Package ‘latentcor’

October 13, 2022
Type Package
Title Fast Computation of Latent Correlations for Mixed Data
Version 2.0.1
Maintainer Mingze Huang <mingzehuang@gmail.com>

Description The first stand-alone R package for computation of latent correlation that takes into ac-
count all variable types (continuous/binary/ordinal/zero-inflated),
comes with an optimized memory footprint, and is computationally efficient, essentially mak-
ing latent correlation estimation almost as fast as rank-based correlation estimation.
The estimation is based on latent copula Gaussian models.
For continuous/binary types, see Fan, J., Liu, H., Ning, Y., and Zou, H. (2017).
For ternary type, see Quan X., Booth J.G. and Wells M.T. (2018) <arXiv:1809.06255>.
For truncated type or zero-
inflated type, see Yoon G., Carroll R.J. and Gaynanova I. (2020) <doi:10.1093/biomet/asaa007>.
For approximation method of computation, see Yoon G., Miiller C.L. and Gay-
nanova I. (2021) <doi:10.1080/10618600.2021.1882468>. The latter method uses multi-
linear interpolation originally implemented in the R pack-
age <https://cran.r-project.org/package=chebpol>.

Depends R (>=3.0.0)

Imports stats, pcaPP, fMultivar, mnormt, Matrix, MASS, heatmaply,
ggplot2, plotly, graphics, geometry, doFuture, foreach, future,
doRNG, microbenchmark

License GPL-3
Encoding UTF-8
RoxygenNote 7.2.1

Suggests rmarkdown, markdown, knitr, testthat (>= 3.0.0), lattice,
cubature, plot3D, covr

VignetteBuilder knitr
Config/testthat/edition 3
NeedsCompilation yes

Author Mingze Huang [aut, cre] (<https://orcid.org/0000-0003-3919-1564>),
Grace Yoon [aut] (<https://orcid.org/0000-0003-3263-1352>),
Christian Müller [aut] (<https://orcid.org/0000-0002-3821-7083>),
Irina Gaynanova [aut] (<https://orcid.org/0000-0002-4116-0268>)

1

https://arxiv.org/abs/1809.06255
https://doi.org/10.1093/biomet/asaa007
https://doi.org/10.1080/10618600.2021.1882468
https://cran.r-project.org/package=chebpol
https://orcid.org/0000-0003-3919-1564
https://orcid.org/0000-0003-3263-1352
https://orcid.org/0000-0002-3821-7083
https://orcid.org/0000-0002-4116-0268

2 evaluation

Repository CRAN
Date/Publication 2022-09-05 20:50:02 UTC

R topics documented:

evaluation L e e 2
gen_data e 4
GELLYPES « . o e e e e e e e e e e e e e 6
interpolant L e e e e e 6
interpolation 7
POl . o 8
JatentCor e e e 9
T_MI_WIapper oo e e e e e e 12

Index 14

evaluation Numerical evaluation for different estimation methods.
Description

Speed and accuracy comparison of two different estimation methods.

Usage

evaluation(
genfun,
estfun_1,
estfun_2,
grid_list,
nrep = 100,
showplot = FALSE,
cores = detectCores(),

Arguments
genfun A data generation function.
estfun_1 A function for first estimation method.
estfun_2 A function for second estimation method.
grid_list A list for grid points to be evaluated (each element of list is a vector represents

ticklabels on a dimension). The number of list elements are the dimension of
function inputs.

nrep Number of replications in simulation.

evaluation 3

showplot Logical indicator. showplot = TRUE generates the heatmaps of output arrays.
NULL if showplot = FALSE.

cores The numbers of cores (threads) of your machine to conduct parallel computing.

Other inputs for data generation or estimation functions to be passed through.

Value

evaluation returns

* meanAE_1: An array for mean absolute error of first estimation method.

* meanAE_2: An array for mean absolute error of second estimation method.

* medianAE_1: An array for median absolute error of first estimation method.

* medianAE_2: An array for median absolute error of second estimation method.

