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label.switching-package

Algorithms for solving the label switching problem

Description

This package can be used to reorder MCMC outputs of parameters of mixture models (or more
general ones, like hidden Markov). The label switching phenomenon is a fundamental problem to
MCMC estimation of the parameters of such models. This package contains eight label switch-
ing solving algorithms: the default and iterative versions of ECR algorithm (Papastamoulis and
Iliopoulos, 2010, 2013, Rodriguez and Walker, 2014, Papastamoulis, 2014), the data-based algo-
rithm (Rodriguez and Walker, 2014), the Kullback-Leibler based algorithm of Stephens (2000), the
probabilistic relabelling algorithm of Sperrin et al (2010), the artificial identifiability constraints
method and the PRA algorithm (Marin et al, 2005, Marin and Robert, 2007). The user input de-
pends on each method. Each algorithm returns a list of permutations. For comparison purposes, the
user can also provide his/hers own set of permutations.

Details

Package: label.switching
Type: Package
Version: 1.8
Date: 2019-07-01
License: GPL-2

This is NOT a package to simulate MCMC samples from the posterior distribution of mixture
models. MCMC output and related information serves as input to the available methods. There are
eight functions that can be used to post-process the MCMC output:

Function Method Input
—————————- —————————- ———————————–
aic ordering constraints mcmc,constraint
dataBased data based x,K,z
ecr ECR (default) zpivot, z, K
ecr.iterative.1 ECR (iterative vs. 1) z, K
ecr.iterative.2 ECR (iterative vs. 2) z, K, p
pra PRA mcmc, pivot
stephens Stephens p
sjw Probabilistic mcmc, z, complete, x

Each function returns an m×K array of permutations, where m and K denote the MCMC sample
size and number of mixture components, respectively. Next, these permutations can be applied to
reorder the MCMC sample by applying the function permute.mcmc. The useR can call any of the
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above functions simultaneously using the main function of the package: label.switching.

Note

The most common method is to impose an identifiability constraint aic, however this approach has
been widely criticized in the literature. The methods ecr, ecr.iterative.1,ecr.iterative.2,
stephens, dataBased are solving the label switching problem using the function lpAssign of the
package lpSolve. This is an integer programming algorithm for the solution of the assignment
problem. Hence, these functions are computationally efficient even in cases where the number of
components is quite large. On the other hand, methods pra and sjw are not designed in this way,
so they are not suggested for large K.

Author(s)

Panagiotis Papastamoulis

Maintainer: <papapast@yahoo.gr>

References

Marin, J.M., Mengersen, K. and Robert, C.P. (2005). Bayesian modelling and inference on mixtures
of distributions. Handbook of Statistics (25), D. Dey and C.R. Rao (eds). Elsevier-Sciences.

Marin, J.M. and Robert, C.P. (2007). Bayesian Core: A Practical Approach to Computational
Bayesian Statistics, Springer-Verlag, New York.

Papastamoulis P. and Iliopoulos G. (2010). An artificial allocations based solution to the label
switching problem in Bayesian analysis of mixtures of distributions. Journal of Computational and
Graphical Statistics, 19: 313-331.

Papastamoulis P. and Iliopoulos G. (2013). On the convergence rate of Random Permutation Sam-
pler and ECR algorithm in missing data models. Methodology and Computing in Applied Proba-
bility, 15(2): 293-304.

Papastamoulis P. (2014). Handling the label switching problem in latent class models via the ECR
algorithm. Communications in Statistics, Simulation and Computation, 43(4): 913-927.

Papastamoulis P. (2016). label.switching: An R Package for Dealing with the Label Switching
Problem in MCMC Outputs. Journal of Statistical Software, Code Snippets, 69(1): 1-24.

Rodriguez C.E. and Walker S. (2014). Label Switching in Bayesian Mixture Models: Deterministic
relabeling strategies. Journal of Computational and Graphical Statistics. 23:1, 25-45

Sperrin M, Jaki T and Wit E (2010). Probabilistic relabelling strategies for the label switching
problem in Bayesian mixture models. Statistics and Computing, 20(3), 357-366.

Stephens, M. (2000). Dealing with label Switching in mixture models. Journal of the Royal Statis-
tical Society Series B, 62, 795-809.

See Also

label.switching
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aic Artificial Identifiability Constraints

Description

This function relabels the MCMC output by simply ordering a specific parameter. Let m, K and
J denote the number of simulated MCMC samples, number of mixture components and different
parameter types, respectively.

Usage

aic(mcmc.pars, constraint)

Arguments

mcmc.pars m×K × J array of simulated MCMC parameters.

constraint An integer between 1 and J corresponding to the parameter that will be used to
apply the Identifiabiality Constraint. In this case, the MCMC output is reordered
according to the constraint

mcmc.pars[i, 1, constraint] < . . . < mcmc.pars[i,K, constraint],

for all i = 1, . . . ,m. If constraint = "ALL", all J Identifiability Constraints
are applied.

