Package 'latentFactoR'

April 18, 2024

Title Data Simulation Based on Latent Factors

Version 0.0.6

Date 2024-04-17

Maintainer Alexander Christensen <alexpaulchristensen@gmail.com>

Description Generates data based on latent factor models. Data can be continuous, polytomous, dichotomous, or mixed. Skews, cross-loadings, wording effects, population errors, and local dependencies can be added. All parameters can be manipulated. Data categorization is based on Garrido, Abad, and Ponsoda (2011) <doi:10.1177/0013164410389489>.

Depends R (>= 3.6.0)

License GPL (>= 3.0)

Imports BBmisc, EGAnet, fspe, googledrive, ineq, lavaan, Matrix, methods, mlr, mvtnorm, psych, rstudioapi, xgboost

Suggests ggplot2

Encoding UTF-8

RoxygenNote 7.3.1

NeedsCompilation no

Author Alexander Christensen [aut, cre]

```
(<https://orcid.org/0000-0002-9798-7037>),
Luis Eduardo Garrido [aut] (<https://orcid.org/0000-0001-8932-6063>),
Maria Dolores Nieto Canaveras [aut],
Hudson Golino [aut] (<https://orcid.org/0000-0002-1601-1447>),
Marcos Jimenez [aut],
Francisco Abad [ctb],
Eduardo Garcia-Garzon [ctb],
Vithor Franco [aut]
```

Repository CRAN

Date/Publication 2024-04-18 21:23:04 UTC

R topics documented:

add_cross_loadings	3
add_local_dependence	5
add_method_factors	7
add_population_error	9
add_wording_effects	12
categorize	15
data_to_zipfs	16
ЕКС	18
ESEM	20
estimate_dimensions	22
factor_forest	23
NEST	25
obtain_zipfs_parameters	26
simulate_factors	28
skew_tables	31
	32

Index

latentFactoR-package latentFactoR-package

Description

Generates data based on latent factor models. Data can be continuous, polytomous, dichotomous, or mixed. Skew, cross-loadings, and population error can be added. All parameters can be manipulated. Data categorization is based on Garrido, Abad, and Ponsoda (2011).

Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com>, Maria Dolores Nieto Canaveras <mnietoca@nebrija.es>, Hudson Golino <hfg9s@virginia.edu>, Luis Eduardo Garrido <luisgarrido@pucmm.edu>

References

Christensen, A. P., Garrido, L. E., & Golino, H. (2022). Unique variable analysis: A network psychometrics method to detect local dependence. *PsyArXiv*

Garrido, L. E., Abad, F. J., & Ponsoda, V. (2011).

Performance of Velicer's minimum average partial factor retention method with categorical variables.

Educational and Psychological Measurement, 71(3), 551-570.

Golino, H., Shi, D., Christensen, A. P., Garrido, L. E., Nieto, M. D., Sadana, R., ... & Martinez-Molina, A. (2020). Investigating the performance of exploratory graph analysis and traditional techniques to identify the number of latent factors: A simulation and tutorial. *Psychological Methods*, *25*(3), 292-320.

add_cross_loadings Adds (Substantial) Cross-loadings to simulate_factors Data

Description

Intended to add substantial cross-loadings to simulated data from simulate_factors. See examples to get started

Usage

```
add_cross_loadings(
    lf_object,
    proportion_cross_loadings,
    proportion_cross_loadings_range = NULL,
    magnitude_cross_loadings,
    magnitude_cross_loadings_range = NULL,
    leave_cross_loadings = FALSE
)
```

Arguments

lf_object	Data object from simulate_factors
proportion_cros	ss_loadings
	Numeric (length = 1 or factors). Proportion of variables that should be cross-
	loaded randomly onto one other factor. Accepts number of variables to cross-
	load onto one other factor as well
proportion_cros	ss_loadings_range
	Numeric (length = 2). Range of proportion of variables that should be cross-
	loaded randomly onto one other factor. Accepts number of variables to cross-
	load onto one other factor as well
<pre>magnitude_cross</pre>	s_loadings
	Numeric (length = 1, factors, or total number of variables to cross-load across
	all factors). The magnitude or size of the cross-loadings. Must range between
	-1 and 1.
<pre>magnitude_cross</pre>	s_loadings_range
	Numeric (length = 2). The range of the magnitude or size of the cross-loadings.
	Defaults to NULL
<pre>leave_cross_loa</pre>	adings
	Boolean. Should cross-loadings be kept? Defaults to FALSE. Convergence prob-
	lems can arise if cross-loadings are kept, so setting them to zero is the default.
	Only set to TRUE with careful consideration of the structure. Make sure to per-
	form additional checks that the data are adequate

Value

Returns a list containing the same parameters as the original lf_object but with updated data, population_correlation, and parameters (specifically, loadings matrix). Also returns original lf_object in original_results

Author(s)

Alexander P. Christensen <a lexpaulchristensen@gmail.com>, Hudson Golino <hfg9s@virginia.edu>, Luis Eduardo Garrido <luisgarrido@pucmm.edu>

References

Christensen, A. P., Garrido, L. E., & Golino, H. (2022). Unique variable analysis: A network psychometrics method to detect local dependence. *PsyArXiv*

```
# Generate factor data
two_factor <- simulate_factors(</pre>
 factors = 2, \# factors = 2
 variables = 6, # variables per factor = 6
 loadings = 0.55, # loadings between = 0.45 to 0.65
 cross_loadings = 0.05, # cross-loadings N(0, 0.05)
 correlations = 0.30, # correlation between factors = 0.30
 sample_size = 1000 # number of cases = 1000
)
# Add substantial cross-loadings
two_factor_CL <- add_cross_loadings(</pre>
 lf_object = two_factor,
 proportion_cross_loadings = 0.25,
 magnitude_cross_loadings = 0.35
)
# Randomly vary proportions
two_factor_CL <- add_cross_loadings(</pre>
 lf_object = two_factor,
 proportion_cross_loadings_range = c(0, 0.25),
 magnitude_cross_loadings = 0.35
)
# Randomly vary magnitudes
two_factor_CL <- add_cross_loadings(</pre>
 lf_object = two_factor,
 proportion_cross_loadings = 0.25,
 magnitude_cross_loadings_range = c(0.35, 0.45)
)
# Set number of cross-loadings per factor (rather than proportion)
two_factor_CL <- add_cross_loadings(</pre>
 lf_object = two_factor,
 proportion_cross_loadings = 2,
 magnitude_cross_loadings = 0.35
)
```

