Package ‘kfa’

July 9, 2023
Type Package
Title K-Fold Cross Validation for Factor Analysis
Version 0.2.2
Author Kyle Nickodem [aut, cre] and Peter Halpin [aut]
Maintainer Kyle Nickodem <kyle.nickodem@gmail.com>

Description Provides functions to identify plausible and replicable factor
structures for a set of variables via k-fold cross validation. The process
combines the exploratory and confirmatory factor analytic approach to scale
development (Flora & Flake, 2017) <doi:10.1037/cbs0000069> with a cross validation
technique that maximizes the available data (Hastie, Tibshirani, & Friedman, 2009)
<isbn:978-0-387-21606-5>. Also available are functions to determine k by drawing
on power analytic techniques for covariance structures (MacCallum, Browne, &
Sugawara, 1996) <doi:10.1037/1082-989X.1.2.130>, generate model syntax, and
summarize results in a report.

Depends R (>=3.6)

Imports caret, doParallel, flextable (>= 0.6.3), foreach, GPArotation,
knitr, lavaan (>= 0.6.9), officer, parallel, rmarkdown,
semTools (>= 0.5.5), simstandard

Suggests semPlot
License GPL (>=3)
Encoding UTF-8
LazyData true

URL https://github.com/knickodem/kfa

BugReports https://github.com/knickodem/kfa/issues
RoxygenNote 7.2.3

NeedsCompilation no

Repository CRAN

Date/Publication 2023-07-09 09:00:02 UTC

https://doi.org/10.1037/cbs0000069
https://doi.org/10.1037/1082-989X.1.2.130
https://github.com/knickodem/kfa
https://github.com/knickodem/kfa/issues

2 agg_cors

R topics documented:

AL COTS « o v v v et e e e e e e e e e 2
agg loadings 3
agg model_fit e 3
agg rels e e e 4
efa_cfa_syntax e 5
example.kfa L e 6
find_k e e e e 7
get_std_loadings L. 8
index_available e e 9
Kfa . . e e e 9
kfa_report 12
komodel _fit L e 13
model_Sstructure L e e e e e 14
run_efa . ..o e 15
write_efa L 17

Index 18

agg_cors Aggregated factor correlations
Description

The factor correlations aggregated over k-folds

Usage
agg_cors(models, flag = 0.9, type = "factor")

Arguments

models An object returned from kfa

flag threshold above which a factor correlation will be flagged

type currently ignored; "factor” (default) or "observed” variable correlations
Value

data. frame of mean factor correlations for each factor model and vector with count of folds with
a flagged correlation

Examples

data(example.kfa)
agg_cors(example.kfa)

agg loadings 3

agg_loadings Aggregated factor loadings

Description

The factor loadings aggregated over k-folds

Usage
agg_loadings(models, flag = 0.3, digits = 2)

Arguments

models An object returned from kfa

flag threshold below which loading will be flagged

digits integer; number of decimal places to display in the report.
Value

data.frame of mean factor loadings for each factor model and vector with count of folds with a
flagged loading

Examples

data(example.kfa)
agg_loadings(example.kfa)

agg_model_fit Summary table of model fit

Description

Summary table of model fit aggregated over k-folds

Usage
agg_model_fit(kfits, index = "all"”, digits = 2)

Arguments
kfits an object returned from k_model_fit when by.folds = TRUE
index character; one or more fit indices to summarize. Indices must be present in the

kfits object. Default is "all” indices present in kfits. Chi-square value and
degrees of freedom are always reported.

digits integer; number of decimal places to display in the report

4 agg rels

Value

data. frame of aggregated model fit statistics

Examples

data(example.kfa)
fits <- k_model_fit(example.kfa, by.fold = TRUE)
agg_model _fit(fits)

agg_rels Aggregated scale reliabilities

Description

The factor reliabilities aggregated over k-folds

Usage

agg_rels(models, flag = 0.6, digits = 2)

Arguments

models An object returned from kfa

flag threshold below which reliability will be flagged

digits integer; number of decimal places to display in the report.
Value

data.frame of mean factor (scale) reliabilities for each factor model and vector with count of
folds with a flagged reliability

Examples

data(example.kfa)
agg_rels(example.kfa)

efa_cfa_syntax

efa_cfa_syntax

Write confirmatory factor analysis syntax

Description

Uses the factor loadings matrix, presumably from an exploratory factor analysis, to generate lavaan
compatible confirmatory factory analysis syntax.

