
Package ‘klaR’
December 13, 2023

Version 1.7-3

Date 2023-12-13

Title Classification and Visualization

Author Christian Roever, Nils Raabe, Karsten Luebke, Uwe Ligges, Gero Szepannek, Marc Zent-
graf, David Meyer

Maintainer Uwe Ligges <ligges@statistik.tu-dortmund.de>

SystemRequirements SVMlight

Suggests scatterplot3d (>= 0.3-22), som, mlbench, rpart, e1071

Enhances clustMixType, randomForest, ClustVarLV

Depends R (>= 2.10.0), MASS

Imports combinat, questionr, grDevices, stats, utils, graphics

Description Miscellaneous functions for classification and visualization,
e.g. regularized discriminant analysis, sknn() kernel-density naive Bayes,
an interface to 'svmlight' and stepclass() wrapper variable selection
for supervised classification, partimat() visualization of classification rules

and shardsplot() of cluster results as well as kmodes() clustering for categorical data,
corclust() variable clustering, variable extraction from different variable clustering models

and weight of evidence preprocessing.

License GPL-2 | GPL-3

URL https://statistik.tu-dortmund.de

NeedsCompilation no

Repository CRAN

Date/Publication 2023-12-13 22:30:03 UTC

R topics documented:
b.scal . 3
B3 . 4
benchB3 . 5
betascale . 7

1

https://statistik.tu-dortmund.de

2 R topics documented:

calc.trans . 7
centerlines . 8
classscatter . 9
cond.index . 10
corclust . 11
countries . 12
cvtree . 13
dkernel . 14
drawparti . 15
e.scal . 16
EDAM . 17
errormatrix . 20
friedman.data . 21
GermanCredit . 23
greedy.wilks . 24
hmm.sop . 26
kmodes . 27
loclda . 28
locpvs . 31
meclight.default . 33
NaiveBayes . 34
nm . 36
partimat . 37
plineplot . 39
plot.NaiveBayes . 40
plot.woe . 41
predict.loclda . 42
predict.locpvs . 43
predict.meclight . 44
predict.NaiveBayes . 45
predict.pvs . 46
predict.rda . 47
predict.sknn . 48
predict.svmlight . 49
predict.woe . 50
pvs . 51
quadplot . 54
rda . 56
shardsplot . 59
sknn . 62
stepclass . 63
svmlight . 65
triframe . 68
trigrid . 68
triperplines . 70
triplot . 71
tripoints . 72
tritrafo . 73

b.scal 3

ucpm . 75
woe . 76
xtractvars . 78

Index 79

b.scal Calculation of beta scaling parameters

Description

Calculates the scaling parameter for betascale.

Usage

b.scal(member, grouping, dis = FALSE, eps = 1e-04)

Arguments

member Membership values of an argmax classification method. Eg. posterior proba-
bilities of lda. Row-wise values must sum up to 1 and must be in the interval
[0,1].

grouping Class vector.

dis Logical, whether to optimize the dispersion parameter in pbeta.

eps Minimum variation of membership values. If variance is smaller than eps, the
values are treated as one point.

Details

With betascale and b.scal, membership values of an argmax classifier are scaled in such a way,
that the mean membership value of those values which are assigned to each class reflect the mean
correctness rate of that values. This is done via qbeta and pbeta with the appropriate shape param-
eters. If dis is TRUE, it is tried that the variation of membership values is optimal for the accuracy
relative to the correctness rate. If the variation of the membership values is less than eps, they are
treated as one point and shifted towards the correctness rate.

Value

A list containing

model Estimated parameters for betascale.

eps Value of eps from the call.

member Scaled membership values.

Author(s)

Karsten Luebke (<karsten.luebke@fom.de>), Uwe Ligges

4 B3

References

Garczarek, Ursula Maria (2002): Classification rules in standardized partition spaces. Dissertation,
University of Dortmund. URL http://hdl.handle.net/2003/2789

See Also

betascale, e.scal

Examples

library(MASS)
data(B3)
pB3 <- predict(lda(PHASEN ~ ., data = B3))$posterior
pbB3 <- b.scal(pB3, B3$PHASEN, dis = TRUE)
ucpm(pB3, B3$PHASEN)
ucpm(pbB3$member, B3$PHASEN)

B3 West German Business Cycles 1955-1994

Description

West German Business Cycles 1955-1994

Usage

data(B3)

Format

A data frame with 157 observations on the following 14 variables.

PHASEN a factor with levels 1 (upswing), 2 (upper turning points), 3 (downswing), and 4 (lower
turning points).

BSP91JW GNP (y)

CP91JW Private Consumption (y)

DEFRATE Government deficit (percent of GNP)

EWAJW Wage and salary earners (y)

EXIMRATE Net exports as (percent of GNP)

GM1JW Money supply M1 (y)

IAU91JW Investment in equipment (y)

IB91JW Investment in construction (y)

LSTKJW Unit labor cost (y)

PBSPJW GNP price deflator (y)

http://hdl.handle.net/2003/2789

benchB3 5

PCPJW Consumer price index (y)

ZINSK Short term interest rate (nominal)

ZINSLR Long term interest rate (real)

where (y) stands for “yearly growth rates”.

Note that years and corresponding year quarters are given in the row names of the data frame, e.g.
“1988,3” for the third quarter in 1988.

Details

The West German Business Cycles data (1955-1994) is analyzed by the project B3 of the SFB475
(Collaborative Research Centre “Reduction of Complexity for Multivariate Data Structures”), sup-
ported by the Deutsche Forschungsgemeinschaft.

Source

RWI (Rheinisch Westfälisches Institut für Wirtschaftsforschung), Essen, Germany.

References

Heilemann, U. and Münch, H.J. (1996): West German Business Cycles 1963-1994: A Multivariate
Discriminant Analysis. CIRET–Conference in Singapore, CIRET–Studien 50.

See Also

For benchmarking on this data see also benchB3

Examples

data(B3)
summary(B3)

benchB3 Benchmarking on B3 data

Description

Evaluates the performance of a classification method on the B3 data.

Usage

benchB3(method, prior = rep(1/4, 4), sv = "4", scale = FALSE, ...)

6 benchB3

Arguments

method classification method to use

prior prior probabilities of classes

sv class of the start of a business cycle

scale logical, whether to use scale first

... furhter arguments passed to method

Details

The performance of classification methods on cyclic data can be measured by a special form of
cross-validation: Leave-One-Cycle-Out. That means that a complete cycle is used as test data and
the others are used as training data. This is repeated for all complete cycles in the data.

Value

A list with elements

MODEL list with the model returned by method of the training data

error vector of test error rates in cycles

l1co.error leave-one-cycle-out error rate

Author(s)

Karsten Luebke, <karsten.luebke@fom.de>

See Also

B3

Examples

perLDA <- benchB3("lda")
Not run:
due to parameter optimization rda takes a while
perRDA <- benchB3("rda")
library(rpart)
rpart will not work with prior argument:
perRpart <- benchB3("rpart", prior = NULL)

End(Not run)

betascale 7

betascale Scale membership values according to a beta scaling

Description

Performs the scaling for beta scaling learned by b.scal.

Usage

betascale(betaobj, member)

Arguments

betaobj A model learned by b.scal.

member Membership values to be scaled.

Details

See b.scal.

Value

A matrix with the scaled membership values.

See Also

b.scal, e.scal

Examples

library(MASS)
data(B3)
pB3 <- predict(lda(PHASEN ~ ., data = B3))$posterior
pbB3 <- b.scal(pB3, B3$PHASEN)
betascale(pbB3)

calc.trans Calculation of transition probabilities

Description

Function to estimate the probabilities of a time series to stay or change the state.

Usage

calc.trans(x)

8 centerlines

Arguments

x (factor) vector of states

Details

To estimate the transition probabilities the empirical frequencies are counted.

Value

The transition probabilities matrix. x[i,j] is the probability to change from state i to state j.

Author(s)

Karsten Luebke, <karsten.luebke@fom.de>

Examples

data(B3)
calc.trans(B3$PHASEN)

centerlines Lines from classborders to the center

Description

Function which constructs the lines from the borders between two classes to the center. To be used
in connection with triplot and quadplot.

Usage

centerlines(n)

Arguments

n number of classes. Meaningful are 3 or 4.

Value

a matrix with n-columns.

Author(s)

Karsten Luebke, <karsten.luebke@fom.de>

See Also

triplot, quadplot

classscatter 9

Examples

centerlines(3)
centerlines(4)

classscatter Classification scatterplot matrix

Description

Function to plot a scatterplot matrix with a classification result.

Usage

classscatter(formula, data, method, col.correct = "black",
col.wrong = "red", gs = NULL, ...)

Arguments

formula formula of the form groups ~ x1 + x2 + That is, the response is the group-
ing factor and the right hand side specifies the (non-factor) discriminators.

data Data frame from which variables specified in formula are preferentially to be
taken.

method character, name of classification function (e.g. “lda”).
col.correct color to use for correct classified objects.
col.wrong color to use for missclassified objects.
gs group symbol (plot character), must have the same length as the data. If NULL,

as.character(groups) is the default.
... further arguments passed to the underlying classification method or plot func-

tions.

Value

The actual error rate.

Author(s)

Karsten Luebke, <karsten.luebke@fom.de>

See Also

plot

Examples

data(B3)
library(MASS)
classscatter(PHASEN ~ BSP91JW + EWAJW + LSTKJW,

data = B3, method = "lda")

10 cond.index

cond.index Calculation of Condition Indices for Linear Regression

Description

Diagnosis of collinearity in X

Usage

cond.index(formula, data, ...)

Arguments

formula formula of the form ‘groups ~ x1 + x2 + ...’

data data frame (or matrix) containing the explanatory variables

... further arguments to be passed to lm

Details

Collinearities can inflate the variance of the estimated regression coefficients and numerical stabil-
ity. The condition indices are calculated by the eigenvalues of the crossproduct matrix of the scaled
but uncentered explanatory variables. Indices > 30 may indicate collinearity.

Value

A vector of the condition indices.

Author(s)

Andrea Preusser, Karsten Luebke (<karsten.luebke@fom.de>)

References

Belsley, D. , Kuh, E. and Welsch, R. E. (1979), Regression Diagnostics: Identifying Influential Data
and Sources of Collinearity, John Wiley (New York)

See Also

stepclass, manova

Examples

data(Boston)
condition_medv <- cond.index(medv ~ ., data = Boston)
condition_medv

corclust 11

corclust Function to identify groups of highly correlated variables for removing
correlated features from the data for further analysis.

Description

A hierarchical clustering of variables using hclust is performed using 1 - the absolute correlation
as a distance measure between tow variables.

Usage

corclust(x, cl = NULL, method = "complete")
S3 method for class 'corclust'
plot(x, selection = "both", mincor = NULL, ...)

Arguments

x Either a data frame or a matrix consisting of numerical attributes.

cl Optional vector of ty factor indicating class levels, if class specific correlations
should to be considered.

method Linkage to be used for clustering. Default is complete linkage.

selection If "numeric", ‘1 - average absolute correlation within cluster’ is plotted, if
"factor", ‘1 - minimum Cramer’s V within cluster’ is plotted. The default,
"both", generates both variations.

mincor Adds a horizontal line for this correlation.

... passed to underlying plot functions.

Details

Each cluster consists of a set of correlated variables according to the chosen clustering criterion.
The default criterion is ‘complete’. This choice is meaningful as it represents the minimum abso-
lute correlation between all variables of a cluster.
The data set is split into numerics and factors two separate clustering models are built, depending
on the variable type. For factors distances are computed based on 1-Cramer’s V statistic using
chisq.test. For a large number of factor variables this might take some time. The resulting trees
can be plotted using plot.
Further proceeding would consist in chosing one variable of each cluster to obtain a subset of
rather uncorrelated variables for further analysis. An automatic variable selection can be done us-
ing cvtree and xtractvars.
If an additional class vector cl is given to the function for any two variables their minimum corre-
lation over all classes is used.

12 countries

Value

Object of class corclust.

cor Correlation matrix of numeric variables.

crv Matrix of Cramer’s V for factor variables.
cluster.numerics

Resulting hierarchical hclust model for numeric variables.
cluster.factors

Resulting hierarchical hclust model for factor variables.

id.numerics Variable IDs of numeric variables in x.

id.factors Variable IDs of factor variables x.

Author(s)

Gero Szepannek

References

Roever, C. and Szepannek, G. (2005): Application of a genetic algorithm to variable selection in
fuzzy clustering. In C. Weihs and W. Gaul (eds), Classification - The Ubiquitous Challenge, 674-
681, Springer.

See Also

plot.corclust and hclust for details on the clustering algorithm, and cvtree, xtractvars for
postprocessing.

Examples

data(iris)
classes <- iris$Species
variables <- iris[,1:4]
ccres <- corclust(variables, classes)
plot(ccres, mincor = 0.6)

countries Socioeconomic data for the most populous countries.

Description

Socioeconomic data for the most populous countries.

Usage

data(countries)

cvtree 13

Format

A data frame with 42 observations on the following 7 variables.

Country name of the country.

Popul population.

PopDens population density.

GDPpp GDP per inhabitant.

LifeEx mean life expectation

InfMor infant mortality

Illit illiteracy rate

Source

CIA World Factbook https://www.cia.gov/the-world-factbook/

Examples

data(countries)
summary(countries)

cvtree Extracts variable cluster IDs

Description

Extracts cluster IDs for variables according to a dendrogram from object of class cvtree.

Usage

cvtree(object, k = 2, mincor = NULL, ...)

Arguments

object Object of class corclust.

k Number of clusters to be extracted from dendrogram.

mincor Minimum within cluster correlation. Can be specified alternatively to k.

... Currently not used.

Details

Like in corclust for correlation comparison numerics and factors are considered separately. For
factors Cramer’s V statistic is used.

https://www.cia.gov/the-world-factbook/

14 dkernel

Value

Object of class cvtree with elements:

cluster Vector of cluster IDs.

correlations Matrix of average within cluster correlations and average corrleation to all vari-
ables of the closest cluster as well as the ID of the closest cluster. For factor
variables Cramer’s V is computed.

Author(s)

Gero Szepannek

References

Roever, C. and Szepannek, G. (2005): Application of a genetic algorithm to variable selection in
fuzzy clustering. In C. Weihs and W. Gaul (eds), Classification - The Ubiquitous Challenge, 674-
681, Springer.

See Also

See also corclust, plot.corclust and hclust for details on the clustering algorithm.

Examples

data(B3)
ccres <- corclust(B3)
plot(ccres)
cvtree(ccres, k = 3)

dkernel Estimate density of a given kernel

Description

Given an estimated kernel density this function estimates the density of a new vector.

Usage

dkernel(x, kernel = density(x), interpolate = FALSE, ...)

Arguments

x vector of which the density should be estimated

kernel object of class density

interpolate Interpolate or use density of nearest point?

... currently not used.

drawparti 15

Value

Denstiy of x in kernel.