Description

Adds local dependence to simulated data from simulate_factors. See examples to get started

Usage

```
add_local_dependence(
    lf_object,
    method = c("correlate_residuals", "minor_factors", "threshold_shifts"),
    proportion_LD,
    proportion_LD_range = NULL,
    add_residuals = NULL,
    add_residuals_range = NULL,
    allow_multiple = FALSE
)
```

Arguments

lf_object	Data object from simulate_factors	
method	Character (length = 1). Method to generate local dependence between variables. Only "correlate_residuals" at the moment. Future developments will include minor factor and threshold-shift methods. Description of methods:	
	• "correlate_residuals" — Adds residuals directly to the population cor- relation matrix prior to data generation (uses population correlation matrix from simulate_factors)	
	 "minor_factors" — Coming soon 	
	 "threshold_shifts" — Coming soon 	
proportion_LD	Numeric (length = 1 or factors). Proportion of variables that should be locally dependent across all or each factor. Accepts number of locally dependent values as well	
proportion_LD_range		
	Numeric (length = 2). Range of proportion of variables that are randomly selected from a random uniform distribution. Accepts number of locally dependent values as well. Defaults to NULL	
add_residuals	Numeric (length = 1, factors, or total number of locally dependent variables). Amount of residual to add to the population correlation matrix between two variables. Only used when method = "correlated_residuals". Magnitudes are drawn from a random uniform distribution using +/- 0.05 of value input. Can also be specified directly (same length as total number of locally dependent variables). General effect sizes range from small (0.20), moderate (0.30), to large (0.40)	

	add_residuals_r	ange Numeric (length = 2). Range of the residuals to add to the correlation matrix are randomly selected from a random uniform distribution. Defaults to NULL	
	allow_multiple	Boolean. Whether a variable should be allowed to be locally dependent with more than one other variable. Defaults to FALSE. Set to TRUE for more complex locally dependence patterns	
Val	Value		
	Returns a list conta	aining:	
	data	Simulated data from the specified factor model	
	population_corr	elation	
		Population correlation matrix with local dependence added	
	original_correl	ation	
		Original population correlation matrix before local dependence was added	
	correlated_resi	duals	
		A data frame with the first two columns specifying the variables that are locally	

dependent and the third column specifying the magnitude of the added residual for each locally dependent pair

original_results

Original lf_object input into function

Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com>, Hudson Golino <hfg9s@virginia.edu>, Luis Eduardo Garrido <luisgarrido@pucmm.edu>

References

Christensen, A. P., Garrido, L. E., & Golino, H. (2023). Unique variable analysis: A network psychometrics method to detect local dependence. *Multivariate Behavioral Research*, 1–18.

```
# Generate factor data
two_factor <- simulate_factors(
  factors = 2, # factors = 2
  variables = 6, # variables per factor = 6
  loadings = 0.55, # loadings between = 0.45 to 0.65
  cross_loadings = 0.05, # cross-loadings N(0, 0.05)
  correlations = 0.30, # correlation between factors = 0.30
  sample_size = 1000 # number of cases = 1000
)
# Add local dependence
two_factor_LD <- add_local_dependence(
  lf_object = two_factor,
  proportion_LD = 0.25,
  add_residuals = 0.20,
```

```
allow_multiple = FALSE
)
# Randomly vary proportions
two_factor_LD <- add_local_dependence(</pre>
 lf_object = two_factor,
 proportion_LD_range = c(0.10, 0.50),
 add_residuals = 0.20,
 allow_multiple = FALSE
)
# Randomly vary residuals
two_factor_LD <- add_local_dependence(</pre>
 lf_object = two_factor,
 proportion_LD = 0.25,
 add_residuals_range = c(0.20, 0.40),
 allow_multiple = FALSE
)
# Randomly vary proportions, residuals, and allow multiple
two_factor_LD <- add_local_dependence(</pre>
 lf_object = two_factor,
 proportion_LD_range = c(0.10, 0.50),
 add_residuals_range = c(0.20, 0.40),
 allow_multiple = TRUE
)
```

add_method_factors Adds Methods Factors to simulate_factors Data

Description

Adds methods factors to simulated data from simulate_factors. See examples to get started

Usage

```
add_method_factors(
    lf_object,
    proportion_negative = 0.5,
    proportion_negative_range = NULL,
    methods_factors,
    methods_loadings,
    methods_loadings_range = 0,
    methods_correlations,
    methods_correlations_range = NULL
)
```

Arguments

lf_object Data object from simulate_factors. Data must be categorical. If data are not categorical, then there function with throw an error proportion_negative Numeric (length = 1 or factors). Proportion of variables that should have negative (or flipped) dominant loadings across all or each factor. Accepts number of variables as well. The first variables on each factor, up to the corresponding proportion, will be flipped. Set to 0 to not have any loadings flipped. Defaults to 0.50 proportion_negative_range Numeric (length = 2). Range of proportion of variables that are randomly selected from a uniform distribution. Accepts number of number of variables as well. Defaults to NULL methods_factors Numeric methods_loadings Numeric methods_loadings_range Numeric methods_correlations Numeric methods_correlations_range Numeric Value

Returns a list containing:

data	Biased data simulated data from the specified factor model
unbiased_data	The corresponding unbiased data prior to replacing values to generate the (biased) data $% \left(\frac{1}{2}\right) =0$
parameters	Bias-adjusted parameters of the lf_object input into function
original_results	
	Original lf_object input into function

Author(s)

Alexander P. Christensen <a href="mailto: (gmail.com>, Luis Eduardo Garrido (luisgarrido@pucmm.edu>

References

Garcia-Pardina, A., Abad, F. J., Christensen, A. P., Golino, H., & Garrido, L. E. (2024). Dimensionality assessment in the presence of wording effects: A network psychometric and factorial approach. *Behavior Research Methods*.

add_population_error

Examples

```
# Generate factor data
two_factor <- simulate_factors(</pre>
 factors = 2, # factors = 2
 variables = 6, # variables per factor = 6
 loadings = 0.55, # loadings between = 0.45 to 0.65
 cross_loadings = 0.05, # cross-loadings N(0, 0.05)
 correlations = 0.30, # correlation between factors = 0.30
 sample_size = 1000, # number of cases = 1000
 variable_categories = 5 # 5-point Likert scale
)
# Add methods factors
two_factor_methods_effect <- add_method_factors(</pre>
 lf_object = two_factor,
 proportion_negative = 0.50,
 methods_loadings = 0.20,
 methods_loadings_range = 0.10
)
```

add_population_error Adds Population Error to simulate_factors Data

Description

Adds population error to simulated data from simulate_factors. See examples to get started