Value

permutations an m×K array of permutations.

Author(s)

Panagiotis Papastamoulis

See Also

permute.mcmc, label.switching

Examples

#load a toy example: MCMC output consists of the random beta model
# applied to a normal mixture of \code{K=2} components. The number of
# observations is equal to \code{n=5}. The number of MCMC samples is
# equal to \code{m=300}. The 1000 generated MCMC samples are stored
#to array mcmc.pars.
data("mcmc_output")
mcmc.pars<-data_list$"mcmc.pars"

# mcmc parameters are stored to array \code{mcmc.pars}
# mcmc.pars[,,1]: simulated means of the two components
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# mcmc.pars[,,2]: simulated variances of the two components
# mcmc.pars[,,3]: simulated weights of the two components
# We will apply AIC by ordering the means
# which corresponds to value \code{constraint=1}
run<-aic(mcmc = mcmc.pars,constraint=1)
# apply the permutations returned by typing:
reordered.mcmc<-permute.mcmc(mcmc.pars,run$permutations)
# reordered.mcmc[,,1]: reordered means of the two components
# reordered.mcmc[,,2]: reordered variances of the components
# reordered.mcmc[,,3]: reordered weights

compare.clust Make all estimated clusters agree with a pivot allocation

Description

Given a pivot allocation vector, a set of simulated allocations and a set of permutations from dif-
ferent relabelling algorithms, this function relabels the permutations so that all methods maximize
their similarity with the pivot. This is helpful when comparing different different label switching
algorithms.

Usage

compare.clust(pivot.clust,perms,z,K)

Arguments

pivot.clust a pivot allocation vector of the n observations among the K clusters.
perms a list containing f permutation arrays, as returned by label.switching func-

tion.
z a set of simulated allocation arrays.
K number of mixture components

Value

similarity (f + 1)K × (f + 1) matrix containing the similarity coefficient of the resulting
clusters.

clusters f × n array of single best clusterings, relabelled in order to maximize their
similarity with pivot.clust.

permutations releaballed permutations.

Author(s)

Panagiotis Papastamoulis

See Also

label.switching
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dataBased Data-based labelling

Description

This function reorders the MCMC output according the data-based relabelling algorithm of Ro-
driguez and Walker (2014). The idea is to define a loss function which resembles a k-means type
diveging measure of cluster centers. After the cluster centers have been estimated, the algorithm
finds the optimal permutations that switch every simulated MCMC sample to them.

Usage

dataBased(x, K, z)

Arguments

x n-dimensional data vector/array.

K the number of mixture components.

z m × n integer array of the latent allocation vectors generated from an MCMC
algorithm.

Value

permutations m×K dimensional array of permutations

Author(s)

Panagiotis Papastamoulis

References

Rodriguez C.E. and Walker S. (2014). Label Switching in Bayesian Mixture Models: Deterministic
relabeling strategies. Journal of Computational and Graphical Statistics. 23:1, 25-45

See Also

permute.mcmc, label.switching

Examples

#load a toy example: MCMC output consists of the random beta model
# applied to a normal mixture of \code{K=2} components. The number of
# observations is equal to \code{n=5}. The number of MCMC samples is
# equal to \code{m=300}. The 1000 generated MCMC samples are stored
#to array mcmc.pars.
data("mcmc_output")
z<-data_list$"z"
K<-data_list$"K"



data_list 7

x<-data_list$"x"
mcmc.pars<-data_list$"mcmc.pars"
# mcmc parameters are stored to array \code{mcmc.pars}
# mcmc.pars[,,1]: simulated means of the two components
# mcmc.pars[,,2]: simulated variances of the two components
# mcmc.pars[,,3]: simulated weights of the two components
# Apply dataBased relabelling
run<-dataBased(x = x, K = K, z = z)
# apply the permutations returned by typing:
reordered.mcmc<-permute.mcmc(mcmc.pars,run$permutations)
# reordered.mcmc[,,1]: reordered means of the two components
# reordered.mcmc[,,2]: reordered variances of the components
# reordered.mcmc[,,3]: reordered weights

data_list Simulated MCMC sample and related information

Description

This is a (very) small MCMC sample corresponding to data of 5 observations from a mixture 2 nor-
mal distributions. The MCMC sample consists of 300 iterations. It is stored to data_list$mcmc.pars.
data_list$mcmc.pars[,,1] corresponds to means, data_list$mcmc.pars[,,2] corresponds to
variances and data_list$mcmc.pars[,,3] corresponds to weights.

Usage

data_list

Format

A list containing simulated MCMC sample and all information required for the relabelling algo-
rithms.

ecr ECR algorithm (default version)

Description

This function applies the standard version of Equivalence Classes Representatives (ECR) algorithm
(Papastamoulis and Iliopoulos, 2010). The set of all allocation variables is partitioned into equiva-
lence classes and exactly one representative is chosen from each class. The practical implementa-
tion of this idea is to reorder the output so that all simulated allocation vectors (z) are as similar as
possible with a pivot allocation vector (zpivot).