Author(s)

Karsten Luebke, <karsten.luebke@fom.de>

See Also

density, NaiveBayes

Examples

kern <- density(rnorm(50))
x <- seq(-3, 3, len = 100)
y <- dkernel(x, kern)
plot(x, y, type = "l")

drawparti Plotting the 2-d partitions of classification methods

Description

Plot showing the classification of observations based on classification methods (e.g. lda, qda) for
two variables. Moreover, the classification borders are displayed and the apparent error rates are
given in each title.

Usage

drawparti(grouping, x, y, method = "lda", prec = 100, xlab = NULL,
ylab = NULL, col.correct = "black", col.wrong = "red",
col.mean = "black", col.contour = "darkgrey",
gs = as.character(grouping), pch.mean = 19, cex.mean = 1.3,
print.err = 0.7, legend.err = FALSE, legend.bg = "white",
imageplot = TRUE, image.colors = cm.colors(nc),
plot.control = list(), ...)

Arguments

grouping factor specifying the class for each observation.

x first explanatory vector.

y second explanatory vector.

method the method the classification is based on, currently supported are: lda, qda,
rpart, naiveBayes, rda, sknn and svmlight

.

16 e.scal

prec precision used to draw the classification borders (the higher the more precise;
default: 100).

xlab a title for the x axis.

ylab a title for the y axis.

col.correct color for correct classified objects.

col.wrong color for wrong classified objects.

col.mean color for class means (only for methods lda and qda).

col.contour color of the contour lines (if imageplot = FALSE).

gs group symbol (plot character), must have the same length as grouping.

pch.mean plot character for class means (only for methods lda and qda).

cex.mean character expansion for class means (only for methods lda and qda).

print.err character expansion for text specifying the apparent error rate. If print.err =
0, nothing is printed.

legend.err logical; whether to plot the apparent error rate above the plot (if FALSE), or into a
legend into the upper right corner of the plot (if TRUE). This argument is ignored,
if print.err = 0, i.e. if no error rate is printed.

legend.bg Backgound colour to use for the legend.

imageplot logical; whether to use an image plot or contour lines.

image.colors colors used for the imageplot, if TRUE.

plot.control A list containing further arguments passed to the underlying plot functions.

... Further arguments passed to the classification method.

Author(s)

Karsten Luebke, <karsten.luebke@fom.de>, Uwe Ligges, Irina Czogiel

See Also

partimat

e.scal Function to calculate e- or softmax scaled membership values

Description

Calculates the e- or softmax scaled membership values of an argmax based classification rule.

Usage

e.scal(x, k = 1, tc = NULL)

EDAM 17

Arguments

x matrix of membership values
k parameter for e-scaling (1 for softmax)
tc vector of true classes (required if k has to be optimized)

Details

For any membership vector y exp(y · k)/
∑

exp(y · k) is calculated. If k=1, the classical soft-
max scaling is used. If the true classes are given, k is optimized so that the apparent error rate is
minimized.

Value

A list containing elements

sv Scaled values
k Optimal k

Author(s)

Karsten Luebke, <karsten.luebke@fom.de>

References

Garczarek, Ursula Maria (2002): Classification rules in standardized partition spaces. Dissertation,
University of Dortmund. URL http://hdl.handle.net/2003/2789

Examples

library(MASS)
data(iris)
ldaobj <- lda(Species ~ ., data = iris)
ldapred <- predict(ldaobj)$posterior
e.scal(ldapred)
e.scal(ldapred, tc = iris$Species)

EDAM Computation of an Eight Direction Arranged Map

Description

Produces an object of class EDAM which is a two dimensional representation of data in a rectangular,
equally spaced grid as known from Self-Organizing Maps.

Usage

EDAM(EV0, nzx = 0, iter.max = 10, random = TRUE, standardize = FALSE,
wghts = 0, classes = 0, sa = TRUE, temp.in = 0.5, temp.fin = 1e-07,
temp.gamma = 0)

http://hdl.handle.net/2003/2789

18 EDAM

Arguments

EV0 either a symmetric dissimilarity matrix or a matrix of arbitrary dimensions whose
n rows correspond to cases and whose k columns correspond to variables.

nzx an integer specifying the number of vertical bars in the grid. By default, nzx is
chosen automatically, so that the grid gets closest do a square. If n is no multiple
of nzx, all surplus objects are skipped.

iter.max an integer giving the maxmimum number of iterations to perform for the same
neighborhood size.

random logical. If TRUE, the initital order is drawn from a uniform distribution.

standardize logical. If TRUE, the measurements in EV0 are standardized before calculating
Euclidean distances. Measurements are standardized for each variable by divid-
ing by the variable’s standard deviation. Meaningless if EV0 is a dissimilarity
matrix.

wghts an optional vector of length k giving relative weights of the variables in comput-
ing Euclidean distances. Meaningless if EV0 is a dissimilarity matrix.

classes an optional vector of length n specifying the membership to classes for all ob-
jects.

sa logical. If TRUE, the optimization is obtained by Simulated Annealing.

temp.in numeric giving the initial temperature, if sa is set to TRUE.

temp.fin numeric giving the final temperature, if sa is set to TRUE. Meaningless if temp.gamma
is greater than 0.

temp.gamma numeric giving the relative change of the temperature from one iteration to the
other, if sa is set to TRUE.

Details

The data given by EV0 is visualized by the EDAM-algorithm. This method approximates the best
visualization where goodness is measured by S, a transformation of the criterion stress as i.e.
known from sammon. The target space of the visualization is restricted to a grid so the problem has
a discrete solution space. Originally this restriction was made to make the results comparable to
those of Kohonen Self-Organizing Maps. But it turns out that also for reasons of a clear arrangement
the representation in a grid can be more favorable than in the hole plane.

During the computation of EDAM 3 values indicating its progress are given online. The first is the
number of the actual iteration, the second the maximum number of overall performed iterations.
The latter may reduce during computation, since the neighborhood reduces in case of convergence
before the last iteration. The last number gives the actual criterion S. The default plot method
plot.edam for objects of class EDAM is shardsplot.

Value

EDAM returns an object of class EDAM, which is a list containing the following components:

preimages the re-ordered data; the position of the i-th object is where Z equals i.

Z a matrix representing the positions of the preimages in the grid by their num-
bers.

EDAM 19

Z.old.terms a matrix representing the positions of the data in original order in the grid by
their numbers.

cl.ord a vector giving the re-ordered classes. All elements equal 1 if argument classes
is undefined.

S the criterion of the map

Author(s)

Nils Raabe

References

Raabe, N. (2003). Vergleich von Kohonen Self-Organizing-Maps mit einem nichtsimultanen Klassifikations-
und Visualisierungsverfahren. Diploma Thesis, Department of Statistics, University of Dortmund.

See Also

shardsplot, TopoS

Examples

Compute an Eight Directions Arranged Map for a random sample
of the iris data.
data(iris)
set.seed(1234)
iris.sample <- sample(150, 42)
irisEDAM <- EDAM(iris[iris.sample, 1:4], classes = iris[iris.sample, 5],

standardize = TRUE, iter.max = 3)
plot(irisEDAM, vertices = FALSE)
legend(3, 5, col = rainbow(3), legend = levels(iris[,5]), pch = 16)
print(irisEDAM)

Construct clusters within the phases of the german business data
and visualize the centroids by EDAM.
data(B3)
phasemat <- lapply(1:4, function(x) B3[B3[,1] == x, 2:14])
subclasses <- lapply(phasemat,

function(x) cutree(hclust(dist(x)), k = round(nrow(x) / 4.47)))
centroids <- lapply(1:4,

function(y) apply(phasemat[[y]], 2,
function(x) by(x, subclasses[[y]], mean)))

centmat <- matrix(unlist(sapply(centroids, t)), ncol = 13,
byrow = TRUE, dimnames = list(NULL, colnames(centroids[[1]])))

centclasses <- unlist(lapply(1:4,
function(x) rep(x, unlist(lapply(centroids, nrow))[x])))

B3EDAM <- EDAM(centmat, classes = centclasses, standardize = TRUE,
iter.max = 6, rand = FALSE)

plot(B3EDAM, standardize = TRUE)
opar <- par(xpd = NA)
legend(4, 5.1, col = rainbow(4), pch = 16, xjust = 0.5, yjust = 0,

ncol = 2, legend = c("upswing", "upper turning point",

20 errormatrix

"downswing", "lower turning point"))
print(B3EDAM)
par(opar)

errormatrix Tabulation of prediction errors by classes

Description

Cross-tabulates true and predicted classes with the option to show relative frequencies.

Usage

errormatrix(true, predicted, relative = FALSE)

Arguments

true Vector of true classes.

predicted Vector of predicted classes.

relative Logical. If TRUE rows are normalized to show relative frequencies (see below).

Details

Given vectors of true and predicted classes, a (symmetric) table of misclassifications is constructed.

Element [i,j] shows the number of objects of class i that were classified as class j; so the main
diagonal shows the correct classifications. The last row and column show the corresponding sums
of misclassifications, the lower right element is the total sum of misclassifications.

If ‘relative’ is TRUE, the rows are normalized so they show relative frequencies instead. The lower
right element now shows the total error rate, and the remaining last row sums up to one, so it shows
“where the misclassifications went”.

Value

A (named) matrix.

Note

Concerning the case that ‘relative’ is TRUE:

If a prior distribution over the classes is given, the misclassification rate that is returned as the lower
right element (which is only the fraction of misclassified data) is not an estimator for the expected
misclassification rate.

In that case you have to multiply the individual error rates for each class (returned in the last column)
with the corresponding prior probabilities and sum these up (see example below).

Both error rate estimates are equal, if the fractions of classes in the data are equal to the prior
probabilities.

friedman.data 21

Author(s)

Christian Röver, <roever@statistik.tu-dortmund.de>

See Also

table

Examples

data(iris)
library(MASS)
x <- lda(Species ~ Sepal.Length + Sepal.Width, data=iris)
y <- predict(x, iris)

absolute numbers:
errormatrix(iris$Species, y$class)

relative frequencies:
errormatrix(iris$Species, y$class, relative = TRUE)

percentages:
round(100 * errormatrix(iris$Species, y$class, relative = TRUE), 0)

expected error rate in case of class prior:
indiv.rates <- errormatrix(iris$Species, y$class, relative = TRUE)[1:3, 4]
prior <- c("setosa" = 0.2, "versicolor" = 0.3, "virginica" = 0.5)
total.rate <- t(indiv.rates) %*% prior
total.rate

friedman.data Friedman’s classification benchmark data

Description

Function to generate 3-class classification benchmarking data as introduced by J.H. Friedman (1989)

Usage

friedman.data(setting = 1, p = 6, samplesize = 40, asmatrix = FALSE)

Arguments

setting the problem setting (integer 1,2,...,6).

p number of variables (6, 10, 20 or 40).

samplesize sample size (number of observations, >=6).

asmatrix if TRUE, results are returned as a matrix, otherwise as a data frame (default).

22 friedman.data

Details

When J.H. Friedman introduced the Regularized Discriminant Analysis (rda) in 1989, he used
artificially generated data to test the procedure and to examine its performance in comparison to
Linear and Quadratic Discriminant Analysis (see also lda and qda).

6 different settings were considered to demonstrate potential strengths and weaknesses of the new
method:

1. equal spherical covariance matrices,
2. unequal spherical covariance matrices,
3. equal, highly ellipsoidal covariance matrices with mean differences in low-variance subspace,
4. equal, highly ellipsoidal covariance matrices with mean differences in high-variance subspace,
5. unequal, highly ellipsoidal covariance matrices with zero mean differences and
6. unequal, highly ellipsoidal covariance matrices with nonzero mean differences.

For each of the 6 settings data was generated with 6, 10, 20 and 40 variables.

Classification performance was then measured by repeatedly creating training-datasets of 40 obser-
vations and estimating the misclassification rates by test sets of 100 observations.

The number of classes is always 3, class labels are assigned randomly (with equal probabilities) to
observations, so the contributions of classes to the data differs from dataset to dataset. To make sure
covariances can be estimated at all, there are always at least two observations from each class in a
dataset.

Value

Depending on asmatrix either a data frame or a matrix with samplesize rows and p+1 columns,
the first column containing the class labels, the remaining columns being the variables.

Author(s)

Christian Röver, <roever@statistik.tu-dortmund.de>

References

Friedman, J.H. (1989): Regularized Discriminant Analysis. In: Journal of the American Statistical
Association 84, 165-175.

See Also

rda

Examples

Reproduce the 1st setting with 6 variables.
Error rate should be somewhat near 9 percent.
training <- friedman.data(1, 6, 40)
x <- rda(class ~ ., data = training, gamma = 0.74, lambda = 0.77)
test <- friedman.data(1, 6, 100)
y <- predict(x, test[,-1])
errormatrix(test[,1], y$class)

GermanCredit 23

GermanCredit Statlog German Credit

Description

The dataset contains data of past credit applicants. The applicants are rated as good or bad. Models
of this data can be used to determine if new applicants present a good or bad credit risk.

Usage

data("GermanCredit")

Format

A data frame containing 1,000 observations on 21 variables.

status factor variable indicating the status of the existing checking account, with levels ... < 100
DM, 0 <= ... < 200 DM, ... >= 200 DM/salary for at least 1 year and no checking account.

duration duration in months.

credit_history factor variable indicating credit history, with levels no credits taken/all credits
paid back duly, all credits at this bank paid back duly, existing credits paid back
duly till now, delay in paying off in the past and critical account/other credits
existing.

purpose factor variable indicating the credit’s purpose, with levels car (new), car (used), furniture/equipment,
radio/television, domestic appliances, repairs, education, retraining, business
and others.

amount credit amount.

savings factor. savings account/bonds, with levels ... < 100 DM, 100 <= ... < 500 DM, 500 <= ...
< 1000 DM, ... >= 1000 DM and unknown/no savings account.

employment_duration ordered factor indicating the duration of the current employment, with lev-
els unemployed, ... < 1 year, 1 <= ... < 4 years, 4 <= ... < 7 years and ... >= 7 years.

installment_rate installment rate in percentage of disposable income.

personal_status_sex factor variable indicating personal status and sex, with levels male:divorced/separated,
female:divorced/separated/married, male:single, male:married/widowed and female:single.

other_debtors factor. Other debtors, with levels none, co-applicant and guarantor.

present_residence present residence since?

property factor variable indicating the client’s highest valued property, with levels real estate,
building society savings agreement/life insurance, car or other and unknown/no property.

age client’s age.

other_installment_plans factor variable indicating other installment plans, with levels bank, stores
and none.

housing factor variable indicating housing, with levels rent, own and for free.

number_credits number of existing credits at this bank.

24 greedy.wilks

job factor indicating employment status, with levels unemployed/unskilled - non-resident,
unskilled - resident, skilled employee/official and management/self-employed/highly
qualified employee/officer.

people_liable Number of people being liable to provide maintenance.

telephone binary variable indicating if the customer has a registered telephone number.

foreign_worker binary variable indicating if the customer is a foreign worker.

credit_risk binary variable indicating credit risk, with levels good and bad.