Usage

```
add_population_error(
    lf_object,
    cfa_method = c("minres", "ml"),
    fit = c("cfi", "rmsea", "rmsr", "raw"),
    misfit = c("close", "acceptable"),
    error_method = c("cudeck", "yuan"),
    tolerance = 0.01,
    convergence_iterations = 10,
    leave_cross_loadings = FALSE
)
```

Arguments

lf_object	Data object from simulate_factors
cfa_method	Character (length = 1). Method to generate population error. Defaults to "minres". Available options:

• "minres" — Minimum residual

		 "ml" — Maximum likelihood
	fit	Character (length = 1). Fit index to control population error. Defaults to "rmsr". Available options:
		• "cfi" — Comparative fit index
		 "rmsea" — Root mean square error of approximation
		 "rmsr" — Root mean square residuals
		 "raw" — Direct application of error
	misfit	Character or numeric (length = 1). Magnitude of error to add. Defaults to "close". Available options:
		• "close" — Slight deviations from original population correlation matrix
		 "acceptable" — Moderate deviations from original population correlation matrix
		While numbers can be used, they are not recommended. They can be used to specify misfit but the level of misfit will vary depending on the factor structure
	error_method	Character (length = 1). Method to control population error. Defaults to "cudeck". Description of methods:
		 "cudeck" — Description coming soon see Cudeck & Browne, 1992 for more details
		 "yuan" — Description coming soon
	tolerance	Numeric (length = 1). Tolerance of SRMR difference between population error correlation matrix and the original population correlation matrix. Ensures that appropriate population error was added. Similarly, verifies that the MAE of the loadings are not greater than the specified amount, ensuring proper convergence. Defaults to 0.01
	convergence_ite	erations
		Numeric (length = 1). Number of iterations to reach parameter convergence within the specified 'tolerance'. Defaults to 10
	leave_cross_loa	-
		Boolean. Should cross-loadings be kept? Defaults to FALSE. Convergence prob- lems can arise if cross-loadings are kept, so setting them to zero is the default.
		Only set to TRUE with careful consideration of the structure. Make sure to per-
		form additional checks that the data are adequate
Val	ue	
	Returns a list cont	aining:
	data	Simulated data from the specified factor model
	population_corr	relation Population correlation matrix with local dependence added
	population_erro	
		A list containing the parameters used to generate population error:

A list containing the parameters used to generate population error:

• error_correlation — Correlation matrix with population error added (same as population_correlation)

- fit Fit measure used to control population error
- delta Minimum of the objective function corresponding to the misfit value
- misfit Specified misfit value
- loadings Estiamted CFA loadings after error has been added

original_results

Original lf_object input into function

Author(s)

bifactor authors

Marcos Jimenez, Francisco J. Abad, Eduardo Garcia-Garzon, Vithor R. Franco, Luis Eduardo Garrido <luisgarrido@pucmm.edu>

latentFactoR authors

Alexander P. Christensen <a href="mailto: (gmail.com>, Hudson Golino <hfg9s@virginia.edu>, Luis Eduardo Garrido <luisgarrido@pucmm.edu>, Marcos Jimenez, Francisco J. Abad, Eduardo Garcia-Garzon, Vithor R. Franco

References

Cudeck, R., & Browne, M.W. (1992). Constructing a covariance matrix that yields a specified minimizer and a specified minimum discrepancy function value. *Psychometrika*, 57, 357–369.

```
# Generate factor data
two_factor <- simulate_factors(</pre>
 factors = 2. \# factors = 2
 variables = 6, # variables per factor = 6
 loadings = 0.55, # loadings between = 0.45 to 0.65
 cross_loadings = 0.05, # cross-loadings N(0, 0.05)
 correlations = 0.30, # correlation between factors = 0.30
 sample_size = 1000 # number of cases = 1000
)
# Add small population error using Cudeck method
two_factor_Cudeck <- add_population_error(</pre>
 lf_object = two_factor,
 cfa_method = "minres",
 fit = "rmsr", misfit = "close",
 error_method = "cudeck"
)
# Add small population error using Yuan method
two_factor_Yuan <- add_population_error(</pre>
 lf_object = two_factor,
 cfa_method = "minres",
 fit = "rmsr", misfit = "close",
 error_method = "yuan"
)
```

add_wording_effects Adds Wording Effects to simulate_factors Data

Description

Adds wording effects to simulated data from simulate_factors. See examples to get started

Usage

```
add_wording_effects(
    lf_object,
    method = c("acquiescence", "difficulty", "random_careless", "straight_line", "mixed"),
    proportion_negative = 0.5,
    proportion_biased_cases = 0.1,
    proportion_biased_variables = 1,
    proportion_biased_variables_range = NULL,
    proportion_biased_person = 1,
    proportion_biased_person_range = NULL
)
```

Arguments

lf_object	Data object from simulate_factors. Data must be categorical. If data are not categorical, then there function with throw an error
method	Character (length = 1). Method to generate wording effect to add to the data. Description of methods:
	• "acquiescence" —Generates new data with flipped dominant loadings (based on proportion_negative) and ensures a bias such that variables have a restricted range of responding (e.g., only 4s and 5s on a 5-point Likert scale)
	• "difficulty" — Generates new data with flipped dominant loadings (based on proportion_negative) and uses this data as the data without wording effects. Then, the signs of the dominant loadings are obtained and the dom- inant loadings are made to be absolute. Finally, the skews are multiplied by the signs of the original dominant loadings when generating the data with the wording effects
	 "random_careless" — Number of cases up to proportion_biased_cases are sampled and replaced by values from a random uniform distribution ranging between the lowest and highest response category for each variable. These values then replace the values in the original data "straight_line" — Coming soon
proportion_ne	-
p. opor cron_ne	Numeric (length = 1 or factors). Proportion of variables that should have neg- ative (or flipped) dominant loadings across all or each factor. Accepts number of variables as well. The first variables on each factor, up to the corresponding

proportion, will be flipped. Set to 0 to not have any loadings flipped. Defaults to 0.50

proportion_negative_range

Numeric (length = 2). Range of proportion of variables that are randomly selected from a uniform distribution. Accepts number of number of variables as well. Defaults to NULL

proportion_biased_cases

Numeric (length = 1). Proportion of cases that should be biased with wording effects. Also accepts number of cases to be biased. The first *n* number of cases, up to the corresponding proportion, will be biased. Defaults to 0.10 or 10 percent of cases.