Usage

efa_cfa_syntax(
loadings,
simple = TRUE
min.loading =
single.item =

NA,
C(”keep"’ ”drop”, ”none”),

identified = TRUE,
constrain@ = FALSE

Arguments

loadings

simple

min.loading

single.item

identified

constrain®

References

matrix of factor loadings

logical; Should the perfect simple structure be returned (default) when convert-
ing EFA results to CFA syntax? If FALSE, items can cross-load on multiple
factors.

numeric between 0 and 1 indicating the minimum (absolute) value of the loading
for a variable on a factor when converting EFA results to CFA syntax. Must be
specified when simple = FALSE.

character indicating how single-item factors should be treated. Use "keep” (de-
fault) to keep them in the model when generating the CFA syntax, "drop” to
remove them, or "none” indicating the CFA syntax should not be generated for
this model and "" is returned.

logical; Should identification check for rotational uniqueness a la Millsap (2001)
be performed? If the model is not identified "" is returned.

logical; Should variable(s) with all loadings below min.loading still be in-
cluded in model syntax? If TRUE, variable(s) will load onto first factor with the
loading constrained to 0.

Millsap, R. E. (2001). When trivial constraints are not trivial: The choice of uniqueness con-
straints in confirmatory factor analysis. *Structural Equation Modeling, 8*(1), 1-17. doi:10.1207/
S15328007SEMO0801_1

https://doi.org/10.1207/S15328007SEM0801_1
https://doi.org/10.1207/S15328007SEM0801_1

6 example.kfa

Examples

loadings <- matrix(c(rep(.2, 3), rep(.6, 3), rep(.8, 3), rep(.3, 3)), ncol = 2)
simple structure

efa_cfa_syntax(loadings)

allow cross-loadings and check if model is identified
efa_cfa_syntax(loadings, simple = FALSE, min.loading = .25)

allow cross-loadings and ignore identification check

efa_cfa_syntax(loadings, simple = FALSE, min.loading = .25, identified = FALSE)

example.kfa kfa results from simulated data example

Description

Simulated responses for 900 observations on 20 variables loading onto a 3 factor structure (see
example in kfa documentation for model). The simulated data was run through kfa with the call
kfa(sim.data, k = 2, m = 3) which tested 1-, 2-, and 3-factor structures over 2 folds.

Usage

data(example.kfa)

Format

An object of class "kfa", which is a four-element 1ist:

* cfas lavaan CFA objects for each k fold
* cfa.syntax syntax used to produce CFA objects
* model.names vector of names for CFA objects

¢ efa.structures all factor structures identified in the EFA

Examples

data(example.kfa)
agg_cors(example.kfa)

find_k

find_k

Find k for k-fold cross-validation

Description

This function is specifically for determining k in the context of factor analysis using change in
RMSEA as the criterion for identifying the optimal factor model.

Usage
find_k(

variables,
n,

P,

m = NULL,
max.k = 10,
min.n = 200,

rmsead = 0.05
rmseaA = 0.08

Arguments

variables

max. k

min.n

rmseao

rmseaA

Value

’

’

adata.frame (or convertible to a data. frame) with variables to factor analyze
in columns and observations in rows. The power analysis assumes all observa-
tions have complete data. Use n argument or remove rows manually to account
for missingness.

integer; number of observations. Ignored if variables is provided.
integer; number of variables to factor analyze. Ignored ifvariables is provided.

integer; maximum number of factors expected to be extracted from variables.
Default is p /4 (i.e., 4 variables per factor).

integer; maximum number of folds. Default is 10. NULL indicates no maximum.

integer; minimum sample size per fold. Default is 200 based on simulations
from Curran et al. (2003).

numeric; RMSEA under the null hypothesis.
numeric; RMSEA under the alternative hypothesis.

other arguments passed to findRMSEAsamplesize.

named vector with the number of folds (k), sample size suggested by the power analysis (power.n),
and the actual sample size used for determining k (actual.n).