Source

The original data was provided by:

Professor Dr. Hans Hofmann, Institut fuer Statistik und Oekonometrie, Universitaet Hamburg, FB
Wirtschaftswissenschaften, Von-Melle-Park 5, 2000 Hamburg 13

The dataset has been taken from the UCI Repository Of Machine Learning Databases at http:
//archive.ics.uci.edu/ml/.

It was published this way in CRAN package evtree (maintainer: Thomas Grubinger) that has been
archived from CRAN on May 31, 2014. Afterwards the exactly same data object has been copied
from the evtree package to klaR.

greedy.wilks Stepwise forward variable selection for classification

Description

Performs a stepwise forward variable/model selection using the Wilk’s Lambda criterion.

Usage

greedy.wilks(X, ...)
Default S3 method:
greedy.wilks(X, grouping, niveau = 0.2, ...)
S3 method for class 'formula'
greedy.wilks(formula, data = NULL, ...)

Arguments

X matrix or data frame (rows=cases, columns=variables)

grouping class indicator vector

formula formula of the form ‘groups ~ x1 + x2 + ...’

data data frame (or matrix) containing the explanatory variables

niveau level for the approximate F-test decision

... further arguments to be passed to the default method, e.g. niveau

http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/

greedy.wilks 25

Details

A stepwise forward variable selection is performed. The initial model is defined by starting with the
variable which separates the groups most. The model is then extended by including further variables
depending on the Wilk’s lambda criterion: Select the one which minimizes the Wilk’s lambda of
the model including the variable if its p-value still shows statistical significance.

Value

A list of two components, a formula of the form ‘response ~ list + of + selected + variables’,
and a data.frame results containing the following variables:

vars the names of the variables in the final model in the order of selection.

Wilks.lambda the appropriate Wilks’ lambda for the selected variables.

F.statistics.overall

the approximated F-statistic for the so far selected model.

p.value.overall

the appropriate p-value of the F-statistic.

F.statistics.diff

the approximated F-statistic of the partial Wilks’s lambda (for comparing the
model including the new variable with the model not including it).

p.value.diff the appropriate p-value of the F-statistic of the partial Wilk’s lambda.

Author(s)

Andrea Preusser, Karsten Luebke (<karsten.luebke@fom.de>)

References

Mardia, K. V. , Kent, J. T. and Bibby, J. M. (1979), Multivariate analysis, Academic Press (New
York; London)

See Also

stepclass, manova

Examples

data(B3)
gw_obj <- greedy.wilks(PHASEN ~ ., data = B3, niveau = 0.1)
gw_obj
now you can say stuff like
lda(gw_obj$formula, data = B3)

26 hmm.sop

hmm.sop Calculation of HMM Sum of Path

Description

A Hidden Markov Model for the classification of states in a time series. Based on the transition
probabilities and the so called emission probabilities (p(class|x)) the ‘prior probablilities’ of states
(classes) in time period t given all past information in time period t are calculated.

Usage

hmm.sop(sv, trans.matrix, prob.matrix)

Arguments

sv state at time 0

trans.matrix matrix of transition probabilities

prob.matrix matrix of p(class|x)

Value

Returns the ‘prior probablilities’ of states.

Author(s)

Daniel Fischer, Reinald Oetsch

References

Garczarek, Ursula Maria (2002): Classification rules in standardized partition spaces. Dissertation,
University of Dortmund. URL http://hdl.handle.net/2003/2789

See Also

calc.trans

Examples

library(MASS)
data(B3)
trans.matrix <- calc.trans(B3$PHASEN)

Calculate posterior prob. for the classes via lda
prob.matrix <- predict(lda(PHASEN ~ ., data = B3))$post
errormatrix(B3$PHASEN, apply(prob.matrix, 1, which.max))
prior.prob <- hmm.sop("2", trans.matrix, prob.matrix)
errormatrix(B3$PHASEN, apply(prior.prob, 1, which.max))

http://hdl.handle.net/2003/2789

kmodes 27

kmodes K-Modes Clustering

Description

Perform k-modes clustering on categorical data.

Usage

kmodes(data, modes, iter.max = 10, weighted = FALSE, fast = TRUE)

Arguments

data A matrix or data frame of categorical data. Objects have to be in rows, variables
in columns.

modes Either the number of modes or a set of initial (distinct) cluster modes. If a
number, a random set of (distinct) rows in data is chosen as the initial modes.

iter.max The maximum number of iterations allowed.

weighted Whether usual simple-matching distance between objects is used, or a weighted
version of this distance.

fast Logical Whether a fast version of the algorithm should be applied.

Details

The k-modes algorithm (Huang, 1997) an extension of the k-means algorithm by MacQueen (1967).

The data given by data is clustered by the k-modes method (Huang, 1997) which aims to parti-
tion the objects into k groups such that the distance from objects to the assigned cluster modes is
minimized.

By default simple-matching distance is used to determine the dissimilarity of two objects. It is com-
puted by counting the number of mismatches in all variables. Alternative this distance is weighted
by the frequencies of the categories in data (see Huang, 1997, for details).

If an initial matrix of modes is supplied, it is possible that no object will be closest to one or more
modes. In this case less cluster than supplied modes will be returned and a warning is given.

If called using fast = TRUE the reassignment of the data to clusters is done for the entire data set
before recomputation of the modes is done. For computational reasons this option should be chosen
unless moderate data sizes.

For clustering mixed type data it is referred to kproto.

Value

An object of class "kmodes" which is a list with components:

cluster A vector of integers indicating the cluster to which each object is allocated.

size The number of objects in each cluster.

28 loclda

modes A matrix of cluster modes.

withindiff The within-cluster simple-matching distance for each cluster.

iterations The number of iterations the algorithm has run.

weighted Whether weighted distances were used or not.

Author(s)

Christian Neumann, <christian2.neumann@tu-dortmund.de>, Gero Szepannek, <gero.szepannek@web.de>

References

Huang, Z. (1997) A Fast Clustering Algorithm to Cluster Very Large Categorical Data Sets in Data
Mining. in KDD: Techniques and Applications (H. Lu, H. Motoda and H. Luu, Eds.), pp. 21-34,
World Scientific, Singapore.

MacQueen, J. (1967) Some methods for classification and analysis of multivariate observations. In
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, eds L. M.
Le Cam & J. Neyman, 1, pp. 281-297. Berkeley, CA: University of California Press.

Examples

a 5-dimensional toy-example:

generate data set with two groups of data:
set.seed(1)
x <- rbind(matrix(rbinom(250, 2, 0.25), ncol = 5),

matrix(rbinom(250, 2, 0.75), ncol = 5))
colnames(x) <- c("a", "b", "c", "d", "e")

run algorithm on x:
(cl <- kmodes(x, 2))

and visualize with some jitter:
plot(jitter(x), col = cl$cluster)
points(cl$modes, col = 1:5, pch = 8)

loclda Localized Linear Discriminant Analysis (LocLDA)

Description

A localized version of Linear Discriminant Analysis.

loclda 29

Usage

loclda(x, ...)

S3 method for class 'formula'
loclda(formula, data, ..., subset, na.action)

Default S3 method:
loclda(x, grouping, weight.func = function(x) 1/exp(x),

k = nrow(x), weighted.apriori = TRUE, ...)

S3 method for class 'data.frame'
loclda(x, ...)

S3 method for class 'matrix'
loclda(x, grouping, ..., subset, na.action)

Arguments

formula Formula of the form ‘groups ~ x1 + x2 + ...’.

data Data frame from which variables specified in formula are to be taken.

x Matrix or data frame containing the explanatory variables (required, if formula
is not given).

grouping (required if no formula principal argument is given.) A factor specifying the
class for each observation.

weight.func Function used to compute local weights. Must be finite over the interval [0,1].
See Details below.

k Number of nearest neighbours used to construct localized classification rules.
See Details below.

weighted.apriori

Logical: if TRUE, class prior probabilities are computed using local weights (see
Details below). If FALSE, equal priors for all classes actually occurring in the
train data are used.

subset An index vector specifying the cases to be used in the training sample.

na.action A function to specify the action to be taken if NAs are found. The default action
is for the procedure to fail. An alternative is na.omit which leads to rejection
of cases with missing values on any required variable.

... Further arguments to be passed to loclda.default.

Details

This is an approach to apply the concept of localization described by Tutz and Binder (2005) to
Linear Discriminant Analysis. The function loclda generates an object of class loclda (see Value
below). As localization makes it necessary to build an individual decision rule for each test ob-
servation, this rule construction has to be handled by predict.loclda. For convenience, the rule
building procedure is still described here.

30 loclda

To classify a test observation xs, only the k nearest neighbours of xs within the train data are used.
Each of these k train observations xi, i = 1, . . . , k, is assigned a weight wi according to

wi = K

(
||xi − xs||

dk

)
, i = 1, . . . , k

where K is the weighting function given by weight.func, ||xi−xs|| is the euclidian distance of xi
and xs and dk is the euclidian distance of xs to its k-th nearest neighbour. With these weights for
each class Ag, g = 1, . . . , G, its weighted empirical mean µ̂g and weighted empirical covariance
matrix are computed. The estimated pooled (weighted) covariance matrix Σ̂ is then calculated from
the individual weighted empirical class covariance matrices. If weighted.apriori is TRUE (the
default), prior class probabilities are estimated according to:

priorg :=

∑k
i=1 (wi · I(xi ∈ Ag))∑k

i=1 (wi)

where I is the indicator function. If FALSE, equal priors for all classes are used. In analogy to Linear
Discriminant Analysis, the decision rule for xs is

Â := argmaxg∈1,...,G(posteriorg)

where

posteriorg := priorg · exp

(
(−1

2
)t(xs − µ̂g)Σ̂−1(xs − µ̂g)

)
If posteriorg < 10(−150)∀g ∈ {1, . . . , G}, posteriorg is set to 1

G for all g ∈ 1, . . . , G and the
test observation xs is simply assigned to the class whose weighted mean has the lowest euclidian
distance to xs.

Value

A list of class loclda containing the following components:

call The (matched) function call.

learn Matrix containing the values of the explanatory variables for all train observa-
tions.

grouping Factor specifying the class for each train observation.

weight.func Value of the argument weight.func.

k Value of the argument k.
weighted.apriori

Value of the argument weighted.apriori.

Author(s)

Marc Zentgraf (<marc-zentgraf@gmx.de>) and Karsten Luebke (<karsten.luebke@fom.de>)

References

Tutz, G. and Binder, H. (2005): Localized classification. Statistics and Computing 15, 155-166.

locpvs 31

See Also

predict.loclda, lda

Examples

benchB3("lda")$l1co.error
benchB3("loclda")$l1co.error

locpvs Pairwise variable selection for classification in local models

Description

Performs pairwise variable selection on subclasses.

Usage

locpvs(x, subclasses, subclass.labels, prior=NULL, method="lda",
vs.method = c("ks.test", "stepclass", "greedy.wilks"),
niveau=0.05, fold=10, impr=0.1, direct="backward", out=FALSE, ...)

Arguments

x matrix or data frame containing the explanatory variables. x must consist of
numerical data only.

subclasses vector indicating the subclasses (a factor)
subclass.labels

must be a matrix with 2 coloumns, where the first coloumn specifies the subclass
and the second coloumn the according upper class

prior prior probabilites for the classes. If not specified the prior probabilities will
be set according to proportion in “subclasses”. If specified the order of prior
probabilities must be the same as in “subclasses”.

method character, name of classification function (e.g. “lda” (default)).

vs.method character, name of variable selection method. Must be one of “ks.test” (de-
fault), “stepclass” or “greedy.wilks”.

niveau used niveau for “ks.test”

fold parameter for cross-validation, if “stepclass” is chosen ‘vs.method’

impr least improvement of performance measure desired to include or exclude any
variable (<=1), if “stepclass” is chosen ‘vs.method’

direct direction of variable selection, if “stepclass” is chosen ‘vs.method’. Must be
one if “forward”, “backward” (default) or “both”.

out indicator (logical) for textoutput during computation (slows down computa-
tion!), if “stepclass” is chosen ‘vs.method’

... further parameters passed to classification function (‘method’) or variable selec-
tion method (‘vs.method’)

32 locpvs

Details

A call on pvs is performed using “subclasses” as grouping variable. See pvs for further details.

Value

An object of class ‘locpvs’ containing the following components:

pvs.result the complete output of the call to pvs (see pvs for further details
subclass.labels

the subclass.labels as specified in function call

Author(s)

Gero Szepannek, <szepannek@statistik.tu-dortmund.de>, Christian Neumann

References

Szepannek, G. and Weihs, C. (2006) Local Modelling in Classification on Different Feature Sub-
spaces. In Advances in Data Mining., ed Perner, P., LNAI 4065, pp. 226-234. Springer, Heidelberg.

See Also

predict.locpvs for predicting ‘locpvs’ models and pvs

Examples

this example might be a bit artificial, but it sufficiently shows how locpvs has to be used

learn a locpvs-model on the Vehicle dataset

library("mlbench")
data("Vehicle")

subclass <- Vehicle$Class # use four car-types in dataset as subclasses
aggregate "bus" and "van" to upper-class "big" and "saab" and "opel" to upper-class "small"
subclass_class <- matrix(c("bus","van","saab","opel","big","big","small","small"),ncol=2)

learn now a locpvs-model for the subclasses:
model <- locpvs(Vehicle[,1:18], subclass, subclass_class)
model # short summary, showing the class-pairs of the submodels
together with the selected variables and the relation of sub- to upperclasses

predict:
pred <- predict(model, Vehicle[,1:18])

now you can look at the predicted classes:
pred$class
or at the posterior probabilities:
pred$posterior
or at the posterior probabilities for the subclasses:

meclight.default 33

pred$subclass.posteriors

meclight.default Minimal Error Classification

Description

Computer intensive method for linear dimension reduction that minimizes the classification error
directly.

Usage

meclight(x, ...)

Default S3 method:
meclight(x, grouping, r = 1, fold = 10, ...)
S3 method for class 'formula'
meclight(formula, data = NULL, ..., subset, na.action = na.fail)
S3 method for class 'data.frame'
meclight(x, ...)
S3 method for class 'matrix'
meclight(x, grouping, ..., subset, na.action = na.fail)

Arguments

x (required if no formula is given as the principal argument.) A matrix or data
frame containing the explanatory variables.

grouping (required if no formula principal argument is given.) A factor specifying the
class for each observation.

r Dimension of projected subspace.

fold Number of Bootstrap samples.

formula A formula of the form groups ~ x1 + x2 + That is, the response is the
grouping factor and the right hand side specifies the (non-factor) discriminators.

data Data frame from which variables specified in formula are preferentially to be
taken.

subset An index vector specifying the cases to be used in the training sample. (NOTE:
If given, this argument must be named.)

na.action A function to specify the action to be taken if NAs are found. The default action
is for the procedure to fail. An alternative is na.omit, which leads to rejection
of cases with missing values on any required variable. (NOTE: If given, this
argument must be named.)