proportion_biased_variables

Numeric (length = 1 or factors). Proportion of variables that should be biased with wording effects. For method = "difficulty", proportion of biased variables will only count for the negative variables. For method = "acquiescence", proportion of biased variables will only count for variables below the mid-point of the variable_categories. Defaults to 1 or all possible variables

proportion_biased_variables_range

Numeric (length = 2). Range of proportion of variables that should be biased with wording effects. Values are drawn randomly from a uniform distribution. Defaults to NULL

proportion_biased_person

Numeric (length = 1 or proportion_biased_cases x sample_size). Personspecific parameter of how many much bias the proportion_biased_cases will have over the possible biased variables. This parameter interacts with proportion_biased_variables. Parameter specifies the proportion of variables that should have bias per person. If one value is provided, then all biased cases will have the same proportion of variables biased. Individual values are possible by providing values for each biased case (round(nrow(lf_object\$data) * proportion_biased_cases)). Setting individual values for each biased case is not recommended (use proportion_biased_person_range instead). Defaults to 1 or all possible biased variables for all biased cases

proportion_biased_person_range

Numeric (length = 2). Range to randomly draw bias from a uniform distribution. Allows for random person-specific bias to be obtained. Defaults to NULL

Value

Returns a list containing:

data	Biased data simulated data from the specified factor model
unbiased_data	The corresponding unbiased data prior to replacing values to generate the (bi- ased) data
biased_sample_size	
	The number of cases that have biased data
adjusted_result	ts
	Bias-adjusted lf_object input into function
original_result	LS .
	Original lf_object input into function

Author(s)

Alexander P. Christensen <a href="mailto: alexpaulchristensen@gmail.com>, Luis Eduardo Garrido disgarrido@pucmm.edu>

References

Garcia-Pardina, A., Abad, F. J., Christensen, A. P., Golino, H., & Garrido, L. E. (2022). Dimensionality assessment in the presence of wording effects: A network psychometric and factorial approach. *PsyArXiv*.

Garrido, L. E., Golino, H., Christensen, A. P., Martinez-Molina, A., Arias, V. B., Guerra-Pena, K., ... & Abad, F. J. (2022). A systematic evaluation of wording effects modeling under the exploratory structural equation modeling framework. *PsyArXiv*.

```
# Generate factor data
two_factor <- simulate_factors(</pre>
 factors = 2, # factors = 2
 variables = 6, # variables per factor = 6
 loadings = 0.55, # loadings between = 0.45 to 0.65
 cross_loadings = 0.05, # cross-loadings N(0, 0.05)
 correlations = 0.30, # correlation between factors = 0.30
 sample_size = 1000, # number of cases = 1000
 variable_categories = 5 # 5-point Likert scale
)
# Add wording effects using acquiescence method
two_factor_acquiescence <- add_wording_effects(</pre>
 lf_object = two_factor,
 proportion_negative = 0.50,
 proportion_biased_cases = 0.10,
 method = "acquiescence"
)
# Add wording effects using difficulty method
two_factor_difficulty <- add_wording_effects(</pre>
 lf_object = two_factor,
 proportion_negative = 0.50,
 proportion_biased_cases = 0.10,
 method = "difficulty"
)
# Add wording effects using random careless method
two_factor_random_careless <- add_wording_effects(</pre>
 lf_object = two_factor,
 proportion_negative = 0.50,
 proportion_biased_cases = 0.10,
 method = "random_careless"
)
# Add wording effects using straight line method
two_factor_random_careless <- add_wording_effects(</pre>
```

categorize

```
lf_object = two_factor,
 proportion_negative = 0.50,
 proportion_biased_cases = 0.10,
 method = "straight_line"
)
# Add wording effects using mixed method
two_factor_mixed <- add_wording_effects(</pre>
 lf_object = two_factor,
 proportion_negative = 0.50,
 proportion_biased_cases = 0.10,
 method = "mixed"
)
# Add wording effects using acquiescence and straight line method
two_factor_multiple <- add_wording_effects(</pre>
 lf_object = two_factor,
 proportion_negative = 0.50,
 proportion_biased_cases = 0.10,
 method = c("acquiescence", "straight_line")
)
```

categorize

Categorize Continuous Data

Description

Categorizes continuous data based on Garrido, Abad and Ponsoda (2011; see references). Categorical data with 2 to 6 categories can include skew between -2 to 2 in increments of 0.05

Usage

categorize(data, categories, skew_value = 0)

Arguments

data	Numeric (length = n). A vector of continuous data with n values. For matrices, use apply
categories	Numeric (length = 1). Number of categories to create. Between 2 and 6 categories can be used with skew
skew_value	Numeric (length = 1). Value of skew. Ranges between -2 to 2 in increments of 0.05. Skews not in this sequence will be converted to the nearest value in this sequence. Defaults to \emptyset or no skew

Value

Returns a numeric vector of the categorize data

Author(s)

Maria Dolores Nieto Canaveras <mnietoca@nebrija.es>, Luis Eduardo Garrido <luisgarrido@pucmm.edu>, Hudson Golino <hfg9s@virginia.edu>, Alexander P. Christensen <alexpaulchristensen@gmail.com>

References

Garrido, L. E., Abad, F. J., & Ponsoda, V. (2011).

Performance of Velicer's minimum average partial factor retention method with categorical variables.

Educational and Psychological Measurement, 71(3), 551-570.

Golino, H., Shi, D., Christensen, A. P., Garrido, L. E., Nieto, M. D., Sadana, R., ... & Martinez-Molina, A. (2020). Investigating the performance of exploratory graph analysis and traditional techniques to identify the number of latent factors: A simulation and tutorial. *Psychological Methods*, *25*(3), 292-320.

```
# Dichotomous data (no skew)
dichotomous <- categorize(</pre>
 data = rnorm(1000),
 categories = 2
)
# Dichotomous data (with positive skew)
dichotomous_skew <- categorize(</pre>
 data = rnorm(1000),
 categories = 2,
 skew_value = 1.25
)
# 5-point Likert scale (no skew)
five_likert <- categorize(</pre>
 data = rnorm(1000),
 categories = 5
)
# 5-point Likert scale (negative skew)
five_likert <- categorize(</pre>
 data = rnorm(1000),
 categories = 5,
 skew_value = -0.45
)
```

Description

Zipf's distribution is commonly found for text data. Closely related to the Pareto and power-law distributions, the Zipf's distribution produces highly skewed data. This transformation is intended to mirror the data generating process of Zipf's law seen in semantic network and topic modeling data.

