Package 'kin.cohort'

October 13, 2022

Type Package
Title Analysis of Kin-Cohort Studies
Version 0.7
Date 2015-08-15
Author Victor Moreno, Nilanjan Chatterjee, Bhramar Mukherjee
Maintainer Victor Moreno <v.moreno@iconcologia.net>
Depends survival
Description Analysis of kin-cohort studies. kin.cohort provides estimates of age-specific cumulative risk of a disease for carriers and noncarriers of a mutation. The cohorts are retrospectively built from relatives of probands for whom the genotype is known. Currently the method of moments and marginal maximum likelihood are implemented. Confidence intervals are calculated from bootstrap samples. Most of the code is a translation from previous 'MATLAB' code by N. Chatterjee.
License GPL (>= 2)

NeedsCompilation no

Repository CRAN

Date/Publication 2015-08-28 16:36:59

R topics documented:

kc.marginal	2
kc.moments	4
kin.cohort	5
kin.data	7
methods	7
simulations	9

12

Index

```
kc.marginal
```

Description

This function estimates cumulative risk and hazard at given ages for carriers and noncarriers of a mutation based on the probands genotypes. It uses the Marginal Maximum Likelihood estimation method (Chatterjee and Wacholder, 2001). Piece-wise exponential distribution is assumed for the survival function.

Usage

```
kc.marginal(t, delta, genes, r, knots, f, pw = rep(1,length(t)),
    set = NULL, B = 1, maxit = 1000, tol = 1e-5, subset,
    logrank=TRUE, trace=FALSE)
```

Arguments

t	time variable. Usually age at diagnosis or at last follow-up
delta	disease status (1: event, 0: no event
genes	factor or numeric vector (1 gene), matrix or dataframe (2 genes) with genotypes of proband numeric. factors and data.frame with factors are prefered in order to use user-defined labels. Otherwise use codes (1:noncarrier, 2: carrier, 3: homozygous carrier)
r	relationship with proband 1:parent, 2:sibling 3:offspring 0:proband. Probands will be excluded from analysis and offspring will be recoded 1 internally.
knots	time points (ages) for cumulative risk and hazard estimates
f	vector of mutation allele frequencies in the population
рพ	prior weights, if needed
set	family id (only needed for bootstrap)
В	number of boostrap samples (only needed for bootstrap)
maxit	max number of iterations for the EM algorithm
tol	convergence tolerance
subset	logical condition to subset data
logrank	Perform a logrank test
trace	Show iterations for bootstrap

Value

object of classes "kin.cohort" and "chatterjee".

cumrisk matrix with cumulative risk estimates for noncarriers, carriers and the cumulative risk ratio. Estimates are given for the times indicated in the knot vector

kc.marginal

hazard	matrix with hazard estimates for noncarriers, carriers and the hazard ratio. Esti- mates are given for the times indicated in the knot vector
knots	vector of knots
conv	if the EM algorithm converged
niter	number of iterations needed for convergence
ngeno.rel	number of combinations of genotypes in the relatives
events	matrix with number of events and person years per each knot
logHR	mean log hazard ratio estimate (unweighted)
logrank	logrank test. If 2 genes, for the main effects, the cross-classification and the stratified tests
call	copy of call

if bootstrap confidence intervals are requested (B>1) then the returned object is of classes "kin.cohort.boot" and "chatterjee" with previous items packed in value estimate and each bootstrap sample packed in matrices.

Note

This function is best called by kin.cohort than directly

References

Chatterjee N and Wacholder S. A Marginal Likelihood Approach for Estimating Penetrance from Kin-Cohort Designs. Biometrics. 2001; 57: 245-52.

