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aGP Localized Approximate GP Regression For Many Predictive Locations
Description
Facilitates localized Gaussian process inference and prediction at a large set of predictive locations,
by (essentially) calling 1aGP at each location, and returning the moments of the predictive equations,
and indices into the design, thus obtained
Usage

aGP(X, Z, XX, start = 6, end = 50, d = NULL, g = 1/10000,

aGP.

aGP.

method = c("alc"”, "alcray”, "mspe”, "nn", "fish"), Xi.ret = TRUE,
close = min((1000+end)*if (method[1] == "alcray") 10 else 1, nrow(X)),
numrays = ncol(X), num.gpus = @, gpu.threads = num.gpus,

omp.threads = if (num.gpus > @) 0 else 1,

nn.gpu = if (num.gpus > @) nrow(XX) else @, verb = 1)

parallel(cls, XX, chunks = length(cls), X, Z, start = 6, end = 50,

d = NULL, g = 1/10000, method = c("alc", "alcray”, "mspe”, "nn", "fish"),
Xi.ret = TRUE,

close = min((1000+end)*if (method[1] == "alcray”) 10 else 1, nrow(X)),
numrays = ncol(X), num.gpus = @, gpu.threads = num.gpus,

omp.threads = if (num.gpus > @) 0 else 1,

nn.gpu = if (num.gpus > @) nrow(XX) else @, verb = 1)

R(X, Z, XX, start = 6, end = 50, d = NULL, g = 1/10000,

method = c("alc"”, "alcray”, "mspe”, "nn", "fish"), Xi.ret = TRUE,
close = min((1000+end) *if(method[1] == "alcray"”) 10 else 1, nrow(X)),
numrays = ncol(X), laGP=1aGP.R, verb = 1)

aGPsep(X, Z, XX, start = 6, end = 50, d = NULL, g = 1/10000,

method = c("alc”, "alcray”, "nn"), Xi.ret = TRUE,
close = min((1000+end)*if (method[1] == "alcray") 10 else 1, nrow(X)),
numrays = ncol(X), omp.threads = 1, verb = 1)

aGPsep.R(X, Z, XX, start = 6, end = 50, d = NULL, g = 1/10000,

aGP

method = c("alc”, "alcray”, "nn"), Xi.ret = TRUE,
close = min((1000+end)*if (method[1] == "alcray") 10 else 1, nrow(X)),
numrays = ncol(X), laGPsep=laGPsep.R, verb = 1)

.seq(X, Z, XX, d, methods=rep(”alc", 2), M=NULL, ncalib=0, ...)
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Arguments

X

XX

start

end

method

methods

Xi.ret

amatrix or data.frame containing the full (large) design matrix of input loca-
tions

a vector of responses/dependent values with length(Z) = nrow(X)

amatrix or data.frame of out-of-sample predictive locations with ncol (XX)
=ncol(X); aGP calls 1aGP for each row of XX as a value of Xref, independently

the number of Nearest Neighbor (NN) locations to start each independent call to
1aGP with; must have start >=6

the total size of the local designs; start < end

a prior or initial setting for the lengthscale parameter in a Gaussian correlation
function; a (default) NULL value triggers a sensible regularization (prior) and
initial setting to be generated via darg; a scalar specifies an initial value, causing
darg to only generate the prior; otherwise, a list or partial list matching the
output of darg can be used to specify a custom prior. In the case of a partial
list, only the missing entries will be generated. Note that a default/generated
list specifies MLE/MAP inference for this parameter. When specifying initial
values, a vector of length nrow(XX) can be provided, giving a different initial
value for each predictive location. With aGPsep, the starting values can be an
ncol (X)-by-nrow(XX) matrix or an ncol (X) vector

a prior or initial setting for the nugget parameter; a NULL value causes a sensible
regularization (prior) and initial setting to be generated via garg; a scalar (de-
fault g = 1/10000) specifies an initial value, causing garg to only generate the
prior; otherwise, a list or partial list matching the output of garg can be used
to specify a custom prior. In the case of a partial list, only the missing entries
will be generated. Note that a default/generated list specifies no inference for
this parameter; i.e., it is fixed at its starting or default value, which may be ap-
propriate for emulating deterministic computer code output. In such situations
a value much smaller than the default may work even better (i.e., yield better
out-of-sample predictive performance). The default was chosen conservatively.
When specifying non-default initial values, a vector of length nrow(XX) can be
provided, giving a different initial value for each predictive location

specifies the method by which end-start candidates from X are chosen in or-
der to predict at each row XX independently. In brief, ALC ("alc”, default)
minimizes predictive variance; ALCRAY ("alcray") executes a thrifty search
focused on rays emanating from the reference location(s); MSPE ("mspe"”) aug-
ments ALC with extra derivative information to minimize mean-squared predic-
tion error (requires extra computation); NN ("nn") uses nearest neighbor; and
("fish") uses the expected Fisher information - essentially 1/G from Gramacy
& Apley (2015) - which is global heuristic, i.e., not localized to each row of XX

for aGP.seq this is a vectorized method argument, containing a list of valid
methods to perform in sequence. When methods = FALSE a call to M is invoked
instead; see below for more details

a scalar logical indicating whether or not a matrix of indices into X, describ-
ing the chosen sub-design for each of the predictive locations in XX, should be
returned on output
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numrays
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laGPsep

num. gpus

gpu.threads

omp. threads

nn.gpu

verb

cls

chunks
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a non-negative integer end < close <= nrow(X) specifying the number of NNs
(to each row XX) in X to consider when searching for the sub-design; close = @
specifies all. For method="alcray" this specifies the scope used to snap ray-
based solutions back to elements of X, otherwise there are no restrictions on that
search

a scalar integer indicating the number of rays for each greedy search; only rel-
evant when method="alcray"”. More rays leads to a more thorough, but more
computationally intensive search

applicable only to the R-version aGP.R, this is a function providing the local
design implementation to be used. Either 1aGP or 1aGP.R can be provided, or a
bespoke routine providing similar outputs

applicable only to the R-version aGPsep.R, this is a function providing the lo-
cal design implementation to be used. Either 1aGPsep or laGPsep.R can be
provided, or a bespoke routine providing similar outputs

applicable only to the C-version aGP, this is a scalar positive integer indicating
the number of GPUs available for calculating ALC (see alcGP); the package
must be compiled for CUDA support; see README/INSTALL in the package
source for more details

applicable only to the C-version aGP; this is a scalar positive integer indicat-
ing the number of SMP (i.e., CPU) threads queuing ALC jobs on a GPU; the
package must be compiled for CUDA support. If gpu.threads >= 2 then the
package must also be compiled for OpenMP support; see README/INSTALL
in the package source for more details. We recommend setting gpu. threads to
up to two-times the sum of the number of GPU devices and CPU cores. Only
method = "alc" is supported when using CUDA. If the sum of omp.threads
and gpu. threads is bigger than the max allowed by your system, then that max
is used instead (giving gpu. threads preference)

applicable only to the C-version aGP; this is a scalar positive integer indicating
the number of threads to use for SMP parallel processing; the package must
be compiled for OpenMP support; see README/INSTALL in the package
source for more details. For most Intel-based machines, we recommend set-
ting omp. threads to up to two-times the number of hyperthreaded cores. When
using GPUs (num.gpu > @), a good default is omp. threads=0, otherwise load
balancing could be required; see nn. gpu below. If the sum of omp. threads and
gpu. threads is bigger than the max allowed by your system, then that max is
used instead (giving gpu. threads preference)

a scalar non-negative integer between @ and nrow(XX) indicating the number of
predictive locations utilizing GPU ALC calculations. Note this argument is only
useful when both gpu. threads and omp. threads are non-zero, whereby it acts
as a load balancing mechanism

a non-negative integer specifying the verbosity level; verb =@ is quiet, and
larger values cause more progress information to be printed to the screen. The
value min(@,verb-1) is provided to each 1aGP call

a cluster object created by makeCluster from the parallel or snow packages

a scalar integer indicating the number of chunks to break XX into for parallel
evaluation on cluster cls. Usually chunks = length(cl) is appropriate. How-
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ever specifying more chunks can be useful when the nodes of the cluster are not
homogeneous

M an optional function taking two matrix inputs, of ncol(X)-ncalib and ncalib
columns respectively, which is applied in lieu of aGP. This can be useful for
calibration where the computer model is cheap, i.e., does not require emulation;
more details below

ncalib an integer between 1 and ncol (X) indicating how to partition X and XX inputs
into the two matrices required for M

other arguments passed from aGP. sep to aGP

Details

This function invokes 1aGP with argument Xref = XX[1i, ] for each i=1:nrow(XX), building up local
designs, inferring local correlation parameters, and obtaining predictive locations independently for
each location. For more details see 1aGP.

The function aGP.R is a prototype R-only version for debugging and transparency purposes. It is
slower than aGP, which is primarily in C. However it may be useful for developing new programs
that involve similar subroutines. Note that aGP.R may provide different output than aGP due to
differing library subroutines deployed in R and C.

The function aGP.parallel allows aGP to be called on segments of the XX matrix distributed to a
cluster created by parallel. It breaks XX into chunks which are sent to aGP workers pointed to by the
entries of cls. The aGP.parallel function collects the outputs from each chunk before returning
an object almost identical to what would have been returned from a single aGP call. On a single
(SMP) node, this represents is a poor-man’s version of the OpenMP version described below. On
multiple nodes both can be used.

If compiled with OpenMP flags, the independent calls to 1aGP will be farmed out to threads allowing
them to proceed in parallel - obtaining nearly linear speed-ups. At this time aGP . R does not facilitate
parallel computation, although a future version may exploit the parallel functionality for clustered
parallel execution.

If num. gpus > @ then the ALC part of the independent calculations performed by each thread will
be offloaded to a GPU. If both gpu.threads >=1 and omp.threads >= 1, some of the ALC cal-
culations will be done on the GPUs, and some on the CPUs. In our own experimentation we have
not found this to lead to large speedups relative to omp. threads = @ when using GPUs. For more
details, see Gramacy, Niemi, & Weiss (2014).

The aGP.sep function is provided primarily for use in calibration exercises, see Gramacy, et al.
(2015). It automates a sequence of aGP calls, each with a potentially different method, successively
feeding the previous estimate of local lengthscale (d) in as an initial set of values for the next call.
It also allows the use of aGP to be bypassed, feeding the inputs into a user-supplied M function
instead. This feature is enabled when methods = FALSE. The M function takes two matrices (same
number of rows) as inputs, where the first ncol (X) - ncalib columns represent “field data” inputs
shared by the physical and computer model (in the calibration context), and the remaining ncalib
are the extra tuning or calibration parameters required to evalue the computer model. For examples
illustrating aGP . seq please see the documentation file for discrep.est and demo("calib")

Value

The output is a 1ist with the following components.
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mean a vector of predictive means of length nrow(XX)
var a vector of predictive variances of length nrow(Xref)
11ik a vector indicating the log likelihood/posterior probability of the data/parameter(s)

under the chosen sub-design for each predictive location in XX; provided up to
an additive constant

time a scalar giving the passage of wall-clock time elapsed for (substantive parts of)
the calculation

method a copy of the method argument

d a full-list version of the d argument, possibly completed by darg

g a full-list version of the g argument, possibly completed by garg

mle if d$mle and/or g$mle are TRUE, then mle is a data. frame containing the val-

ues found for these parameters, and the number of required iterations, for each
predictive location in XX

Xi when Xi.ret = TRUE, this field contains a matrix of indices of length end into
X indicating the sub-design chosen for each predictive location in XX

close a copy of the input argument

The aGP. seq function only returns the output from the final aGP call. When methods = FALSE and
M is supplied, the returned object is a data frame with a mean column indicating the output of the
computer model run, and a var column, which at this time is zero

Note

aGPsep provides the same functionality as aGP but deploys a separable covariance function. Criteria
(methods) EFI and MSPE are not supported by aGPsep at this time.

Note that using method="NN" gives the same result as specifying start=end, however at some extra
computational expense.

At this time, this function provides no facility to find local designs for the subset of predictive
locations XX jointly, i.e., providing a matrix Xref to 1aGP. See 1aGP for more details/support for
this alternative.

The use of OpenMP threads with aGPsep is not as efficient as with aGP when calculating MLEs
with respect to the lengthscale (i.e., d=1ist(mle=TRUE, ...)). The reason is that the 1bfgsb C
entry point uses static variables, and is therefore not thread safe. To circumvent this problem, an
OpenMP critical pragma is used, which can create a small bottle neck

Author(s)

Robert B. Gramacy <rbgevt.edu>

References

Gramacy, R. B. (2020) Surrogates: Gaussian Process Modeling, Design and Optimization for the
Applied Sciences. Boca Raton, Florida: Chapman Hall/CRC. (See Chapter 9.) https://bobby.
gramacy.com/surrogates/


https://bobby.gramacy.com/surrogates/
https://bobby.gramacy.com/surrogates/
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R.B. Gramacy (2016). laGP: Large-Scale Spatial Modeling via Local Approximate Gaussian
Processes in R., Journal of Statistical Software, 72(1), 1-46; doi:10.18637/jss.v072.i01 or see
vignette("laGP")

R.B. Gramacy and D.W. Apley (2015). Local Gaussian process approximation for large computer
experiments. Journal of Computational and Graphical Statistics, 24(2), pp. 561-678; preprint on
arXiv:1303.0383; https://arxiv.org/abs/1303.0383

R.B. Gramacy, J. Niemi, R.M. Weiss (2014). Massively parallel approximate Gaussian process
regression. SIAM/ASA Journal on Uncertainty Quantification, 2(1), pp. 568-584; preprint on
arXiv:1310.5182; https://arxiv.org/abs/1310.5182

R.B. Gramacy and B. Haaland (2016). Speeding up neighborhood search in local Gaussian process
prediction. Technometrics, 58(3), pp. 294-303; preprint on arXiv:1409.0074 https://arxiv.org/
abs/1409.0074

See Also

vignette("1laGP"), 1aGP, alcGP, mspeGP, alcrayGP, makeCluster, clusterApply

Examples

## first, a "computer experiment”

## Simple 2-d test function used in Gramacy & Apley (2014);
## thanks to Lee, Gramacy, Taddy, and others who have used it before
f2d <- function(x, y=NULL)
{
if(is.null(y)){
if(lis.matrix(x) && !is.data.frame(x)) x <- matrix(x, ncol=2)
y <= x[,2]; x <= x[,1]
3
g <- function(z)
return(exp(-(z-1)"2) + exp(-0.8x(z+1)*2) - 0.05*sin(8*(z+0.1)))
z <= -g(x)*g(y)
}