Usage

```
data_to_zipfs(lf_object, beta = 2.7, alpha = 1, dichotomous = FALSE)
```

Arguments

lf_object	Data object from simulate_factors
beta	Numeric (length = 1). Sets the shift in rank. Defaults to 2.7
alpha	Numeric (length = 1). Sets the power of the rank. Defaults to 1
dichotomous	Boolean (length = 1). Whether data should be dichotomized rather than frequencies (e.g., semantic network analysis). Defaults to FALSE

Details

The formula used to transform data is (Piantadosi, 2014):

f(r) proportional to $1 / (r + beta)^{alpha}$

where f(r) is the *r*th most frequency, *r* is the rank-order of the data, *beta* is a shift in the rank (following Mandelbrot, 1953, 1962), and *alpha* is the power of the rank with greater values suggesting greater differences between the largest frequency to the next, and so forth.

The function will transform continuous data output from simulate_factors. See examples to get started

Value

Returns a list containing:

data	Simulated data that has been transform to follow Zipf's distribution
RMSE	A vector of root mean square errors for transformed data and data assumed to follow theoretical Zipf's distribution and Spearman's correlation matrix of the transformed data compared to the original population correlation matrix
<pre>spearman_correl</pre>	ation
	Spearman's correlation matrix of the transformed data
original_correl	ation
	Original population correlation matrix <i>before</i> the data were transformed
original_result	S
	Original lf_object input into function

Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com>, Hudson Golino <hfg9s@virginia.edu>, Luis Eduardo Garrido <luisgarrido@pucmm.edu>

18

Mandelbrot, B. (1953). An informational theory of the statistical structure of language. *Communication Theory*, 84, 486–502.

Mandelbrot, B. (1962). On the theory of word frequencies and on related Markovian models of discourse. *Structure of Language and its Mathematical Aspects*, 190–219.

Piantadosi, S. T. (2014). Zipf's word frequency law in natural language: A critical review and future directions. *Psychonomic Bulletin & Review*, 21(5), 1112-1130.

Zipf, G. (1936). The psychobiology of language. London, UK: Routledge.

Zipf, G. (1949). Human behavior and the principle of least effort. New York, NY: Addison-Wesley.

Examples

```
# Generate factor data
two_factor <- simulate_factors(</pre>
 factors = 2, # factors = 2
 variables = 6, # variables per factor = 6
 loadings = 0.55, # loadings between = 0.45 to 0.65
 cross_loadings = 0.05, # cross-loadings N(0, 0.05)
 correlations = 0.30, # correlation between factors = 0.30
 sample_size = 1000 # number of cases = 1000
)
# Transform data to Mandelbrot's Zipf's
two_factor_zipfs <- data_to_zipfs(</pre>
 lf_object = two_factor,
 beta = 2.7,
 alpha = 1
)
# Transform data to Mandelbrot's Zipf's (dichotomous)
two_factor_zipfs_binary <- data_to_zipfs(</pre>
 lf_object = two_factor,
 beta = 2.7,
 alpha = 1,
 dichotomous = TRUE
)
```

EKC

Estimate Number of Dimensions using Empirical Kaiser Criterion

Description

Estimates the number of dimensions in data using Empirical Kaiser Criterion (Braeken & Van Assen, 2017). See examples to get started

EKC

Usage

EKC(data, sample_size)

Arguments

data	Matrix or data frame. Either a dataset with all numeric values (rows = cases, columns = variables) or a symmetric correlation matrix
<pre>sample_size</pre>	Numeric (length = 1). If input into data is a correlation matrix, then specifying the sample size is required

Value

Returns a list containing:

dimensions	Number of dimensions identified
eigenvalues	Eigenvalues
reference	Reference values compared against eigenvalues

Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com>, Hudson Golino <hfg9s@virginia.edu>, Luis Eduardo Garrido <luisgarrido@pucmm.edu>

References

Braeken, J., & Van Assen, M. A. (2017). An empirical Kaiser criterion. *Psychological Methods*, 22(3), 450–466.

```
# Generate factor data
two_factor <- simulate_factors(
  factors = 2, # factors = 2
  variables = 6, # variables per factor = 6
  loadings = 0.55, # loadings between = 0.45 to 0.65
  cross_loadings = 0.05, # cross-loadings N(0, 0.05)
  correlations = 0.30, # correlation between factors = 0.30
  sample_size = 1000 # number of cases = 1000
)
# Perform Empirical Kaiser Criterion
EKC(two_factor$data)
```

ESEM

Description

A general function to estimate an Exploratory Structural Equation Model (ESEM) using the lavaan package. With latentFactoR objects, the function requires fewer inputs

Usage

```
ESEM(
   data,
   factors,
   variables,
   estimator = c("MLR", "WLSMV"),
   fit_measures = NULL,
   variable_polarity = NULL,
   wording_factor = c("none", "CTCM1", "CTCM1_each", "RI", "RI_each"),
   CTCM1_polarity = c("negative", "positive"),
   ...
)
```

Arguments

data	Numeric matrix, data frame, or latentFactoR object	
factors	Numeric (length = 1). Number of ESEM factors to estimate	
variables	Numeric (length = 1 or factors). Number of variables per factor. A vector the length of the number of factors can be specified to allow varying number of variables on each factor (necessary for some wording_factor arguments)	
estimator	Character. Estimator to be used in cfa. Default options are "MLR" for continuous data and "WLSMV" for categorical data	
fit_measures	Character. Fit measures to be computed using fitMeasures. Defaults to: "chisq", "df", "pvalue", "cfi", "tli", "rmsea", "rmsea.ci.lower", "rmsea.ci.upper", "rmsea.pvalue", and "srmr". Other measures can be added but these measures will always be produced.	
	If scaled values are available (not NA), then scaled fit measures will be used.	
variable_polarity		
	Numeric/character (length = 1 or total variables). Whether all (length = 1) or each variable (length = total variables) are positive (1, "p", "pos", "positive") or negative (-1, "n", "neg", "negative") polarity on the factor	
wording_factor	Character (length = 1). Whether wording factor(s) should be estimated. Defaults to "none". Options include:	
	 "CTCM1" — Description coming soon "CTCM1_each" — Description coming soon 	