* maxAE_1: An array for maximum absolute error of first estimation method.

* maxAE_2: An array for maximum absolute error of second estimation method.

* meanAE_diff: An array for mean absolute error of difference between two estimations.

* medianAE_diff: An array for median absolute error of difference between two estimations.
* maxAE_diff: An array for maximum absolute error of difference between two estimations.
* mediantime_1: An array for median time of first estimation method.

* mediantime_2: An array for median time of second estimation method.

* plot_meanAE_1: A plot for mean absolute error of first estimation method.

* plot_meanAE_2: A plot for mean absolute error of second estimation method.

* plot_medianAE_1: A plot for median absolute error of first estimation method.

* plot_medianAE_2: A plot for median absolute error of second estimation method.

* plot_maxAE_1: A plot for maximum absolute error of first estimation method.

* plot_maxAE_2: A plot for maximum absolute error of second estimation method.

* plot_meanAE_diff: A plot for mean absolute error of difference between two estimations.
* plot_medianAE_diff: A plot for median absolute error of difference between two estimations.
* plot_maxAE_diff: A plot for maximum absolute error of difference between two estimations.
* plot_mediantime_1: A plot for median time of first estimation method.

* plot_mediantime_2: A plot for median time of second estimation method.

gen_data

gen_data

Mixed type simulation data generator

Description

Generates data of mixed types from the latent Gaussian copula model.

Usage
gen_data(
n = 100,
types = c("ter”, "con"),
rhos = 0.5,
copulas = "no",
XP = NULL,
showplot = FALSE
)
Arguments
n A positive integer indicating the sample size. The default value is 100.
types A vector indicating the type of each variable, could be "con"” (continuous),
"bin” (binary), "tru"” (truncated) or "ter" (ternary). The number of variables
is determined based on the length of types, that is p = length(types). The
default value is c("ter"”, "con") which creates two variables: the first one is
ternary, the second one is continuous.
rhos A vector with lower-triangular elements of desired correlation matrix, e.g. rhos
=c(.3, .5, .7) means the correlation matrix is matrix(c(1, .3, .5, .3, 1,
.7, .5, .7, 1), 3, 3). If only a scalar is supplied (length(rhos) = 1), then
equi-correlation matrix is assumed with all pairwise correlations being equal
to rhos. The default value is 0.5 which means correlations between any two
variables are 0.5.
copulas A vector indicating the copula transformation f for each of the p variables, e.g.
U = f(Z). Each element can take value "no” (f is identity), "expo” (exponential
transformation) or "cube” (cubic transformation). If the vector has length 1,
then the same transformation is applied to all p variables. The default value is
"no": no copula transformation for any of the variables.
XP A list of length p indicating proportion of zeros (for binary and truncated), and

proportions of zeros and ones (for ternary) for each of the variables. For con-
tinuous variable, NA should be supplied. If NULL, the following values are au-
tomatically generated as elements of XP list for the corresponding data types:
For continuous variable, the corresponding value is NA; for binary or truncated
variable, the corresponding value is a number between 0 and 1 representing the
proportion of zeros, the default value is 0.5; for ternary variable, the correspond-
ing value is a pair of numbers between 0 and 1, the first number indicates the the
proportion of zeros, the second number indicates the proportion of ones. The

gen_data 5

sum of a pair of numbers should be between 0 and 1, the default value is ¢ (0. 3,
0.5).

showplot Logical indicator. If TRUE, generates the plot of the data when number of vari-
ables p is no more than 3. The default value is FALSE.

Value

gen_data returns a list containing

* X: Generated data matrix (n by p) of observed variables.

* plotX: Visualization of the data matrix X. Histogram if p=1. 2D Scatter plot if p=2. 3D scatter
plot if p=3. Returns NULL if showplot = FALSE.

References

Fan J., Liu H., Ning Y. and Zou H. (2017) "High dimensional semiparametric latent graphicalmodel
for mixed data" doi:10.1111/rssb.12168.