## build up a design with N=~40K locations
x <- seq(-2, 2, by=0.02)

X <- expand.grid(x, x)

Z <= f2d(X)

## predictive grid with NN=400 locations,

## change NN to 10K (length=100) to mimic setup in Gramacy & Apley (2014)
## the low NN set here is for fast CRAN checks

xx <- seq(-1.975, 1.975, length=10)

XX <- expand.grid(xx, xx)

ZZ <~ f2d(XX)

## get the predictive equations, first based on Nearest Neighbor
out <- aGP(X, Z, XX, method="nn", verb=0)

## RMSE

sqrt(mean((out$mean - 77)*2))


https://doi.org/10.18637/jss.v072.i01
https://arxiv.org/abs/1303.0383
https://arxiv.org/abs/1310.5182
https://arxiv.org/abs/1409.0074
https://arxiv.org/abs/1409.0074

aGP

## Not run:

## refine with ALC

out2 <- aGP(X, Z, XX, method="alc"”, d=out$mle$d)
## RMSE

sqrt(mean((out2$mean - 72Z)*2))

## visualize the results

par(mfrow=c(1,3))

image(xx, xx, matrix(out2$mean, nrow=length(xx)), col=heat.colors(128),
xlab="x1", ylab="x2", main="predictive mean")

image(xx, xx, matrix(out2$mean-ZZ, nrow=length(xx)), col=heat.colors(128),
xlab="x1", ylab="x2", main="bias")

image(xx, xx, matrix(sqrt(out2$var), nrow=length(xx)), col=heat.colors(128),
xlab="x1", ylab="x2", main="sd")

## refine with MSPE

out3 <- aGP(X, Z, XX, method="mspe", d=out2$mle$d)
## RMSE

sqrt(mean((out3$mean - 77Z)*2))

## End(Not run)

## version with ALC-ray which is much faster than the ones not
## run above

out2r <- aGP(X, Z, XX, method="alcray", d=out$mle$d, verb=0)
sqrt(mean((out2r$mean - ZZ)*2))

## a simple example with estimated nugget
if(require("MASS")) {

## motorcycle data and predictive locations

X <- matrix(mcycle[,1]1, ncol=1)

Z <- mcyclel, 2]

XX <= matrix(seq(min(X), max(X), length=100), ncol=1)

## first stage
out <- aGP(X=X, Z=Z, XX=XX, end=30, g=list(mle=TRUE), verb=0)

## plot smoothed versions of the estimated parameters
par (mfrow=c(2,1))

df <- data.frame(y=log(out$mles$d), XX)

lo <- loess(y~., data=df, span=0.25)

plot (XX, log(out$mle$d), type="1")

lines(XX, lo$fitted, col=2)

dfnug <- data.frame(y=log(out$mle$g), XX)

lonug <- loess(y~., data=dfnug, span=0.25)

plot(XX, log(out$mle$g), type="1")

lines(XX, lonug$fitted, col=2)

## second stage design

out2 <- aGP(X=X, Z=Z, XX=XX, end=30, verb=0,
d=list(start=exp(lo$fitted), mle=FALSE),
g=list(start=exp(lonug$fitted)))
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## plot the estimated surface
par(mfrow=c(1,1))
plot(X,Z)
df <- 20
s2 <- out2$varx(df-2)/df
gl <- qt(0.05, df)*sqgrt(s2) + out2$mean
g2 <- qt(0.95, df)xsqrt(s2) + out2$mean
lines(XX, out2$mean)
lines(XX, g1, col=1, lty=2)
lines(XX, g2, col=1, 1lty=2)
3

## compare to the single-GP result provided in the mleGP documentation

alcGP Improvement statistics for sequential or local design

Description

Calculate the active learning Cohn (ALC) statistic, mean-squared predictive error (MSPE) or ex-
pected Fisher information (fish) for a Gaussian process (GP) predictor relative to a set of reference
locations, towards sequential design or local search for Gaussian process regression

Usage
alcGP(gpi, Xcand, Xref = Xcand, parallel = c("none”, "omp"”, "gpu"),
verb = 0)
alcGPsep(gpsepi, Xcand, Xref = Xcand, parallel = c(”none”, "omp"”, "gpu"),
verb = 0)

alcrayGP(gpi, Xref, Xstart, Xend, verb = @)

alcrayGPsep(gpsepi, Xref, Xstart, Xend, verb = 0)

ieciGP(gpi, Xcand, fmin, Xref = Xcand, w = NULL, nonug = FALSE, verb = 0)
ieciGPsep(gpsepi, Xcand, fmin, Xref = Xcand, w = NULL, nonug = FALSE, verb = 0)
mspeGP(gpi, Xcand, Xref = Xcand, fi = TRUE, verb = @)

fishGP(gpi, Xcand)

alcoptGP(gpi, Xref, start, lower, upper, maxit = 100, verb = @)
alcoptGPsep(gpsepi, Xref, start, lower, upper, maxit = 100, verb = 0)
dalcGP(gpi, Xcand, Xref = Xcand, verb = 0)

dalcGPsep(gpsepi, Xcand, Xref = Xcand, verb = 0)

Arguments
gpi a C-side GP object identifier (positive integer); e.g., as returned by newGP
gpsepi a C-side separable GP object identifier (positive integer); e.g., as returned by

newGPsep
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Xcand

fmin

Xref

parallel

Xstart

Xend

fi

nonug

verb

start

lower, upper

maxit

alcGP

amatrix or data.frame containing a design of candidate predictive locations
at which the ALC (or other) criteria is (are) evaluated. In the context of 1aGP,
these are the possible locations for adding into the current local design

for ieci* only: a scalar value indicating the value of the best minimum found
so far. This is usually set to the minimum of the Z-values stored in the gpi
or gpsepi reference (for deterministic/low nugget settings), or otherwise the
predicted mean value at the X locations

amatrix or data.frame containing a design of reference locations for ALC or
MSPE. l.e., these are the locations at which the reduction in variance, or mean
squared predictive error, are calculated. In the context of 1aGP, this is the single
location, or set of reference locations, around which a local design (for accurate
prediction) is sought. For alcrayGP and alcrayGPsep the matrix may only
have one row, i.e., one reference location

a switch indicating if any parallel calculation of the criteria (method) is desired.
For parallel = "omp", the package must be compiled with OpenMP flags; for
parallel = "gpu”, the package must be compiled with CUDA flags (only the
ALC criteria is supported on the GPU); see README/INSTALL in the package
source for more details

a 1-by-ncol (Xref) starting location for a search along a ray between Xstart
and Xend

a 1-by-ncol (Xref) ending location for a search along a ray between Xstart
and Xend

a scalar logical indicating if the expected Fisher information portion of the ex-
pression (MSPE is essentially ALC + c(x)*EFI) should be calculated (TRUE) or
set to zero (FALSE). This flag is mostly for error checking against the other func-
tions, alcGP and fishGP, since the constituent parts are separately available via
those functions

weights on the reference locations Xref for IECI calculations; IECI, which
stands for Integrated Expected Conditional Improvement, is not fully docu-
mented at this time. See Gramacy & Lee (2010) for more details.

a scalar logical indicating if a (nonzero) nugget should be used in the predictive
equations behind IECI calculations; this allows the user to toggle improvement
via predictive mean uncertainty versus full predictive uncertainty. The latter (de-
fault nonug = FALSE) is the standard approach, but the former may work better
(citation forthcoming)

a non-negative integer specifying the verbosity level; verb =0 is quiet, and
larger values cause more progress information to be printed to the screen

initial values to the derivative-based search via "L-BFGS-B" within alcoptGP
and alcoptGPsep; a nearest neighbor often represents a sensible initialization

bounds on the derivative-based search via "L-BFGS-B" within alcoptGP and
alcoptGPsep

the maximum number of iterations (default maxit=100) in "L-BFGS-B" search
within alcoptGP and alcoptGPsep



alcGP 11

Details

The best way to see how these functions are used in the context of local approximation is to inspect
the code in the 1aGP.R function.

Otherwise they are pretty self-explanatory. They evaluate the ALC, MSPE, and EFI quantities
outlined in Gramacy & Apley (2015). ALC is originally due to Seo, et al. (2000). The ray-based
search is described by Gramacy & Haaland (2015).

MSPE and EFI calculations are not supported for separable GP models, i.e., there are no mspeGPsep
or fishGPsep functions.

alcrayGP and alcrayGPsep allow only one reference location (nrow(Xref) =1). alcoptGP and
alcoptGPsep allow multiple reference locations. These optimize a continuous ALC analog in its
natural logarithm using the starting locations, bounding boxes and (stored) GP provided by gpi or
gpisep, and finally snaps the solution back to the candidate grid. For details, see Sun, et al. (2017).

Note that ieciGP and ieciGPsep, which are for optimization via integrated expected conditional
improvement (Gramacy & Lee, 2011) are “alpha” functionality and are not fully documented at this
time.

Value

Except for alcoptGP, alcoptGPsep, dalcGP, and dalcGPsep, a vector of length nrow(Xcand) is
returned filled with values corresponding to the desired statistic

par the best set of parameters/input configuration found on optimization

value the optimized objective value corresponding to output par

its a two-element integer vector giving the number of calls to the object function
and the gradient respectively.

msg a character string giving any additional information returned by the optimizer,
or NULL

convergence An integer code. 0 indicates successful completion. For the other error codes,
see the documentation for optim

alcs reduced predictive variance averaged over the reference locations

dalcs the derivative of alcs with respect to the new location

Author(s)

Robert B. Gramacy <rbg@vt.edu> and Furong Sun <furongs@vt.edu>

References

Gramacy, R. B. (2020) Surrogates: Gaussian Process Modeling, Design and Optimization for the
Applied Sciences. Boca Raton, Florida: Chapman Hall/CRC. (See Chapter 9.) https://bobby.
gramacy.com/surrogates/

F. Sun, R.B. Gramacy, B. Haaland, E. Lawrence, and A. Walker (2019). Emulating satellite drag
from large simulation experiments, SIAM/ASA Journal on Uncertainty Quantification, 7(2), pp.
720-759; preprint on arXiv:1712.00182; https://arxiv.org/abs/1712.00182

R.B. Gramacy (2016). 1aGP: Large-Scale Spatial Modeling via Local Approximate Gaussian Pro-
cesses in R, Journal of Statistical Software, 72(1), 1-46; doi:10.18637/jss.v072.i01 or see vignette("1aGP")


https://bobby.gramacy.com/surrogates/
https://bobby.gramacy.com/surrogates/
https://arxiv.org/abs/1712.00182
https://doi.org/10.18637/jss.v072.i01
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R.B. Gramacy and B. Haaland (2016). Speeding up neighborhood search in local Gaussian process
prediction, Technometrics, 58(3), pp. 294-303; preprint on arXiv:1409.0074; https://arxiv.
org/abs/1409.0074

R.B. Gramacy and D.W. Apley (2015). Local Gaussian process approximation for large computer
experiments, Journal of Computational and Graphical Statistics, 24(2), pp. 561-678; preprint on
arXiv:1303.0383; https://arxiv.org/abs/1303.0383

R.B. Gramacy, J. Niemi, RM. Weiss (2014). Massively parallel approximate Gaussian process
regression, SIAM/ASA Journal on Uncertainty Quantification, 2(1), pp. 568-584; preprint on
arXiv:1310.5182; https://arxiv.org/abs/1310.5182

R.B. Gramacy, H.K.H. Lee (2011). Optimization under unknown constraints, Valencia discussion
paper, in Bayesian Statistics 9. Oxford University Press; preprint on arXiv:1004.4027; https:
//arxiv.org/abs/1004.4027

S. Seo, M., Wallat, T. Graepel, K. Obermayer (2000). Gaussian Process Regression: Active Data
Selection and Test Point Rejection, In Proceedings of the International Joint Conference on Neural
Networks, vol. III, 241-246. IEEE

See Also

1aGP, aGP, predGP

Examples

## this follows the example in predGP, but only evaluates
## information statistics documented here

## Simple 2-d test function used in Gramacy & Apley (2015);
## thanks to Lee, Gramacy, Taddy, and others who have used it before
f2d <- function(x, y=NULL)
{
if(is.null(y)) {
if(lis.matrix(x) && !is.data.frame(x)) x <- matrix(x, ncol=2)
y <= x[,2]; x <= x[,1]
3
g <- function(z)
return(exp(-(z-1)72) + exp(-0.8*%(z+1)*2) - 0.05*xsin(8*(z+0.1)))
z <= -g(x)*g(y)
}

## design with N=441

x <- seq(-2, 2, length=11)
X <- expand.grid(x, x)

Z <- f2d(X)

## fit a GP
gpi <- newGP(X, Z, d=0.35, g=1/1000, dK=TRUE)

## predictive grid with NN=400
xx <- seq(-1.9, 1.9, length=20)
XX <- expand.grid(xx, xx)


https://arxiv.org/abs/1409.0074
https://arxiv.org/abs/1409.0074
https://arxiv.org/abs/1303.0383
https://arxiv.org/abs/1310.5182
https://arxiv.org/abs/1004.4027
https://arxiv.org/abs/1004.4027

alcGP

## predict

alc <- alcGP(gpi, XX)
mspe <- mspeGP(gpi, XX)
fish <- fishGP(gpi, XX)

## visualize the result

par(mfrow=c(1,3))

image(xx, xx, matrix(sqgrt(alc), nrow=length(xx)), col=heat.colors(128),
xlab="x1", ylab="x2", main="sqrt ALC")

image(xx, xx, matrix(sqrt(mspe), nrow=length(xx)), col=heat.colors(128),
xlab="x1", ylab="x2", main="sqrt MSPE")

image(xx, xx, matrix(log(fish), nrow=length(xx)), col=heat.colors(128),
xlab="x1", ylab="x2", main="log fish")

## clean up
deleteGP(gpi)

##

## Illustrating some of the other functions in a sequential design context,
## using X and XX above

#H#

## new, much bigger design
x <- seq(-2, 2, by=0.02)

X <- expand.grid(x, x)

Z <~ f2d(X)

## first build a local design of size 25, see laGP documentation
out <- laGP.R(XX, start=6, end=25, X, Z, method="alc", close=10000)

## extract that design and fit GP

XC <- X[out$Xi,] ## inputs

ZC <- Z[out$Xi] ## outputs

gpi <- newGP(XC, ZC, d=out$mle$d, g=out$g$start)