ESEM

		 "RI" — Description coming soon
		 "RI_each" — Description coming soon
CTCM1_p	olarity	Character. Polarity of the CTCM1 wording $factor(s).$ Defaults to "negative" for negative polarity variables
		Additional arguments to be passed on to cfa

Value

Returns a list containing:

model	Estimated ESEM model
fit	Fit measures of estimated ESEM model

Author(s)

Alexander P. Christensen <a href="mailto: alexpaulchristensen@gmail.com>, Luis Eduardo Garrido disgarrido@pucmm.edu>

```
# Generate factor data
two_factor <- simulate_factors(</pre>
 factors = 2, \# factors = 2
 variables = 6, # variables per factor = 6
 loadings = 0.55, # loadings between = 0.45 to 0.65
 cross_loadings = 0.05, # cross-loadings N(0, 0.05)
 correlations = 0.30, # correlation between factors = 0.30
 sample_size = 1000, # number of cases = 1000
 variable_categories = 5 # 5-point Likert scale
)
## Not run:
# Estimate ESEM model with no wording effects
esem_no_wording_effects <- ESEM(</pre>
 data = two_factor,
 estimator = "WLSMV"
)
# Add wording effects using acquiescence method
two_factor_acquiescence <- add_wording_effects(</pre>
 lf_object = two_factor,
 proportion_negative = 0.50,
 proportion_biased_cases = 0.10,
 method = "acquiescence"
)
# Estimate ESEM model with wording effects
esem_wording_effects <- ESEM(</pre>
 data = two_factor_acquiescence,
 estimator = "WLSMV",
 wording_factor = "RI"
)
```

End(Not run)

estimate_dimensions Estimates Dimensions using Several State-of-the-art Methods

Description

Estimates dimensions using Exploratory Graph Analysis (EGA), Empirical Kaiser Criterion (EKC), Factor Forest (factor_forest), Exploratory Factor Analysis with out-of-sample prediction (fspe), Next Eigenvalue Sufficiency Test (NEST), and parallel analysis (fa.parallel)

Usage

```
estimate_dimensions(
  data,
  sample_size,
  EGA_args = list(corr = "auto", uni.method = "louvain", model = "glasso",
    consensus.method = "most_common", plot.EGA = FALSE),
  FF_args = list(maximum_factors = 8, PA_correlation = "cor"),
  FSPE_args = list(maxK = 8, rep = 1, method = "PE", pbar = FALSE),
  NEST_args = list(iterations = 1000, maximum_iterations = 500, alpha = 0.05, convergence
    = 0.00001),
  PA_args = list(fm = "minres", fa = "both", cor = "cor", n.iter = 20, sim = FALSE, plot
    = FALSE)
)
```

Arguments

data	Matrix or data frame. Either a dataset with all numeric values (rows = cases, columns = variables) or a symmetric correlation matrix
sample_size	Numeric (length = 1). If input into data is a correlation matrix, then specifying the sample size is required
EGA_args	List. List of arguments to be passed along to EGA. Defaults are listed
FF_args	List. List of arguments to be passed along to factor_forest. Defaults are listed
FSPE_args	List. List of arguments to be passed along to fspe. Defaults are listed
NEST_args	List. List of arguments to be passed along to NEST. Defaults are listed
PA_args	List. List of arguments to be passed along to fa.parallel. Defaults are listed

Value

Returns a list containing:

dimensions Dimensions estimated from each method

A list of each methods output (see their respective functions for their outputs)

factor_forest

Author(s)

Maria Dolores Nieto Canaveras <mnietoca@nebrija.es>, Alexander P. Christensen <alexpaulchristensen@gmail.com>, Hudson Golino <hfg9s@virginia.edu>, Luis Eduardo Garrido <luisgarrido@pucmm.edu>

Examples

```
# Generate factor data
two_factor <- simulate_factors(
  factors = 2, # factors = 2
  variables = 6, # variables per factor = 6
  loadings = 0.55, # loadings between = 0.45 to 0.65
  cross_loadings = 0.05, # cross-loadings N(0, 0.05)
  correlations = 0.30, # correlation between factors = 0.30
  sample_size = 1000 # number of cases = 1000
)
## Not run:
# Estimate dimensions
estimate_dimensions(two_factor$data)
## End(Not run)</pre>
```

factor_forest Estimate Number of Dimensions using Factor Forest

Description

Estimates the number of dimensions in data using the pre-trained Random Forest model from Goretzko and Buhner (2020, 2022). See examples to get started

Usage

```
factor_forest(
   data,
   sample_size,
   maximum_factors = 8,
   PA_correlation = c("cor", "poly", "tet")
)
```

Arguments

data	Matrix or data frame. Either a dataset with all numeric values (rows = cases, columns = variables) or a symmetric correlation matrix
	columns – variables) of a symmetric correlation matrix
sample_size	Numeric (length = 1). If input into data is a correlation matrix, then specifying the sample size is required
maximum_factors	

Numeric (length = 1). Maximum number of factors to search over. Defaults to 8

PA_correlation Character (length = 1). Type of correlation used in fa.parallel. Must be set:

- "cor" Pearson's correlation
- "poly" Polychoric correlation
- "tet" Tetrachoric correlation

Value

Returns a list containing:

dimensions	Number of dimensions identified
probabilities	Probability that the number of dimensions is most likely

Author(s)

Authors of Factor Forest David Goretzko and Markus Buhner

Authors of {latentFactoR} Alexander P. Christensen <alexpaulchristensen@gmail.com>, Hudson Golino <hfg9s@virginia.edu>, Luis Eduardo Garrido <luisgarrido@pucmm.edu>

References

Goretzko, D., & Buhner, M. (2022). Factor retention using machine learning with ordinal data. *Applied Psychological Measurement*, 01466216221089345.