... Further arguments passed to lda.

34 NaiveBayes

Details

Computer intensive method for linear dimension reduction that minimizes the classification error in
the projected subspace directly. Classification is done by lda. In contrast to the reference function
minimization is done by Nelder-Mead in optim.

Value

method.model An object of class ‘lda’.

Proj.matrix Projection matrix.

B.error Estimated bootstrap error rate.

B.impro Improvement in lda error rate.

Author(s)

Maria Eveslage, Karsten Luebke, <karsten.luebke@fom.de>

References

Roehl, M.C., Weihs, C., and Theis, W. (2002): Direct Minimization in Multivariate Classification.
Computational Statistics, 17, 29-46.

See Also

predict.meclight

Examples

data(iris)
meclight.obj <- meclight(Species ~ ., data = iris)
meclight.obj

NaiveBayes Naive Bayes Classifier

Description

Computes the conditional a-posterior probabilities of a categorical class variable given independent
predictor variables using the Bayes rule.

Usage

S3 method for class 'formula'
NaiveBayes(formula, data, ..., subset, na.action = na.pass)
Default S3 method:
NaiveBayes(x, grouping, prior, usekernel = FALSE, fL = 0, ...)

NaiveBayes 35

Arguments

x a numeric matrix, or a data frame of categorical and/or numeric variables.
grouping class vector (a factor).
formula a formula of the form class ~ x1 + x2 + Interactions are not allowed.
data a data frame of predictors (categorical and/or numeric).
prior the prior probabilities of class membership. If unspecified, the class proportions

for the training set are used. If present, the probabilities should be specified in
the order of the factor levels.

usekernel if TRUE a kernel density estimate (density) is used for density estimation. If
FALSE a normal density is estimated.

fL Factor for Laplace correction, default factor is 0, i.e. no correction.
... arguments passed to density.
subset for data given in a data frame, an index vector specifying the cases to be used in

the training sample. (NOTE: If given, this argument must be named.)
na.action a function to specify the action to be taken if NAs are found. The default action is

not to count them for the computation of the probability factors. An alternative
is na.omit, which leads to rejection of cases with missing values on any required
variable. (NOTE: If given, this argument must be named.)

Details

This implementation of Naive Bayes as well as this help is based on the code by David Meyer in the
package e1071 but extended for kernel estimated densities and user specified prior probabilities.
The standard naive Bayes classifier (at least this implementation) assumes independence of the
predictor variables.

Value

An object of class "NaiveBayes" including components:

apriori Class distribution for the dependent variable.
tables A list of tables, one for each predictor variable. For each categorical variable a

table giving, for each attribute level, the conditional probabilities given the target
class. For each numeric variable, a table giving, for each target class, mean and
standard deviation of the (sub-)variable or a object of class density.

Author(s)

Karsten Luebke, <karsten.luebke@fom.de>

See Also

predict.NaiveBayes,plot.NaiveBayes,naiveBayes,qda

Examples

data(iris)
m <- NaiveBayes(Species ~ ., data = iris)

36 nm

nm Nearest Mean Classification

Description

Function for nearest mean classification.

Usage

nm(x, ...)

Default S3 method:
nm(x, grouping, gamma = 0, ...)
S3 method for class 'data.frame'
nm(x, ...)
S3 method for class 'matrix'
nm(x, grouping, ..., subset, na.action = na.fail)
S3 method for class 'formula'
nm(formula, data = NULL, ..., subset, na.action = na.fail)

Arguments

x matrix or data frame containing the explanatory variables (required, if formula
is not given)

grouping factor specifying the class for each observation (required, if formula is not
given)

formula formula of the form groups ~ x1 + x2 + That is, the response is the group-
ing factor and the right hand side specifies the (non-factor) discriminators

data Data frame from which variables specified in formula are preferentially to be
taken

gamma gamma parameter for rbf weight of the distance to mean. If gamma=0 the poste-
rior is 1 for the nearest class (mean) and 0 else.

subset An index vector specifying the cases to be used in the training sample. (Note: If
given, this argument must be named!)

na.action specify the action to be taken if NAs are found. The default action is for the
procedure to fail. An alternative is na.omit, which leads to rejection of cases
with missing values on any required variable. (Note: If given, this argument
must be named.)

... further arguments passed to the underlying sknn function

Details

nm is calling sknn with the class means as observations. If gamma>0 a gaussian like density is used
to weight the distance to the class means weight=exp(-gamma*distance). This is similar to an
rbf kernel. If the distances are large it may be useful to scale the data first.

partimat 37

Value

A list containing the function call and the class means (learn)).

Author(s)

Karsten Luebke, <karsten.luebke@fom.de>

See Also

sknn, rda, knn

Examples

data(B3)
x <- nm(PHASEN ~ ., data = B3)
x$learn
x <- nm(PHASEN ~ ., data = B3, gamma = 0.1)
predict(x)$post

partimat Plotting the 2-d partitions of classification methods

Description

Provides a multiple figure array which shows the classification of observations based on classifica-
tion methods (e.g. lda, qda) for every combination of two variables. Moreover, the classification
borders are displayed and the apparent error rates are given in each title.

Usage

partimat(x,...)

Default S3 method:
partimat(x, grouping, method = "lda", prec = 100,

nplots.vert, nplots.hor, main = "Partition Plot", name, mar,
plot.matrix = FALSE, plot.control = list(), ...)

S3 method for class 'data.frame'
partimat(x, ...)
S3 method for class 'matrix'
partimat(x, grouping, ..., subset, na.action = na.fail)
S3 method for class 'formula'
partimat(formula, data = NULL, ..., subset, na.action = na.fail)

38 partimat

Arguments

x matrix or data frame containing the explanatory variables (required, if formula
is not given).

grouping factor specifying the class for each observation (required, if formula is not
given).

formula formula of the form groups ~ x1 + x2 + That is, the response is the group-
ing factor and the right hand side specifies the (non-factor) discriminators.

method the method the classification is based on, currently supported are: lda, qda,
rpart, naiveBayes, rda, sknn and svmlight

.

prec precision used to draw the classification borders (the higher the more precise;
default: 100).

data Data frame from which variables specified in formula are preferentially to be
taken.

nplots.vert number of rows in the multiple figure array

nplots.hor number of columns in the multiple figure array

subset index vector specifying the cases to be used in the training sample. (Note: If
given, this argument must be named.)

na.action specify the action to be taken if NAs are found. The default action is for the
procedure to fail. An alternative is na.omit, which leads to rejection of cases
with missing values on any required variable. (Note: If given, this argument
must be named.)

main title

name Variable names to be printed at the axis / into the diagonal.

mar numerical vector of the form c(bottom, left, top, right) which gives the
lines of margin to be specified on the four sides of the plot. Defaults are rep(0,
4) if plot.matrix = TRUE, c(5, 4, 2, 1) + 0.1 otherwise.

plot.matrix logical; if TRUE, like a scatterplot matrix; if FALSE (default) uses less space and
arranges the plots “optimal” (using a fuzzy algorithm) in an array by plotting
each pair of variables once.

plot.control A list containing further arguments passed to the underlying plot functions (and
to drawparti).

... Further arguments passed to the classification method (through drawparti).

Note

Warnings such as ‘parameter “xyz” couldn’t be set in high-level plot function’ are expected, if
making use of

Author(s)

Karsten Luebke, <karsten.luebke@fom.de>, Uwe Ligges, Irina Czogiel

plineplot 39

See Also

for much more fine tuning see drawparti

Examples

library(MASS)
data(iris)
partimat(Species ~ ., data = iris, method = "lda")
Not run:
partimat(Species ~ ., data = iris, method = "lda",

plot.matrix = TRUE, imageplot = FALSE) # takes some time ...

End(Not run)

plineplot Plotting marginal posterior class probabilities

Description

For a given variable the posteriori probabilities of the classes given by a classification method are
plotted. The variable need not be used for the actual classifcation.

Usage

plineplot(formula, data, method, x, col.wrong = "red",
ylim = c(0, 1), loo = FALSE, mfrow, ...)

Arguments

formula formula of the form groups ~ x1 + x2 + That is, the response is the group-
ing factor and the right hand side specifies the (non-factor) discriminators.

data Data frame from which variables specified in formula are preferentially to be
taken.

method character, name of classification function (e.g. “lda”).

x variable that should be plotted. See examples.

col.wrong color to use for missclassified objects.

ylim ylim for the plot.

loo logical, whether leave-one-out estimate is used for prediction

mfrow number of rows and columns in the graphics device, see par. If missing, number
of rows equals number of classes, and 1 column.

... further arguments passed to the underlying classification method or plot func-
tions.

Value

The actual error rate.

40 plot.NaiveBayes

Author(s)

Karsten Luebke, <karsten.luebke@fom.de>

See Also

partimat

Examples

library(MASS)

The name of the variable can be used for x
data(B3)
plineplot(PHASEN ~ ., data = B3, method = "lda",

x = "EWAJW", xlab = "EWAJW")

The plotted variable need not be in the data
data(iris)
iris2 <- iris[, c(1,3,5)]
plineplot(Species ~ ., data = iris2, method = "lda",

x = iris[, 4], xlab = "Petal.Width")

plot.NaiveBayes Naive Bayes Plot

Description

Visualizes the marginal probabilities of predictor variables given the class.

Usage

S3 method for class 'NaiveBayes'
plot(x, vars, n = 1000, legendplot = TRUE, lty, col,

ylab = "Density", main = "Naive Bayes Plot", ...)

Arguments

x an object of class NaiveBayes
vars variables to be plotted. If missing, all predictor variables are plotted.
n number of points used to plot the density line.
legendplot logical, whether to print a legend

lty line type for different classes, defaults to the first length(x$apriori) colors of
the current palette in use.

col color for different classes, defaults to rainbow(length(x$apriori)).
ylab label for y-axis.
main title of the plots.
... furhter arguments passed to the underlying plot functions.

plot.woe 41

Details

For metric variables the estimated density is plotted. For categorial variables mosaicplot is
called.

Author(s)

Karsten Luebke, <karsten.luebke@fom.de>

See Also

NaiveBayes

Examples

data(iris)
mN <- NaiveBayes(Species ~ ., data = iris)
plot(mN)

mK <- NaiveBayes(Species ~ ., data = iris, usekernel = TRUE)
plot(mK)

plot.woe Plot information values

Description

Barplot of information values to compare dicriminator of the transformed variables.

Usage

S3 method for class 'woe'
plot(x, type = c("IV", "woes"), ...)

Arguments

x An object of class woe.

type Character to specify the plot type, see below. Either "IV" (default) or "woes".

... Further arguments to be passed to the barplot function.

Details

For type=="IV" a barplot of information values for all transformed variables. A thumb rule of
interpretation is that Values above 0.3 are considered as strongly discrimative where values below
0.02 are considered to characterize unpredictive variables. For type=="woes" for each variable the
relative frequencies of all transformed levels are plotted.

42 predict.loclda

Value

No value is returned.

Author(s)

Gero Szepannek

References

Good, I. (1950): Probability and the Weighting of Evidences. Charles Griffin, London.

Kullback, S. (1959): Information Theory and Statistics. Wiley, New York.

See Also

woe, predict.woe

Examples

see examples in ?woe

predict.loclda Localized Linear Discriminant Analysis (LocLDA)

Description

Classifies new observations using parameters determined by the loclda-function.

Usage

S3 method for class 'loclda'
predict(object, newdata, ...)

Arguments

object Object of class loclda.
newdata Data frame of cases to be classified.
... Further arguments are ignored.

Value

A list with components:

class Vector (of class factor) of classifications.
posterior Posterior probabilities for the classes. For details of computation see loclda (+

normalization so posterior-values add up to 1 for each observation).
all.zero Vector (of class integer) indicating for which rows of newdata all correspond-

ing posterior-values are < 10−150 before normalization. Those observations are
assigned to the class to whose (locally weighted) centroid they have the lowest
euclidian distance.

predict.locpvs 43

Author(s)

Marc Zentgraf (<marc-zentgraf@gmx.de>) and Karsten Luebke (<karsten.luebke@fom.de>)

See Also

loclda

Examples

data(B3)
x <- loclda(PHASEN ~ ., data = B3, subset = 1:80)
predict(x, B3[-(1:80),])

predict.locpvs predict method for locpvs objects

Description

Prediction of class membership and posterior probabilities in local models using pairwise variable
selection.

Usage

S3 method for class 'locpvs'
predict(object,newdata, quick = FALSE, return.subclass.prediction = TRUE, ...)

Arguments

object an object of class ‘locpvs’, as that created by the function “locpvs”

newdata a data frame or matrix containing new data. If not given the same datas as used
for training the ‘pvs’-model are used.

quick indicator (logical), whether a quick, but less accurate computation of posterior
probabalities should be used or not.

return.subclass.prediction

indicator (logical), whether the returned object includes posterior probabilities
for each date in each subclass

... Further arguments are passed to underlying predict calls.

Details

Posterior probabilities are predicted as if object is a standard ‘pvs’-model with the subclasses as
classes. Then the posterior probabalities are summed over all subclasses for each class. The class
with the highest value becomes the prediction.

If “quick=FALSE” the posterior probabilites for each case are computed using the pairwise coupling
algorithm presented by Hastie, Tibshirani (1998). If “quick=FALSE” a much quicker solution is
used, which leads to less accurate posterior probabalities. In almost all cases it doesn’t has a negative
effect on the classification result.

44 predict.meclight

Value

a list with components:

class the predicted (upper) classes

posterior posterior probabilities for the (upper) classes
subclass.posteriors

(only if “return.subclass.prediction=TRUE”. A matrix containing posterior
probabalities for the subclasses.

Author(s)

Gero Szepannek, <szepannek@statistik.tu-dortmund.de>, Christian Neumann

References

Szepannek, G. and Weihs, C. (2006) Local Modelling in Classification on Different Feature Sub-
spaces. In Advances in Data Mining., ed Perner, P., LNAI 4065, pp. 226-234. Springer, Heidelberg.

See Also

locpvs for learning ‘locpvs’-models and examples for applying this predict method, pvs for pair-
wise variable selection without modeling subclasses, predict.pvs for predicting ‘pvs’-models

predict.meclight Prediction of Minimal Error Classification

Description

Classify multivariate observations in conjunction with meclight and lda.

Usage

S3 method for class 'meclight'
predict(object, newdata,...)

Arguments

object Object of class meclight.

newdata Data frame of cases to be classified or, if object has a formula, a data frame with
columns of the same names as the variables used. A vector will be interpreted
as a row vector.

... currently ignored

Details

Classify multivariate observations in conjunction with meclight and lda.

predict.NaiveBayes 45

Value

class The estimated class (factor).

posterior Posterior probabilities for the classes.