## calculate the ideal "next” location via continuous ALC optimization
alco <- alcoptGP(gpi=gpi, Xref=XX, start=c(0,0), lower=range(x)[1], upper=range(x)[2]1)

## alco$par is the "new” location; calculate distances between candidates (remaining
## unchosen X locations) and this solution

Xcan <- X[-out$Xi,]

D <- distance(Xcan, matrix(alco$par, ncol=ncol(Xcan)))

## snap the new location back to the candidate set

lab <- which.min(D)

xnew <- Xcan[lab,]

## add xnew to the local design, remove it from Xcan, and repeat

## evaluate the derivative at this new location
dalc <- dalcGP(gpi=gpi, Xcand=matrix(xnew, nrow=1), Xref=XX)

## clean up

13
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deleteGP(gpi)

blhs

blhs

Bootstrapped block Latin hypercube subsampling

Description

Provides bootstrapped block Latin hypercube subsampling under a given data set to aid in consistent
estimation of a global separable lengthscale parameter

Usage
blhs(y, X, m)

blhs.loop(y, X, m, K, da, g = 1e-3, maxit = 100, verb = 0, plot.it = FALSE)

Arguments

da

maxit

verb

plot.it

Details

a vector of responses/dependent values with length(y) = nrow(X)

amatrix or data.frame containing the full (large) design matrix of input loca-
tions

a positive scalar integer giving the number of divisions on each coordinate of
input space defining the block structure

a positive scalar integer specifying the number of Bootstrap replicates desired
a lengthscale prior, say as generated by darg

a positive scalar giving the fixed nugget value of the nugget parameter; by de-
fault g = 1e-3

a positive scalar integer giving the maximum number of iterations for MLE cal-
culations via "L-BFGS-B"; see mleGPsep for more details

a non-negative integer specifying the verbosity level; verb = @ (by default) is
quiet, and larger values cause more progress information to be printed to the
screen

plot.it = FALSE by default; if plot.it = TRUE, then each of the K lengthscale
estimates from bootstrap iterations will be shown via boxplot

Bootstrapped block Latin hypercube subsampling (BLHS) yields a global lengthscale estimator
which is asymptotically consistent with the MLE calculated on the full data set. However, since
it works on data subsets, it comes at a much reduced computational cost. Intuitively, the BLHS
guarantees a good mix of short and long pairwise distances. A single bootstrap LH subsample may
be obtained by dividing each dimension of the input space equally into m intervals, yielding m¢
mutually exclusive hypercubes. It is easy to show that the average number of observations in each

hypercube is Nm™

¢ if there are N samples in the original design. From each of these hypercubes,

m blocks are randomly selected following the LH paradigm, i.e., so that only one interval is chosen
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from each of the m segments. The average number of observations in the subsample, combining the
m randomly selected blocks, is Nm~4+1,

Ensuring a subsample size of at least one requires having m < N T , thereby linking the parameter
m to computational effort. Smaller m is preferred so long as GP inference on data of that size remains
tractable. Since the blocks follow an LH structure, the resulting sub-design inherits the usual LHS
properties, e.g., retaining marginal properties like univariate stratification modulo features present
in the original, large N, design.

For more details, see Liu (2014), Zhao, et al. (2017) and Sun, et al. (2019).
blhs returns the subsampled input space and the corresponding responses.

blhs.loop returns the median of the K lengthscale maximum likelihood estimates, the subsampled
data size to which that corresponds, and the subsampled data, including the input space and the
responses, from the bootstrap iterations

Value

blhs returns

XS the subsampled input space
ys the subsampled responses, length(ys) = nrow(xs)

blhs.loop returns

that the lengthscale estimate (median), length(that) = ncol(X)
ly the subsampled data size (median)
Xm the subsampled input space (median)
ym the subsampled responses (median)
Note

This implementation assums that X has been coded to the unit cube ([0, 1]P), where p = ncol(X).

X should be relatively homogeneous. A space-filling design (input) X is ideal, but not required

Author(s)

Robert B. Gramacy <rbg@vt.edu> and Furong Sun <furongs@vt.edu>

References

Gramacy, R. B. (2020) Surrogates: Gaussian Process Modeling, Design and Optimization for the
Applied Sciences. Boca Raton, Florida: Chapman Hall/CRC. (See Chapter 9.) https://bobby.
gramacy.com/surrogates/

F. Sun, R.B. Gramacy, B. Haaland, E. Lawrence, and A. Walker (2019). Emulating satellite drag
from large simulation experiments, SIAM/ASA Journal on Uncertainty Quantification, 7(2), pp.
720-759; preprint on arXiv:1712.00182; https://arxiv.org/abs/1712.00182

Y. Zhao, Y. Hung, and Y. Amemiya (2017). Efficient Gaussian Process Modeling using Experimen-
tal Design-Based Subagging, Statistica Sinica, to appear;

Yufan Liu (2014) Recent Advances in Computer Experiment Modeling. Ph.D. Thesis at Rutgers,
The State University of New Jersey. https://dx.doi.org/doi:10.7282/T38G8J1H
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https://bobby.gramacy.com/surrogates/
https://arxiv.org/abs/1712.00182
https://dx.doi.org/doi:10.7282/T38G8J1H
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Examples

# input space based on latin-hypercube sampling (not required)
# two dimensional example with N=216 sized sample
if(require(lhs)) { X <- randomLHS(216, 2)

} else { X <= matrix(runif(216x2), ncol=2) }

# pseudo responses, not important for visualizing design

Y <- runif(216)

## BLHS sample with m=6 divisions in each coordinate
sub <- blhs(y=Y, X=X, m=6)
Xsub <- sub$xs # the bootstrapped subsample

# visualization

n

plot(X, xaxt="n", yaxt="n", xlim=c(@,1), ylim=c(0,1), xlab="factor 1",

”

ylab="factor 2", col="cyan"”, main="BLHS")
b <- seq(@, 1, by=1/6)
abline(h=b, v=b, col="black", lty=2)
axis(1, at=seq (@, 1, by=1/6), cex.axis=0.8,
labels=expression(@, 1/6, 2/6, 3/6, 4/6, 5/6, 1))
axis(2, at=seq (@, 1, by=1/6), cex.axis=0.8,
labels=expression(@, 1/6, 2/6, 3/6, 4/6, 5/6, 1), las=1)
points(Xsub, col="red"”, pch=19, cex=1.25)

## Comparing global lengthscale MLE based on BLHS and random subsampling

## Not run:

# famous borehole function
borehole <- function(x){
(0.15 - 0.95) + 0.05
(50000 - 100) + 100
(115600 - 63070) + 63070
(116 - 63.1) + 63.1
(1110 - 990) + 990

(820 - 700) + 700

(1680 - 1120) + 1120
(12045 - 9855) + 9855

* Tu * (Hu - H1)

m2 <- log(r / rw)
m3 <- 1 + 2xL*Tu/(m2*rw"2*Kw) + Tu/T1l
return(mi/m2/m3)

rw <- x[1]
r <- x[2]
Tu <- x[3]
Tl <- x[5]
Hu <- x[4]
H1 <- x[6]
L <- x[7]
Kw <- x[8]
ml <- 2 *p

N <- 100000

*
*
*
*
*
*
*
*

i

# number of observations

if(require(lhs)) { xt <- randomLHS(N, 8) # input space
} else { xt <- matrix(runif(N*8), ncol=8) }
yt <- apply(xt, 1, borehole) # response

colnames(xt) <- c("rw”, "r",

n.n

"TU", u-l-]-n, ”HU”, nH]-n, nLu’ "KW”)

## prior on the GP lengthscale parameter
da <- darg(list(mle=TRUE, max=100), xt)

## make space for two sets of boxplots
par(mfrow=c(1,2))

blhs



darg

17

# BLHS calculating with visualization of the K MLE lengthscale estimates
K <= 10 # number of Bootstrap samples; Sun, et al (2017) uses K <- 31
sub_blhs <- blhs.loop(y=yt, X=xt, K=K, m=2, da=da, maxit=200, plot.it=TRUE)

# a random subsampling analog for comparison
sn <- sub_blhs$ly # extract a size that is consistent with the BLHS
that.rand <- matrix(NA, ncol=8, nrow=K)
for(i in 1:K){
sub <- sample(1:nrow(xt), sn)
gpsepi <- newGPsep(xt[sub,], yt[sub], d=da$start, g=1e-3, dK=TRUE)
mle <- mleGPsep(gpsepi, tmin=da$min, tmax=10xda$max, ab=da$ab, maxit=200)
deleteGPsep(gpsepi)
that.rand[i,] <- mle$d
}

## put random boxplots next to BLHS ones
boxplot(that.rand, xlab="input", ylab="theta-hat"”, col=2,
main="random subsampling")

## End(Not run)

darg

Generate Priors for GP correlation

Description

Generate empirical Bayes regularization (priors) and choose initial values and ranges for (isotropic)
lengthscale and nugget parameters to a Gaussian correlation function for a GP regression model

Usage
darg(d, X, samp.size = 1000)
garg(g, ¥)
Arguments
d can be NULL, or a scalar indicating an initial value or a partial 1ist whose format
matches the one described in the Value section below
g can be NULL, or a scalar indicating an initial value or a partial 1ist whose format
matches the one described in the Value section below
X amatrix or data.frame containing the full (large) design matrix of input loca-
tions
y a vector of responses/dependent values
samp.size a scalar integer indicating a subset size of X to use for calculations; this is im-

portant for very large X matrices since the calculations are quadratic in nrow(X)
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Details

These functions use aspects of the data, either X or y, to form weakly informative default priors and
choose initial values for a lengthscale and nugget parameter. This is useful since the likelihood can
sometimes be very flat, and even with proper priors inference can be sensitive to the specification of
those priors and any initial search values. The focus here is on avoiding pathologies while otherwise
remaining true to the spirit of MLE calculation.

darg output specifies MLE inference (out$mle = TRUE) by default, whereas garg instead fixes the
nugget at the starting value, which may be sensible for emulating deterministic computer simulation
data; when out$mle = FALSE the calculated range outputs c(out$min, out$max) are set to dummy
values that are ignored in other parts of the laGP package.

darg calculates a Gaussian distance matrix between all pairs of X rows, or a subsample of rows of
size samp.size. From those distances it chooses the range and start values from the range of (non-
zero) distances and the 9.1 quantile, respectively. The Gamma prior values have a shape of out$a
= 3/2 and a rate out$b chosen by the incomplete Gamma inverse function to put @.95 probability
below out$max.

garg is similar except that it works with (y- mean(y))*2 instead of the pairwise distances of darg.
The only difference is that the starting value is chosen as the 2.5% quantile.

Value

Both functions return a list containing the following entries. If the input object (d or g) specifies
one of the values then that value is copied to the same list entry on output. See the Details section
for how these values are calculated

mle by default, TRUE for darg and FALSE for garg

start starting value chosen from the quantiles of distance(X) or (y - mean(y))*2

min minimum value in allowable range for the parameter - for future inference pur-
poses

max maximum value in allowable range for the parameter - for future inference pur-
poses

ab shape and rate parameters specifying a Gamma prior for the parameter

Author(s)

Robert B. Gramacy <rbgevt.edu>

See Also

vignette("laGP"), 1aGP, aGP, mleGP, distance, 11ikGP

Examples

## motorcycle data
if(require("MASS")) {
X <- matrix(mcycle[,1], ncol=1)
Z <- mcyclel, 2]
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## get darg and garg

darg(NULL, X)

garg(list(mle=TRUE), Z)
}

deleteGP Delete C-side Gaussian Process Objects

Description
Frees memory allocated by a particular C-side Gaussian process object, or all GP objects currently
allocated

Usage

deleteGP(gpi)
deleteGPsep(gpsepi)
deleteGPs()
deleteGPseps()

Arguments

gpi a scalar positive integer specifying an allocated isotropic GP object

gpsepi similar to gpi but indicating a separable GP object

Details

Any function calling newGP or newGPsep will require destruction via these functions or there will
be a memory leak

Value

Nothing is returned

Author(s)

Robert B. Gramacy <rbgevt.edu>

See Also

vignette("1laGP"), newGP, predGP, mleGP

Examples

## see examples for newGP, predGP, or mleGP
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discrep.est

discrep.est

Estimate Discrepancy in Calibration Model

Description

Estimates the Gaussian process discrepancy/bias and/or noise term in a modularized calibration of
a computer model (emulator) to field data, and returns the log likelihood or posterior probability

Usage

discrep.est(X, Y, Yhat, d, g, bias = TRUE, clean = TRUE)

Arguments

X

Yhat

bias

clean

amatrix or data.frame containing a design matrix of input locations for field
data sites. Any columns of X without at least three unique input settings are
dropped in a pre-processing step

a vector of values with length(Y) = ncol(X) containing the response from field
data observations at X. A Y-vector with length(Y) = k*ncol (X), for positive in-
teger k, can be supplied in which case the multiple code Y-values will be treated
as replicates at the X-values

a vector with length(Yhat) = length(Y) containing predictions at X from an
emulator of a computer simulation

a prior or initial setting for the (single/isotropic) lengthscale parameter in a
Gaussian correlation function; a (default) NULL value triggers a sensible regu-
larization (prior) and initial setting to be generated via darg; a scalar specifies
an initial value, causing darg to only generate the prior; otherwise, a list or par-
tial list matching the output of darg can be used to specify a custom prior. In
the case of a partial list, the only the missing entries will be generated. Note that
a default/generated list specifies MLE/MAP inference for this parameter. When
specifying initial values, a vector of length nrow(XX) can be provided, giving a
different initial value for each predictive location.

a prior or initial setting for the nugget parameter; a NULL value causes a sensi-
ble regularization (prior) and initial setting to be generated via garg; a scalar
(default g = 1/1000) specifies an initial value, causing garg to only generate the
prior; otherwise, a list or partial list matching the output of garg can be used
to specify a custom prior. In the case of a partial list, only the missing entries
will be generated. Note that a default/generated list specifies no inference for
this parameter; i.e., it is fixed at its starting value, which may be appropriate for
emulating deterministic computer code output

a scalar logical indicating if a (isotropic) GP discrepancy should be estimated
(TRUE) or a Gaussian noise term only (FALSE)

a scalar logical indicating if the C-side GP object should be freed before return-
ing.
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Details

Estimates an isotropic Gaussian correlation Gaussian process (GP) discrepancy term for the dif-
ference between a computer model output (Yhat) and field data observations (Y) at locations X.
The computer model predictions would typically come from a GP emulation from simulation data,
possibly via aGP if the computer experiment is large.