Yoon G., Carroll R.J. and Gaynanova I. (2020) "Sparse semiparametric canonical correlation anal-
ysis for data of mixed types" doi:10.1093/biomet/asaa007.

Examples

Generate single continuous variable with exponential transformation (always greater than @)

and show histogram.

simdata = gen_data(n = 100, copulas = "expo"”, types = "con"”, showplot = FALSE)

X = simdata$X; plotX = simdata$plotX

Generate a pair of variables (ternary and continuous) with default proportions

and without copula transformation.

simdata = gen_data()

X = simdata$x

Generate 3 variables (binary, ternary and truncated)

corresponding copulas for each variables are "no” (no transformation),

"cube” (cube transformation) and "cube” (cube transformation).

binary variable has 30% of zeros, ternary variable has 20% of zeros

and 40% of ones, truncated variable has 50% of zeros.

Then show the 3D scatter plot (data points project on either @ or 1 on Axis X1;

on @, 1 or 2 on Axas X2; on positive domain on Axis X3)

simdata = gen_data(n = 100, rhos = c(.3, .4, .5), copulas = c("no”, "cube”, "cube"),
types = c("bin", "ter", "tru"), XP = list(.3, c(.2, .4), .5), showplot = TRUE)

X = simdata$X; plotX = simdata$plotX

Check the proportion of zeros for the binary variable.

sum(simdata$x[, 1] == @)

Check the proportion of zeros and ones for the ternary variable.

sum(simdata$X[, 2] == @); sum(simdata$Xx[, 2] == 1)

Check the proportion of zeros for the truncated variable.

sum(simdata$X[, 3] == 0)

https://doi.org/10.1111/rssb.12168
https://doi.org/10.1093/biomet/asaa007

6 interpolant

get_types Automatically determine types of each variable (continu-
ous/binary/ternary/truncated) in a data matrix.

Description

Automatically determine types of each variable (continuous/binary/ternary/truncated) in a data ma-
trix.

Usage

get_types(X, tru_prop = 0.05)

Arguments
X A numeric data matrix (n by p), where n is number of samples, and p is number
of variables. Missing values (NA) are allowed.
tru_prop A scalar between 0 and 1 indicating the minimal proportion of zeros that should
be present in a variable to be treated as "tru” (truncated type or zero-inflated)
rather than as "con” (continuous type). The default value is 0.05 (any variable
with more than 5% of zero values among n samples is treated as truncated or
zero-inflated)
Value

get_types returns
* types: A vector of length p indicating the type of each of the p variables in X. Each element is

one of "con” (continuous), "bin" (binary), "ter” (ternary) or "tru” (truncated).

Examples

X = gen_data(types = c("ter"”, "con"))$X
get_types(X)

interpolant Evaluate an interpolant in a point

Description

An interpolant is a function returned by ipol which has prespecified values in some points, and
which fills in between with some reasonable values.

interpolation 7

Arguments
X The argument of the function. A function of more then one variable takes a
vector. x can also be a matrix of column vectors.
threads The number of threads to use for evaluation. All interpolants created by ipol
are parallelized. If given a matrix argument x, the vectors can be evaluated in
parallel.
Other parameters. Currently used for simplex linear interpolants with the logical
argument The "multilinear"” interpolant also has the argument blend=c("1linear"”, "cubic”,"sigmoic
where a blending function can be chosen.
Value

A numeric. If more than one point was evaluated, a vector.

Author(s)

Simen Gaure

interpolation Parallel version of multilinear interpolation generator for function ap-
proximation

Description

Parallel version of multilinear interpolation generator for function approximation

The primary method is ipol which dispatches to some other method. All the generated inter-
polants accept as an argument a matrix of column vectors. The generated functions also accept
an argument threads=getOption('ipol.threads') to utilize more than one CPU if a matrix of
column vectors is evaluated. The option ipol. threads is initialized from the environment variable
IPOL_THREADS upon loading of the package. It defaults to 1.