Goretzko, D., & Buhner, M. (2020). One model to rule them all? Using machine learning algorithms to determine the number of factors in exploratory factor analysis. *Psychological Methods*, 25(6), 776-786.

```
# Generate factor data
two_factor <- simulate_factors(
  factors = 2, # factors = 2
  variables = 6, # variables per factor = 6
  loadings = 0.55, # loadings between = 0.45 to 0.65
  cross_loadings = 0.05, # cross-loadings N(0, 0.05)
  correlations = 0.30, # correlation between factors = 0.30
  sample_size = 1000 # number of cases = 1000
)
## Not run:
# Perform Factor Forest
factor_forest(two_factor$data)
## End(Not run)</pre>
```

NEST

Description

Estimates the number of dimensions in data using NEST (Achim, 2017). See examples to get started

Usage

```
NEST(
  data,
  sample_size,
  iterations = 1000,
  maximum_iterations = 500,
  alpha = 0.05,
  convergence = 0.00001
```

Arguments

)

data	Matrix or data frame. Either a dataset with all numeric values (rows = cases, columns = variables) or a symmetric correlation matrix	
sample_size	Numeric (length = 1). If input into data is a correlation matrix, then specifying the sample size is required	
iterations	Numeric (length = 1). Number of iterations to estimate rank. Defaults to 1000	
maximum_iterations		
	Numeric (length = 1). Maximum umber of iterations to obtain convergence of eigenvalues. Defaults to 500	
alpha	Numeric (length = 1). Significance level for determine sufficient eigenvalues. Defaults to 0.05	
convergence	Numeric (length = 1). Value necessary to be less than or equal to when estab- lishing convergence of eigenvalues	

Value

Returns a list containing:

dimensions	Number of dimensions identified
loadings	Loading matrix
converged	Whether estimation converged. If FALSE, then results are reported from last
	convergence point. Interpret results with caution.

Author(s)

Alexander P. Christensen <a lexpaulchristensen@gmail.com>, Hudson Golino <hfg9s@virginia.edu>, Luis Eduardo Garrido <luisgarrido@pucmm.edu>

References

Achim, A. (2017). Testing the number of required dimensions in exploratory factor analysis. *The Quantitative Methods for Psychology*, 13(1), 64–74.

Brandenburg, N., & Papenberg, M. (2022). Reassessment of innovative methods to determine the number of factors: A simulation-Based comparison of Exploratory Graph Analysis and Next Eigenvalue Sufficiency Test. *Psychological Methods*.

Examples

```
# Generate factor data
two_factor <- simulate_factors(
  factors = 2, # factors = 2
  variables = 6, # variables per factor = 6
  loadings = 0.55, # loadings between = 0.45 to 0.65
  cross_loadings = 0.05, # cross-loadings N(0, 0.05)
  correlations = 0.30, # correlation between factors = 0.30
  sample_size = 1000 # number of cases = 1000
)
## Not run:
# Perform NEST
NEST(two_factor$data)
## End(Not run)</pre>
```

obtain_zipfs_parameters

Obtain Zipf's Distribution Parameters from Data

Description

Zipf's distribution is commonly found for text data. Closely related to the Pareto and power-law distributions, the Zipf's distribution produces highly skewed data. This function obtains the best fitting parameters to Zipf's distribution

Usage

```
obtain_zipfs_parameters(data)
```

Arguments

data

Numeric vector, matrix, or data frame. Numeric data to determine Zipf's distribution parameters

26

Details

The best parameters are optimized by minimizing the aboslute difference between the original frequencies and the frequencies obtained by the *beta* and *alpha* parameters in the following formula (Piantadosi, 2014):

f(r) proportional to $1 / (r + beta)^{alpha}$

where f(r) is the *r*th most frequency, *r* is the rank-order of the data, *beta* is a shift in the rank (following Mandelbrot, 1953, 1962), and *alpha* is the power of the rank with greater values suggesting greater differences between the largest frequency to the next, and so forth.

Value

Returns a vector containing the estimated beta and alpha parameters. Also contains zipfs_sse which corresponds to the sum of square error between frequencies based on the parameter values estimated and the original data frequencies

Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com>, Hudson Golino <hfg9s@virginia.edu>, Luis Eduardo Garrido <luisgarrido@pucmm.edu>

References

Mandelbrot, B. (1953). An informational theory of the statistical structure of language. *Communication Theory*, 84, 486–502.

Mandelbrot, B. (1962). On the theory of word frequencies and on related Markovian models of discourse. *Structure of Language and its Mathematical Aspects*, 190–219.

Piantadosi, S. T. (2014). Zipf's word frequency law in natural language: A critical review and future directions. *Psychonomic Bulletin & Review*, 21(5), 1112-1130.

```
# Generate factor data
two_factor <- simulate_factors(</pre>
 factors = 2, \# factors = 2
 variables = 6, # variables per factor = 6
 loadings = 0.55, # loadings between = 0.45 to 0.65
 cross_loadings = 0.05, # cross-loadings N(0, 0.05)
 correlations = 0.30, # correlation between factors = 0.30
 sample_size = 1000 # number of cases = 1000
)
# Transform data to Mandelbrot's Zipf's
two_factor_zipfs <- data_to_zipfs(</pre>
 lf_object = two_factor,
 beta = 2.7,
 alpha = 1
)
# Obtain Zipf's distribution parameters
```

obtain_zipfs_parameters(two_factor_zipfs\$data)

simulate_factors Simulates Latent Factor Data

Description

Simulates data from a latent factor model based on many manipulable parameters. Parameters do not have default values and must each be set. See examples to get started

Usage

```
simulate_factors(
 factors,
  variables,
  variables_range = NULL,
  loadings,
  loadings_range = NULL,
  cross_loadings,
 cross_loadings_range = NULL,
 correlations,
  correlations_range = NULL,
  sample_size,
  variable_categories = Inf,
 categorical_limit = 7,
 skew = 0,
  skew_range = NULL
)
```

Arguments

factors	Numeric (length = 1). Number of factors
variables	Numeric (length = 1 or factors). Number of variables per factor. Can be a single value or as many values as there are factors. Minimum three variables per factor
variables_range	
	Numeric (length = 2). Range of variables to randomly select from a random uniform distribution. Minimum three variables per factor
loadings	Numeric or matrix (length = 1, factors, total number of variables (factors x variables), or factors x total number of variables. Loadings drawn from a random uniform distribution using +/- 0.10 of value input. Can be a single value or as many values as there are factors (corresponding to the factors). Can also be a loading matrix. Columns must match factors and rows must match total variables (factors x variables) General effect sizes range from small (0.40), moderate (0.55), to large (0.70)