Author(s)

Karsten Luebke, <karsten.luebke@fom.de>

References

Roehl, M.C., Weihs, C., and Theis, W. (2002): Direct Minimization in Multivariate Classification.
Computational Statistics, 17, 29-46.

See Also

meclight

Examples

data(iris)
meclight.obj <- meclight(Species ~ ., data = iris)
predict(meclight.obj, iris)

predict.NaiveBayes Naive Bayes Classifier

Description

Computes the conditional a-posterior probabilities of a categorical class variable given independent
predictor variables using the Bayes rule.

Usage

S3 method for class 'NaiveBayes'
predict(object, newdata, threshold = 0.001, ...)

Arguments

object An object of class "naiveBayes".

newdata A dataframe with new predictors.

threshold Value replacing cells with 0 probabilities.

... passed to dkernel function if neccessary.

46 predict.pvs

Details

This implementation of Naive Bayes as well as this help is based on the code by David Meyer in
the package e1071 but extended for kernel estimated densities. The standard naive Bayes classifier
(at least this implementation) assumes independence of the predictor variables. For attributes with
missing values, the corresponding table entries are omitted for prediction.

Value

A list with the conditional a-posterior probabilities for each class and the estimated class are re-
turned.

Author(s)

Karsten Luebke, <karsten.luebke@fom.de>

See Also

NaiveBayes,dkernelnaiveBayes,qda

Examples

data(iris)
m <- NaiveBayes(Species ~ ., data = iris)
predict(m)

predict.pvs predict method for pvs objects

Description

Prediction of class membership and posterior probabilities using pairwise variable selection.

Usage

S3 method for class 'pvs'
predict(object, newdata, quick = FALSE, detail = FALSE, ...)

Arguments

object an object of class ‘pvs’, as that created by the function “pvs”
newdata a data frame or matrix containing new data. If not given the same datas as used

for training the ‘pvs’-model are used.
quick indicator (logical), whether a quick, but less accurate computation of posterior

probabalities should be used or not.
detail indicator (logical), whether the returned object includes additional information

about the posterior probabilities for each date in each submodel.
... Further arguments are passed to underlying predict calls.

predict.rda 47

Details

If “quick=FALSE” the posterior probabilites for each case are computed using the pairwise coupling
algorithm presented by Hastie, Tibshirani (1998). If “quick=FALSE” a much quicker solution is
used, which leads to less accurate posterior probabalities. In almost all cases it doesn’t has a negative
effect on the classification result.

Value

a list with components:

class the predicted classes

posterior posterior probabilities for the classes

details (only if “details=TRUE”. A list containing matrices of posterior probabalities
computated by the classification method for each case and classpair.

Author(s)

Gero Szepannek, <szepannek@statistik.tu-dortmund.de>, Christian Neumann

References

Szepannek, G. and Weihs, C. (2006) Variable Selection for Classification of More than Two Classes
Where the Data are Sparse. In From Data and Information Analysis to Kwnowledge Engineering.,
eds Spiliopolou, M., Kruse, R., Borgelt, C., Nuernberger, A. and Gaul, W. pp. 700-708. Springer,
Heidelberg.

See Also

For more details and examples how to use this predict method, see pvs.

predict.rda Regularized Discriminant Analysis (RDA)

Description

Classifies new observations using parameters determined by the rda-function.

Usage

S3 method for class 'rda'
predict(object, newdata, posterior = TRUE,

aslist = TRUE, ...)

48 predict.sknn

Arguments

object Object of class rda.
newdata Data frame (or matrix) of cases to be classified.
posterior Logical; indicates whether a matrix of posterior probabilites over all classes for

each observation shall be returned in addition to classifications.
aslist Logical; if TRUE, a list containing classifications and posterior probabilities is

returned, otherwise a vector with an attribute ‘posterior’.
... currently unused

Value

Depends on the value of argument ‘aslist’:

Either a vector (of class factor) of classifications that (optionally) has an attribute ‘posterior’
containing the posterior probability matrix, or

A list with elements ‘class’ and ‘posterior’.

Author(s)

Christian Röver, <roever@statistik.tu-dortmund.de>

See Also

rda

Examples

data(iris)
x <- rda(Species ~ ., data = iris, gamma = 0.05, lambda = 0.2)
predict(x, iris[, 1:4])

predict.sknn Simple k Nearest Neighbours Classification

Description

Classifies new observations using the sknn learned by the sknn-function.

Usage

S3 method for class 'sknn'
predict(object, newdata,...)

Arguments

object Object of class sknn.
newdata Data frame (or matrix) of cases to be classified.
... . . .

predict.svmlight 49

Value

A list with elements ‘class’ and ‘posterior’.

Author(s)

Karsten Luebke, <karsten.luebke@fom.de>

See Also

sknn, knn

Examples

data(iris)
x <- sknn(Species ~ ., data = iris)
predict(x, iris)
x <- sknn(Species ~ ., gamma = 10, kn = 10, data = iris)
predict(x, iris)

predict.svmlight Interface to SVMlight

Description

Predicts new observations using the SVM learned by the svmlight-function.

Usage

S3 method for class 'svmlight'
predict(object, newdata, scal = TRUE, ...)

Arguments

object Object of class svmlight.

newdata Data frame (or matrix) of cases to be predicted.

scal Logical, whether to scale membership values via e.scal.

... . . .

Value

If a classification is learned (type="C") in svmlight a list with elements ‘class’ and ‘posterior’
(scaled, if scal = TRUE).

If a Regression is learned (type="R") in svmlight the predicted values.

Author(s)

Karsten Luebke, <karsten.luebke@fom.de>

50 predict.woe

See Also

svmlight, svm

Examples

Not run:
data(iris)
x <- svmlight(Species ~ ., data = iris)
predict(x, iris)

End(Not run)

predict.woe Weights of evidence

Description

Applies weight of evidence transform of factor variables for binary classification based on a model
of class woe.

Usage

S3 method for class 'woe'
predict(object, newdata, replace = TRUE, ...)

Arguments

object Object resulting from a call of woe.

newdata A matrix or data frame where WOE transform should be applied of the same
dimension as the data used for training the woe object.

replace Logical flag specifying whether the original factor variables should be kept in
the output.

... Currently not used.

Value

Data frame including the transformed numeric woe variables.

Author(s)

Gero Szepannek

References

Good, I. (1950): Probability and the Weighting of Evidences. Charles Griffin, London.

pvs 51

See Also

woe, plot.woe

Examples

see examples in ?woe

pvs Pairwise variable selection for classification

Description

Pairwise variable selection for numerical data, allowing the use of different classifiers and different
variable selection methods.

Usage

pvs(x, ...)

Default S3 method:
pvs(x, grouping, prior=NULL, method="lda",

vs.method=c("ks.test","stepclass","greedy.wilks"), niveau=0.05,
fold=10, impr=0.1, direct="backward", out=FALSE, ...)

S3 method for class 'formula'
pvs(formula, data = NULL, ...)

Arguments

x matrix or data frame containing the explanatory variables (required, if formula
is not given). x must consist of numerical data only.

formula A formula of the form groups ~ x1 + x2 + That is, the response is the
grouping factor (the classes) and the right hand side specifies the (numerical)
discriminators. Interaction terms are not supported.

data data matrix (rows=cases, columns=variables)

grouping class indicator vector (a factor)

prior prior probabilites for the classes. If not specified the prior probabilities will
be set according to proportion in “grouping”. If specified the order of prior
probabilities must be the same as in “grouping”.

method character, name of classification function (e.g. “lda” (default)).

vs.method character, name of variable selection method. Must be one of “ks.test” (de-
fault), “stepclass” or “greedy.wilks”.

niveau used niveau for “ks.test”

fold parameter for cross-validation, if “stepclass” is chosen ‘vs.method’

52 pvs

impr least improvement of performance measure desired to include or exclude any
variable (<=1), if “stepclass” is chosen ‘vs.method’

direct direction of variable selection, if “stepclass” is chosen ‘vs.method’. Must be
one if “forward”, “backward” (default) or “both”.

out indicator (logical) for textoutput during computation (slows down computa-
tion!), if “stepclass” is chosen ‘vs.method’

... further parameters passed to classification function (‘method’) or variable selec-
tion method (‘vs.method’)

Details

The classification “method” (e.g. ‘lda’) must have its own ‘predict’ method (like ‘predict.lda’
for ‘lda’) returns a list with an element ‘posterior’ containing the posterior probabilties. It must
be able to deal with matrices as in method(x, grouping, ...). Examples of such classification
methods are ‘lda’, ‘qda’, ‘rda’, ‘NaiveBayes’ or ‘sknn’.\ For the classification methods “svm” and
“randomForest” there are special routines implemented, to make them work with ‘pvs’ method
even though their ‘predict’ methods don’t provide the demanded posteriors. However those two
classfiers can not be used together with variable selection method “stepclass”.

‘pvs’ performs a variable selection using the selection method chosen in ‘vs.method’ for each pair
of classes in ‘x’. Then for each pair of classes a submodel using ‘method’ is trained (using only the
earlier selected variables for this class-pair).

If ‘method’ is “ks.test”, then for each variable the empirical distribution functions of the cases of
both classes are compared via “ks.test”. Only variables with a p-values below ‘niveau’ are used
for training the submodel for this pair of classes.

If ‘method’ is “stepclass” the variable selection is performed using the “stepclass” method.

If ‘method’ is “greedy.wilks” the variable selection is performed using Wilk’s lambda criterion.

Value

An object of class ‘pvs’ containing the following components:

classes the classes in grouping

prior used prior probabilities

method name of used classification function

vs.method name of used function for variable selection

submodels containing a list of submodels. For each pair of classes there is a list element
being another list of 3 containing the class-pair of this submodel, the selected
variables for the subspace of classes and the result of the trained classification
function.

call the (matched) function call

Author(s)

Gero Szepannek, <szepannek@statistik.tu-dortmund.de>, Christian Neumann

pvs 53

References

• Szepannek, G. and Weihs, C. (2006) Variable Selection for Classification of More than Two
Classes Where the Data are Sparse. In From Data and Information Analysis to Kwnowledge
Engineering., eds Spiliopolou, M., Kruse, R., Borgelt, C., Nuernberger, A. and Gaul, W. pp.
700-708. Springer, Heidelberg.

• Szepannek, G. (2008): Different Subspace Classification - Datenanalyse, -interpretation, -
visualisierung und Vorhersage in hochdimensionalen Raeumen, ISBN 978-3-8364-6302-7,
vdm, Saarbruecken.

See Also

predict.pvs for predicting ‘pvs’ models and locpvs for pairwisevariable selection in local models
of several subclasses

Examples

Example 1: learn an "lda" model on the waveform data using pairwise variable
selection (pvs) using "ks.test" and compare it to using lda without pvs

library("mlbench")
trainset <- mlbench.waveform(300)
pvsmodel <- pvs(trainset$x, trainset$classes, niveau=0.05) # default: using method="lda"
short summary, showing the class-pairs of the submodels and the selected variables
pvsmodel

testset <- mlbench.waveform(500)
prediction of the test data set:
prediction <- predict(pvsmodel, testset$x)

calculating the test error rate
1-sum(testset$classes==prediction$class)/length(testset$classes)
Bayes error is 0.149

comparison to performance of simple lda
ldamodel <- lda(trainset$x, trainset$classes)
LDAprediction <- predict(ldamodel, testset$x)

test error rate
1-sum(testset$classes==LDAprediction$class)/length(testset$classes)

Example 2: learn a "qda" model with pvs on half of the Satellite dataset,
using "ks.test"

library("mlbench")
data("Satellite")

takes few seconds as exact KS tests are calculated here:
model <- pvs(classes ~ ., Satellite[1:3218,], method="qda", vs.method="ks.test")
short summary, showing the class-pairs of the submodels and the selected variables

54 quadplot

model

now predict on the rest of the data set:
pred <- predict(model,Satellite[3219:6435,]) # takes some time
pred <- predict(model,Satellite[3219:6435,], quick=TRUE) # that's much quicker

now you can look at the predicted classes:
pred$class
or the posterior probabilities:
pred$posterior

quadplot Plotting of 4 dimensional membership representation simplex

Description

For a 4 class discrimination problem the membership values of each class are visualized in a 3
dimensional barycentric coordinate system.

Usage

quadplot(e = NULL, f = NULL, g = NULL, h = NULL, angle = 75,
scale.y = 0.6, label = 1:4, labelcol = rainbow(4),
labelpch = 19, labelcex = 1.5, main = "", s3d.control = list(),
simplex.control = list(), legend.control = list(), ...)

Arguments

e either a matrix with 4 columns represanting the membership values or a vector
with the membership values of the first class

f vector with the membership values of the second class

g vector with the membership values of the third class

h vector with the membership values of the forth class

angle angle between x and y axis

scale.y scale of y axis related to x- and z axis

label label for the classes

labelcol colors to use for the labels

labelpch pch for the labels

labelcex cex for the labels

main main title of the plot

s3d.control a list with further arguments passed to the underlying scatterplot3d function
call that sets up the plot

quadplot 55

simplex.control

a list with further arguments passed to the underlying function call that draws
the barycentric coordinate system

legend.control a list with further arguments passed to the underlying function call that adds the
legend

... further arguments passed to the underlying plot function that draws the data
points

Details

The membership values are calculated with quadtrafo and plotted with scatterplot3d.

Value

A scatterplot3d object.

Author(s)

Karsten Luebke, <karsten.luebke@fom.de>, and Uwe Ligges

References

Garczarek, Ursula Maria (2002): Classification rules in standardized partition spaces. Dissertation,
University of Dortmund. URL http://hdl.handle.net/2003/2789

See Also

triplot, scatterplot3d

Examples

library("MASS")
data(B3)
opar <- par(mfrow = c(1, 2), pty = "s")
posterior <- predict(lda(PHASEN ~ ., data = B3))$post
s3d <- quadplot(posterior, col = rainbow(4)[B3$PHASEN],

labelpch = 22:25, labelcex = 0.8,
pch = (22:25)[apply(posterior, 1, which.max)],
main = "LDA posterior assignments")

quadlines(centerlines(4), sp = s3d, lty = "dashed")

posterior <- predict(qda(PHASEN ~ ., data = B3))$post
s3d <- quadplot(posterior, col = rainbow(4)[B3$PHASEN],

labelpch = 22:25, labelcex = 0.8,
pch = (22:25)[apply(posterior, 1, which.max)],
main = "QDA posterior assignments")

quadlines(centerlines(4), sp = s3d, lty = "dashed")
par(opar)

http://hdl.handle.net/2003/2789

56 rda

rda Regularized Discriminant Analysis (RDA)

Description

Builds a classification rule using regularized group covariance matrices that are supposed to be more
robust against multicollinearity in the data.

Usage

rda(x, ...)