Usage
interpolation(evalfun, grid_list, cores = detectCores(), int = FALSE, ...)
Arguments
evalfun The objective function to be approximated.
grid_list A list for grid points (each element of list is a vector represents ticklabels on a
dimension). The number of list elements are the dimension of function inputs.
cores The numbers of cores (threads) of your machine to conduct parallel computing.
int Logical indicator. int = TRUE interpolant value multiplied by 107 then convert

to interger to save memory. Original interpolant if int = FALSE.

Other inputs for objective functions to be passed through.

8 ipol

Details

The interpolants are ordinary R-objects and can be saved with save() and loaded later with 1load ()
or serialized/unserialized with other tools, just like any R-object. However, they contain calls to
functions in the package, and while the author will make efforts to ensure that generated interpolants
are compatible with future versions of ipol, I can issue no such absolute guarantee.

Value
interpolation returns

* value: A list of of length p corresponding to each variable. Returns NA for continuous vari-
able; proportion of zeros for binary/truncated variables; the cumulative proportions of zeros
and ones (e.g. first value is proportion of zeros, second value is proportion of zeros and ones)
for ternary variable.

* interpolant: An interpolant function generated by chebpol: : chebpol for interplation.

See Also

ipol, interpolant

Examples

Not run: grid_list = list(seq(-0.5, 0.5, by = 0.5), seq(-0.5, 0.5, by = 0.5))
objfun = function(x, y) {x*2 + sqrt(y)}

evalfun = function(X) {objfun(X[1], X[21)}

value = interpolation(evalfun = evalfun, grid_list = grid_list)$value

interpolant = interpolation(evalfun = evalfun, grid_list = grid_list)$interpolant
End(Not run)

ipol Create an interpolating function from given values. Several interpola-
tion methods are supported.

Description

Create an interpolating function from given values. Several interpolation methods are supported.

Usage
ipol(val, grid = NULL, ...)
Arguments
val array or function. Function values on a grid.
grid list. Each element is a vector of ordered grid-points for a dimension.

Further arguments to the function, if is. function(val). And some extra argu-
ments for interpolant creation described in section Details.

latentcor 9

Value

A function(x, threads=getOption('chebpol.threads')) defined on a hypercube, an inter-
polant for the given function. The argument x can be a matrix of column vectors which are evaluated
in parallel in a number of threads. The function yields values for arguments outside the hypercube
as well, though it will typically be a poor approximation. threads is an integer specifying the
number of parallel threads which should be used when evaluating a matrix of column vectors.

Author(s)

Simen Gaure

Examples

evenly spaced grid-points

su <- seq(@,1,length.out=10)

irregularly spaced grid-points

s <- su”3

create approximation on the irregularly spaced grid

mll <- ipol(exp(s), grid=list(s))

test it, since exp is convex, the linear approximation lies above
the exp between the grid points

ml1(su) - exp(su)

multi dimensional approximation

f <- function(x) 10/(1+25*mean(x"2))

a 3-dimensional 10x10x1@ grid, first and third coordinate are non-uniform
grid <- list(s, su, sort(1-s))

make multilinear spline.

ml2 <- ipol(array(apply(expand.grid(grid), 1, f), c(1e, 10, 10)), grid=grid)
make 7 points in R3 to test them on

m <- matrix(runif(3x7),3)

rbind(true=apply(m,2,f), ml=ml2(m))

latentcor Estimate latent correlation for mixed types.

Description

Estimation of latent correlation matrix from observed data of (possibly) mixed types (continu-
ous/binary/truncated/ternary) based on the latent Gaussian copula model. Missing values (NA)
are allowed. The estimation is based on pairwise complete observations.