This function is used primarily as a subroutine by fcalib which defines an objective function for
optimization in order to solve the calibration problem via the method described by Gramacy, et
al. (2015), designed for large computer experiments. However, once calibration is performed this
function can be useful for making comparisons to other methods. Examples are provided in the
fcalib documentation.

When bias=FALSE no discrepancy is estimated; only a zero-mean Gaussian error distribution is
assumed

Value

The output object is comprised of the output of jmleGP, applied to a GP object built with responses
Y - Yhat. That object is augmented with a log likelihood, in $11, and with a GP index $gpi when
clean=FALSE. When bias = FALSE the output object retains the same form as above, except with
dummy zero-values since calling jmleGP is not required

Note

Note that in principle a separable correlation function could be used (e.g, via newGPsep and mleGPsep),
however this is not implemented at this time

Author(s)

Robert B. Gramacy <rbg@vt.edu>

References

Gramacy, R. B. (2020) Surrogates: Gaussian Process Modeling, Design and Optimization for the
Applied Sciences. Boca Raton, Florida: Chapman Hall/CRC. (See Chapter 8.) https://bobby.
gramacy.com/surrogates/

R.B. Gramacy (2016). laGP: Large-Scale Spatial Modeling via Local Approximate Gaussian
Processes in R., Journal of Statistical Software, 72(1), 1-46; doi:10.18637/jss.v072.i01 or see
vignette("laGP")

R.B. Gramacy, D. Bingham, JP. Holloway, M.J. Grosskopf, C.C. Kuranz, E. Rutter, M. Trantham,
PR. Drake (2015). Calibrating a large computer experiment simulating radiative shock hydro-
dynamics. Annals of Applied Statistics, 9(3) 1141-1168; preprint on arXiv:1410.3293 https:
//arxiv.org/abs/1410.3293

F. Liu, M. Bayarri and J. Berger (2009). Modularization in Bayesian analysis, with emphasis on
analysis of computer models. Bayesian Analysis, 4(1) 119-150.

See Also

vignette(”1laGP"), jmleGP, newGP, aGP.seq, fcalib
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Examples

## the example here combines aGP.seq and discrep.est functions;

## it is comprised of snippets from demo("calib"), which contains

## code from the Calibration Section of vignette(”1laGP")

## Here we generate calibration data using a true calibration

## parameter, u, and then evaluate log posterior probabilities

## and out-of-sample RMSEs for that u value; the fcalib

## documentation repeats this with a single call to fcalib rather

## than first aGP.seq and then discrep.est

## begin data-generation code identical to aGP.seq, discrep.est, fcalib

## example sections and demo("calib")

## M: computer model test functon used in Goh et al, 2013 (Technometrics)

## an elaboration of one from Bastos and 0'Hagan, 2009 (Technometrics)

M <- function(x,u)

{

##
bi

##
##
be
{

}

#i#
1i
re

#it
ny

X <- as.matrix(x)

u <- as.matrix(u)

out <- (T1-exp(-1/(2*x[,21)))

out <- out * (1000xul,1]1*x[,1]143+1900*x[,1]142+2092*x[,1]1+60)
out <- out / (100*xu[,2]*x[,1]*3+500*x[,1]"2+4*xx[,1]+20)
return(out)

3

bias: discrepancy function from Goh et al, 2013

as <- function(x)

{
x<-as.matrix(x)
out<- 2x(10*x[,11*2+4%x[,2]*2) / (50*x[,1]xx[,2]1+10)
return(out)

}

beta.prior: marginal beta prior for u,
defaults to a mode at 1/2 in hypercube
ta.prior <- function(u, a=2, b=2, log=TRUE)

if(length(a) == 1) a <- rep(a, length(u))

else if(length(a) !'= length(u)) stop(”"length(a) must be 1 or length(u)")
if(length(b) == 1) b <- rep(b, length(u))

else if(length(b) != length(u)) stop("length(b) must be 1 or length(u)")
if(log) return(sum(dbeta(u, a, b, log=TRUE)))

else return(prod(dbeta(u, a, b, log=FALSE)))

tgp for LHS sampling

brary(tgp)
ct <- matrix(rep(@:1, 4), ncol=2, byrow=2)

training and testing inputs
<- 50; nny <- 1000
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X <= lhs(ny, rect[1:2,]) ## computer model train
XX <= lhs(nny, rect[1:2,],) ## test

## true (but unknown) setting of the calibration parameter
## for the computer model

u<-c(0.2, 0.1)

Zu <- M(X, matrix(u, nrow=1))

ZZu <- M(XX, matrix(u, nrow=1))

## field data response, biased and replicated

sd <- 0.5

## Y <- computer output + bias + noise

reps <- 2 ## example from paper uses reps <- 10

Y <- rep(Zu,reps) + rep(bias(X),reps) + rnorm(repsxlength(Zu), sd=sd)
YYtrue <- ZZu + bias(XX)

## variations: remove the bias or change 2 to 1 to remove replicates

## computer model design

nz <- 10000

XT <- lhs(nz, rect)

nth <- 1 ## number of threads to use in emulation, demo uses 8

## augment with physical model design points
## with various u settings
XT2 <- matrix(NA, nrow=10xny, ncol=4)
for(i in 1:10) {
I <= ((A-1)*ny+1):(ny*i)
XT2[I,1:2] <= X
3
XT2[,3:4]1 <- lhs(10@*ny, rect[3:4,]1)
XT <- rbind(XT, XT2)

## evaluate the computer model
Z <- M(XTL,1:2], XTL,3:4D)

## flag indicating if estimating bias/discrepancy or not
bias.est <- TRUE

## two passes of ALC with MLE calculations for aGP.seq
methods <- rep(”alcray”, 2) ## demo uses rep("alc”, 2)

## set up priors
da <- d <- darg(NULL, XT)
g <- garg(list(mle=TRUE), Y)

## end identical data generation code

## now calculate log posterior and do out-of-sample RMSE calculation
## for true calibration parameter value (u). You could repeat

## this for an estimate value from demo("calib"), for example

## u.hat <- c(0.8236673, 0.1406989)

## first log posterior
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## emulate at field-data locations Xu
Xu <- cbind(X, matrix(rep(u, ny), ncol=2, byrow=TRUE))
ehat.u <- aGP.seq(XT, Z, Xu, da, methods, ncalib=2, omp.threads=nth, verb=0)

## estimate discrepancy from the residual

cmle.u <- discrep.est(X, Y, ehat.u$mean, d, g, bias.est, FALSE)
cmle.u$ll <- cmle.u$ll + beta.prior(u)

print(cmle.u$ll)

## compare to same calculation with u.hat above

## now RMSE

## Not run:

## predictive design with true calibration parameter

XXu <- cbind(XX, matrix(rep(u, nny), ncol=2, byrow=TRUE))

## emulate at predictive design
ehat.oos.u <- aGP.seq(XT, Z, XXu, da, methods, ncalib=2,
omp.threads=nth, verb=0)

## predict via discrepency
YYm.pred.u <- predGP(cmle.u$gp, XX)

## add in emulation
YY.pred.u <- YYm.pred.u$mean + ehat.oos.u$mean

## calculate RMSE

rmse.u <- sqrt(mean((YY.pred.u - YYtrue)*2))
print(rmse.u)

## compare to same calculation with u.hat above

## clean up
deleteGP(cmle.u$gp)

## End(Not run)

distance Calculate the squared Euclidean distance between pairs of points

Description

Calculate the squared Euclidean distance between pairs of points and return a distance matrix

Usage

distance(X1, X2 = NULL)

Arguments
X1 amatrix or data.frame containing real-valued numbers
X2 an optional matrix or data.frame containing real-valued numbers; must have

ncol(X2) = ncol(X1)
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Details

If X2 = NULL distances between X1 and itself are calculated, resulting in an nrow(X1)-by-nrow(X1)
distance matrix. Otherwise the result is nrow(X1)-by-nrow(X2) and contains distances between X1
and X2.

Calling distance(X) is the same as distance(X, X)

Value

The output is a matrix, whose dimensions are described in the Details section above

Author(s)

Robert B. Gramacy <rbg@vt.edu>

See Also

darg

Examples

x <- seq(-2, 2, length=11)

X <- as.matrix(expand.grid(x, x))
## predictive grid with NN=400

xx <- seq(-1.9, 1.9, length=20)

XX <- as.matrix(expand.grid(xx, xx))

D <- distance(X)
DD <- distance(X, XX)

fcalib Objective function for performing large scale computer model cali-
bration via optimization

Description

Defines an objective function for performing blackbox optimization towards solving a modularized
calibration of large computer model simulation to field data

Usage

fcalib(u, XU, Z, X, Y, da, d, g, uprior = NULL, methods = rep("alc”, 2),
M = NULL, bias = TRUE, omp.threads = 1, save.global = FALSE, verb = 1)
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Arguments

u

XU

da

uprior

methods

bias

fcalib

a vector of length ncol (XU) - ncol(X) containing a setting of the calibration
parameter

amatrix or data.frame containing the full (large) design matrix of input loca-
tions to a computer simulator whose final ncol (XU) - ncol(X) columns contain
settings of a calibration or tuning parameter like u

a vector of responses/dependent values with length(Z) = ncol(XU) of com-
puter model outputs at XU

amatrix or data.frame containing the full (large) design matrix of input loca-
tions

a vector of values with length(Y) = ncol(X) containing the response from field
data observations at X. A Y-vector with length(Y) = k#*ncol(X), for positive
integer k, can be supplied in which case the multiple Y-values will be treated as
replicates at the X-values

for emulating Z at XU: a prior or initial setting for the (single/isotropic) length-
scale parameter in a Gaussian correlation function; a (default) NULL value trig-
gers a sensible regularization (prior) and initial setting to be generated via darg;
a scalar specifies an initial value, causing darg to only generate the prior; oth-
erwise, a list or partial list matching the output of darg can be used to specify
a custom prior. In the case of a partial list, the only the missing entries will be
generated. Note that a default/generated list specifies MLE/MAP inference for
this parameter. When specifying initial values, a vector of length nrow(XX) can
be provided, giving a different initial value for each predictive location

for the discrepancy between emulations Yhat at X, based on Z at XU, and the
oputs Y observed at X. Otherwise, same description as da above

for the nugget in the GP model for the discrepancy between emulation Yhat at
X, based on Z at XU, and the outputs Y observed at X: a prior or initial setting for
the nugget parameter; a NULL value causes a sensible regularization (prior) and
initial setting to be generated via garg; a scalar (default g = 1/1000) specifies
an initial value, causing garg to only generate the prior; otherwise, a list or
partial list matching the output of garg can be used to specify a custom prior.
In the case of a partial list, only the missing entries will be generated. Note
that a default/generated list specifies no inference for this parameter; i.e., it is
fixed at its starting value, which may be appropriate for emulating deterministic
computer code output. At this time, estimating a nugget for the computer model
emulator is not supported by fcalib

an optional function taking u arguments which returns a log prior density value
for the calibration parameter.

a sequence of local search methods to be deployed when emulating Z at XU via
aGP; see aGP. seq for more details; provide methods = FALSE to use the com-
puter model M directly

a computer model “simulation” function taking two matrices as inputs, to be
used in lieu of emulation; see aGP . seq for mode details

a scalar logical indicating whether a GP discrepancy or bias term should be es-
timated via discrep.est, as opposed to only a Gaussian (zero-mean) variance;
see discrep.est for more details
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omp.threads a scalar positive integer indicating the number of threads to use for SMP parallel
processing; see aGP for more details

save.global an environment, e.g., .GlobalEnv if each evaluation of fcalib, say as called
by a wrapper or optimization routine, should be saved. The variable used in that
environment will be fcalib.save. Otherwise save.global = FALSE will skip
saving the information

verb a non-negative integer specifying the verbosity level; verb = @ is quiet, whereas
a larger value causes each evaluation to be printed to the screen

Details

Gramacy, et al. (2015) defined an objective function which, when optimized, returns a setting of cal-
ibration parameters under a setup akin to the modularized calibration method of Liu, et al., (2009).
The fcalib function returns a log density (likelihood or posterior probability) value obtained by
performing emulation at a set of inputs X augmented with a value of the calibration parameter, u.
The emulator is trained on XU and Z, presumed to be very large relative to the size of the field data
set X and Y, necessitating the use of approximate methods like aGP, via aGP.seq. The emulated
values, call them Yhat are fed along with X and Y into the discrep.est function, whose likelihood
or posterior calculation serves as a measure of merit for the value u.

The fcalib function is deterministic but, as Gramacy, et al. (2015) described, can result is a
rugged objective surface for optimizing, meaning that conventional methods, like those in optim
are unlikely to work well. They instead recommend using a blackbox derivative-free method, like
NOMAD (Le Digabel, 2011). In our example below we use the implementation in the crs package,
which provides an R wrapper around the underlying C library.