Usage

ecr(zpivot, z, K)
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Arguments

zpivot n-dimensional integer vector (z1, . . . , zn) with zi ∈ {1, . . . ,K}, i = 1, . . . , n.

z m × n integer array of the latent allocation vectors generated from an MCMC
algorithm.

K the number of mixture components (at least equal to 2).

Details

zpivot should be chosen as an allocation vector that corresponds to a high-posterior density area,
or in general as an allocation that is considered as a good allocation of the observations among
the K components. The useR has to specify this pivot allocation vector as a good allocation of
the observations among the mixture components. Some typical choices are the allocations that
correspond to the complete or non-complete MAP/ML estimates.

Value

permutations m×K dimensional array of permutations

Author(s)

Panagiotis Papastamoulis

References

Papastamoulis P. and Iliopoulos G. (2010). An artificial allocations based solution to the label
switching problem in Bayesian analysis of mixtures of distributions. Journal of Computational and
Graphical Statistics, 19: 313-331.

See Also

permute.mcmc, label.switching, ecr.iterative.1, ecr.iterative.2

Examples

#load a toy example: MCMC output consists of the random beta model
# applied to a normal mixture of \code{K=2} components. The
# number of observations is equal to \code{n=5}. The number
# of MCMC samples is equal to \code{m=300}. The 300
# simulated allocations are stored to array \code{z}. The
# complete MAP estimate corresponds to iteration \code{mapindex}.
data("mcmc_output")
z<-data_list$"z"
K<-data_list$"K"
mapindex<-data_list$"mapindex"

# mcmc parameters are stored to array \code{mcmc.pars}
mcmc.pars<-data_list$"mcmc.pars"
# mcmc.pars[,,1]: simulated means of the two components
# mcmc.pars[,,2]: simulated variances
# mcmc.pars[,,3]: simulated weights
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run<-ecr(zpivot = z[mapindex,],z = z, K = K)
# apply the permutations returned by typing:
reordered.mcmc<-permute.mcmc(mcmc.pars,run$permutations)
# reordered.mcmc[,,1]: reordered means of the two components
# reordered.mcmc[,,2]: reordered variances
# reordered.mcmc[,,3]: reordered weights

ecr.iterative.1 ECR algorithm (iterative version 1)

Description

This function applies the first iterative version of Equivalence Classes Representatives (ECR) algo-
rithm (Papastamoulis and Iliopoulos, 2010, Rodriguez and Walker, 2012). The set of all allocation
variables is partitioned into equivalence classes and exactly one representative is chosen from each
class. The difference with the default version of ECR algorithm is that no pivot is required and the
method is iterative, until a fixed pivot has been found.

Usage

ecr.iterative.1(z, K, opt_init, threshold, maxiter)

Arguments

z m × n integer array of the latent allocation vectors generated from an MCMC
algorithm.

K the number of mixture components (at least equal to 2).

opt_init An (optional) m × K array of permutations to initialize the algorithm. The
identity permutation is used if it is not specified.

threshold An (optional) positive number controlling the convergence criterion. Default
value: 1e-6.

maxiter An (optional) integer controlling the max number of iterations. Default value:
100.

Value

permutations m×K dimensional array of permutations

iterations integer denoting the number of iterations until convergence

status returns the exit status

Author(s)

Panagiotis Papastamoulis
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References

Papastamoulis P. and Iliopoulos G. (2010). An artificial allocations based solution to the label
switching problem in Bayesian analysis of mixtures of distributions. Journal of Computational and
Graphical Statistics, 19: 313-331.

Rodriguez C.E. and Walker S. (2014). Label Switching in Bayesian Mixture Models: Deterministic
relabeling strategies. Journal of Computational and Graphical Statistics. 23:1, 25-45

See Also

permute.mcmc, label.switching, ecr, ecr.iterative.2

Examples

#load a toy example: MCMC output consists of the random beta model
# applied to a normal mixture of \code{K=2} components. The number of
# observations is equal to \code{n=5}. The number of MCMC samples is
# equal to \code{m=1000}. The 300 simulated allocations are stored to
# array \code{z}.
data("mcmc_output")
# mcmc parameters are stored to array \code{mcmc.pars}
mcmc.pars<-data_list$"mcmc.pars"
z<-data_list$"z"
K<-data_list$"K"
# mcmc.pars[,,1]: simulated means of the two components
# mcmc.pars[,,2]: simulated variances
# mcmc.pars[,,3]: simulated weights
# the relabelling algorithm will run with the default initialization
# (no opt_init is specified)
run<-ecr.iterative.1(z = z, K = K)
# apply the permutations returned by typing:
reordered.mcmc<-permute.mcmc(mcmc.pars,run$permutations)
# reordered.mcmc[,,1]: reordered means of the two components
# reordered.mcmc[,,2]: reordered variances
# reordered.mcmc[,,3]: reordered weights

ecr.iterative.2 ECR algorithm (iterative version 2)

Description

This function applies the second iterative version of Equivalence Classes Representatives (ECR)
algorithm (Papastamoulis and Iliopoulos, 2010, Rodriguez and Walker, 2012). The set of all alloca-
tion variables is partitioned into equivalence classes and exactly one representative is chosen from
each class. In this version the m × n × K of allocation probabilities should be given as input as
well.