10 latentcor

Usage
latentcor(
X,
types = NULL,
method = c("approx”, "original"),
use.nearPD = TRUE,
nu = 0.001,
tol = 1e-08,
ratio = 0.9,
showplot = FALSE
)
Arguments
X A numeric matrix or numeric data frame (n by p), where n is number of samples,
and p is number of variables. Missing values (NA) are allowed, in which case
the estimation is based on pairwise complete observations.
types A vector of length p indicating the type of each of the p variables in X. Each
element must be one of "con” (continuous), "bin" (binary), "ter" (ternary) or
"tru” (truncated). If the vector has length 1, then all p variables are assumed to
be of the same type that is supplied. The default value is NULL, and the variable
types are determined automatically using function get_types. As automatic
determination of variable types takes extra time, it is recommended to supply
the types explicitly when they are known in advance.
method The calculation method for latent correlations. Either "original” or "approx”.
If method = "approx”, multilinear approximation method is used, which is much
faster than the original method, see Yoon et al. (2021) for timing comparisons
for various variable types. If method = "original”, optimization of the bridge
inverse function is used. The default is "approx".
use.nearPD Logical indicator. use.nearPD = TRUE gets nearest positive definite matrix for
the estimated latent correlation matrix with shrinkage adjustment by nu. Output
R is the same as Rpointwise if use.nearPD = FALSE. Default value is TRUE.
nu Shrinkage parameter for the correlation matrix, must be between 0 and 1. Guar-
antees that the minimal eigenvalue of returned correlation matrix is greater or
equal to nu. When nu = 0, no shrinkage is performed, the returned correlation
matrix will be semi-positive definite but not necessarily strictly positive definite.
When nu = 1, the identity matrix is returned (not recommended). The default
(recommended) value is 0.001.
tol When method = "original”, specifies the desired accuracy of the bridge func-
tion inversion via uniroot optimization and is passed to optimize. The default
value is 1e-8. When method = "approx”, this parameter is ignored.
ratio When method = "approx”, specifies the boundary value for multilinear inter-

polation, must be between 0 and 1. When ratio = @, no linear interpolation is
performed (the slowest execution) which is equivalent to method = "original”.
When ratio = 1, linear interpolation is always performed (the fastest execution)
but may lead to high approximation errors. The default (recommended) value is

latentcor 11

0.9 which controls the approximation error and has fast execution, see Yoon et
al. (2021) for details. When method = "original”, this parameter is ignored.

showplot Logical indicator. showplot = TRUE generates a ggplot object plotR with the
heatmap of latent correlation matrix R. plotR = NULL if showplot = FALSE. De-
fault value is FALSE.

Details

The function estimates latent correlation by calculating inverse bridge function (Fan et al., 2017)
evaluated at the value of sample Kendall’s tau (7). The bridge function F connects Kendall’s tau
to latent correlation r so that F(r) = E(7). The form of function F depends on the variable types
(continuous/binary/truncated/ternary), but is exact. The exact form of inverse is not available, so
has to be evaluated numerically for each pair of variables leading to Rpointwise.

When method = "original”, the inversion is done numerically by solving

minimize,(F(r) —7)?

using optimize. The parameter tol is used to control the accuracy of the solution.

When method = "approx”, the inversion is done approximately by interpolating previously calcu-
lated and stored values of '~*(7). This is significantly faster than the original method (Yoon et al.,
2021) for binary/ternary/truncated cases, however the approximation errors may be non-negligible
on some regions of the space. The parameter ratio controls the region where the interpolation is
performed with default recommended value of 0.9 giving a good balance of accuracy and computa-
tional speed . Increasing the value of ratio may improve speed (but possibly sacrifice the accuracy),
whereas decreasing the value of ratio my improve accuracy (but possibly sacrifice the speed). See
Yoon et al. 2021 and vignette for more details.

In case the pointwise estimator Rpointwise is has negative eigenvalues, it is projected onto the
space of positive semi-definite matrices using nearPD. The parameter nu further allows to perform
additional shrinkage towards identity matrix (desirable in cases where the number of variables p is
very large) as

R=(1-v)R+vI,

where R is Rpointwise after projection by nearPD.

Value
latentcor returns

 zratios: A list of of length p corresponding to each variable. Returns NA for continuous
variable; proportion of zeros for binary/truncated variables; the cumulative proportions of
zeros and ones (e.g. first value is proportion of zeros, second value is proportion of zeros and
ones) for ternary variable.