Note that while fcalib automates a call first to aGP. seq and then to discrep.est, it does not re-
turn enough information to complete, say, an out-of-sample prediction exercise like the one demon-
strated in the discrep.est documentation. Therefore, after fcalib is used in an optimization
to find the best setting of the calibration parameter, u, those functions must then be used in post-
processing to complete a prediction exercise. See demo(”calib”) or vignette(”1laGP") for more
details

Value
Returns a scalar measuring the negative log likelihood or posterior density of the calibration param-
eter u given the other inputs, for the purpose of optimization over u

Note
Note that in principle a separable correlation function could be used (e.g, via newGPsep and mleGPsep),

however this is not implemented at this time

Author(s)

Robert B. Gramacy <rbgevt.edu>
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See Also

vignette("”1laGP"), jmleGP, newGP, aGP.seq, discrep.est, snomadr

Examples

#it
#it
#it
#it

#it
#it
#it
#it
#it
#it
#it

#it
#it

#it
#it

the example here illustrates how fcalib combines aGP.seq and
discrep.est functions, duplicating the example in the discrep.est
documentation file. It is comprised of snippets from demo("”calib"),
which contains code from the Calibration Section of vignette(”laGP")

Here we generate calibration data using a true calibration

parameter, u, and then evaluate log posterior probabilities;

the discrep.est documentation repeats this with by first calling
aGP.seq and then discrep.est. The answers should be identical, however
note that a call first to example(”fcalib”) and then
example("discrep.est”) will generate two random data sets, causing

the results not to match

begin data-generation code identical to aGP.seq, discrep.est, fcalib
example sections and demo("”calib")

M: computer model test function used in Goh et al, 2013 (Technometrics)
an elaboration of one from Bastos and 0'Hagan, 2009 (Technometrics)

M <- function(x,u)

{

x <= as.matrix(x)

u <- as.matrix(u)

out <- (1-exp(-1/(2*x[,21)))

out <- out * (1000*ul,1]*x[,1]143+1900*x[,1]142+2092*x[,1]+60)
out <- out / (100*xul,2]*x[,1]*3+500*x[,1]"2+4*xx[,1]+20)
return(out)


https://bobby.gramacy.com/surrogates/
https://bobby.gramacy.com/surrogates/
https://doi.org/10.18637/jss.v072.i01
https://arxiv.org/abs/1410.3293
https://arxiv.org/abs/1410.3293
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## bias: discrepancy function from Goh et al, 2013
bias <- function(x)
{
x<-as.matrix(x)
out<- 2x(10*x[,1]1*2+4*x[,2]1*2) / (50*x[,1]xx[,2]+10)
return(out)

3

## beta.prior: marginal beta prior for u,

## defaults to a mode at 1/2 in hypercube

beta.prior <- function(u, a=2, b=2, log=TRUE)

{
if(length(a) == 1) a <- rep(a, length(u))
else if(length(a) != length(u)) stop("length(a) must be 1 or length(u)")
if(length(b) == 1) b <- rep(b, length(u))
else if(length(b) != length(u)) stop("length(b) must be 1 or length(u)")
if(log) return(sum(dbeta(u, a, b, log=TRUE)))
else return(prod(dbeta(u, a, b, log=FALSE)))

3

## tgp for LHS sampling
library(tgp)
rect <- matrix(rep(@:1, 4), ncol=2, byrow=2)

## training inputs
ny <- 50;
X <- lhs(ny, rect[1:2,]1) ## computer model train

## true (but unknown) setting of the calibration parameter
## for the computer model

u<-c¢(0.2, 0.1)

Zu <- M(X, matrix(u, nrow=1))

## field data response, biased and replicated

sd <- 0.5

## Y <- computer output + bias + noise

reps <- 2 ## example from paper uses reps <- 10

Y <- rep(Zu,reps) + rep(bias(X),reps) + rnorm(repsxlength(Zu), sd=sd)
## variations: remove the bias or change 2 to 1 to remove replicates

## computer model design

nz <- 10000

XU <- lhs(nz, rect)

nth <- 1 ## number of threads to use in emulation, demo uses 8

## augment with physical model design points
## with various u settings
XU2 <- matrix(NA, nrow=10*ny, ncol=4)
for(i in 1:10) {
I <= ((i-1)*ny+1):(ny*i)
XU2[I,1:2] <- X
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}
XU2[,3:4] <- lhs(10*ny, rect[3:4,])
XU <= rbind(XU, XU2)

## evaluate the computer model
Z <- M(XUL,1:2]1, XUL,3:41)

## flag indicating if estimating bias/discrepancy or not
bias.est <- TRUE

## two passes of ALC with MLE calculations for aGP.seq
methods <- rep("”alcray”, 2) ## demo uses rep("alc”, 2)

## set up priors

da <- d <- darg(NULL, XU)

g <- garg(list(mle=TRUE), Y)

## end identical data generation code

## now calculate log posterior for true calibration parameter
## value (u). You could repeat this for an estimate value

## from demo("calib”), for example u.hat <- c(0.8236673, 0.1406989)

fcalib(u, XU, Z, X, Y, da, d, g, beta.prior, methods, M, bias.est, nth)

1aGP Localized Approximate GP Prediction At a Single Input Location

Description

Build a sub-design of X of size end, and infer parameters, for approximate Gaussian process predic-
tion at reference location(s) Xref. Return the moments of those predictive equations, and indices
into the local design

Usage

laGP(Xref, start, end, X, Z, d = NULL, g = 1/10000,
method = c("alc”, "alcopt”, "alcray", "mspe”, "nn", "fish"), Xi.ret = TRUE,
close = min((1000+end)*if (method[1] %in% c("alcray”, "alcopt”)) 10 else 1, nrow(X)),
alc.gpu = FALSE, numstart = if(method[1] == "alcray”) ncol(X) else 1,
rect = NULL, lite = TRUE, verb = 0)
laGP.R(Xref, start, end, X, Z, d = NULL, g = 1/10000,
method = c("alc", "alcopt”, "alcray", "mspe”, "nn"”, "fish"),
Xi.ret = TRUE, pall = FALSE,
close = min((1000+end)*if (method[1] %in% c("alcray”, "alcopt”)) 10 else 1, nrow(X)),
parallel = c("none”, "omp"”, "gpu"),
numstart = if(method[1] == "alcray”) ncol(X) else 1,
rect = NULL, lite = TRUE, verb = 0)
laGPsep(Xref, start, end, X, Z, d = NULL, g = 1/10000,
method = c("alc”, "alcopt”, "alcray”, "nn"), Xi.ret = TRUE,
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close = min((1000+end)*if (method[1] %in% c("alcray"”, "alcopt”)) 10 else 1, nrow(X)),
alc.gpu = FALSE, numstart = if(method[1] == "alcray") ncol(X) else 1,
rect = NULL, lite = TRUE, verb=0)

laGPsep.R(Xref, start, end, X, Z, d = NULL, g = 1/10000,

method = c("alc”, "alcopt”, "alcray”, "nn"),
Xi.ret = TRUE, pall = FALSE,

close = min((1000+end)*if (method[1] %in% c("alcray"”, "alcopt”)) 10 else 1, nrow(X)),
parallel = c("none”, "omp", "gpu"),
numstart = if(method[1] == "alcray"”) ncol(X) else 1,
rect = NULL, lite = TRUE, verb = 0)

Arguments

Xref a vector of length ncol(X) containing a single reference location; or a matrix
with ncol (Xref) = ncol(X) containing multiple reference locations (unless method
= "alcray") for simultaneous sub-design and prediction

start the number of Nearest Neighbor (NN) locations for initialization; must specify
start>=6

end the total size of the local designs; must have start < end

X amatrix or data.frame containing the full (large) design matrix of input loca-
tions

Z a vector of responses/dependent values with length(Z) = nrow(X)

d a prior or initial setting for the lengthscale parameter for a Gaussian correlation
function; a (default) NULL value causes a sensible regularization (prior) and ini-
tial setting to be generated via darg; a scalar specifies an initial value, causing
darg to only generate the prior; otherwise, a list or partial list matching the out-
put of darg can be used to specify a custom prior. In the case of a partial list,
the only the missing entries will be generated. Note that a default/generated list
specifies MLE/MAP inference for this parameter. With 1aGPsep, the starting
values can be an ncol (X)-by-nrow(XX) matrix or ncol(X) vector

g a prior or initial setting for the nugget parameter; a NULL value causes a sensible
regularization (prior) and initial setting to be generated via garg; a scalar (de-
fault g = 1/10000) specifies an initial value, causing garg to only generate the
prior; otherwise, a list or partial list matching the output of garg can be used
to specify a custom prior. In the case of a partial list, only the missing entries
will be generated. Note that a default/generated list specifies no inference for
this parameter; i.e., it is fixed at its starting or default value, which may be ap-
propriate for emulating deterministic computer code output. In such situations
a value much smaller than the default may work even better (i.e., yield better
out-of-sample predictive performance). The default was chosen conservatively

method Specifies the method by which end-start candidates from X are chosen in order
to predict at Xref. In brief, ALC ("alc”, default) minimizes predictive variance;
ALCRAY ("alcray")) executes a thrifty ALC-based search focused on rays
emanating from the reference location [must have nrow(Xref) = 1]; ALCOPT
("alcopt"”) optimizes a continuous ALC analog via derivatives to and snaps the
solution back to the candidate grid; MSPE ("mspe”) augments ALC with extra
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derivative information to minimize mean-squared prediction error (requires ex-
tra computation); NN (“nn") uses nearest neighbor; and EFI ("fish") uses the
expected Fisher information - essentially 1/G from Gramacy & Apley (2015) -
which is global heuristic, i.e., not localized to Xref.

Xi.ret A scalar logical indicating whether or not a vector of indices into X, specifying
the chosen sub-design, should be returned on output

pall a scalar logical (for 1aGP.R only) offering the ability to obtain predictions after
every update (for progress indication and debugging), rather than after just the
last update

close a non-negative integer end < close <= nrow(X) specifying the number of NNs
(to Xref) in X to consider when searching for elements of the sub-design; close
= 0 specifies all. For method="alcray"” and method="alcopt”, this argument
specifies the scope used to snap solutions obtained via analog continuous searches
back to elements of X, otherwise there are no restrictions on those searches.
Since these approximate searches are cheaper, they can afford a larger “snap-
ping scope” hence the larger default

alc.gpu a scalar logical indicating if a GPU should be used to parallelize the evaluation
of the ALC criteria (method = "alc”). Requires the package be compiled with
CUDA flags; see README/INSTALL in the package source for more details;
currently only available for nrow(Xref) == 1 via 1aGP, not 1aGPsep or the .R
variants, and only supports off-loading ALC calculation to the GPU

parallel a switch indicating if any parallel calculation of the criteria is desired. Cur-
rently parallelization at this level is only provided for option method = "alc").
For parallel = "omp”, the package must be compiled with OMP flags; for
parallel = "gpu"”, the package must be compiled with CUDA flags see README/INSTALL
in the package source for more details; currently only available via 1aGP.R

numstart a scalar integer indicating the number of rays for each greedy search when
method="alcray" or the number of restarts when method="alcopt”. More
rays or restarts leads to a more thorough, but more computational intensive
search. This argument is not involved in other methods

rect an optional 2-by-ncol (X) matrix describing a bounding rectangle for X that is
used by the "alcray” method. If not specified, the rectangle is calculated from
range applied to the columns of X

lite Similar to the predGP option of the same name, this argument specifies whether
(TRUE, the default) or not (FALSE) to return a full covariance structure is re-
turned, as opposed the diagonal only. A full covariance structure requires more
computation and more storage. This option is only relevant when nrow(Xref)
>1

verb a non-negative integer specifying the verbosity level; verb =@ is quiet, and
larger values cause more progress information to be printed to the screen
Details

A sub-design of X of size end is built-up according to the criteria prescribed by the method and
then used to predict at Xref. The first start locations are NNs in order to initialize the first GP,
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via newGP or newGPsep, and thereby initialize the search. Each subsequent addition is found via the
chosen criterion (method), and the GP fit is updated via updateGP or updateGPsep

The runtime is cubic in end, although the multiplicative “constant” out front depends on the method
chosen, the size of the design X, and close. The "alcray” method has a smaller constant since it
does not search over all candidates exhaustively.

After building the sub-design, local MLE/MAP lengthscale (and/or nugget) parameters are esti-
mated, depending on the d and g arguments supplied. This is facilitated by calls to m1eGP or jmleGP.

Finally predGP is called on the resulting local GP model, and the parameters of the resulting
Student-t distribution(s) are returned. Unless Xi.ret = FALSE, the indices of the local design are
also returned.

1aGP.R and laGPsep.R are a prototype R-only version for debugging and transparency purposes.
They are slower than 1aGP and 1aGPsep, which are primarily in C, and may not provide identical
output in all cases due to differing library implementations used as subroutines; see note below
for an example. 1aGP.R and other .R functions in the package may be useful for developing new
programs that involve similar subroutines. The current version of 1aGP.R allows OpenMP and/or
GPU parallelization of the criteria (method) if the package is compiled with the appropriate flags.
See README/INSTALL in the package source for more information. For algorithmic details, see
Gramacy, Niemi, & Weiss (2014)

Value

The output is a 1ist with the following components.

mean a vector of predictive means of length nrow(Xref)

s2 a vector of Student-t scale parameters of length nrow(Xref)

df a Student-t degrees of freedom scalar (applies to all Xref)

11ik a scalar indicating the maximized log likelihood or log posterior probability of
the data/parameter(s) under the chosen sub-design; provided up to an additive
constant

time a scalar giving the passage of wall-clock time elapsed for (substantive parts of)
the calculation

method a copy of the method argument

d a full-list version of the d argument, possibly completed by darg

g a full-list version of the g argument, possibly completed by garg

mle if d$mle and/or g$mle are TRUE, then mle is a data. frame containing the values
found for these parameters, and the number of required iterations

Xi when Xi.ret = TRUE, this field contains a vector of indices of length end into X
indicating the sub-design chosen

close a copy of the input argument

Note

laGPsep provides the same functionality as 1aGP but deploys a separable covariance function. How-
ever criteria (methods) EFI and MSPE are not supported. This is considered “beta” functionality at
this time.
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Note that using method="NN" gives the same result as specifying start=end, however at some extra
computational expense.

Handling multiple reference locations (nrow(Xref) > 1) is “beta” functionality. In this case the
initial start locations are chosen by applying NN to the average distances to all Xref locations.
Using method="alcopt” causes exhaustive search to be approximated by a continuous analog via
closed form derivatives. See alcoptGP for more details. Although the approximation provided has
a spirit similar to method="alcray"”, in that both methods are intended to offer a thrifty alternative,
method="alcray" is not applicable when nrow(Xref) > 1.