Usage

ecr.iterative.2(z, K, p, threshold, maxiter)
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Arguments

z m × n integer array of the latent allocation vectors generated from an MCMC
algorithm.

K the number of mixture components (at least equal to 2).

p m × n × K dimensional array of allocation probabilities of the n observa-
tions among the K mixture components, for each iteration t = 1, . . . ,m of
the MCMC algorithm.

threshold An (optional) positive number controlling the convergence criterion. Default
value: 1e-6.

maxiter An (optional) integer controlling the max number of iterations. Default value:
100.

Details

For a given MCMC iteration t = 1, . . . ,m, let w(t)
k and θ(t)k , k = 1, . . . ,K denote the simulated

mixture weights and component specific parameters respectively. Then, the (t, i, k) element of p
corresponds to the conditional probability that observation i = 1, . . . , n belongs to component k
and is proportional to ptik ∝ w

(t)
k f(xi|θ(t)k ), k = 1, . . . ,K, where f(xi|θk) denotes the density of

component k. This means that:

ptik =
w

(t)
k f(xi|θ(t)k )

w
(t)
1 f(xi|θ(t)1 ) + . . .+ w

(t)
K f(xi|θ(t)K )

.

In case of hidden Markov models, the probabilities wk should be replaced with the proper left
(normalized) eigenvector of the state-transition matrix.

Value

permutations m×K dimensional array of permutations

iterations integer denoting the number of iterations until convergence

status returns the exit status

Author(s)

Panagiotis Papastamoulis

References

Papastamoulis P. and Iliopoulos G. (2010). An artificial allocations based solution to the label
switching problem in Bayesian analysis of mixtures of distributions. Journal of Computational and
Graphical Statistics, 19: 313-331.

Rodriguez C.E. and Walker S. (2014). Label Switching in Bayesian Mixture Models: Deterministic
relabeling strategies. Journal of Computational and Graphical Statistics. 23:1, 25-45

See Also

permute.mcmc, label.switching, ecr, ecr.iterative.1, stephens
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Examples

#load a toy example: MCMC output consists of the random beta model
# applied to a normal mixture of \code{K=2} components. The number of
# observations is equal to \code{n=5}. The number of MCMC samples is
# equal to \code{m=1000}. The 300 simulated allocations are stored to
# array \code{z}. The matrix of allocation probabilities is stored to
# array \code{p}.
data("mcmc_output")
z<-data_list$"z"
K<-data_list$"K"
p<-data_list$"p"
# mcmc parameters are stored to array \code{mcmc.pars}
mcmc.pars<-data_list$"mcmc.pars"
# mcmc.pars[,,1]: simulated means of the two components
# mcmc.pars[,,2]: simulated variances
# mcmc.pars[,,3]: simulated weights
# the relabelling algorithm will run with the default initialization
# (no opt_init is specified)
run<-ecr.iterative.2(z = z, K = 2, p = p)
# apply the permutations returned by typing:
reordered.mcmc<-permute.mcmc(mcmc.pars,run$permutations)
# reordered.mcmc[,,1]: reordered means of the two mixture components
# reordered.mcmc[,,2]: reordered variances of the two components
# reordered.mcmc[,,3]: reordered weights of the two components

label.switching Main calling function

Description

This is the main function of the package. It is used to reorder a simulated MCMC sample of the
parameters of a mixture (or more general a hidden Markov model) according to eight label switching
solving methods: ECR algorithm (default version), ECR algorithm (two iterative versions), PRA
algorithm, Stephens’ algorithm, Artificial Identifiability Constraint (AIC), Data-Based relabelling
and a probabilistic relabelling algorithm (SJW). The input depends on the type of the label switching
method. The output contains a list with the permutation returned by each method, the corresponding
single best clusterings and the CPU time demanded for each method. In what follows: m denotes
the number of MCMC iterations, n denotes the sample size of the observed data, K denotes the
number of mixture components and J the number of different types of parameters of the model.