See Also

kin.cohort, print.kin.cohort, plot.kin.cohort

Examples

```
## Not run:
data(kin.data)
attach(kin.data)
res.mml<- kc.marginal(age, cancer, gen1, rel, knots=c(30,40,50,60,70,80), f=0.02)
res.mml
```

End(Not run)

kc.moments

Description

This function estimates cumulative risk and hazard at given ages for carriers and noncarriers of a mutation based on the probands genotypes. It uses the method of moments described by Wacholder et al (1998)

Usage

Arguments

t	time variable. Usually age at diagnosis or at last follow-up
delta	disease status (1: event, 0: no event
genes	genotype of proband numeric. A factor is preferred, otherwise numeric code of genotypes (1: noncarrier, 2:carrier, [3: homozygous carrier])
r	relationship with proband 1:parent, 2:sibling 3:offspring 0:proband. Probands will be excluded from analysis and offspring will be recoded 1 internally.
knots	time points (ages) for cumulative risk and hazard estimates
f	mutation allele frequency in the population
pw	prior weights, if needed
set	family id (only needed for bootstrap)
В	number of boostrap samples (only needed for bootstrap)
logrank	if logrank test is desired
subset	logical condition to subset data
trace	Show iterations for bootstrap

Value

object of classes "kin.cohort" and "wacholder".

cumrisk	matrix of dimension (number of knots x 3) with cumulative risk festimates or noncarriers, carriers and the cumulative risk ratio
knots	vector of knots
km	object class survfit (package survival)
logrank	p-value of the logrank test
events	matrix with number of events and person years per each knot
call	copy of call

if bootstrap confidence intervals are requested (B>1) then the returned object is of classes "kin.cohort.boot" and "wacholder" with previous items packed in value estimate and each bootstrap sample packed in matrices.

kin.cohort

Note

This function is best called by kin.cohort than directly

References

Wacholder S, Hartge P, Struewing JP, Pee D, McAdams M, Lawrence B, Tucker MA. The kin-cohort study for estimating penetrance. American Journal of Epidemiology. 1998; 148: 623-9.

See Also

kin.cohort, print.kin.cohort, plot.kin.cohort

Examples

```
## Not run:
data(kin.data)
attach(kin.data)
res.km<- kc.moments(age, cancer, gen1, rel, knots=c(30,40,50,60,70,80), f=0.02)
res.km
```

End(Not run)

kin.cohort

Analysis of kin-cohort data

Description

This function estimates cumulative risk at given ages for carriers and noncarriers of a mutation based on the probands genotypes. It can use the Marginal Maximum Likelihood estimation method (Chatterjee and Wacholder, 2001) or the method of moments (Wacholder et al, 2001). Bootstrap confidence intervals can be requested.

Usage

Arguments

	see kc.marginal and kc.moments for details
method	choose estimation method: Marginal Maximum Likelihood (selected by "marginal", "mml", "chatterjee") or method of moments (selected by "moments", "km", "watcholder")

Details

This function is a wrapper that will call kc.marginal or kc.moments depending on the argument method.

Author(s)

Victor Moreno, Nilanjan Chatterjee, Bhramar Mukherjee.

Maintainer: Victor Moreno <v.moreno@iconcologia.net>

References

Wacholder S, Hartge P, Struewing JP, Pee D, McAdams M, Lawrence B, Tucker MA. The kin-cohort study for estimating penetrance. American Journal of Epidemiology. 1998; 148: 623-9.

Chatterjee N and Wacholder S. A Marginal Likelihood Approach for Estimating Penetrance from Kin-Cohort Designs. Biometrics. 2001; 57: 245-52.

See Also

kc.marginal, kc.moments

Examples

```
## Not run:
data(kin.data)
attach(kin.data)
         kin.cohort(age, cancer, gen1, rel, knots=c(30,40,50,60,70,80), f=0.02,
res.k<-
                     method="km")
res.k
plot(res.k)
plot(res.k,what="crr")
set.seed(1)
res.k.b<- kin.cohort(age, cancer, gen1, rel, knots=c(30,40,50,60,70,80), f=0.02,
                     set=family, method="km", B=10)
res.k.b
plot(res.k.b)
plot(res.k.b,what="crr")
res.m<-
         kin.cohort(age, cancer, gen1, rel, knots=c(30,40,50,60,70,80), f=0.02,
                    method="mml")
res.m
plot(res.m)
plot(res.m, what="hr")
res.m2<- kin.cohort(age, cancer, data.frame(gen1,gen2), rel,</pre>
                     knots=c(30,40,50,60,70,80), f=c(0.02,0.01), method="mml")
res.m2
plot(res.m2)
plot(res.m2, what="hr")
set.seed(1)
res.m.b<- kin.cohort(age, cancer, gen1, rel, knots=c(30,40,50,60,70,80), f=0.02,
                     set=family, method="mml", B=10)
res.m.b
plot(res.m.b)
```