Differences between the C gsort function and R’s order function may cause chosen designs re-
turned from 1aGP and 1aGP.R (code and 1aGPsep and 1aGPsep.R) to differ when multiple X values
are equidistant to Xref

Author(s)

Robert B. Gramacy <rbg@vt.edu> and Furong Sun <furongs@vt.edu>
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See Also
vignette("laGP"), aGP, newGP, updateGP, predGP, mleGP, jmleGP, alcGP, mspeGP, alcrayGP,
randLine ## path-based local prediction via 1aGP

Examples

## examining a particular laGP call from the larger analysis provided
## in the aGP documentation
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## A simple 2-d test function used in Gramacy & Apley (2014);
## thanks to Lee, Gramacy, Taddy, and others who have used it before
f2d <- function(x, y=NULL)
{
if(is.null(y)) {
if(lis.matrix(x) && !is.data.frame(x)) x <- matrix(x, ncol=2)
y <= x[,2]; x <= x[,1]
3
g <- function(z)
return(exp(-(z-1)"2) + exp(-0.8*(z+1)*2) - 0.05*sin(8*(z+0.1)))
z <= -g(x)*g(y)
}

## build up a design with N=~40K locations
x <- seq(-2, 2, by=0.02)

X <- as.matrix(expand.grid(x, x))

Z <- f2d(X)

## optional first pass of nearest neighbor
Xref <- matrix(c(-1.725, 1.725), nrow=TRUE)
out <- laGP(Xref, 6, 50, X, Z, method="nn")

## second pass via ALC, ALCOPT, MSPE, and ALC-ray respectively,

## conditioned on MLE d-values found above

out2 <- laGP(Xref, 6, 50, X, Z, d=out$mles$d)

# out2.alcopt <- laGP(Xref, 6, 50, X, Z, d=out2$mle$d, method="alcopt")
out2.mspe <- laGP(Xref, 6, 50, X, Z, d=out2$mle$d, method="mspe")
out2.alcray <- laGP(Xref, 6, 50, X, Z, d=out2$mle$d, method="alcray")

## look at the different designs
plot(rbind(X[out2$Xi,], X[out2.mspe$Xi,]), type="n",

xlab="x1", ylab="x2", main="comparing local designs")
points(Xref[1], Xref[2], col=2, cex=0.5)
text(X[out2$Xi,], labels=1:50, cex=0.6)
# text(X[out2.alcopt$Xi,], labels=1:50, cex=0.6, col="forestgreen")
text(X[out2.mspe$Xi,], labels=1:50, cex=0.6, col="blue")
text(X[out2.alcray$Xi,], labels=1:50, cex=0.6, col="red")
legend("right”, c("ALC", "ALCOPT", "MSPE", "ALCRAY"),

text.col=c("black”, "forestgreen”, "blue", "red"), bty="n")

## compare computational time
c(nn=out$time, alc=out2$time, # alcopt=out2.alcopt$time,
mspe=out2.mspe$time, alcray=out2.alcray$time)

## Not run:
## Joint path sampling: a comparison between ALC-ex, ALC-opt and NN

## defining a predictive path
wx <- seq(-0.85, 0.45, length=100)
W <- cbind(wx-0.75, wx"3+0.51)

## three comparators from Sun, et al. (2017)
## larger-than-default "close” argument to capture locations nearby path
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p.alc <- laGPsep(W, 6, 100, X, Z, close=10000, lite=FALSE)

p.alcopt <- laGPsep(W, 6, 100, X, Z, method="alcopt"”, lite=FALSE)

## note that close=10%*(1000+end) would be the default for method = "alcopt”
p.nn <- laGPsep(W, 6, 100, X, Z, method="nn", close=10000, lite=FALSE)

## time comparison
c(alc=p.alc$time, alcopt=p.alcopt$time, nn=p.nn$time)

## visualization

plot(W, type="1", xlab="x1", ylab="x2", xlim=c(-2.25,0), ylim=c(-0.75,1.25), lwd=2)
points(X[p.alc$Xi,], col=2, cex=0.6)

lines(WL,11+0.25, W[,2]1-0.25, lwd=2)

points(X[p.nn$Xi, 1]1+0.25, X[p.nn$Xi,2]-0.25, pch=22, col=3, cex=0.6)
lines(W[,1]-0.25, W[,2]+0.25, lwd=2)

points(X[p.alcopt$Xi, 11-0.25, X[p.alcopt$Xi,2]+0.25, pch=23, col=4, cex=0.6)
legend("bottomright”, c("ALC-opt"”, "ALC-ex", "NN"), pch=c(22, 21, 23), col=c(4,2,3))

## End(Not run)

11ikGP Calculate a GP log likelihood

Description
Calculate a Gaussian process (GP) log likelihood or posterior probability with reference to a C-side
GP object

Usage

11ikGP(gpi, dab = c(@, @), gab = c(0, @))
11ikGPsep(gpsepi, dab = c(0, @), gab = c(@, 0))

Arguments
gpi a C-side GP object identifier (positive integer); e.g., as returned by newGP
gpsepi similar to gpi but indicating a separable GP object
dab ab for the lengthscale parameter, see Details
gab ab for the nugget parameter, see Details
Details

An “ab” parameter is a non-negative 2-vector describing shape and rate parameters to a Gamma
prior; a zero-setting for either value results in no-prior being used in which case a log likelihood
is returned. If both ab parameters are specified, then the value returned can be interpreted as a log
posterior density. See darg for more information about ab

Value

A real-valued scalar is returned.
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Author(s)

Robert B. Gramacy <rbg@vt.edu>

See Also

mleGP, darg

Examples

## partly following the example in mleGP
if(require("MASS")) {

## motorcycle data and predictive locations
X <- matrix(mcycle[,1], ncol=1)
Z <- mcycle[,2]

## get sensible ranges
d <- darg(NULL, X)
g <- garg(list(mle=TRUE), Z)

## initialize the model
gpi <- newGP(X, Z, d=d$start, g=g$start)

## calculate log likelihood
11ikGP(gpi)

## calculate posterior probability
11ikGP(gpi, d$ab, g$ab)

## clean up
deleteGP(gpi)

mleGP Inference for GP correlation parameters

Description

Maximum likelihood/a posteriori inference for (isotropic and separable) Gaussian lengthscale and
nugget parameters, marginally or jointly, for Gaussian process regression

Usage

mleGP(gpi, param = c("d", "g"), tmin=sqgrt(.Machine$double.eps),
tmax = -1, ab = c(@, 0), verb = 0)

mleGPsep(gpsepi, param=c("d”, "g", "both"), tmin=rep(sqrt(.Machine$double.eps), 2),
tmax=c(-1,1), ab=rep(0,4), maxit=100, verb=0)

mleGPsep.R(gpsepi, param=c("d", "g"), tmin=sqrt(.Machine$double.eps),
tmax=-1, ab=c(0,0), maxit=100, verb=0)

jmleGP(gpi, drange=c(sqrt(.Machine$double.eps),10),
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grange=c(sqrt(.Machine$double.eps), 1), dab=c(0,0), gab=c(0,0), verb=0)

jmleGP.R(gpi, N=100, drange=c(sqrt(.Machine$double.eps),10),
grange=c(sqrt(.Machine$double.eps), 1), dab=c(0,0), gab=c(0,0), verb=0)

jmleGPsep(gpsepi, drange=c(sqrt(.Machine$double.eps),10),
grange=c(sqrt(.Machine$double.eps), 1), dab=c(0,0), gab=c(0,0),
maxit=100, verb=0)

jmleGPsep.R(gpsepi, N=100, drange=c(sqrt(.Machine$double.eps),10),
grange=c(sqrt(.Machine$double.eps), 1), dab=c(0,0), gab=c(0,0),
maxit=100, mleGPsep=mleGPsep.R, verb=0)

Arguments

gpi a C-side GP object identifier (positive integer); e.g., as returned by newGP

gpsepi similar to gpi but indicating a separable GP object, as returned by newGPsep

N for jmleGP.R, the maximum number of times the pair of margins should be iter-
ated over before determining failed convergence; note that (at this time) jmleGP
uses a hard-coded N=100 in its C implementation

param for mleGP, indicating whether to work on the lengthscale (d) or nugget (g) mar-
gin

tmin for mleGP, smallest value considered for the parameter (param)

tmax for mleGP, largest value considered for the parameter (param); a setting of -1
for lengthscales, the default, causes ncol (X)*2 to be used

drange for jmleGP, these are c(tmin, tmax) values for the lengthscale parameter; the
default values are reasonable for 1-d inputs in the unit interval

grange for jmleGP, these are c(tmin, tmax) values for the nugget parameter; the de-
fault values are reasonable for responses with a range of one

ab for mleGP, a non-negative 2-vector describing shape and rate parameters to a
Gamma prior for the parameter (param); a zero-setting for either value results in
no-prior being used (MLE inference); otherwise MAP inference is performed

maxit for mleGPsep this is passed as control=list(trace=maxit) to optim’s L-
BFGS-B method for optimizing the likelihood/posterior of a separable GP repre-
sentation; this argument is not used for isotropic GP versions, nor for optimizing
the nugget

dab for jmleGP, this is ab for the lengthscale parameter

gab for jmleGP, this is ab for the nugget parameter

mleGPsep function for internal MLE calculation of the separable lengthscale parameter;
one of either mleGPsep.R based on method="L-BFGS-B" using optim; or mleGPsep
using the C entry point 1bfgsb. Both options use a C backend for the nugget

verb a verbosity argument indicating how much information about the optimization

steps should be printed to the screen; verb <= @ is quiet; for jmleGP, a verb - 1
value is passed to the mleGP or mleGPsep subroutine(s)
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Details

mleGP and mleGPsep perform marginal (or profile) inference for the specified param, either the
lengthscale or the nugget. mleGPsep can perform simultaneous lengthscale and nugget inference
via a common gradient with param = "both". More details are provided below.

For the lengthscale, mleGP uses a Newton-like scheme with analytic first and second derivatives
(more below) to find the scalar parameter for the isotropic Gaussian correlation function, with hard-
coded 100-max iterations threshold and a sqrt(.Machine$double.eps) tolerance for determining
convergence; mleGPsep.R uses L-BFGS-B via optim for the vectorized parameter of the separable
Gaussian correlation, with a user-supplied maximum number of iterations (maxit) passed to optim.
When maxit is reached the output conv = 1 is returned, subsequent identical calls to mleGPsep.R
can be used to continue with further iterations. mleGPsep is similar, but uses the C entry point
1bfgsbh.

For the nugget, both mleGP and mleGPsep utilize a (nearly identical) Newton-like scheme leveraging
first and second derivatives.

jmleGP and jmleGPsep provide joint inference by iterating over the marginals of lengthscale and
nugget. The jmleGP.R function is an R-only wrapper around mleGP (which is primarily in C),
whereas jmleGP is primarily in C but with reduced output and with hard-coded N=100. The same is
true for jmleGPsep.

mleGPsep provides a param = "both" alternative to jmleGPsep leveraging a common gradient. It
can be helpful to supply a larger maxit argument compared to jmleGPsep as the latter may do
up to 100 outer iterations, cycling over lengthscale and nugget. mleGPsep usually requires many
fewer total iterations, unless one of the lengthscale or nugget is already converged. In anticipation of
param = "both" the mleGPsep function has longer default values for its bounds and prior arguments.
These longer arguments are ignored when param != "both"”. At this time mleGP does not have a
param = "both" option.

All methods are initialized at the value of the parameter(s) currently stored by the C-side object
referenced by gpi or gpsepi. It is highly recommended that sensible range values (tmin, tmax
or drange, grange) be provided. The defaults provided are too loose for most applications. As
illustrated in the examples below, the darg and garg functions can be used to set appropriate ranges
from the distributions of inputs and output data respectively.

The Newton-like method implemented for the isotropic lengthscale and for the nugget offers very
fast convergence to local maxima, but sometimes it fails to converge (for any of the usual reasons).
The implementation detects this, and in such cases it invokes a Brent_fmin call instead - this is the
method behind the optimize function.

Note that the gpi or gpsepi object(s) must have been allocated with dK=TRUE; alternatively, one
can call buildKGP or buildKGPsep - however, this is not in the NAMESPACE at this time

Value

A self-explanatory data. frame is returned containing the values inferred and the number of itera-
tions used. The jmleGP.R and jmleGPsep.R functions will also show progress details (the values
obtained after each iteration over the marginals).

However, the most important “output” is the modified GP object which retains the setting of the
parameters reported on output as a side effect.

mleGPsep and jmleGPsep provide an output field/column called conv indicating convergence (when
0), or alternately a value agreeing with a non-convergence code provided on output by optim
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Author(s)

Robert B. Gramacy <rbg@vt.edu>

References

For standard GP inference, refer to any graduate text, e.g., Rasmussen & Williams Gaussian Pro-
cesses for Machine Learning, or

Gramacy, R. B. (2020) Surrogates: Gaussian Process Modeling, Design and Optimization for the
Applied Sciences. Boca Raton, Florida: Chapman Hall/CRC. (See Chapter 5.) https://bobby.
gramacy.com/surrogates/

See Also

vignette("1laGP"), newGP, 1aGP, 11ikGP, optimize

Examples

## a simple example with estimated nugget
if(require("MASS")) {

## motorcycle data and predictive locations
X <- matrix(mcycle[,1], ncol=1)
Z <- mcycle[,2]

## get sensible ranges
d <- darg(NULL, X)
g <- garg(list(mle=TRUE), Z)

## initialize the model
gpi <- newGP(X, Z, d=d$start, g=g$start, dK=TRUE)

## separate marginal inference (not necessary - for illustration only)
print(mleGP(gpi, "d", d$min, d$max))

non

print(mleGP(gpi, "g", g$min, g$max))

## joint inference (could skip straight to here)
print(jmleGP(gpi, drange=c(d$min, d$max), grange=c(g$min, g$max)))

## plot the resulting predictive surface

N <- 100

XX <- matrix(seq(min(X), max(X), length=N), ncol=1)

p <- predGP(gpi, XX, lite=TRUE)

plot(X, Z, main="stationary GP fit to motorcycle data")
lines(XX, p$mean, lwd=2)

lines(XX, p$mean+1.96xsqrt(p$s2xp$df/(p$df-2)), col=2, 1lty=2)
lines(XX, p$mean-1.96*xsqrt(p$s2xp$df/(p$df-2)), col=2, 1lty=2)

## clean up
deleteGP(gpi)


https://bobby.gramacy.com/surrogates/
https://bobby.gramacy.com/surrogates/
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##
## with a separable correlation function
#H#

## 2D Example: GoldPrice Function, mimicking GP_fit package

f <= function(x)

{
x1 <- 4%x[,1] - 2
x2 <- 4*x[,2] - 2;
t1 <=1+ (X1 + x2 + 1)"2%x(19 - 14*x1 + 3*xx172 - 14*x2 + 6*%x1*x2 + 3*xx2"2);
12 <= 30 + (2*%x1 -3%x2)%2%(18 - 32%x1 + 12%xx122 + 48%x2 - 36%x1*x2 + 27%x2°2);
y <- t1*t2;
return(y)

3

## build design

library(tgp)

n <- 50 ## change to 100 or 1000 for more interesting demo
B <- rbind(c(0,1), c(0,1))

X <- dopt.gp(n, Xcand=lhs(10*n, B))$XX

## this differs from GP_fit in that we use the log response
Y <= log(f(X))

## get sensible ranges
d <- darg(NULL, X)
g <- garg(list(mle=TRUE), Y)

## build GP and jointly optimize via profile mehtods
gpisep <- newGPsep(X, Y, d=rep(d$start, 2), g=g$start, dK=TRUE)
jmleGPsep(gpisep, drange=c(d$min, d$max), grange=c(g$min, g$max))

## clean up
deleteGPsep(gpisep)

## alternatively, we can optimize via a combined gradient

gpisep <- newGPsep(X, Y, d=rep(d$start, 2), g=g$start, dK=TRUE)
mleGPsep(gpisep, param="both", tmin=c(d$min, g$min), tmax=c(d$max, g$max))
deleteGPsep(gpisep)

newGP Create A New GP Object

Description
Build a Gaussian process C-side object based on the X-Z data and parameters provided, and augment
those objects with new data