Usage

label.switching(method, zpivot, z, K, prapivot, p, complete,
mcmc, sjwinit, data, constraint,
groundTruth, thrECR, thrSTE, thrSJW,
maxECR, maxSTE, maxSJW, userPerm)
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Arguments

method any non-empty subset of c("ECR","ECR-ITERATIVE-1","PRA","ECR-ITERATIVE-
2","STEPHENS","SJW","AIC","DATA-BASED") indicating the desired label-
switching solving method. Also available is the option "USER-PERM" which
corresponds to a user-defined set of permutations userPerm.

zpivot d×n-dimensional array of pivot allocation vectors, where d denotes the number
of pivots. This is demanded by the ecr method. The method will be applied d
times.

z m × n integer array of the latent allocation vectors generated from an MCMC
algorithm.

K the number of mixture components. This is demanded by the ecr, ecr.iterative.1
and ecr.iterative.2 methods.

prapivot K × J array containing the parameter that will be used as a pivot by the pra
method.

p m × n × K dimensional array of allocation probabilities of the n observa-
tions among the K mixture components, for each iteration t = 1, . . . ,m of the
MCMC algorithm. This is demanded by the ecr.iterative.2 and stephens
methods.

complete function that returns the complete log-likelihood of the mixture model. De-
manded by sjw method.

mcmc m × K × J array of simulated MCMC parameters. Needed by sjw and pra
methods.

sjwinit An index pointing at the MCMC iteration whose parameters will initialize the
sjw algorithm (optional).

data n-dimensional data vector/array. Needed by the sjw and dataBased algorithms.

constraint An (optional) integer between 1 and J corresponding to the parameter that will
be used to apply the Identifiabiality Constraint. In this casethe mcmc out-
put is reordered according to the constraint mcmc[i, 1, constraint] < . . . <
mcmc[i,K, constraint]. If constraint = "ALL", all J Identifiability Con-
straints are applied. Default value: 1.

groundTruth Optional integer vector of n allocations, which are considered as the ’ground
truth’ allocations of the n observations among the K mixture components. The
output of all methods will be relabelled in a way that the resulting single best
clusterings maximize their similarity with the ground truth. This option is very
useful in simulation studies or in any other case that the cluster labels are known
in order to perform comparisons between methods.

thrECR An (optional) positive number controlling the convergence criterion for ecr.iterative.1
and ecr.iterative.2. Default value: 1e-6.

thrSTE An (optional) positive number controlling the convergence criterion for stephens.
Default value: 1e-6.

thrSJW An (optional) positive number controlling the convergence criterion for sjw.
Default value: 1e-6.

maxECR An (optional) integer controlling the max number of iterations for ecr.iterative.1
and ecr.iterative.2. Default value: 100.



14 label.switching

maxSTE An (optional) integer controlling the max number of iterations for stephens.
Default value: 100.

maxSJW An (optional) integer controlling the max number of iterations for sjw. Default
value: 100.

userPerm An (optional) list with user-defined permutations. It is required only if "USER-
PERM" has been chosen in method. In this case, userPerm[[i]] is an m×K
array of permutations for all i = 1, . . . , S, where S denotes the number of
permutation arrays. This is useful in case that the user wants to compare his/hers
own relabelling method with the available ones.

Value

permutations an m×K array of permutations per method.

clusters an n dimensional vector of best clustering of the the observations for each
method.

timings CPU time needed for each relabelling method.

similarity correlation matrix between the label switching solving methods in terms of their
matching best-clustering allocations.

Note

If the ground truth is not given, all methods are reordered using the estimated single best clustering
of the first provided method. The methods sjw and pra are not suggested for large number of
components. Also note that sjw might be quite slow even for small number of components. In this
case try adjusting thrSJW or maxSJW to smaller values the default ones.

Author(s)

Panagiotis Papastamoulis

References

Papastamoulis P. (2016). label.switching: An R Package for Dealing with the Label Switching
Problem in MCMC Outputs. Journal of Statistical Software, Code Snippets, 69(1): 1-24.

See Also

ecr, ecr.iterative.1, ecr.iterative.2, stephens, pra, sjw, dataBased, aic

Examples

# We will apply the following methods:
# ECR, ECR-ITERATIVE-1, PRA, AIC and DATA-BASED.
# default ECR will use two different pivots.

#load a toy example: MCMC output consists of the random beta model
# applied to a normal mixture of \code{K=2} components. The number of
# observations is equal to \code{n=5}. The number of MCMC samples is
# equal to \code{m=300}. simulated allocations are stored to array \code{z}.
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data("mcmc_output")
mcmc.pars<-data_list$"mcmc.pars"
# mcmc parameters are stored to array \code{mcmc.pars}
# mcmc.pars[,,1]: simulated means of the two components
# mcmc.pars[,,2]: simulated variances
# mcmc.pars[,,3]: simulated weights
# We will use two pivots for default ECR algorithm:
# the first one corresponds to iteration \code{mapindex} (complete MAP)
# the second one corresponds to iteration \code{mapindex.non} (observed MAP)

z<-data_list$"z"
K<-data_list$"K"
x<-data_list$"x"
mapindex<-data_list$"mapindex"
mapindex.non<-data_list$"mapindex.non"
# The PRA method will use as pivot the iteration that corresponds to
# the observed MAP estimate (mapindex).