Default S3 method:
rda(x, grouping = NULL, prior = NULL, gamma = NA,

lambda = NA, regularization = c(gamma = gamma, lambda = lambda),
crossval = TRUE, fold = 10, train.fraction = 0.5,
estimate.error = TRUE, output = FALSE, startsimplex = NULL,
max.iter = 100, trafo = TRUE, simAnn = FALSE, schedule = 2,
T.start = 0.1, halflife = 50, zero.temp = 0.01, alpha = 2,
K = 100, ...)

S3 method for class 'formula'
rda(formula, data, ...)

Arguments

x Matrix or data frame containing the explanatory variables (required, if formula
is not given).

formula Formula of the form ‘groups ~ x1 + x2 + ...’.

data A data frame (or matrix) containing the explanatory variables.

grouping (Optional) a vector specifying the class for each observation; if not specified,
the first column of ‘data’ is taken.

prior (Optional) prior probabilities for the classes. Default: proportional to training
sample sizes. “prior=1” indicates equally likely classes.

gamma, lambda, regularization

One or both of the rda-parameters may be fixed manually. Unspecified parame-
ters are determined by minimizing the estimated error rate (see below).

crossval Logical. If TRUE, in the optimization step the error rate is estimated by Cross-
Validation, otherwise by drawing several training- and test-samples.

fold The number of Cross-Validation- or Bootstrap-samples to be drawn.

train.fraction In case of Bootstrapping: the fraction of the data to be used for training in each
Bootstrap-sample; the remainder is used to estimate the misclassification rate.

estimate.error Logical. If TRUE, the apparent error rate for the final parameter set is estimated.

output Logical flag to indicate whether text output during computation is desired.

startsimplex (Optional) a starting simplex for the Nelder-Mead-minimization.

rda 57

max.iter Maximum number of iterations for Nelder-Mead.

trafo Logical; indicates whether minimization is carrried out using transformed pa-
rameters.

simAnn Logical; indicates whether Simulated Annealing shall be used.

schedule Annealing schedule 1 or 2 (exponential or polynomial).

T.start Starting temperature for Simulated Annealing.

halflife Number of iterations until temperature is reduced to a half (schedule 1).

zero.temp Temperature at which it is set to zero (schedule 1).

alpha Power of temperature reduction (linear, quadratic, cubic,...) (schedule 2).

K Number of iterations until temperature = 0 (schedule 2).

... currently unused

Details

J.H. Friedman (see references below) suggested a method to fix almost singular covariance matrices
in discriminant analysis. Basically, individual covariances as in QDA are used, but depending
on two parameters (γ and λ), these can be shifted towards a diagonal matrix and/or the pooled
covariance matrix. For (γ = 0, λ = 0) it equals QDA, for (γ = 0, λ = 1) it equals LDA.

You may fix these parameters at certain values or leave it to the function to try to find “optimal” val-
ues. If one parameter is given, the other one is determined using the R-function ‘optimize’. If no
parameter is given, both are determined numerically by a Nelder-Mead-(Simplex-)algorithm with
the option of using Simulated Annealing. The goal function to be minimized is the (estimated) mis-
classification rate; the misclassification rate is estimated either by Cross-Validation or by repeatedly
dividing the data into training- and test-sets (Boostrapping).

Warning: If these sets are small, optimization is expected to produce almost random results. We
recommend to adjust the parameters manually in such a case. In all other cases it is recommended
to run the optimization several times in order to see whether stable results are gained.

Since the Nelder-Mead-algorithm is actually intended for continuous functions while the observed
error rate by its nature is discrete, a greater number of Boostrap-samples might improve the opti-
mization by increasing the smoothness of the response surface (and, of course, by reducing variance
and bias). If a set of parameters leads to singular covariance matrices, a penalty term is added to
the misclassification rate which will hopefully help to maneuver back out of singularity (so do not
worry about error rates greater than one during optimization).

Value

A list of class rda containing the following components:

call The (matched) function call.

regularization vector containing the two regularization parameters (gamma, lambda)

classes the names of the classes

prior the prior probabilities for the classes

error.rate apparent error rate (if computation was not suppressed), and, if any optimization
took place, the final (cross-validated or bootstrapped) error rate estimate as well.

58 rda

means Group means.

covariances Array of group covariances.

covpooled Pooled covariance.

converged (Logical) indicator of convergence (only for Nelder-Mead).

iter Number of iterations actually performed (only for Nelder-Mead).

More details

The explicit defintion of γ, λ and the resulting covariance estimates is as follows:

The pooled covariance estimate Σ̂ is given as well as the individual covariance estimates Σ̂k for
each group.

First, using λ, a convex combination of these two is computed:

Σ̂k(λ) := (1− λ)Σ̂k + λΣ̂.

Then, another convex combination is constructed using the above estimate and a (scaled) identity
matrix:

Σ̂k(λ, γ) = (1− γ)Σ̂k(λ) + γ
1

d
tr[Σ̂k(λ)]I.

The factor 1
d tr[Σ̂k(λ)] in front of the identity matrix I is the mean of the diagonal elements of

Σ̂k(λ), so it is the mean variance of all d variables assuming the group covariance Σ̂k(λ).

For the four extremes of (γ,λ) the covariance structure reduces to special cases:

• (γ = 0, λ = 0): QDA - individual covariance for each group.

• (γ = 0, λ = 1): LDA - a common covariance matrix.

• (γ = 1, λ = 0): Conditional independent variables - similar to Naive Bayes, but variable
variances within group (main diagonal elements) are equal.

• (γ = 1, λ = 1): Classification using euclidean distance - as in previous case, but variances
are the same for all groups. Objects are assigned to group with nearest mean.

Author(s)

Christian Röver, <roever@statistik.tu-dortmund.de>

References

Friedman, J.H. (1989): Regularized Discriminant Analysis. In: Journal of the American Statistical
Association 84, 165-175.

Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T. (1992): Numerical Recipes in C.
Cambridge: Cambridge University Press.

See Also

predict.rda, lda, qda

shardsplot 59

Examples

data(iris)
x <- rda(Species ~ ., data = iris, gamma = 0.05, lambda = 0.2)
predict(x, iris)

shardsplot Plotting Eight Direction Arranged Maps or Self-Organizing Maps

Description

Plotting method for objects of class EDAM or som.

Usage

shardsplot(object, plot.type = c("eight", "four", "points", "n"),
expand = 1, stck = TRUE, grd = FALSE, standardize = FALSE,
data.or = NA, label = FALSE, plot = TRUE, classes = 0,
vertices = TRUE, classcolors = "rainbow", wghts = 0,
xlab = "Dimension 1", ylab = "Dimension 2", xaxs = "i",
yaxs = "i", plot.data.column = NA,
log.classes = FALSE, revert.colors = FALSE, ...)

level_shardsplot(object, par.names, rows = 1:NCOL(object$data),
centers = rep(NA, length(par.names)), class.labels = NA,
revert.colors = rep(FALSE, length(par.names)),
log.classes = rep(FALSE, length(par.names)),
centeredcolors = colorRamp(c("red", "white", "blue")),
mfrow = c(2, 2), plot.type = c("eight", "four", "points", "n"),
expand = 1, stck = TRUE, grd = FALSE, standardize = FALSE,
label = FALSE, plot = TRUE, vertices = TRUE, classcolors = "topo",
wghts = 0, xlab = "Dimension 1", ylab = "Dimension 2",
xaxs = "i", yaxs = "i", ...)

S3 method for class 'EDAM'
plot(...)

Arguments

object an object of class EDAM or som.

par.names names used to lable the data columns

rows vector with indices of colomns to be plotted

centers vector of type numeric defining the class centers for the data. NA if data does
not have a center.

class.labels matrix of type text and dimension(3, NROW(object$data)) defining the lables
to be used for maximum, minimum and central value.

60 shardsplot

centeredcolors colors to represent the classes with a central value

mfrow parameter defining number of plots on a page. see par

plot.type a character giving the shape of the shards. Available are “eight” and “four”
for octagons resp. rectangles, and “points” for points. If plot.type is “n”, no
shards are plotted at all.

expand a numeric giving the relative expansion of the axes. A value greater than one
implies smaller shards. Varying expand can be sensible for visual reasons.

stck logical. If TRUE the cells are varied continously corresponding to the differences
of direct neighbors in the origin space. Within this variation the relative order of
the cells is always preserved.

grd logical. If TRUE (which automatically sets stck to TRUE), the variation of cells
is restricted to their original discrete values.

standardize logical. If TRUE, then the measurements in object$preimages are standard-
ized before calculating Euclidean distances. Measurements are standardized for
each variable by dividing by the variable’s standard deviation. Meaningless if
object$preimages is a dissimilarity matrix.

data.or original data and classes where the first k columns are variables and the (k+1)-th
column are the classes. If defined and class of object is som, data.or is used
to assign a class to each codebook. There a codebook receives the class, from
which the majority of its assigned objects origins.

label logical. If TRUE, the shards are labeled by the rownames of the preimages.

plot logical. If FALSE, all graphical output is suppressed.

classes a vector giving alternative classes for objects of class EDAM; classes have to be
given in the original order of the data to which EDAM was applied.

vertices logical. If TRUE the grid is drawn.

classcolors colors to represent the classes, or a character giving the colorscale for the classes.
Since now available scales are rainbow, topo and gray.

wghts an optional vector of length k giving relative weights of the variables in comput-
ing Euclidean distances. Meaningless if object$preimages is a dissimilarity
matrix.

xaxs see par

yaxs see par

xlab see par

ylab see par

... further plotting parameters.
plot.data.column

column index defining from data.or providing the data used to calculate the
coloring of the cells.

log.classes boolean indicating that the data should be transformed with the logarithmic
function before calculating the cell coloring

revert.colors boolean indicating that the colorscale should be reverted.

shardsplot 61

Details

level_shardsplot uses multiple shardsplot representations of a SOM in order to depict how the
data used to calculate the SOM is distribution across the map. Two representations are possible for
the data, first with a single color ramp from the minimum value to the maximum value. The second
representation is usefull for data for which a basic value exists some where between minimum and
maximum for which a special color representation should be used (e.g. 0 is indicated with white).

If plot.type is “four” or “eight”, the shape of each shard depends on the relative distances of
the actual object or codebook to its up to eight neighbours. If plot.type is “eight”, shardsplot
corresponds to the representation method suggested by Cottrell and de Bodt (1996) for Kohonen
Self-Organizing Maps. If plot.type is “points”, shardsplot reduces to a usual scatter plot.

Value

The following list is (invisibly) returned:

Cells.ex the images of the visualized data

S the criterion of the visualization

Author(s)

Nils Raabe, level_shardsplot function from Dominik Reusser

References

Cottrell, M., and de Bodt, E. (1996). A Kohonen Map Representation to Avoid Misleading Inter-
pretations. Proceedings of the European Symposium on Atrificial Neural Networks, D-Facto, pp.
103–110.

See Also

EDAM, TopoS, som

Examples

Compute clusters and an Eight Directions Arranged Map for the
country data. Plotting the result.
data(countries)
logcount <- log(countries[,2:7])
sdlogcount <- apply(logcount, 2, sd)
logstand <- t((t(logcount) / sdlogcount) * c(1,2,6,5,5,3))
cclasses <- cutree(hclust(dist(logstand)), k = 6)
countryEDAM <- EDAM(logstand, classes = cclasses, sa = FALSE,

iter.max = 10, random = FALSE)
plot(countryEDAM, vertices = FALSE, label = TRUE, stck = FALSE)

Compute and plot a Self-Organizing Map for the iris data
data(iris)
library(som)
irissom <- som(iris[,1:4], xdim = 6, ydim = 14)
shardsplot(irissom, data.or = iris, vertices = FALSE)

62 sknn

opar <- par(xpd = NA)
legend(7.5, 6.1, col = rainbow(3), xjust = 0.5, yjust = 0,

legend = levels(iris[, 5]), pch = 16, horiz = TRUE)
par(opar)

level_shardsplot(irissom, par.names = names(iris),
class.labels = NA, mfrow = c(2,2))

sknn Simple k nearest Neighbours

Description

Function for simple knn classification.

Usage

sknn(x, ...)

Default S3 method:
sknn(x, grouping, kn = 3, gamma=0, ...)
S3 method for class 'data.frame'
sknn(x, ...)
S3 method for class 'matrix'
sknn(x, grouping, ..., subset, na.action = na.fail)
S3 method for class 'formula'
sknn(formula, data = NULL, ..., subset, na.action = na.fail)

Arguments

x matrix or data frame containing the explanatory variables (required, if formula
is not given).

grouping factor specifying the class for each observation (required, if formula is not
given).

formula formula of the form groups ~ x1 + x2 + That is, the response is the group-
ing factor and the right hand side specifies the (non-factor) discriminators.

data Data frame from which variables specified in formula are preferentially to be
taken.

kn Number of nearest neighbours to use.
gamma gamma parameter for rbf in knn. If gamma=0 ordinary knn classification is used.
subset An index vector specifying the cases to be used in the training sample. (Note: If

given, this argument must be named.)
na.action specify the action to be taken if NAs are found. The default action is for the

procedure to fail. An alternative is na.omit, which leads to rejection of cases
with missing values on any required variable. (Note: If given, this argument
must be named.)

... currently unused

stepclass 63

Details

If gamma>0 an gaussian like density is used to weight the classes of the kn nearest neighbors.
weight=exp(-gamma*distance). This is similar to an rbf kernel. If the distances are large it
may be useful to scale the data first.

Value

A list containing the function call.

Author(s)

Karsten Luebke, <karsten.luebke@fom.de>

See Also

predict.sknn, knn

Examples

data(iris)
x <- sknn(Species ~ ., data = iris)
x <- sknn(Species ~ ., gamma = 4, data = iris)

stepclass Stepwise variable selection for classification

Description

Forward/backward variable selection for classification using any specified classification function
and selecting by estimated classification performance measure from ucpm.

Usage

stepclass(x, ...)

Default S3 method:
stepclass(x, grouping, method, improvement = 0.05, maxvar = Inf,

start.vars = NULL, direction = c("both", "forward", "backward"),
criterion = "CR", fold = 10, cv.groups = NULL, output = TRUE,
min1var = TRUE, ...)

S3 method for class 'formula'
stepclass(formula, data, method, ...)

64 stepclass

Arguments

x matrix or data frame containing the explanatory variables (required, if formula
is not given).

formula A formula of the form groups ~ x1 + x2 + That is, the response is the
grouping factor and the right hand side specifies the (non-factor) discriminators.
Interaction terms are not supported.

data data matrix (rows=cases, columns=variables)

grouping class indicator vector (a factor)

method character, name of classification function (e.g. “lda”).

improvement least improvement of performance measure desired to include or exclude any
variable (<=1)

maxvar maximum number of variables in model

start.vars set variables to start with (indices or names). Default is no variables if ‘direction’
is “forward” or “both”, and all variables if ‘direction’ is “backward”.

direction “forward”, “backward” or “both” (default)

criterion performance measure taken from ucpm.

fold parameter for cross-validation; omitted if ‘cv.groups’ is specified.

cv.groups vector of group indicators for cross-validation. By default assigned automati-
cally.

output indicator (logical) for textoutput during computation (slows down computation!)

min1var logical, whether to include at least one variable in the model, even if the prior
itself already is a reasonable model.