Usage
newGP(X, Z, d, g, dK = FALSE)
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newGPsep(X, Z, d, g, dK = FALSE)
updateGP(gpi, X, Z, verb = 0)
updateGPsep(gpsepi, X, Z, verb = 0)

Arguments

X

dK

gpi
gpsepi

verb

Details

amatrix or data.frame containing the full (large) design matrix of input loca-
tions

a vector of responses/dependent values with length(Z) = nrow(X)

a positive scalar lengthscale parameter for an isotropic Gaussian correlation
function (newGP); or a vector for a separable version (newGPsep)

a positive scalar nugget parameter

a scalar logical indicating whether or not derivative information (for the length-
scale) should be maintained by the GP object; this is required for calculating
MLEs/MAPs of the lengthscale parameter(s) via mleGP and jmleGP

a C-side GP object identifier (positive integer); e.g., as returned by newGP
similar to gpi but indicating a separable GP object, as returned by newGPsep

a non-negative integer indicating the verbosity level. A positive value causes
progress statements to be printed to the screen for each update of i in 1:nrow(X)

newGP allocates a new GP object on the C-side and returns its unique integer identifier (gpi), tak-
ing time which is cubic on nrow(X); allocated GP objects must (eventually) be destroyed with
deleteGP or deleteGPs or memory will leak. The same applies for newGPsep, except deploying a
separable correlation with limited feature set; see deleteGPsep and deleteGPseps

updateGP takes gpi identifier as input and augments that GP with new data. A sequence of updates
is performed, for each i in 1:nrow(X), each taking time which is quadratic in the number of data
points. updateGP also updates any statistics needed in order to quickly search for new local design
candidates via 1aGP. The same applies to updateGPsep on gpsepi objects

Value

newGP and newGPsep create a unique GP indicator (gpi or gpsepi) referencing a C-side object;
updateGP and updateGPsep do not return anything, but yields a modified C-side object as a side

effect

Author(s)

Robert B. Gramacy <rbgevt.edu>

References

For standard GP inference, refer to any graduate text, e.g., Rasmussen & Williams Gaussian Pro-
cesses for Machine Learning, or



newGP 43

Gramacy, R. B. (2020) Surrogates: Gaussian Process Modeling, Design and Optimization for the
Applied Sciences. Boca Raton, Florida: Chapman Hall/CRC. (See Chapter 6.) https://bobby.
gramacy.com/surrogates/

For efficient updates of GPs, see:

R.B. Gramacy and D.W. Apley (2015). Local Gaussian process approximation for large computer
experiments. Journal of Computational and Graphical Statistics, 24(2), pp. 561-678; preprint on
arXiv:1303.0383; https://arxiv.org/abs/1303.0383

See Also

vignette("laGP"), deleteGP, mleGP, predGP, 1aGP

Examples

## for more examples, see predGP and mleGP docs

## simple sine data
X <- matrix(seq(@,2*pi,length=7), ncol=1)
Z <- sin(X)

## new GP fit
gpi <- newGP(X, Z, 2, 0.000001)

## make predictions
XX <- matrix(seq(-1,2xpi+1, length=499), ncol=ncol(X))
p <- predGP(gpi, XX)

## sample from the predictive distribution
if(require(mvtnorm)) {

N <- 100

77 <- rmvt(N, p$Sigma, p$df)

77 <- 7Z + t(matrix(rep(p$mean, N), ncol=N))

matplot (XX, t(ZZ), col="gray"”, 1lwd=0.5, 1ty=1, type="1",

xlab="x", ylab="f-hat(x)", bty="n")

points(X, Z, pch=19, cex=2)

3

## update with four more points

X2 <- matrix(c(pi/2, 3*pi/2, -0.5, 2*pi+@.5), ncol=1)
Z2 <- sin(X2)

updateGP(gpi, X2, Z2)

## make a new set of predictions
p2 <- predGP(gpi, XX)
if(require(mvtnorm)) {
77 <- rmvt(N, p2$Sigma, p2%$df)
77 <- 77 + t(matrix(rep(p2%$mean, N), ncol=N))
matplot (XX, t(ZZ), col="gray"”, 1lwd=0.5, 1lty=1, type="1",
xlab="x", ylab="f-hat(x)", bty="n")
points(X, Z, pch=19, cex=2)
points(X2, Z2, pch=19, cex=2, col=2)


https://bobby.gramacy.com/surrogates/
https://bobby.gramacy.com/surrogates/
https://arxiv.org/abs/1303.0383
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}

## clean up
deleteGP(gpi)

optim.auglag Optimize an objective function under multiple blackbox constraints

Description

Uses a surrogate modeled augmented Lagrangian (AL) system to optimize an objective function
(blackbox or known and linear) under unknown multiple (blackbox) constraints via expected im-
provement (EI) and variations; a comparator based on EI with constraints is also provided

Usage

optim.auglag(fn, B, fhat = FALSE, equal = FALSE, ethresh = 1e-2,
slack = FALSE, cknown = NULL, start = 10, end = 100,
Xstart = NULL, sep = TRUE, ab = c(3/2, 8), lambda = 1, rho = NULL,
urate = 10, ncandf = function(t) { t }, dg.start = c(0.1, 1e-06),
dlim = sqrt(ncol(B)) * c(1/100, 10), Bscale = 1, ey.tol = le-2,
N = 1000, plotprog = FALSE, verb = 2, ...)

optim.efi(fn, B, fhat = FALSE, cknown = NULL, start = 10, end = 100,
Xstart = NULL, sep = TRUE, ab = c(3/2,8), urate = 10,
ncandf = function(t) { t }, dg.start = c(0.1, 1e-6),
dlim = sqrt(ncol(B))*c(1/100,10), Bscale = 1, plotprog = FALSE,
verb = 2, ...)

Arguments

fn function of an input (x), facilitating vectorization on a matrix X thereof, return-
ing a 1ist with elements $obj containing the (scalar) objective value and $c
containing a vector of evaluations of the (multiple) constraint function at x. The
fn function must take a known.only argument which is explained in the note
below; it need not act on that argument

B 2-column matrix describing the bounding box. The number of rows of the
matrix determines the input dimension (length(x) in fn(x)); the first column
gives lower bounds and the second gives upper bounds

fhat a scalar logical indicating if the objective function should be modeled with a
GP surrogate. The default of FALSE assumes a known linear objective scaled by
Bscale. Using TRUE is an “alpha” feature at this time

equal an optional vector containing zeros and ones, whose length equals the number
of constraints, specifying which should be treated as equality constraints (9) and
which as inequality (1)

ethresh a threshold used for equality constraints to determine validity for progress mea-
sures; ignored if there are no equality constraints
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slack A scalar logical indicating if slack variables, and thus exact EI calculations
should be used. The default of slack = FALSE results in Monte Carlo EI approx-
imation. One can optionally specify slack = 2 to get the slack = TRUE behavior,
with a second-stage L-BFGS-B optimization of the EI acquisition applied at the
end, starting from the best value found on the random search grid

cknown A optional positive integer vector specifying which of the constraint values re-
turned by fn should be treated as “known”, i.e., not modeled with Gaussian
processes

start positive integer giving the number of random starting locations before sequen-

tial design (for optimization) is performed; start >= 6 is recommended unless
Xstart is non-NULL; in the current version the starting locations come from a
space-filling design via dopt. gp

end positive integer giving the total number of evaluations/trials in the optimization;
must have end > start

Xstart optional matrix of starting design locations in lieu of, or in addition to, start
random ones; we recommend nrow(Xstart) + start >= 6; also must have ncol (Xstart)
=nrow(B)

sep The default sep = TRUE uses separable GPs (i.e., via newGPsep, etc.) to model
the constraints and objective; otherwise the isotropic GPs are used

ab prior parameters; see darg describing the prior used on the lengthscale parame-
ter during emulation(s) for the constraints

lambda m-dimensional initial Lagrange multiplier parameter for m-constraints

rho positive scalar initial quadratic penalty parameter in the augmented Lagrangian;

the default setting of rho = NULL causes an automatic starting value to be chosen;
see rejoinder to Gramacy, et al. (2016) or supplementary material to Picheny, et
al. (2016)

urate positive integer indicating how many optimization trials should pass before each
MLE/MAP update is performed for GP correlation lengthscale parameter(s)

ncandf function taking a single integer indicating the optimization trial number t, where
start <t <= end, and returning the number of search candidates (e.g., for ex-
pected improvement calculations) at round t; the default setting allows the num-
ber of candidates to grow linearly with t

dg.start 2-vector giving starting values for the lengthscale and nugget parameters of the
GP surrogate model(s) for constraints

dlim 2-vector giving bounds for the lengthscale parameter(s) under MLE/MAP infer-
ence, thereby augmenting the prior specification in ab

Bscale scalar indicating the relationship between the sum of the inputs, sum(x), to fn
and the output fn(x) $obj; note that at this time only linear objectives are fully
supported by the code - more details below

ey.tol a scalar proportion indicating how many of the Els at ncandf (t) candidate lo-
cations must be non-zero to “trust” that metric to guide search, reducing to an
EY-based search instead [choosing that proportion to be one forces EY-based
search]

N positive scalar integer indicating the number of Monte Carlo samples to be used
for calculating EI and EY
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plotprog logical indicating if progress plots should be made after each inner itera-
tion; the plots show three panels tracking the best valid objective, the EI or
EY surface over the first two input variables (requires interp, and the param-
eters of the lengthscale(s) of the GP(s) respectively. When plotprog = TRUE
the interp.loess function is used to aid in creating surface plots, however this
does not work well with fewer than fifteen points. You may also provide a func-
tion as an argument, having similar arguments/formals as interp.loess. For
example, we use interp below, which would have been the default if not for
licensing incompatibilities

verb a non-negative integer indicating the verbosity level; the larger the value the
more that is printed to the screen

additional arguments passed to fn

Details

These subroutines support a suite of methods used to optimize challenging constrained problems
from Gramacy, et al. (2016); and from Picheny, et al., (2016) see references below.

Those schemes hybridize Gaussian process based surrogate modeling and expected improvement
(EL Jones, et., al, 2008) with the additive penalty method (APM) implemented by the augmented
Lagrangian (AL, e.g., Nocedal & Wright, 2006). The goal is to minimize a (possibly known)
linear objective function f(x) under multiple, unknown (blackbox) constraint functions satisfying
c(x) <= 0, which is vector-valued. The solution here emulates the components of ¢ with Gaussian
process surrogates, and guides optimization by searching the posterior mean surface, or the EI of,
the following composite objective

Y(@) = fz) + ATYo() + zipzmaxm,n (2))2,
1=1

where )\ and p follow updating equations that guarantee convergence to a valid solution minimizing
the objective. For more details, see Gramacy, et al. (2016).

A slack variable implementation that allows for exact EI calculations and can accommodate equality
constraints, and mixed (equality and inequality) constraints, is also provided. For further details,
see Picheny, et al. (2016).

The example below illustrates a variation on the toy problem considered in both papers, which
bases sampling on EI. For examples making used of equality constraints, following the Picheny, et
al (2016) papers; see the demos listed in the “See Also” section below.

Although it is off by default, these functions allow an unknown objective to be modeled (fhat =
TRUE), rather than assuming a known linear one. For examples see demo("ALfhat") and demo("GSBP")
which illustrate the AL and comparators in inequality and mixed constraints setups, respectively.

The optim.efi function is provided as a comparator. This method uses the same underlying GP
models to with the hybrid EI and probability of satisfying the constraints heuristic from Schonlau,
et al., (1998). See demo("GSBP") and demo("LAH") for optim.efi examples and comparisons
between the original AL, the slack variable enhancement(s) on mixed constraint problems with
known and blackbox objectives, respectively
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Value

The output is a 1ist summarizing the progress of the evaluations of the blackbox under optimization

prog vector giving the best valid (c(x) < @) value of the objective over the trials

obj vector giving the value of the objective for the input under consideration at each
trial

X matrix giving the input values at which the blackbox function was evaluated

C matrix giving the value of the constraint function for the input under consider-
ation at each trial

d matrix of lengthscale values obtained at the final update of the GP emulator for
each constraint

df if fhat = TRUE then this is a matrix of lengthscale values for the objective ob-
tained at the final update of the GP emulator

lambda amatrix containing lambda vectors used in each “outer loop” AL iteration

rho a vector of rho values used in each “outer loop” AL iteration

Note

This function is under active development, especially the newest features including separable GP
surrogate modeling, surrogate modeling of a blackbox objective, and the use of slack variables for
exact EI calculations and the support if equality constraints. Also note that, compared with ear-
lier versions, it is now required to augment your blackbox function (fn) with an argument named
known.only. This allows the user to specify if a potentially different object (with a subset of the
outputs, those that are “known”) gets returned in certain circumstances. For example, the objec-
tive is treated as known in many of our examples. When a non-null cknown object is used, the
known.only flag can be used to return only the outputs which are known.

Older versions of this function provided an argument called nomax. The NoMax feature is no longer
supported

Author(s)

Robert B. Gramacy <rbg@vt.edu>

References

Gramacy, R. B. (2020) Surrogates: Gaussian Process Modeling, Design and Optimization for the
Applied Sciences. Boca Raton, Florida: Chapman Hall/CRC. (See Chapter 7.) https://bobby.
gramacy.com/surrogates/

Picheny, V., Gramacy, R.B., Wild, S.M., Le Digabel, S. (2016). “Bayesian optimization under
mixed constraints with a slack-variable augmented Lagrangian”. Preprint available on arXiv:1605.09466;
https://arxiv.org/abs/1605.09466

Gramacy, R.B, Gray, G.A, Lee, HKK.H, Le Digabel, S., Ranjan P., Wells, G., Wild, S.M. (2016)
“Modeling an Augmented Lagrangian for Improved Blackbox Constrained Optimization”, Techno-
metrics (with discussion), 58(1), 1-11. Preprint available on arXiv:1403.4890; https://arxiv.
org/abs/1403.4890


https://bobby.gramacy.com/surrogates/
https://bobby.gramacy.com/surrogates/
https://arxiv.org/abs/1605.09466
https://arxiv.org/abs/1403.4890
https://arxiv.org/abs/1403.4890

48

optim.auglag

Jones, D., Schonlau, M., and Welch, W. J. (1998). “Efficient Global Optimization of Expensive

Black Box Functions.” Journal of Global Optimization, 13, 455-492.