#Apply (a subset of the available) methods by typing:

ls<-label.switching(method=c("ECR","ECR-ITERATIVE-1","PRA", "AIC","DATA-BASED"),
zpivot=z[c(mapindex,mapindex.non),],z = z,K = K, data = x,
prapivot = mcmc.pars[mapindex,,],mcmc = mcmc.pars)

#plot the raw and reordered means of the K=2 normal mixture components for each method
par(mfrow = c(2,4))
#raw MCMC output for the means (with label switching)
matplot(mcmc.pars[,,1],type="l",
xlab="iteration",main="Raw MCMC output",ylab = "means")
# Reordered outputs
matplot(permute.mcmc(mcmc.pars,ls$permutations$"ECR-1")$output[,,1],type="l",
xlab="iteration",main="ECR (1st pivot)",ylab = "means")
matplot(permute.mcmc(mcmc.pars,ls$permutations$"ECR-2")$output[,,1],type="l",
xlab="iteration",main="ECR (2nd pivot)",ylab = "means")
matplot(permute.mcmc(mcmc.pars,ls$permutations$"ECR-ITERATIVE-1")$output[,,1],
type="l",xlab="iteration",main="ECR-iterative-1",ylab = "means")
matplot(permute.mcmc(mcmc.pars,ls$permutations$"PRA")$output[,,1],type="l",
xlab="iteration",main="PRA",ylab = "means")
matplot(permute.mcmc(mcmc.pars,ls$permutations$"AIC")$output[,,1],type="l",
xlab="iteration",main="AIC",ylab = "means")
matplot(permute.mcmc(mcmc.pars,ls$permutations$"DATA-BASED")$output[,,1],type="l",
xlab="iteration",main="DATA-BASED",ylab = "means")

#######################################################
# if the useR wants to apply the STEPHENS and SJW algorithm as well:
# The STEPHENS method requires the classification probabilities
p<-data_list$"p"

# The SJW method needs to define the complete log-likelihood of the
# model. For the univariate normal mixture, this is done as follows:

complete.normal.loglikelihood<-function(x,z,pars){
#x: denotes the n data points
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#z: denotes an allocation vector (size=n)
#pars: K\times 3 vector of means,variance, weights
# pars[k,1]: corresponds to the mean of component k
# pars[k,2]: corresponds to the variance of component k
# pars[k,3]: corresponds to the weight of component k
g <- dim(pars)[1]
n <- length(x)
logl<- rep(0, n)

logpi <- log(pars[,3])
mean <- pars[,1]
sigma <- sqrt(pars[,2])
logl<-logpi[z] + dnorm(x,mean = mean[z],sd = sigma[z],log = T)
return(sum(logl))
}

# and then run (after removing all #):
#ls<-label.switching(method=c("ECR","ECR-ITERATIVE-1","ECR-ITERATIVE-2",
#"PRA","STEPHENS","SJW","AIC","DATA-BASED"),
#zpivot=z[c(mapindex,mapindex.non),],z = z,
#K = K,prapivot = mcmc.pars[mapindex,,],p=p,
#complete = complete.normal.loglikelihood,mcmc.pars,
#data = x)

lamb Fetal lamb dataset

Description

240 body movement measurements of a fetal lamb at consecutive 5 second intervals.

Usage

lamb

Format

Count data.

References

Leroux B, Putterman M (1992). Maximum Penalized Likelihood estimation for independent and
Markov-dependent Mixture models.Biometrics, 48, 545–558.
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permute.mcmc Reorder MCMC samples

Description

This function applies the permutation returned by any relabelling algorithm to a simulated MCMC
output.

Usage

permute.mcmc(mcmc, permutations)

Arguments

mcmc m×K × J array of simulated MCMC parameters.

permutations m×K dimensional array of permutations.

Value

output m×K × J array of reordered MCMC parameters.

Author(s)

Panagiotis Papastamoulis

See Also

label.switching, ecr, ecr.iterative.1, ecr.iterative.2,stephens,pra, sjw, aic, dataBased

Examples

#load MCMC simulated data
data("mcmc_output")
mcmc.pars<-data_list$"mcmc.pars"
z<-data_list$"z"
K<-data_list$"K"

#apply \code{ecr.iterative.1} algorithm
run<-ecr.iterative.1(z = z, K = 2)
#reorder the MCMC output according to this method:
reordered.mcmc<-permute.mcmc(mcmc.pars,run$permutations)
# reordered.mcmc[,,1]: reordered means of the two components
# reordered.mcmc[,,2]: reordered variances of the components
# reordered.mcmc[,,3]: reordered weights of the two components
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pra PRA algorithm

Description

This function reorders the MCMC output using the geometrically-based Pivotal Reordering Al-
gorithm (PRA) (Marin et al, 2005, Marin and Robert, 2007). The method requires as input the
generated MCMC sample and a pivot parameter vector. The user should be careful in order the
pivot elements have the same parameters with the generated MCMC output. The simulated MCMC
sample should be provided by the useR as a m ×K × J dimensional array, where m denotes the
number of MCMC samples,K denotes the number of mixture components and J corresponds to the
number of different parameter types of the model. The pivot should correspond to a high-posterior
density point.

