This has not yet been programmed, but that feature may be added
in the future in order to reduce the number of parameters to estimate. However, if "exogenous" pre-
dictors were incomplete and imputed, then they are not truly fixed (i.e., unvarying across samples),
so treating them as fixed would be illogical and yield biased SEs and test statistics.

The information returned by poolSat() must assume that any fitted SEM will include all the
variables in $sample.cov and (more importantly) in $NACOV. Although lavaan can drop unused
rows/columns from $sample. cov, it cannot be expected to drop the corresponding sampling vari-
ances of those eliminated (co)variances from $NACOV. Thus, it is necessary to use poolSat() to
obtain the appropriate summary statistics for any particular SEM (see Examples).

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Lee, T., & Cai, L. (2012). Alternative multiple imputation inference for mean and covariance
structure modeling. Journal of Educational and Behavioral Statistics, 37(6), 675-702. doi:10.3102/
1076998612458320

Chung, S., & Cai, L. (2019). Alternative multiple imputation inference for categorical structural
equation modeling, Multivariate Behavioral Research, 54(3),323-337. doi:10.1080/00273171.2018.1523000

See Also

lavaan.mi() for traditional method (fit SEM to each imputation, pool results afterward).
Examples

data(HS20imps) # import a list of 20 imputed data sets

fit saturated model to imputations, pool those results

impSubset1 <- lapply(HS2@imps, "[", i = paste@(”"x", 1:9)) # only modeled variables

(prePooledData <- poolSat(impSubset1))

Note: no means were returned (default lavOption() is meanstructure=FALSE)
(prePooledData <- poolSat(impSubsetl, meanstructure = TRUE))

specify CFA model from lavaan's ?cfa help page

HS.model <- '
visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9

fit model to summary statistics in "prePooledData”

https://doi.org/10.3102/1076998612458320
https://doi.org/10.3102/1076998612458320
https://doi.org/10.1080/00273171.2018.1523000

poolSat

fit <- cfa(HS.model, data = prePooledData, std.lv = TRUE)

By default, the "Scaled” column provides a "scaled.shifted” test

statistic that maintains an approximately nominal Type I error rate.
summary(fit, fit.measures = TRUE, standardized = "std.all")

Note that this scaled statistic does NOT account for deviations from
normality, because the default normal-theory standard errors were

requested when running poolSat(). See below about non-normality.

Alternatively, "Browne's residual-based (ADF) test” is also available:
lavTest(fit, test = "browne.residual.adf”, output = "text")

Optionally, save the saturated-model lavaan.mi object, which
could be helpful for diagnosing convergence problems per imputation.
satFit <- poolSat(impSubset1, return.fit = TRUE)

FITTING MODELS TO DIFFERENT (SUBSETS OF) VARIABLES

If you only want to analyze a subset of these variables,

mod.vis <- 'visual =~ x1 + x2 + x3'
you will get an error:
try(
fit.vis <- cfa(mod.vis, data = prePooledData) # error
)

As explained in the "Note" section, you must use poolSat() again for

this subset of variables

impSubset3 <- lapply(HS20imps, "[", i = paste@(”x", 1:3)) # only modeled variables
visData <- poolSat(impSubset3)

fit.vis <- cfa(mod.vis, data = visData) # no problem

OTHER lavaan OPTIONS

fit saturated MULIPLE-GROUP model to imputations
impSubset2 <- lapply(HS20@imps, "[", i = c(paste@(”"x", 1:9), "school"))
(prePooledData2 <- poolSat(impSubset2, group = "school”,
request standard errors that are ROBUST
to violations of the normality assumption:
se = "robust.sem"))
Nonnormality-robust standard errors are implicitly incorporated into the
pooled weight matrix (NACOV= argument), so they are
AUTOMATICALLY applied when fitting the model:
fit.config <- cfa(HS.model, data = prePooledData2, group = "school”,
std.1lv = TRUE)
standard errors and chi-squared test of fit both robust to nonnormality
summary(fit.config)

CATEGORICAL OUTCOMES

discretize the imputed data, for an example of 3-category data

34 standardizedSolution.mi

HS3cat <- lapply(impSubsetl, function(x) {
as.data.frame(lapply(x, cut, breaks = 3, labels = FALSE))
1)
pool polychoric correlations and thresholds
(prePooledData3 <- poolSat(HS3cat, ordered = paste@("x", 1:9)))

fitc <- cfa(HS.model, data = prePooledData3, std.lv = TRUE)
summary (fitc)

Optionally, use unweighted least-squares estimation. However,

you must first REMOVE the pooled weight matrix (WLS.V= argument)

or replace it with an identity matrix of the same dimensions:

prePooledData4 <- prePooledData3

prePooledData4$WLS.V <- NULL

or prePooledData4$WLS.V <- diag(nrow(prePooledData3$wLS.V))

fitcu <- cfa(HS.model, data = prePooledData4, std.lv = TRUE, estimator = "ULS")
Note that the SEs and test were still appropriately corrected:

summary (fitcu)

standardizedSolution.mi
Standardized Pooled Parameter Estimates

Description

This function calculates pooled parameter estimates from a lavaan model fitted to multiple imputed
data sets, then transforms the pooled estimates and their SEs using the delta method.