8 get_std_loadings

References

Curran, P. J., Bollen, K. A., Chen, F., Paxton, P., & Kirby, J. B. (2003). Finite sampling properties
of the point estimates and confidence intervals of the RMSEA. Sociological Methods & Research,
32(2), 208-252. doi:10.1177/0049124103256130

MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determi-
nation of sample size for covariance structure modeling. Psychological Methods, 1(2), 130-149.
doi:10.1037/1082989X.1.2.130

Examples

find_k(n = 900, p = 20, m

3

adjust precision
find_k(n = 900, p = 20, m = 3, rmsead = .03, rmseaA = .10)

get_std_loadings Standardized factor loadings matrix

Description

Extract standardized factor loadings from lavaan object

Usage

get_std_loadings(object, type = "std.all"”, df = FALSE)

Arguments
object a lavaan object
type standardize on the latent variables ("std.1v"), latent and observed variables
("std.all", default), or latent and observed variables but not exogenous vari-
ables ("std.nox")? See standardizedSolution.
df should loadings be returned as a matrix (default) or data.frame?
Value

A matrix or data.frame of factor loadings

Examples

data(HolzingerSwineford1939, package = "lavaan")

HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

fit <- lavaan::cfa(HS.model, data = HolzingerSwineford1939)
get_std_loadings(fit)

https://doi.org/10.1177/0049124103256130
https://doi.org/10.1037/1082-989X.1.2.130

index_available 9

index_available Available Fit Indices

Description

Shows the fit indices available from kfa object to report in kfa_report

Usage

index_available(models)

Arguments

models an object returned from kfa

Value

character vector of index names

Examples

data(example.kfa)
index_available(example.kfa)

kfa Conducts k-fold cross validation for factor analysis

Description

The function splits the data into k folds where each fold contains training data and test data. For each
fold, exploratory factor analyses (EFAs) are run on the training data. The structure for each model
is transformed into lavaan-compatible confirmatory factor analysis (CFA) syntax. The CFAs are
then run on the test data.

Usage
kfa(
data,
variables = names(data),
k = NULL,
m = floor(length(variables)/4),
seed = 101,
cores = NULL,

custom.cfas = NULL,
power.args = list(rmsea@ = 0.05, rmseaA = 0.08),

custom.cfas

power.args

rotation

simple

min.loading

single.item

ordered

estimator

missing

10 kfa
rotation = "oblimin"”,
simple = TRUE,
min.loading = NA,
single.item = "none",
ordered = FALSE,
estimator = NULL,
missing = "listwise”,
)
Arguments
data a data.frame containing the variables (i.e., items) to factor analyze
variables character vector of column names in data indicating the variables to factor an-
alyze. Default is to use all columns.
k number of folds in which to split the data. Default is NULL which determines k
via find_k.
m integer; maximum number of factors to extract. Default is 4 items per factor.
seed integer passed to set.seed when randomly selecting cases for each fold.
cores integer; number of CPU cores to use for parallel processing. Defaultis detectCores

- 1.
a single object or named list of lavaan syntax specifying custom factor model(s).

named list of arguments to pass to find_k and findRMSEAsamplesize when
conducting power analysis to determine k.

character (case-sensitive); any rotation method listed in rotations in the GPArotation

package. Default is "oblimin".

logical; Should the perfect simple structure be returned (default) when convert-
ing EFA results to CFA syntax? If FALSE, items can cross-load on multiple
factors.

numeric between 0 and 1 indicating the minimum (absolute) value of the loading
for a variable on a factor when converting EFA results to CFA syntax. Must be
specified when simple = FALSE.

character indicating how single-item factors should be treated. Use "keep” to
keep them in the model when generating the CFA syntax or "none"” (default)
indicating the CFA syntax should not be generated for this model and "" is
returned.

logical; Should items be treated as ordinal and the polychoric correlations used
in the factor analysis? When FALSE (default) the Pearson correlation matrix is
used. A character vector of item names is also accepted to prompt estimation of
the polychoric correlation matrix.

if ordered = FALSE, the default is "MLMVS". If ordered = TRUE, the default is
"WLSMV". See lavOptions for other options.

default is "listwise". See lavOptions for other options.

other arguments passed to 1avaan functions. See lavOptions.