28

- loadings_range Numeric (length = 2). Range of loadings to randomly select from a random uniform distribution. General effect sizes range from small (0.40), moderate (0.55), to large (0.70)
- cross_loadings Numeric or matrix(length = 1, factors, or factors x total number of variables. Cross-loadings drawn from a random normal distribution with a mean of 0 and standard deviation of value input. Can be a single value or as many values as there are factors (corresponding to the factors). Can also be a loading matrix. Columns must match factors and rows must match total variables (factors x variables)
- cross_loadings_range

Numeric (length = 2). Range of cross-loadings to randomly select from a random uniform distribution

correlations Numeric (length = 1 or factors x factors). Can be a single value that will be used for all correlations between factors. Can also be a square matrix (factors x factors). General effect sizes range from orthogonal (0.00), small (0.30), moderate (0.50), to large (0.70)

correlations_range

Numeric (length = 2). Range of correlations to randomly select from a random uniform distribution. General effect sizes range from orthogonal (0.00), small (0.30), moderate (0.50), to large (0.70)

sample_size Numeric (length = 1). Number of cases to generate from a random multivariate normal distribution using rmvnorm

variable_categories

Numeric (length = 1 or total variables (factors x variables)). Number of categories for each variable. Inf is used for continuous variables; otherwise, values reflect number of categories

categorical_limit

Numeric (length = 1). Values greater than input value are considered continuous. Defaults to 7 meaning that 8 or more categories are considered continuous (i.e., variables are *not* categorized from continuous to categorical)

- skew Numeric (length = 1 or categorical variables). Skew to be included in categorical variables. It is randomly sampled from provided values. Can be a single value or as many values as there are (total) variables. Current skew implementation is between -2 and 2 in increments of 0.05. Skews that are not in this sequence will be converted to their nearest value in the sequence. Not recommended to use with variables_range. Future versions will incorporate finer skews
- skew_range Numeric (length = 2). Randomly selects skews within in the range. Somewhat redundant with skew but more flexible. Compatible with variables_range

Value

Returns a list containing:

data Simulated data from the specified factor model

population_correlation

Population correlation matrix

parameters A list containing the parameters used to generate the data:

- factors Number of factors
- variables Variables on each factor
- loadings Loading matrix
- factor_correlations Correlations between factors
- categories Categories for each variable
- skew Skew for each variable

Author(s)

Maria Dolores Nieto Canaveras <mnietoca@nebrija.es>, Alexander P. Christensen <alexpaulchristensen@gmail.com>, Hudson Golino <hfg9s@virginia.edu>, Luis Eduardo Garrido <luisgarrido@pucmm.edu>

References

Garrido, L. E., Abad, F. J., & Ponsoda, V. (2011).

Performance of Velicer's minimum average partial factor retention method with categorical variables.

Educational and Psychological Measurement, 71(3), 551-570.

Golino, H., Shi, D., Christensen, A. P., Garrido, L. E., Nieto, M. D., Sadana, R., ... & Martinez-Molina, A. (2020). Investigating the performance of exploratory graph analysis and traditional techniques to identify the number of latent factors: A simulation and tutorial. *Psychological Methods*, 25(3), 292-320.

```
# Generate factor data
two_factor <- simulate_factors(</pre>
 factors = 2, \# factors = 2
 variables = 6, # variables per factor = 6
 loadings = 0.55, # loadings between = 0.45 to 0.65
 cross_loadings = 0.05, # cross-loadings N(0, 0.05)
 correlations = 0.30, # correlation between factors = 0.30
 sample_size = 1000 # number of cases = 1000
)
# Randomly vary loadings
two_factor_loadings <- simulate_factors(</pre>
 factors = 2, # factors = 2
 variables = 6, # variables per factor = 6
 loadings_range = c(0.30, 0.80), # loadings between = 0.30 to 0.80
 cross_loadings = 0.05, # cross-loadings N(0, 0.05)
 correlations = 0.30, # correlation between factors = 0.30
 sample_size = 1000 # number of cases = 1000
)
# Generate dichotomous data
two_factor_dichotomous <- simulate_factors(</pre>
 factors = 2, # factors = 2
 variables = 6, # variables per factor = 6
```

```
loadings = 0.55, # loadings between = 0.45 to 0.65
 cross_loadings = 0.05, # cross-loadings N(0, 0.05)
 correlations = 0.30, # correlation between factors = 0.30
 sample_size = 1000, # number of cases = 1000
 variable_categories = 2 # dichotomous data
)
# Generate dichotomous data with skew
two_factor_dichotomous_skew <- simulate_factors(</pre>
 factors = 2, # factors = 2
 variables = 6, # variables per factor = 6
 loadings = 0.55, # loadings between = 0.45 to 0.65
 cross_loadings = 0.05, # cross-loadings N(0, 0.05)
 correlations = 0.30, # correlation between factors = 0.30
 sample_size = 1000, # number of cases = 1000
 variable_categories = 2, # dichotomous data
 skew = 1 # all variables with have a skew of 1
)
# Generate dichotomous data with variable skew
two_factor_dichotomous_skew <- simulate_factors(</pre>
 factors = 2, # factors = 2
 variables = 6, # variables per factor = 6
 loadings = 0.55, # loadings between = 0.45 to 0.65
 cross_loadings = 0.05, # cross-loadings N(0, 0.05)
 correlations = 0.30, # correlation between factors = 0.30
 sample_size = 1000, # number of cases = 1000
 variable_categories = 2, # dichotomous data
 skew_range = c(-2, 2) # skew = -2 to 2 (increments of 0.05)
)
```

skew_tables Skew Tables

Description

Tables for skew based on the number of categories (2, 3, 4, 5, or 6) in the data

Usage

data(skew_tables)

Format

A list (length = 5)

Examples

data("skew_tables")

Index

bifactor, 11

categorize, 15 cfa, *20*, *21*

data_to_zipfs, 16

EGA, 22 EKC, 18, 22 ESEM, 20 estimate_dimensions, 22

fa.parallel, 22, 24
factor_forest, 22, 23
fitMeasures, 20
fspe, 22

latentFactoR, 11, 20
latentFactoR (latentFactoR-package), 2
latentFactoR-package, 2
lavaan, 20

NEST, 22, 25

obtain_zipfs_parameters, 26

rmvnorm, 29

simulate_factors, *3*, *5*, *7*–*9*, *12*, *16*, *17*, 28 skew_tables, 31