Schonlau, M., Jones, D.R., and Welch, W. J. (1998). “Global Versus Local Search in Constrained
Optimization of Computer Models.” In New Developments and Applications in Experimental De-

sign, vol. 34, 11-25. Institute of Mathematical Statistics.

Nocedal, J. and Wright, S.J. (2006). Numerical Optimization. 2nd ed. Springer.

See Also

vignette("1laGP"), demo("ALfhat") for blackbox objective, demo(”"GSBP") for a mixed con-
straints problem with blackbox objective, demo("LAH") for mix constraints with known objective,
optim.step.tgp for unconstrained optimization; optim with method="L-BFGS-B" for box con-

straints, or optim with method="SANN" for simulated annealing

Examples

## this example assumes a known linear objective; further examples

## are in the optim.auglag demo

## a test function returning linear objective evaluations and

## non-linear constraints
aimprob <- function(X, known.only = FALSE)
{
if(is.null(nrow(X))) X <- matrix(X, nrow=1)
f <= rowSums(X)
if(known.only) return(list(obj=f))
cl <= 1.5-X[,1]-2%X[,2]-0.5*%sin(2xpix (X[, 1]*2-2*X[,2]))
c2 <- rowSums(X*2)-1.5
return(list(obj=f, c=cbind(c1,c2)))
3

## set bounding rectangle for adaptive sampling
B <- matrix(c(rep(9,2),rep(1,2)),ncol=2)

## optimization (primarily) by EI, change 25 to 100 for
## 99% chance of finding the global optimum with value 0.6
if(require("interp”)) { ## for plotprog=interp

out <- optim.auglag(aimprob, B, end=25, plotprog=interp)
} else {

out <- optim.auglag(aimprob, B, end=25)
3

## using the slack variable implementation which is a little slower
## but more precise; slack=2 augments random search with L-BFGS-B

out2 <- optim.auglag(aimprob, B, end=25, slack=TRUE)
## Not run:
out3 <- optim.auglag(aimprob, B, end=25, slack=2)

## End(Not run)
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## for more slack examples and comparison to optim.efi on problems
## involving equality and mixed (equality and inequality) constraints,
## see demo("ALfhat"), demo("GSBP") and demo("LAH")

## for comparison, here is a version that uses simulated annealing
## with the Additive Penalty Method (APM) for constraints

## Not run:
aimprob.apm <- function(x, B=matrix(c(rep(@,2),rep(1,2)),ncol=2))
{

## check bounding box
for(i in 1:length(x)) {

if(x[i] < BL[i,1]1 || x[il > BL[i,21) return(Inf)
}

## evaluate objective and constraints

f <= sum(x)

cl <= 1.5-x[1]1-2*x[2]-0.5*sin(2xpix(x[1]1*2-2xx[2]))
c2 <- x[1]1*2+x[2]*2-1.5

## return APM composite
return(f + abs(c1) + abs(c2))
}

## use SA; specify control=list(maxit=100), say, to control max

## number of iterations; does not easily facilitate plotting progress
out4 <- optim(runif(2), aimprob.apm, method="SANN")

## check the final value, which typically does not satisfy both

## constraints

aimprob(out4$par)

## End(Not run)

## for a version with a modeled objective see demo("ALfhat")

predGP GP Prediction/Kriging

Description

Perform Gaussian processes prediction (under isotropic or separable formulation) at new XX loca-
tions using a GP object stored on the C-side

Usage

predGP(gpi, XX, lite = FALSE, nonug = FALSE)
predGPsep(gpsepi, XX, lite = FALSE, nonug = FALSE)
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Arguments

gpi
gpsepi
XX
lite

nonug

Details

predGP

a C-side GP object identifier (positive integer); e.g., as returned by newGP
similar to gpi but indicating a separable GP object, as returned by newGPsep
amatrix or data.frame containing a design of predictive locations

a scalar logical indicating whether (1ite = FALSE, default) or not (1ite = TRUE)
a full predictive covariance matrix should be returned, as would be required for
plotting random sample paths, but substantially increasing computation time if
only point-prediction is required

a scalar logical indicating if a (nonzero) nugget should be used in the predictive
equations; this allows the user to toggle between visualizations of uncertainty
due just to the mean, and a full quantification of predictive uncertainty. The
latter (default nonug = FALSE) is the standard approach, but the former may work
better in some sequential design contexts. See, e.g., ieciGP

Returns the parameters of Student-t predictive equations. By default, these include a full predictive
covariance matrix between all XX locations. However, this can be slow when nrow(XX) is large, so
a lite options is provided, which only returns the diagonal of that matrix.

GP prediction is sometimes called “kriging”, especially in the spatial statistics literature. So this
function could also be described as returning evaluations of the “kriging equations”

Value

The output is a 1ist with the following components.

mean

Sigma

df

Author(s)

a vector of predictive means of length nrow(Xref)

covariance matrix for a multivariate Student-t distribution; alternately if lite =
TRUE, then a field s2 contains the diagonal of this matrix

a Student-t degrees of freedom scalar (applies to all XX)

Robert B. Gramacy <rbg@vt.edu>

References

For standard GP prediction, refer to any graduate text, e.g., Rasmussen & Williams Gaussian Pro-
cesses for Machine Learning, or

Gramacy, R. B. (2020) Surrogates: Gaussian Process Modeling, Design and Optimization for the
Applied Sciences. Boca Raton, Florida: Chapman Hall/CRC. (See Chapter 5.) https://bobby.
gramacy.com/surrogates/

See Also

vignette("1laGP"), newGP, mleGP, jmleGP,
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Examples

## a "computer experiment” -- a much smaller version than the one shown
## in the aGP docs

## Simple 2-d test function used in Gramacy & Apley (2015);
## thanks to Lee, Gramacy, Taddy, and others who have used it before
f2d <- function(x, y=NULL)

{
if(is.null(y)) {
if(lis.matrix(x) && !is.data.frame(x)) x <- matrix(x, ncol=2)
y <= x[,2]; x <= x[,1]
3
g <- function(z)
return(exp(-(z-1)"2) + exp(-0.8x(z+1)*2) - 0.05*sin(8*%(z+0.1)))
z <= -g(x)*g(y)
3

## design with N=441

x <- seq(-2, 2, length=11)
X <- expand.grid(x, x)

Z <= f2d(X)

## fit a GP
gpi <- newGP(X, Z, d=0.35, g=1/1000)

## predictive grid with NN=400
xx <- seq(-1.9, 1.9, length=20)
XX <- expand.grid(xx, xx)

ZZ <- f2d(XX)

## predict

p <- predGP(gpi, XX, lite=TRUE)

## RMSE: compare to similar experiment in aGP docs
sqrt(mean((p$mean - Z2Z)*2))

## visualize the result

par(mfrow=c(1,2))

image(xx, xx, matrix(p$mean, nrow=length(xx)), col=heat.colors(128),
xlab="x1", ylab="x2", main="predictive mean")

image(xx, xx, matrix(p$mean-ZZ, nrow=length(xx)), col=heat.colors(128),
xlab="x1", ylab="x2", main="bas")

## clean up
deleteGP(gpi)

## see the newGP and mleGP docs for examples using lite = FALSE for
## sampling from the joint predictive distribution

randLine Generate two-dimensional random paths
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Description

Generate two-dimensional random paths (one-dimensional manifolds in 2d) comprising of different

randomly chosen line types: linear, quadratic, cubic, exponential, and natural logarithm. If the input

dimensionality is higher than 2, then a line in two randomly chosen input coordinates is generated
Usage

randLine(a, D, N, smin, res)

Arguments
a a fixed two-element vector denoting the range of the bounding box (lower bound
and upper bound) of all input coordinates
D a scalar denoting the dimensionality of input space
N a scalar denoting the desired total number of random lines
smin a scalar denoting the minimum absolute scaling constant, i.e., the length of the
shortest line that could be generated
res a scalar denoting the number of data points, i.e., the resolution on the random
path
Details

This two-dimensional random line generating function produces different types of 2d random paths,
including linear, quadratic, cubic, exponential, and natural logarithm.

First, one of these line types is chosen uniformly at random. The line is then drawn, via a collection
of discrete points, from the origin according to the arguments, e.g., resolution and length, provided
by the user. The discrete set of coordinates are then shifted and scaled, uniformly at random, into the
specified 2d rectangle, e.g., [—2, 2]2, with the restriction that at least half of the points comprising
the line lie within the rectangle.

For a quick visualization, see Figure 15 in Sun, et al. (2017). Figure 7 in the same manuscript
illustrates the application of this function in out-of-sample prediction using 1aGPsep, in 2d and 4d,
respectively.

randLine returns different types of random paths and the indices of the randomly selected pair, i.e.,
subset, of input coordinates (when D > 2).

Value

randLine returns a 1list of lists. The outer list is of length six, representing each of the five
possible line types (linear, quadratic, cubic, exponential, and natural logarithm), with the sixth
entry providing the randomly chosen input dimensions.

The inner 1ists are comprised of res x 2 data. frames, the number of which span N samples across
all inner lists.

Note

Users should scale each coordinate of global input space to the same coded range, e.g., [2,2]7,
in order to avoid computational burden caused by passing global input space argument. Users may
convert back to the natural units when necessary.
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Author(s)

Furong Sun <furongs@vt.edu> and Robert B. Gramacy <rbg@vt.edu>

References

F. Sun, R.B. Gramacy, B. Haaland, E. Lawrence, and A. Walker (2019). Emulating satellite drag
from large simulation experiments, SIAM/ASA Journal on Uncertainty Quantification, 7(2), pp.
720-759; preprint on arXiv:1712.00182; https://arxiv.org/abs/1712.00182

See Also

laGPsep, aGPsep

Examples

## 1. visualization of the randomly generated paths

## generate the paths

D <-4

a <- c(-2, 2)

N <- 30

smin <- 0.1

res <- 100

line.set <- randLine(a=a, D=D, N=N, smin=smin, res=res)

## the indices of the randomly selected pair of input coordinates
d <- line.set$d

## visualization

## first create an empty plot

par(mar=c(5, 4, 6, 2) + 0.1)

plot(@, xlim=a, ylim=a, type="1", xlab=paste("factor ", d[1], sep=""),
ylab=paste("factor ", d[2], sep=""), main="2d random paths”,
cex.lab=1.5, cex.main=2)

abline(h=(al1]+al2]1)/2, v=(al1]+al2])/2, lty=2)

## merge each path type together
W <- unlist(list(line.set$lin, line.set$qua, line.set$cub, line.set$ep, line.set$ln),
recursive=FALSE)

## calculate colors to retain
n <- unlist(lapply(line.set, length)[-61)
cols <- rep(c("orange”, "blue", "forestgreen"”, "magenta”, "cornflowerblue”), n)

## plot randomly generated paths with a centering dot in red at the midway point
for(i in 1:N){

lines(WL[i11[,1], WLLiJ1C,2], col=cols[i])

points(WL[ilJl[res/2,1], WL[il1[res/2,2], col=2, pch=20)
}

## add legend
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legend("top"”, legend=c(”lin", "qua", "cub", "exp"”, "log"), cex=1.5, bty="n",
xpd=TRUE, horiz=TRUE, inset=c(@, -0.085), lty=rep(1, 5), lwd=rep(1, 5),
col=c("orange"”, "blue", "forestgreen”, "magenta”, "cornflowerblue"))

## 2. use the random paths for out-of-sample prediction via laGPsep

## test function (same 2d function as in other examples package)
## (ignoring 4d nature of path generation above)
f2d <- function(x, y=NULL){
if(is.null(y)){
if(lis.matrix(x) && !is.data.frame(x)) x <- matrix(x, ncol=2)
y <= x[,2]; x <= x[,1]
}
g <- function(z)
return(exp(-(z-1)"2) + exp(-0.8*%(z+1)"2) - 0.05*sin(8*(z+0.1)))
z <= —g(x)*g(y)
3

## generate training data using 2d input space
x <- seq(al[1], al2], by=0.02)

X <- as.matrix(expand.grid(x, x))

Y <- f2d(X)

## example of joint path calculation folowed by RMSE calculation
## on the first random path

WW <- W[[sample(1:N, 1)1]

WY <- f2d(Ww)

## exhaustive search via ‘‘joint” ALC
j.exh <- laGPsep(WW, 6, 100, X, Y, method="alcopt”, close=10000, lite=FALSE)
sqrt(mean((WY - j.exh$mean)*2)) ## RMSE

## repeat for all thirty path elements (way too slow for checking) and other
## local design choices and visualize RMSE distribution(s) side-by-side
## Not run:
## pre-allocate to save RMSE
rmse.exh <- rmse.opt <- rmse.nn <- rmse.pw <- rmse.pwnn <- rep(NA, N)
for(t in 1:N){

WW <- WLLt]]
WY <- f2d(WW)

## joint local design exhaustive search via ALC
j.exh <- laGPsep(WW, 6, 100, X, Y, method="alc", close=10000, lite=FALSE)
rmse.exh[t] <- sgrt(mean((WY - j.exh$mean)*2))

## joint local design gradient-based search via ALC
j.opt <- laGPsep(WW, 6, 100, X, Y, method="alcopt”, close=10000, lite=FALSE)
rmse.opt[t] <- sqgrt(mean((WY - j.opt$mean)*2))

## joint local design exhaustive search via NN
j.nn <- laGPsep(WW, 6, 100, X, Y, method="nn", close=10000, lite=FALSE)
rmse.nn[t] <- sgrt(mean((WY - j.nn$mean)*2))
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## pointwise local design via ALC
pw <- aGPsep(X, Y, WW, start=6, end=50, d=list(max=20), method="alc", verb=0)
rmse.pw[t] <- sqrt(mean((WY - pw$mean)*2))

## pointwise local design via NN
pw.nn <- aGPsep(X, Y, WW, start=6, end=50, d=list(max=20), method="nn", verb=0)
rmse.pwnn[t] <- sqrt(mean((WY - pw.nn$mean)*2))

## progress meter
print(t)
3

## justify the y range
ylim_RMSE <- log(range(rmse.exh, rmse.opt, rmse.nn, rmse.pw, rmse.pwnn))

## plot the distribution of RMSE output

boxplot(log(rmse.exh), log(rmse.opt), log(rmse.nn), log(rmse.pw), log(rmse.pwnn),
xaxt='n", xlab="", ylab="log(RMSE)", ylim=ylim_RMSE, main="")

axis(1, at=1:5, labels=c("ALC-ex", "ALC-opt", "NN", "ALC-pw", "NN-pw"), las=1)

## End(Not run)
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