11

Details

In order for custom. cfas to be tested along with the EFA identified structures, each model supplied
in custom. cfas must include all variables in lavaan-compatible syntax.

Deciding an appropriate m can be difficult, but is consequential for the possible factor structures to
examine, the power analysis to determine k, and overall computation time. The n_factors function
in the parameters package can assist with this decision.

When converting EFA results to CFA syntax (via efa_cfa_syntax), the simple structure is defined
as each variable loading onto a single factor. This is determined using the largest factor loading
for each variable. When simple = FALSE, variables are allowed to cross-load on multiple factors.
In this case, all pathways with loadings above the min.loading are retained. However, allowing
cross-loading variables can result in model under-identification. The efa_cfa_syntax) function
conducts an identification check (i.e., identified = TRUE) and under-identified models are not run
in the CFA portion of the analysis.

Value

An object of class "kfa", which is a four-element 1ist:

* cfas lavaan CFA objects for each k fold

* cfa.syntax syntax used to produce CFA objects

* model.names vector of names for CFA objects

« efa.structures all factor structures identified in the EFA

Examples

simulate data based on a 3-factor model with standardized loadings

sim.mod <- "f1 =~ .7%x1 + .8%x2 + .3*%x3 + .7*x4 + .6%x5 + .8%x6 + .4*x7
f2 =~ .8xx8 + .7*x9 + .6*%x10 + .5%x11 + .5xx12 + .7%xx13 + .6*x14
f3 =~ .6%xx15 + .5%x16 + .9%x17 + .4*x18 + .7xx19 + .5%xx20
f1 ~~ .2xf2
f2 ~~ .2xf3
f1 ~~ .2%f3
X9 ~~ .2*x10"
set.seed(1161)
sim.data <- simstandard::sim_standardized(sim.mod, n = 900,
latent = FALSE,
errors = FALSE)[c(2:9,1,10:20)]
include a custom 2-factor model
custom2f <- paste@("f1 =~ ", paste(colnames(sim.data)[1:10], collapse = " + "),
"\nf2 =~ " paste(colnames(sim.data)[11:20], collapse = " + "))

mods <- kfa(data = sim.data,
k = NULL, # prompts power analysis to determine number of folds
cores = 2,
custom.cfas = custom2f)

12 kfa_report

kfa_report Creates summary report from a k-fold factor analysis

Description

Generates a report summarizing the factor analytic results over k-folds.

Usage

kfa_report(
models,
file.name,
report.title =
path = NULL,
report.format = "html_document”,
word.template = NULL,
index = "default”,
plots = FALSE,
load.flag = 0.3,
cor.flag =
rel.flag =
digits = 2

file.name,

0.9,
0.6

’

Arguments

models an object returned from kfa

file.name character; file name to create on disk.
report.title

path

character; title of the report
character; path of the directory where summary report will be saved. Default is
working directory. path and file.name are combined to create final file path

character; file format of the report. Default is HTML ("html_document"). See
render for other options.

report.format

word. template character; file path to word document to use as a formatting template when

report.format = "word_document”.

index character; one or more fit indices to summarize in the report. Use index_available
to see choices. Chi-square value and degrees of freedom are always reported.
Default is CFI and RMSEA (naive, scaled, or robust version depends on estima-
tor used in models).

plots logical; should plots of the factor models be included in the report?

load. flag numeric; factor loadings of variables below this value will be flagged. Default
is .30

cor.flag numeric; factor correlations above this value will be flagged. Default is .90

rel.flag numeric; factor (scale) reliabilities below this value will be flagged. Default is
.60.

digits integer; number of decimal places to display in the report.

k_model _fit 13

Value

A summary report of factor structures and model fit within and between folds.