Usage
standardizedSolution.mi(
object,
return.vcov = FALSE,
omit.imps = c("no.conv”, "no.se"),
)
Arguments
object An object of class lavaan.mi
return.vcov logical indicating whether to return only the pooled asymptotic covariance
matrix, vcov(object), but transformed for standardized parameters. This is
a way to obtain a pooled analog of lavInspect(object, "vcov.std.all")
with a lavaan::lavaan object, and it is how the SEs are derived for standardized
solutions.
omit.imps character indicating criteria for excluding imputations from pooled results.

See lavaan.mi for argument details.
Arguments passed to lavaan: : standardizedSolution().

standardizedSolution.mi 35

Value

A data. frame containing standardized model parameters, analogous to lavaan: : standardizedSolution().
Delta-method SEs and CIs rely on asymptotic theory, so only Wald z tests are available, analogous
to setting parameterEstimates.mi(fit, asymptotic = TRUE).

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

See Also

parameterEstimates.mi() for pooling unstandardized parameter estimates, which can also add
standardized point estimates to indicate effect size.

Examples

data(HS20imps) # import a list of 20 imputed data sets

specify CFA model from lavaan's ?cfa help page

HS.model <- '
visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9

fit model to 20 imputed data sets
fit <- cfa.mi(HS.model, data = HS20@imps)

standardizedSolution.mi(fit) # default: type = "std.all”
only standardize latent variables:

standardizedSolution.mi(fit, type = "std.lv",
output = "text") # display like summary()

Index

x data
binHS5imps, 2
HS20imps, 5

1,0

anova, lavaan.mi-method (lavTestLRT.mi),
15

binHS5imps, 2

calculate.D2, 3

cfa.mi (lavaan.mi), 6

cfa.mi(), 12

coef,lavaan.mi-method
(lavaan.mi-class), 8

fitMeasures,lavaan.mi-method
(lavaan.mi-class), 8
fitmeasures,lavaan.mi-method
(lavaan.mi-class), 8
fitted, lavaan.mi-method
(lavaan.mi-class), 8
fitted.values,lavaan.mi-method
(lavaan.mi-class), 8

growth.mi (lavaan.mi), 6
growth.mi(), 12

HS20@imps, 5

lavaan.mi, 3,6,6,9, 14, 15, 19, 22, 26, 29,
31,34

lavaan.mi(), 12, 31, 32

lavaan.mi-class, 8

lavaan::fitMeasures(), 10, 11, 17

lavaan: :HolzingerSwineford1939, 3, 5

lavaan::lav_partable_unrestricted(),
12

lavaan::lavaan, 10, 11, 34
lavaan::lavaan(), 6, 32
lavaan::lavaanify(), 6

36

lavaan::lavaanList, 8, 12
lavaan::lavaanList(), 6, 12
lavaan::1lavCor(), 31
lavaan::lavInspect(), 20, 27
lavaan::lavOptions(), 6
lavaan::lavResiduals(), 14
lavaan::lavTestLRT(), 10, 15, 17
lavaan::lavTestScore(), 20, 21
lavaan::lavTestWald(), 24

lavaan: :model.syntax(), 6
lavaan::modindices(), 11,27

lavaan: :parameterEstimates(), 29, 30
lavaan::parTable(), 6
lavaan::standardizedSolution(), 20, 34

35
lavResiduals.mi, 13
lavTestLRT.mi, 15
lavTestLRT.mi(), 3, 4, 10, 11
lavTestScore.mi, 19
lavTestScore.mi(), 3, 4, 28
lavTestWald.mi, 22
lavTestWald.mi(), 3, 4, 10

modificationIndices.mi (modindices.mi),
25

modificationindices.mi (modindices.mi),
25

modindices.mi, 25

modindices.mi(), 11/

nobs, lavaan.mi-method
(lavaan.mi-class), 8

parameterEstimates.mi, 28

parameterestimates.mi
(parameterEstimates.mi), 28

parameterEstimates.mi(), 11, 35

poolSat, 30

poolSat(), 7

INDEX

resid,lavaan.mi-method
(lavResiduals.mi), 13

residuals, lavaan.mi-method
(lavResiduals.mi), 13

sem.mi (lavaan.mi), 6
sem.mi(), 12
show, lavaan.mi-method
(lavaan.mi-class), 8
standardizedSolution.mi, 34
standardizedsolution.mi
(standardizedSolution.mi), 34
standardizedSolution.mi(), 30
stats::anova, /16
stats::cov2cor(), 14
summary,lavaan.mi-method
(lavaan.mi-class), 8

vcov, lavaan.mi-method
(lavaan.mi-class), 8

37

	binHS5imps
	calculate.D2
	HS20imps
	lavaan.mi
	lavaan.mi-class
	lavResiduals.mi
	lavTestLRT.mi
	lavTestScore.mi
	lavTestWald.mi
	modindices.mi
	parameterEstimates.mi
	poolSat
	standardizedSolution.mi
	Index