kin.data

```
plot(res.m.b, what="hr")
## End(Not run)
```

kin.data

sample data for kin-cohort analysis

Description

Simulated data of a study on the penetrance of breast cancer for carriers 2 mutations.

Usage

data(kin.data)

Format

A data frame with 15341 observations on the following 5 variables.

age age at diagnosis or at last follow-up

cancer disease status (1: breast cancer, 0: no breast cancer

gen1 gen1 genotypes of proband

gen2 gen2 genotypes of proband

rel relationship with proband 1:parent or offspring, 2:sibling

family family id

Examples

data(kin.data)

methods

methods for print and plot

Description

Functions to print a formatted output and produce plots

Usage

```
## S3 method for class 'kin.cohort'
print(x, descriptive = TRUE, cumrisk = TRUE, hazard = FALSE, survival = FALSE,
    logrank = TRUE, HR = TRUE, digits = 5, ...)
## S3 method for class 'kin.cohort.boot'
print(x, cumrisk = TRUE, hazard = FALSE, HR = TRUE, conf = 0.95,
    digits = 5, show = TRUE, logrank = TRUE, ...)
## S3 method for class 'kin.cohort'
plot(x, what = c("cr", "hr", "crr"), min.age = min(x$knots),
    max.age = max(x$knots), max.y, type, add=FALSE, color, line, ...)
## S3 method for class 'kin.cohort.boot'
plot(x, conf = 0.95, what = c("cr", "hr", "crr"), min.age = min(x$knots),
    max.age = max(x$knots), age.start = 0, start.ref, max.y, type,
    median = FALSE, add = FALSE, color, line, ...)
```

Arguments

х	object to be printed or plotted
descriptive	print table with number of events and person-years
cumrisk	print cumulative risk
hazard	print hazard
survival	print survival
HR	print harard ratios
logrank	print logrank p value
digits	digits for rounding
show	do not print
conf	coverage for confidence intervals
what	type of plot desired: cumulative risk ("cr"), hazard ratio ("hr", for marginal method only), cumulative risk ratio ("crr", for moments method only)
min.age	Minimal age for plots
max.age	Maximal age for plots
age.start	initial age value (x) for plots
start.ref	initial risk value (y) for plots
max.y	Max value for y axis
type	type of line in plots
add	If TRUE, then lines are added to current plot. Useful to compare analyses.
color	change line colors using a vector of values
line	change line width using a vector of values
median	plot median of bootstrap samples instead of point estimates
	additional arguments for print or plot

simulations

Details

Specific output and plot types can be selected with arguments

simulations

simulation of kin cohort studies

Description

Functions to simulate data for kin-cohort analysis

Usage

Arguments

nfam	number of families to be generated
f	allele frequency
hr	hazard ratio for disease carriers relative noncarriers
rand	variance of random effect for cancer incidence (ratio of hr)
mean.sibs	mean number of siblings and descendants (~Poisson)
mean.desc	mean number of siblings and descendants (~Poisson)
a.age	shape parameter for age (~Weibull)
b.age	scale parameter for age (~Weibull)
a.cancer	shape parameter for cancer incidence (~Weibull)
b.cancer	scale parameter for cancer incidence (~Weibull)
object	object of class kin.cohort.sample and data.frame
p.cases	proportion of cases (affected) to include in sample. if more than 1, the exact number is assumed
caco.ratio	ratio of controls per case to include in sample
verbose	show the number of cases and controls sampled
	additional arguments

Details

kc.simul will generate a cohort of probands of size nfam. Default parameters simulate a typical cancer study. Each of them will be assigned: a carrier status with probability $f^2 + 2f(1 - f)$; a current age drawn from a Weibull distribution with parameters a.age and b.age; an age at diagnosis (agecancer) drawn from a Weibull distribution with parameters a.cancer and b.cancer, if noncarrier. For carries, the scale (b.cancer) is shifted to get the desired hazard ratio (hr). If rand>0, then a family specific random effect is also added, drawn from a normal distribution with mean 0 and sd rand. If agecancer< age then the disease status (cancer) will be 1, 0 otherwise.