* K: (p x p) Kendall Tau (Tau-a) Matrix for X

* R: (p x p) Estimated latent correlation matrix for X

» Rpointwise: (p x p) Point-wise estimates of latent correlations for X. This matrix is not guar-

anteed to be semi-positive definite. This is the original estimated latent correlation matrix
without adjustment for positive-definiteness.

* plotR: Heatmap plot of latent correlation matrix R, NULL if showplot = FALSE

12 r_ml_wrapper

References

FanJ., Liu H., Ning Y. and Zou H. (2017) "High dimensional semiparametric latent graphical model
for mixed data" doi:10.1111/rssb.12168.

Yoon G., Carroll R.J. and Gaynanova I. (2020) "Sparse semiparametric canonical correlation anal-
ysis for data of mixed types" doi:10.1093/biomet/asaa007.

Yoon G., Miiller C.L., Gaynanova I. (2021) "Fast computation of latent correlations" doi:10.1080/
10618600.2021.1882468.

Examples

Example 1 - truncated data type, same type for all variables
Generate data
X = gen_data(n = 300, types = rep("tru”, 5))3$X
Estimate latent correlation matrix with original method and check the timing
start_time = proc.time()
R_org = latentcor(X = X, types = "tru”, method = "original”)$R
proc.time() - start_time
Estimate latent correlation matrix with approximation method and check the timing
start_time = proc.time()
R_approx = latentcor(X = X, types = "tru”, method = "approx")$R
proc.time() - start_time
Heatmap for latent correlation matrix.
Heatmap_R_approx = latentcor(X = X, types = "tru"”, method = "approx",
showplot = TRUE)$plotR

Example 2 - ternary/continuous case

X = gen_data()$x

Estimate latent correlation matrix with original method

R_nc_org = latentcor(X = X, types = c("ter"”, "con"), method = "original”)$R
Estimate latent correlation matrix with aprroximation method

R_nc_approx = latentcor(X = X, types = c("ter"”, "con"), method = "approx")$R

r_ml_wrapper Port function to call multilinear interpolants for continuous develop-
ers.

Description

Port function to call multilinear interpolants for continuous developers.

Usage

r_ml_wrapper(K, zratiol, zratio2, comb)

https://doi.org/10.1111/rssb.12168
https://doi.org/10.1093/biomet/asaa007
https://doi.org/10.1080/10618600.2021.1882468
https://doi.org/10.1080/10618600.2021.1882468

r_ml_wrapper

Arguments

K

zratiol

zratio?2

comb

Value

13

Kendall’s tau, can be provided as a number or a vector for interpolation in batch.

zratio for first variable. NA for continuous variables, zeros proportions for bi-
nary, truncated variables. For ternary variables, a vector of proportion of zeros
as first element, proportions of zeros and ones as second element. It can be
provided as a vector (matrix) for interpolation in batch. See vignettes for detail.

zratio for second variable. NA for continuous variables, zeros proportions for
binary, truncated variables. For ternary variables, a vector of proportion of zeros
as first element, proportions of zeros and ones as second element. It can be
provided as a vector (matrix) for interpolation in batch. See vignettes for detail.

Numeric code for types: "10" for binary/continuous; "11" for binary/binary;

"20" for truncated/continuous; "21" for truncated/binary; "22" for truncated/truncated;
"30" for ternary/continuous; "31" for ternary/binary; "32" for ternary/truncated;

"33" for ternary/ternary.

A number or vector of interpolation results.

Index

evaluation, 2

gen_data, 4
get_types, 6, 10

interpolant, 6, 7-9
interpolation, 7
ipol, 6-8, 8
latentcor, 9
nearPD, /1

optimize, 10, 11

r_ml_wrapper, 12

14

	evaluation
	gen_data
	get_types
	interpolant
	interpolation
	ipol
	latentcor
	r_ml_wrapper
	Index