Usage

pra(mcmc.pars, pivot)

Arguments

mcmc.pars m×K × J array of simulated MCMC parameters.

pivot K × J array containing the parameter that will be used as a pivot.

Details

The positive integer J denotes the number of different parameter types of the model. For example,
in a univariate normal mixture model there are J = 3 different types: means, variances and weights.
In a Poisson mixture there are J = 2 types: means and weights.

Value

permutations m×K dimensional array of permutations

Author(s)

Panagiotis Papastamoulis

References

Marin, J.M., Mengersen, K. and Robert, C.P. (2005). Bayesian modelling and inference on mixtures
of distributions. Handbook of Statistics (25), D. Dey and C.R. Rao (eds). Elsevier-Sciences.

Marin, J.M. and Robert, C.P. (2007). Bayesian Core: A Practical Approach to Computational
Bayesian Statistics, Springer-Verlag, New York.

See Also

permute.mcmc, label.switching
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Examples

#load a toy example: MCMC output consists of the random beta model
# applied to a normal mixture of \code{K=2} components. The number of
# observations is equal to \code{n=5}. The number of MCMC samples is
# equal to \code{m=300}. The 1000 generated MCMC samples are stored
#to array mcmc.pars.
data("mcmc_output")
mcmc.pars<-data_list$"mcmc.pars"
mapindex<-data_list$"mapindex"

# mcmc parameters are stored to array \code{mcmc.pars}
# mcmc.pars[,,1]: simulated means of the two components
# mcmc.pars[,,2]: simulated variances of the two components
# mcmc.pars[,,3]: simulated weights of the two components
# We will apply PRA using as pivot the complete MAP estimate
# which corresponds to \code{mcmc.pars[mapindex,,]}
run<-pra(mcmc = mcmc.pars, pivot = mcmc.pars[mapindex,,])
# apply the permutations returned by typing:
reordered.mcmc<-permute.mcmc(mcmc.pars,run$permutations)
# reordered.mcmc[,,1]: reordered means of the two components
# reordered.mcmc[,,2]: reordered variances of the components
# reordered.mcmc[,,3]: reordered weights

sjw Probabilistic relabelling algorithm

Description

Function to apply the probabilistic relabelling strategy of Sperrin et al (2010). The concept here is
to treat the MCMC output as observed data, while the unknown permutations need to be applied to
each mcmc data point is treated as unobserved data with associated uncertainty. Then, an EM-type
algorithm estimates the weights for each permutation per MCMC data point.

Usage

sjw(mcmc.pars, z, complete, x, init, threshold, maxiter)

Arguments

mcmc.pars m×K × J array of simulated MCMC parameters.

z m × n integer array of the latent allocation vectors generated from an MCMC
algorithm.

complete function that returns the complete log-likelihood of the mixture model.

x n-dimensional data vector/array

init An (optional) index pointing at the MCMC iteration whose parameters will ini-
tialize the algorithm. If it is less or equal to zero, the overall MCMC mean will
be used for initialization.
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threshold An (optional) positive number controlling the convergence criterion. Default
value: 1e-6.

maxiter An (optional) integer controlling the max number of iterations. Default value:
100.

Details

Let x = (x1, . . . , xn) denote the observed data andw,θ denote the mixture weights and component
specific parameters, respectively. Assume that K is the the number of components. Then,

L(w,θ|x) =
n∏

i=1

K∑
k=1

wkfk(xi|θk),

i = 1, . . . , n is the observed likelihood of the mixture model. Given the latent allocation variables
z = (z1, . . . , zn), the complete likelihood of the model is defined as:

Lc(w,θ|x, z) =
n∏

i=1

wzifzi(xi|θzi).

Then, complete corresponds to the log of Lc and should take as input the following: a vector of n
allocations, the observed data and the parameters of the model as aK×J array where J corresponds
to the different parameter types of the model. See the example for an implementation at a univariate
normal mixture.

Value

permutations m×K dimensional array of permutations

iterations integer denoting the number of iterations until convergence

status returns the exit status

Note

This algorithm is not suggested for large number of components due to the computational overload:
K! permutation probabilities are computed at each MCMC iteration. Moreover, the useR should
carefully provide the complete log-likelihood function of the model as input to the algorithm and
this makes its use quite complicated.

Author(s)

Panagiotis Papastamoulis

References

Sperrin M, Jaki T and Wit E (2010). Probabilistic relabelling strategies for the label switching
problem in Bayesian mixture models. Statistics and Computing, 20(3), 357-366.