First degree relatives are generated for each proband: two parents, a random number of sibblings (drawn from a Poisson withe mean mean.sibs), and a random number of descendants (drawn from a Poisson with mean mean.desc). Each of them is assiggned a carrier status with probability according to mendelian transmission conditional of the proband carrier status. Current age for relatives are generated conditional on the proband's age, with random draws from normal distribution. Age at diagnosis (agecancer) is assumed independent, except for the optional family random effect. Gender is assigned at random with probability 0.5 for all individuals.

Note that the simulation of residual familial correlation with a random effect (rand\$>0) does not mantain the desired hazard ratio (hr).

The generic function summary will show the number and proportion of carriers and affected subjects in the sample.

sample.caco will sample (from a simulation generated by kc.simul) a subset of cases (afected probands) and controls (unaffected probands) and their relatives. Currently only random sampling of controls is implemented (no matching). Sampling fraction is controled by caco.ratio.

Currently, only one gene and one disease are simulated.

Value

object of class kin.cohort.sample and data.frame with fields

famid	family id
rel	relative type (0=proband, 1=parents, 2=sibblings, 3=descendants)
age	current age of each subject
gender	gender (0=male, 1=female)
carrier	carrier status of proband (0=noncarrier, 1=carrier), common for all family members
cancer	affected (0=no, 1=yes)
agecancer	age at diagnosis or current age if not affected
real.carrier	carrier status or relatives (0=noncarrier, 1=carrier)

Examples

```
## Not run:
set.seed(7)
## cohort
s<-kc.simul(4000, f=0.03, hr=5)
summary(s)
```

10

simulations

```
## exclude probands
m.coh<- kc.marginal(s$agecancer, s$cancer, factor(s$carrier), s$rel,</pre>
                     knots=c(30,40,50,60,70,80,90), f=0.03)
m.coh
## relatives only
r.coh<- coxph(Surv(agecancer,cancer)~real.carrier, data=s)</pre>
print(exp(coef(r.coh)))
## probands only
p.coh<- coxph(Surv(agecancer,cancer)~carrier, data=s)</pre>
print(exp(coef(p.coh)))
## case-control
s.cc<- sample.caco(s)</pre>
summary(s.cc)
## exclude probands
m.caco<- kc.marginal(s.cc$agecancer, s.cc$cancer, factor(s.cc$carrier),</pre>
                      s.cc$rel, knots=c(30,40,50,60,70,80,90), f=0.03)
m.caco
## relatives only
r.caco<- glm(cancer~real.carrier, family=binomial, data=s.cc, subset=(s.cc$rel!=0))</pre>
print(exp(coef(r.caco)[2]))
## probands only
p.caco<- glm(cancer~carrier, family=binomial, data=s.cc, subset=(s.cc$rel==0))</pre>
print(exp(coef(p.caco)[2]))
```

End(Not run)

Index

* datasets kin.data,7 * methods methods, 7 simulations, 9 * print methods, 7 * survival kc.marginal, 2 kc.moments, 4 kin.cohort,5 simulations, 9 kc.marginal, 2, 5, 6 kc.moments, 4, 5, 6 kc.simul(simulations), 9 kin.cohort, *3*, *5*, 5 kin.data,7 methods, 7 plot.kin.cohort, 3, 5 plot.kin.cohort(methods),7 print.kin.cohort, 3, 5 print.kin.cohort (methods), 7 sample.caco(simulations),9 simulations, 9 summary.kin.cohort.sample (simulations), 9