... further parameters passed to classification function (‘method’), e.g. priors etc.

Details

The classification “method” (e.g. ‘lda’) must have its own ‘predict’ method (like ‘predict.lda’
for ‘lda’) that either returns a matrix of posterior probabilities or a list with an element ‘posterior’
containing that matrix instead. It must be able to deal with matrices as in method(x, grouping,
...)

Then a stepwise variable selection is performed. The initial model is defined by the provided starting
variables; in every step new models are generated by including every single variable that is not in
the model, and by excluding every single variable that is in the model. The resulting performance
measure for these models are estimated (by cross-validation), and if the maximum value of the
chosen criterion is better than ‘improvement’ plus the value so far, the corresponding variable is
in- or excluded. The procedure stops, if the new best value is not good enough, or if the specified
maximum number of variables is reached.

If ‘direction’ is “forward”, the model is only extended (by including further variables), if ‘direction’
is “backward”, the model is only reduced (by excluding variables from the model).

svmlight 65

Value

An object of class ‘stepclass’ containing the following components:

call the (matched) function call.

method name of classification function used (e.g. “lda”).
start.variables

vector of starting variables.

process data frame showing selection process (included/excluded variables and perfor-
mance measure).

model the final model: data frame with 2 columns; indices and names of variables.
perfomance.measure

value of the criterion used by ucpm

formula formula of the form ‘response ~ list + of + selected + variables’

Author(s)

Christian Röver, <roever@statistik.tu-dortmund.de>, Irina Czogiel

See Also

step, stepAIC, and greedy.wilks for stepwise variable selection according to Wilk’s lambda

Examples

data(iris)
library(MASS)
iris.d <- iris[,1:4] # the data
iris.c <- iris[,5] # the classes
sc_obj <- stepclass(iris.d, iris.c, "lda", start.vars = "Sepal.Width")
sc_obj
plot(sc_obj)

or using formulas:
sc_obj <- stepclass(Species ~ ., data = iris, method = "qda",

start.vars = "Sepal.Width", criterion = "AS") # same as above
sc_obj
now you can say stuff like
qda(sc_obj$formula, data = B3)

svmlight Interface to SVMlight

Description

Function to call SVMlight from R for classification. Multiple group classification is done with the
one-against-rest partition of data.

66 svmlight

Usage

svmlight(x, ...)

Default S3 method:
svmlight(x, grouping, temp.dir = NULL, pathsvm = NULL,

del = TRUE, type = "C", class.type = "oaa", svm.options = NULL,
prior = NULL, out = FALSE, ...)

S3 method for class 'data.frame'
svmlight(x, ...)
S3 method for class 'matrix'
svmlight(x, grouping, ..., subset, na.action = na.fail)
S3 method for class 'formula'
svmlight(formula, data = NULL, ..., subset,

na.action = na.fail)

Arguments

x matrix or data frame containing the explanatory variables (required, if formula
is not given).

grouping factor specifying the class for each observation (required, if formula is not
given).

formula formula of the form groups ~ x1 + x2 + That is, the response is the group-
ing factor and the right hand side specifies the (non-factor) discriminators.

data Data frame from which variables specified in formula are preferentially to be
taken.

temp.dir directory for temporary files.

pathsvm Path to SVMlight binaries (required, if path is unknown by the OS).

del Logical: whether to delete temporary files

type Perform "C"=Classification or "R"=Regression

class.type Multiclass scheme to use. See details.

svm.options Optional parameters to SVMlight.
For further details see: “How to use” on http://svmlight.joachims.org/.

prior A Priori probabilities of classes.

out Logical: whether SVMlight output ahouild be printed on console (only for Win-
dows OS.)

subset An index vector specifying the cases to be used in the training sample. (Note: If
given, this argument must be named.)

na.action specify the action to be taken if NAs are found. The default action is for the
procedure to fail. An alternative is na.omit, which leads to rejection of cases
with missing values on any required variable. (Note: If given, this argument
must be named.)

... currently unused

http://svmlight.joachims.org/

svmlight 67

Details

Function to call SVMlight from R for classification (type="C"). SVMlight is an implementation of
Vapnik’s Support Vector Machine. It is written in C by Thorsten Joachims. On the homepage (see
below) the source-code and several binaries for SVMlight are available. If more then two classes
are given the SVM is learned by the one-against-all scheme (class.type="oaa"). That means that
each class is trained against the other K-1 classes. The class with the highest decision function in
the SVM wins. So K SVMs have to be learned. If class.type="oao" each class is tested against
every other and the final class is elected by a majority vote.

If type="R" a SVM Regression is performed.

Value

A list containing the function call and the result of SVMlight.

Requirements

SVMlight (http://svmlight.joachims.org/) must be installed before using this interface.

Author(s)

Karsten Luebke, <karsten.luebke@fom.de>, Andrea Preusser

References

http://svmlight.joachims.org/

See Also

predict.svmlight,svm,

Examples

Not run:
Only works if the svmlight binaries are in the path.
data(iris)
x <- svmlight(Species ~ ., data = iris)
Using RBF-Kernel with gamma=0.1:
data(B3)
x <- svmlight(PHASEN ~ ., data = B3, svm.options = "-t 2 -g 0.1")

End(Not run)

http://svmlight.joachims.org/
http://svmlight.joachims.org/

68 trigrid

triframe Barycentric plots

Description

Function to add a frame to an existing (barycentric) plot.

Usage

triframe(label = 1:3, label.col = 1, cex = 1, ...)

Arguments

label labels for the three corners of the plot.

label.col text color for labels.

cex Magnification factor for label text relative to the default.

... Further graphical parameters passed to trilines.

Author(s)

Christian Röver, <roever@statistik.tu-dortmund.de>

See Also

triplot, trilines, trigrid, centerlines

Examples

triplot(grid = TRUE, frame = FALSE) # plot without frame
some.triangle <- rbind(c(0, 0.65, 0.35), c(0.53, 0.47, 0),

c(0.72, 0, 0.28))[c(1:3, 1),]
trilines(some.triangle, col = "red", pch = 16, type = "b")
triframe(label = c("left", "top", "right"), col = "blue",

label.col = "green3") # frame on top of points

trigrid Barycentric plots

Description

Function to add a grid to an existing (barycentric) plot.

Usage

trigrid(x = seq(0.1, 0.9, by = 0.1), y = NULL, z = NULL,
lty = "dashed", col = "grey", ...)

trigrid 69

Arguments

x Values along which to draw grid lines for first dimension (or all dimensions if y
and z omitted). For NO grid lines in some dimensions just supply an NA.

y Grid lines for second dimension.

z Grid lines for third dimension.

lty Line type (see par).

col Line colour (see par).

... Further graphical parameters passed to trilines.

Details

Grid lines illustrate the set of points for which one of the dimensions is held constant; e.g. horizontal
lines contain all points with a certain value y for the second dimension, connecting the two extreme
points (0,y,1-y) and (1-y,y,0).

Grids may be designed more flexible than with triplot’s grid option.

Author(s)

Christian Röver, <roever@statistik.tu-dortmund.de>

See Also

triplot, trilines, triframe, centerlines

Examples

triplot(grid = FALSE)
trigrid(c(1/3, 0.5)) # same grid for all 3 dimensions

triplot(grid = c(1/3, 0.5)) # (same effect)

triplot(grid = FALSE)
different grids for all dimensions:
trigrid(x = 1/3, y = 0.5, z = seq(0.2, 0.8, by=0.2))

triplot(grid = FALSE)
grid for third dimension only:
trigrid(x = NA, y = NA, z = c(0.1, 0.2, 0.4, 0.8))

70 triperplines

triperplines Barycentric plots

Description

Function to add a point and the corresponding perpendicular lines to all three sides to an existing
(barycentric) plot.

Usage

triperplines(x, y = NULL, z = NULL, lcol = "red", pch = 17, ...)

Arguments

x fraction of first component OR 3-element vector (for all three components, omit-
ting y and z).

y (optional) fraction of second component.

z (optional) fraction of third component.

lcol line color

pch plotting character. pch = 0 for no point

... Further graphical parameters (see points, lines and par).

Details

Adds a (single!) point and lines to an existing plot (generated by triplot). The lines originate
from the point and run (perpendicular) towards all three sides. The lengths (and proportions) of
these lines are identical to those of x, y and z.

Value

a 2-column-matrix containing plot coordinates.

Author(s)

Christian Röver, <roever@statistik.tu-dortmund.de>

See Also

triplot, tripoints, trilines, tritrafo

Examples

triplot() # empty plot
triperplines(1/2, 1/3, 1/6)

triplot 71

triplot Barycentric plots

Description

Function to produce triangular (barycentric) plots illustrating proportions of 3 components, e.g.
discrete 3D-distributions or mixture fractions that sum up to 1.

Usage

triplot(x = NULL, y = NULL, z = NULL, main = "", frame = TRUE,
label = 1:3, grid = seq(0.1, 0.9, by = 0.1), center = FALSE,
set.par = TRUE, ...)

Arguments

x Vector of fractions of first component OR 3-column matrix containing all three
components (omitting y and z) OR 3-element vector (for all three components,
omitting y and z).

y (Optional) vector of fractions of second component.

z (Optional) vector of fractions of third component.

main Main title

frame Controls whether a frame (triangle) and labels are drawn.

label (Character) vector of labels for the three corners.

grid Values along which grid lines are to be drawn (or FALSE for no grid at all).
Default is steps of 10 percent.

center Controls whether or not to draw centerlines at which there is a ‘tie’ between any
two dimensions (see also centerlines).

set.par Controls whether graphical parameter mar is set so the plot fills the window (see
par).

... Further graphical parameters passed to trilines.

Details

The barycentric plot illustrates the set of points (x,y,z) with x,y,z between 0 and 1 and x+y+z=1; that
is, the triangle spanned by (1,0,0), (0,1,0) and (0,0,1) in 3-dimensional space. The three dimensions
x, y and z correspond to lower left, upper and lower right corner of the plot. The greater the share
of x in the proportion, the closer the point is to the lower left corner; Points on the opposite (upper
right) side have a zero x-fraction. The grid lines show the points at which one dimension is held
constant, horizontal lines for example contain points with a constant second dimension.

Author(s)

Christian Röver, <roever@statistik.tu-dortmund.de>

72 tripoints

See Also

tripoints, trilines, triperplines, trigrid, triframe for points, lines and layout, tritrafo
for placing labels, and quadplot for the same in 4 dimensions.

Examples

illustrating probabilities:
triplot(label = c("1, 2 or 3", "4 or 5", "6"),

main = "die rolls: probabilities", pch = 17)
triperplines(1/2, 1/3, 1/6)

expected...
triplot(1/2, 1/3, 1/6, label = c("1, 2 or 3", "4 or 5", "6"),

main = "die rolls: expected and observed frequencies", pch = 17)
... and observed frequencies.
dierolls <- matrix(sample(1:3, size = 50*20, prob = c(1/2, 1/3, 1/6),

replace = TRUE), ncol = 50)
frequencies <- t(apply(dierolls, 1,

function(x)(summary(factor(x, levels = 1:3)))) / 50)
tripoints(frequencies)

LDA classification posterior:
data(iris)
require(MASS)
pred <- predict(lda(Species ~ ., data = iris),iris)
plotchar <- rep(1,150)
plotchar[pred$class != iris$Species] <- 19
triplot(pred$posterior, label = colnames(pred$posterior),

main = "LDA posterior assignments", center = TRUE,
pch = plotchar, col = rep(c("blue", "green3", "red"), rep(50, 3)),
grid = TRUE)

legend(x = -0.6, y = 0.7, col = c("blue", "green3", "red"),
pch = 15, legend = colnames(pred$posterior))

tripoints Barycentric plots

Description

Function to add points or lines to an existing (barycentric) plot.

Usage

tripoints(x, y = NULL, z = NULL, ...)
trilines(x, y = NULL, z = NULL, ...)

tritrafo 73

Arguments

x Vector of fractions of first component OR 3-column matrix containing all three
components (omitting y and z) OR 3-element vector (for all three components,
omitting y and z).

y (optional) vector of fractions of second component.

z (optional) vector of fractions of third component.

... Further graphical parameters (see points and par).

Details

Adds points or lines to an existing plot (generated by triplot).

Author(s)

Christian Röver, <roever@statistik.tu-dortmund.de>

See Also

points, lines, triplot, tritrafo, centerlines

Examples

triplot() # empty plot
tripoints(0.1, 0.2, 0.7) # a point
tripoints(c(0.2, 0.6), c(0.3, 0.3), c(0.5, 0.1),

pch = c(2, 6)) # two points
trilines(c(0.1, 0.6), c(0.2, 0.3), c(0.7, 0.1),

col = "blue", lty = "dotted") # a line

trilines(centerlines(3))

tritrafo Barycentric plots

Description

Function to carry out the transformation into 2D space for triplot, trilines etc.

Usage

tritrafo(x, y = NULL, z = NULL, check = TRUE, tolerance = 0.0001)

74 tritrafo

Arguments

x Vector of fractions of first component OR 3-column matrix containing all three
components (omitting y and z) OR 3-element vector (for all three components,
omitting y and z).

y (optional) vector of fractions of second component.

z (optional) vector of fractions of third component.

check if TRUE, it is checked whether x+y+z=1 and x,y,z>=0 for all cases.

tolerance tolerance for above sum check.

Details

Projects the mixture given by x, y, and z with x, y, z between one and zero and x+y+z=1 into a
two-dimensional space.

For further details see triplot.

Value

A matrix with two columns corresponding to the two dimensions.

Author(s)

Christian Röver, <roever@statistik.tu-dortmund.de>

See Also

triplot, tripoints, trilines, trigrid

Examples

tritrafo(0.1, 0.2, 0.7)
tritrafo(0.1, 0.2, 0.6) # warning

triplot()
points(tritrafo(0.1, 0.2, 0.7), col="red")
tripoints(0.1, 0.2, 0.7, col="green") # the same

tritrafo(c(0.1,0.2), c(0.3,0.4), c(0.6,0.4))
tritrafo(diag(3))

point <- c(0.25,0.6,0.15)
triplot(point, pch=16)
text(tritrafo(point), "(0.25, 0.60, 0.15)", adj=c(0.5,2)) # add a label

ucpm 75

ucpm Uschi’s classification performance measures

Description

Function to calculate the Correctness Rate, the Accuracy, the Ability to Seperate and the Confidence
of a classification rule.

Usage

ucpm(m, tc, ec = NULL)

Arguments

m matrix of (scaled) membership values

tc vector of true classes

ec vector of estimated classes (only required if scaled membership values are used)

Details

• The correctness rate is the estimator for the correctness of a classification rule (1-error rate).