See Also

permute.mcmc, label.switching
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Examples

#load a toy example: MCMC output consists of the random beta model
# applied to a normal mixture of \code{K=2} components. The number of
# observations is equal to \code{n=5}. The number of MCMC samples is
# equal to \code{m=300}.
data("mcmc_output")
mcmc.pars<-data_list$"mcmc.pars"
z<-data_list$"z"
K<-data_list$"K"
x<-data_list$"x"

# mcmc parameters are stored to array \code{mcmc.pars}
# mcmc.pars[,,1]: simulated means of the two components
# mcmc.pars[,,2]: simulated variances
# mcmc.pars[,,3]: simulated weights
# The number of different parameters for the univariate
# normal mixture is equal to J = 3: means, variances
# and weights. The generated allocations variables are
# stored to \code{z}. The observed data is stored to \code{x}.
# The complete data log-likelihood is defined as follows:
complete.normal.loglikelihood<-function(x,z,pars){
# x: data (size = n)
# z: allocation vector (size = n)
# pars: K\times J vector of normal mixture parameters:
# pars[k,1] = mean of the k-normal component
# pars[k,2] = variance of the k-normal component
# pars[k,3] = weight of the k-normal component
# k = 1,...,K
g <- dim(pars)[1] #K (number of mixture components)
n <- length(x) #this denotes the sample size
logl<- rep(0, n)

logpi <- log(pars[,3])
mean <- pars[,1]
sigma <- sqrt(pars[,2])
logl<-logpi[z] + dnorm(x,mean = mean[z],sd = sigma[z],log = TRUE)
return(sum(logl))
}

#run the algorithm:
run<-sjw(mcmc = mcmc.pars,z = z,
complete = complete.normal.loglikelihood,x = x, init=0,threshold = 1e-4)
# apply the permutations returned by typing:
reordered.mcmc<-permute.mcmc(mcmc.pars,run$permutations)
# reordered.mcmc[,,1]: reordered means of the two components
# reordered.mcmc[,,2]: reordered variances
# reordered.mcmc[,,3]: reordered weights

stephens Stephens’ algorithm
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Description

Stephens (2000) developed a relabelling algorithm that makes the permuted sample points to agree
as much as possible on the n×K matrix of classification probabilities, using the Kullback-Leibler
divergence. The algorithm’s input is the matrix of allocation probabilities for each MCMC iteration.

Usage

stephens(p, threshold, maxiter)

Arguments

p m × n × K dimensional array of allocation probabilities of the n observa-
tions among the K mixture components, for each iteration t = 1, . . . ,m of
the MCMC algorithm.

threshold An (optional) positive number controlling the convergence criterion. Default
value: 1e-6.

maxiter An (optional) integer controlling the max number of iterations. Default value:
100.

Details

For a given MCMC iteration t = 1, . . . ,m, let w(t)
k and θ(t)k , k = 1, . . . ,K denote the simulated

mixture weights and component specific parameters respectively. Then, the (t, i, k) element of p
corresponds to the conditional probability that observation i = 1, . . . , n belongs to component k
and is proportional to ptik ∝ w

(t)
k f(xi|θ(t)k ), k = 1, . . . ,K, where f(xi|θk) denotes the density of

component k. This means that:

ptik =
w

(t)
k f(xi|θ(t)k )

w
(t)
1 f(xi|θ(t)1 ) + . . .+ w

(t)
K f(xi|θ(t)K )

.

In case of hidden Markov models, the probabilities wk should be replaced with the proper left
(normalized) eigenvector of the state-transition matrix.

Value

permutations m×K dimensional array of permutations

iterations integer denoting the number of iterations until convergence

status returns the exit status

Author(s)

Panagiotis Papastamoulis

References

Stephens, M. (2000). Dealing with label Switching in mixture models. Journal of the Royal Statis-
tical Society Series B, 62, 795-809.
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See Also

permute.mcmc, label.switching

Examples

#load a toy example: MCMC output consists of the random beta model
# applied to a normal mixture of \code{K=2} components. The number
# of observations is equal to \code{n=5}. The number of MCMC samples
# is equal to \code{m=300}. The matrix of allocation probabilities
# is stored to matrix \code{p}.
data("mcmc_output")
# mcmc parameters are stored to array \code{mcmc.pars}
mcmc.pars<-data_list$"mcmc.pars"
# mcmc.pars[,,1]: simulated means of the two components
# mcmc.pars[,,2]: simulated variances
# mcmc.pars[,,3]: simulated weights
# the computed allocation matrix is p
p<-data_list$"p"
run<-stephens(p)
# apply the permutations returned by typing:
reordered.mcmc<-permute.mcmc(mcmc.pars,run$permutations)
# reordered.mcmc[,,1]: reordered means of the components
# reordered.mcmc[,,2]: reordered variances
# reordered.mcmc[,,3]: reordered weights
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