• The accuracy is based on the euclidean distances between (scaled) membership vectors and the
vectors representing the true class corner. These distances are standardized so that a measure
of 1 is achieved if all vectors lie in the correct corners and 0 if they all lie in the center.

• Analougously, the ability to seperate is based on the distances between (scaled) membership
vectors and the vector representing the corresponding assigned class corner.

• The confidence is the mean of the membership values of the assigned classes.

Value

A list with elements:

CR Correctness Rate

AC Accuracy

AS Ability to Seperate

CF Confidence

CFvec Confidence for each (true) class

Author(s)

Karsten Luebke, <karsten.luebke@fom.de>

References

Garczarek, Ursula Maria (2002): Classification rules in standardized partition spaces. Dissertation,
University of Dortmund. URL http://hdl.handle.net/2003/2789

http://hdl.handle.net/2003/2789

76 woe

Examples

library(MASS)
data(iris)
ucpm(predict(lda(Species ~ ., data = iris))$posterior, iris$Species)

woe Weights of evidence

Description

Computes weight of evidence transform of factor variables for binary classification.

Usage

woe(x, ...)
Default S3 method:
woe(x, grouping, weights = NULL, zeroadj = 0, ids = NULL,

appont = TRUE, ...)
S3 method for class 'formula'
woe(formula, data = NULL, weights = NULL, ...)

Arguments

x A matrix or data frame containing the explanatory variables.
grouping A factor specifying the binary class for each observation.
formula A formula of the form grouping ~ x1 + x2 + ... That is, the response is the

grouping factor and the right hand side specifies the discriminators.
data Data frame from which variables specified in formula are to be taken.
weights Vector with observation weights. For call woe(formula, data, weights) also

a a character is possible that specifies the name of the weight coloumn in data.
zeroadj Additive constant to be added for a level with 0 observations in a class.
ids Vector of either indices or variable names that specifies the variables to be trans-

formed.
appont Application on training data: logical indicating whether the transformed values

for the training data should be returned by recursive calling of predict.woe.
... For woe.formula: Further arguments passed to function woe.default such as

ids. For woe.default: replace = FALSE can be passed to recursive call of
predict.woe if appont.

Details

To each factor level x a numeric value WOE(x) = ln(f(x|1)/f(x|2)) is assigned where 1 and
2 denote the class labels. The WOE transform is motivated for subsequent modelling by logis-
tic regression. Note that the frequencies of the classes should be investigated before. Informa-
tion values heuristically quantify the discriminatory power of a variable by IV = (f(x|1) −
f(x|2))ln(f(x|1)/f(x|2)).

woe 77

Value

Returns an object of class woe that can be applied to new data.

woe WOE coefficients for factor2numeric transformation of each (specified) vari-
able.

IV Vector of information values of all transformed variables.

newx Data frame of transformed data if appont.

Author(s)

Gero Szepannek

References

Good, I. (1950): Probability and the Weighting of Evidences. Charles Griffin, London.

Kullback, S. (1959): Information Theory and Statistics. Wiley, New York.

See Also

predict.woe, plot.woe

Examples

load German credit data
data("GermanCredit")

training/validation split
train <- sample(nrow(GermanCredit), round(0.6*nrow(GermanCredit)))

woemodel <- woe(credit_risk~., data = GermanCredit[train,], zeroadj=0.5, applyontrain = TRUE)
woemodel

plot variable information values and woes
plot(woemodel)
plot(woemodel, type = "woes")

apply woes
traindata <- predict(woemodel, GermanCredit[train,], replace = TRUE)
str(traindata)

fit logistic regression model
glmodel <- glm(credit_risk~., traindata, family=binomial)
summary(glmodel)
pred.trn <- predict(glmodel, traindata, type = "response")

predict validation data
validata <- predict(woemodel, GermanCredit[-train,], replace = TRUE)
pred.val <- predict(glmodel, validata, type = "response")

78 xtractvars

xtractvars Variable clustering based variable selection

Description

Applies variable selection to data based on variable clusterings as resulting from corclust or CLV.

Usage

xtractvars(object, data, thres = 0.5)

Arguments

object Object of class cvtree applied to a corclust object or the summary() of a clv
object as created by CLV.

data Data where variables are to be selected. Coloumn names must be identical to
those used in corclust model.

thres Maximum accepted average within cluster correlation for selection of a variable.

Details

Of each cluster the first variable is selected as well as all other variables with an average within
cluster correlation below thres.

Value

The data is returned where unselected coloumns are removed.

Author(s)

Gero Szepannek

References

Roever, C. and Szepannek, G. (2005): Application of a genetic algorithm to variable selection in
fuzzy clustering. In C. Weihs and W. Gaul (eds), Classification - The Ubiquitous Challenge, 674-
681, Springer.

See Also

See also corclust, cvtree and CLV.

Examples

data(B3)
ccres <- corclust(B3)
plot(ccres)
cvtres <- cvtree(ccres, k = 3)
newdata <- xtractvars(cvtres, B3, thres = 0.5)

Index

∗ Ability to Seperate
ucpm, 75

∗ Accuracy
ucpm, 75

∗ Barycentric plots
centerlines, 8
quadplot, 54
triframe, 68
trigrid, 68
triperplines, 70
triplot, 71
tripoints, 72
tritrafo, 73

∗ Benchmark
benchB3, 5

∗ Beta scaling
b.scal, 3
betascale, 7

∗ Classification Performance Measures
ucpm, 75

∗ Classification in time series
hmm.sop, 26

∗ Classification
b.scal, 3
betascale, 7
e.scal, 16
meclight.default, 33
predict.meclight, 44
predict.svmlight, 49
svmlight, 65

∗ Cluster analysis
EDAM, 17
shardsplot, 59

∗ Collinearity diagnosis in regression
cond.index, 10

∗ Confidence
ucpm, 75

∗ Confusion matrix
errormatrix, 20

∗ Correctness Rate
ucpm, 75

∗ E scaling
e.scal, 16

∗ EDAM
EDAM, 17
shardsplot, 59

∗ Eight Direction Arranged Maps
EDAM, 17

∗ Friedman’s classification benchmark data
friedman.data, 21

∗ HMM
hmm.sop, 26

∗ Hidden Markov Model
hmm.sop, 26

∗ KNN
predict.sknn, 48
sknn, 62

∗ Kernel density estimation
dkernel, 14

∗ Kernel estimated densities
NaiveBayes, 34
predict.NaiveBayes, 45

∗ Linear Dimension Reduction
meclight.default, 33
predict.meclight, 44

∗ Linear Discriminant Analysis
loclda, 28
meclight.default, 33
predict.loclda, 42
predict.meclight, 44
predict.rda, 47
rda, 56

∗ Localization
loclda, 28
predict.loclda, 42

∗ Localized Linear Discriminant Analysis
loclda, 28
predict.loclda, 42

79

80 INDEX

∗Membership values
e.scal, 16

∗ Naive Bayes Classification
NaiveBayes, 34
predict.NaiveBayes, 45

∗ Nearest Mean Classification
nm, 36

∗ Pairwise variable selection for
classification

locpvs, 31
predict.locpvs, 43
predict.pvs, 46
pvs, 51

∗ Posterior probabilities
b.scal, 3
betascale, 7

∗ Quadratic Discriminant Analysis
predict.rda, 47
rda, 56

∗ Regularized Discriminant Analysis
friedman.data, 21
predict.rda, 47
rda, 56

∗ SOM
shardsplot, 59

∗ SVMlight
predict.svmlight, 49
svmlight, 65

∗ SVM
predict.svmlight, 49
svmlight, 65

∗ Softmax scaling
e.scal, 16

∗ Stepwise variable selection in classification
greedy.wilks, 24
stepclass, 63

∗ Support vector machines
predict.svmlight, 49
svmlight, 65

∗ Visualizing Classification Performance
Measures

centerlines, 8
quadplot, 54
triframe, 68
trigrid, 68
triperplines, 70
triplot, 71
tripoints, 72

tritrafo, 73
∗ Visualizing Naive Bayes Classification

plot.NaiveBayes, 40
∗ Visualizing classification results

classscatter, 9
errormatrix, 20

∗ Vizualizing Eight Direction Arranged
Maps

shardsplot, 59
∗ Vizualizing classification results

drawparti, 15
partimat, 37
plineplot, 39

∗Wilk’s lambda
greedy.wilks, 24

∗ aplot
triframe, 68
trigrid, 68
triperplines, 70
triplot, 71
tripoints, 72

∗ attribute
corclust, 11
cvtree, 13
xtractvars, 78

∗ category
kmodes, 27
NaiveBayes, 34
predict.NaiveBayes, 45

∗ classif
b.scal, 3
benchB3, 5
betascale, 7
centerlines, 8
classscatter, 9
corclust, 11
cvtree, 13
drawparti, 15
e.scal, 16
hmm.sop, 26
locpvs, 31
meclight.default, 33
NaiveBayes, 34
nm, 36
partimat, 37
plineplot, 39
plot.NaiveBayes, 40
plot.woe, 41

INDEX 81

predict.locpvs, 43
predict.meclight, 44
predict.NaiveBayes, 45
predict.pvs, 46
predict.sknn, 48
predict.svmlight, 49
predict.woe, 50
pvs, 51
quadplot, 54
sknn, 62
svmlight, 65
ucpm, 75
woe, 76
xtractvars, 78

∗ cluster
corclust, 11
cvtree, 13
kmodes, 27
xtractvars, 78

∗ datasets
B3, 4
countries, 12
GermanCredit, 23

∗ distribution
dkernel, 14

∗ dplot
centerlines, 8
classscatter, 9
drawparti, 15
partimat, 37
plineplot, 39
plot.NaiveBayes, 40
quadplot, 54
tritrafo, 73

∗ hplot
shardsplot, 59

∗ k nearest neighbour classification
predict.sknn, 48
sknn, 62

∗ manip
corclust, 11
cvtree, 13
xtractvars, 78

∗ multivariate
cond.index, 10
corclust, 11
cvtree, 13
EDAM, 17

errormatrix, 20
friedman.data, 21
greedy.wilks, 24
kmodes, 27
loclda, 28
plot.woe, 41
predict.loclda, 42
predict.rda, 47
predict.woe, 50
pvs, 51
rda, 56
stepclass, 63
woe, 76
xtractvars, 78

∗ nonparametric
dkernel, 14

∗ robust against multicollinearity
predict.rda, 47
rda, 56

∗ ts
calc.trans, 7
hmm.sop, 26

b.scal, 3, 7
B3, 4, 5, 6
benchB3, 5, 5
betascale, 3, 4, 7

calc.trans, 7, 26
centerlines, 8, 68, 69, 71, 73
chisq.test, 11
classscatter, 9
CLV, 78
cond.index, 10
contour, 16
corclust, 11, 13, 14, 78
countries, 12
cvtree, 11–13, 13, 78

density, 14, 15, 35
dkernel, 14, 45, 46
drawparti, 15, 38, 39

e.scal, 4, 7, 16, 49
EDAM, 17, 59–61
errormatrix, 20

friedman.data, 21

GermanCredit, 23

82 INDEX

greedy.wilks, 24, 31, 51, 52, 65

hclust, 12, 14
hmm.sop, 26

image, 16

kmodes, 27
knn, 37, 49, 63
kproto, 27
ks.test, 31, 51, 52

lda, 3, 9, 15, 22, 31, 33, 34, 38, 39, 44, 51, 52,
58, 64

legend, 40, 55
level_shardsplot (shardsplot), 59
lines, 70, 73
loclda, 28, 42, 43
locpvs, 31, 43, 44, 53

manova, 10, 25
meclight, 44, 45
meclight (meclight.default), 33
meclight.default, 33
mosaicplot, 41

na.omit, 36, 38, 62, 66
NaiveBayes, 15, 34, 40, 41, 46, 52
naiveBayes, 15, 35, 38, 46
nm, 36

optim, 34
optimize, 57

par, 39, 60, 69–71, 73
partimat, 16, 37, 40
pbeta, 3
plineplot, 39
plot, 9
plot.corclust, 12, 14
plot.corclust (corclust), 11
plot.EDAM (shardsplot), 59
plot.NaiveBayes, 35, 40
plot.rda (rda), 56
plot.stepclass (stepclass), 63
plot.woe, 41, 51, 77
points, 70, 73
predict.lda, 52, 64
predict.loclda, 29, 31, 42
predict.locpvs, 32, 43

predict.meclight, 34, 44
predict.NaiveBayes, 35, 45
predict.pvs, 44, 46, 53
predict.rda, 47, 58
predict.sknn, 48, 63
predict.svmlight, 49, 67
predict.woe, 42, 50, 77
print.greedy.wilks (greedy.wilks), 24
print.kmodes (kmodes), 27
print.loclda (loclda), 28
print.meclight (meclight.default), 33
print.pvs (pvs), 51
print.rda (rda), 56
print.stepclass (stepclass), 63
print.woe (woe), 76
pvs, 32, 44, 46, 47, 51

qbeta, 3
qda, 15, 22, 35, 38, 46, 52, 58
quadplot, 8, 54, 72
quadtrafo, 55

randomForest, 52
rda, 15, 22, 37, 38, 48, 52, 56
rpart, 15, 38

sammon, 18
scale, 6, 36, 63
scatterplot3d, 54, 55
shardsplot, 18, 19, 59
sknn, 15, 36–38, 48, 49, 52, 62
som, 59, 61
step, 65
stepAIC, 65
stepclass, 10, 25, 31, 51, 52, 63
svm, 50, 52, 67
svmlight, 15, 38, 49, 50, 65

table, 21
TopoS, 19, 61
triframe, 68, 69, 72
trigrid, 68, 68, 72, 74
trilines, 68–74
trilines (tripoints), 72
triperplines, 70, 72
triplot, 8, 55, 68–70, 71, 73, 74
tripoints, 70, 72, 72, 74
tritrafo, 70, 72, 73, 73

ucpm, 63–65, 75

INDEX 83

woe, 42, 50, 51, 76

xtractvars, 11, 12, 78

	b.scal
	B3
	benchB3
	betascale
	calc.trans
	centerlines
	classscatter
	cond.index
	corclust
	countries
	cvtree
	dkernel
	drawparti
	e.scal
	EDAM
	errormatrix
	friedman.data
	GermanCredit
	greedy.wilks
	hmm.sop
	kmodes
	loclda
	locpvs
	meclight.default
	NaiveBayes
	nm
	partimat
	plineplot
	plot.NaiveBayes
	plot.woe
	predict.loclda
	predict.locpvs
	predict.meclight
	predict.NaiveBayes
	predict.pvs
	predict.rda
	predict.sknn
	predict.svmlight
	predict.woe
	pvs
	quadplot
	rda
	shardsplot
	sknn
	stepclass
	svmlight
	triframe
	trigrid
	triperplines
	triplot
	tripoints
	tritrafo
	ucpm
	woe
	xtractvars
	Index