Examples

simulate data based on a 3-factor model with standardized loadings

sim.mod <- "f1 =~ .7%x1 + .8%x2 + .3%x3 + .7%x4 + .6%x5 + .8%x6 + .4%x7
f2 =~ .8%x8 + .7%x9 + .6%x10 + .5%x11 + .5%xx12 + .7*x13 + .6%x14
f3 =~ .6*%x15 + .5%x16 + .9*x17 + .4*x18 + .7*x19 + .5%xx20
f1 ~~ .2%f2
f2 ~~ .2xf3
f1 ~~ .2%f3
X9 ~~ .2%x10"

set.seed(1161)
sim.data <- simstandard::sim_standardized(sim.mod, n = 900,
latent = FALSE,
errors = FALSE)[c(2:9,1,10:20)]

include a custom 2-factor model
custom2f <- paste@("f1 =~ ", paste(colnames(sim.data)[1:10], collapse = " + "),
"\nf2 =~ " paste(colnames(sim.data)[11:20], collapse = " + "))

mods <- kfa(data = sim.data,
k = NULL, # prompts power analysis to determine number of folds
cores = 2,
custom.cfas = custom2f)

Not run:

kfa_report(mods, file.name = "example_sim_kfa_report”,
report.format = "html_document”,
report.title = "K-fold Factor Analysis - Example Sim")

End(Not run)

k_model_fit Extract model fit

Description

Model fit indices extracted from k-folds

Usage
k_model_fit(models, index = "default”, by.fold = TRUE)

14 model_structure

Arguments
models an object returned from kfa
index character; one or more fit indices to summarize in the report. Use index_available
to see choices. Chi-square value and degrees of freedom are always reported.
Default is CFI and RMSEA (naive, scaled, or robust version depends on estima-
tor used in models).
by.fold Should each element in the returned lists be a fold (default) or a factor model?
Value

list of data.frames with average model fit for each factor model
Examples
data(example.kfa)

customize fit indices to report
k_model_fit(example.kfa, index = c("chisq”, "cfi”, "rmsea”, "srmr"))

organize results by factor model rather than by fold
k_model_fit(example.kfa, by.fold = FALSE)

model_structure Unique factor structures

Description

Extract unique factor structures across the k-folds

Usage

model_structure(models)

Arguments

models An object returned from kfa

Value

data. frame with the number of folds the unique factor structure was tested for each factor model.

Examples

data(example.kfa)
model_structure(example.kfa)

run_efa 15

run_efa Conducts exploratory factor analysis

Description

This function is intended for use on independent samples rather than integrated with k-fold cross-
validation.

Usage

run_efa(
data,
variables = names(data),
m = floor(ncol(data)/4),
rotation = "oblimin",
simple = TRUE,
min.loading = NA,
single.item = c("keep”, "drop”, "none"),
identified = TRUE,
constrain@ = FALSE,
ordered = FALSE,
estimator = NULL,

missing = "listwise”,
)
Arguments

data a data. frame containing the variables (i.e., items) to factor analyze

variables character vector of column names in data indicating the variables to factor an-
alyze. Default is to use all columns.

m integer; maximum number of factors to extract. Default is 4 items per factor.

rotation character (case-sensitive); any rotation method listed in rotations in the GPArotation
package. Default is "oblimin".

simple logical; Should the perfect simple structure be returned (default) when convert-
ing EFA results to CFA syntax? If FALSE, items can cross-load on multiple
factors.

min.loading numeric between 0 and 1 indicating the minimum (absolute) value of the loading
for a variable on a factor when converting EFA results to CFA syntax. Must be
specified when simple = FALSE.

single.item character indicating how single-item factors should be treated. Use "keep” (de-

fault) to keep them in the model when generating the CFA syntax, "drop” to
remove them, or "none"” indicating the CFA syntax should not be generated for
this model and "" is returned.

16 run_efa

identified logical; Should identification check for rotational uniqueness a la Millsap (2001)
be performed? If the model is not identified "" is returned.

constrain@ logical; Should variable(s) with all loadings below min.loading still be in-
cluded in model syntax? If TRUE, variable(s) will load onto first factor with the
loading constrained to 0.

ordered logical; Should items be treated as ordinal and the polychoric correlations used
in the factor analysis? When FALSE (default) the Pearson correlation matrix is
used. A character vector of item names is also accepted to prompt estimation of
the polychoric correlation matrix.

estimator if ordered = FALSE, the default is "MLMVS". If ordered = TRUE, the default is
"WLSMV". See lavOptions for other options.

missing default is "listwise". See lavOptions for other options.

other arguments passed to 1avaan functions. See 1avOptions.

Details

When converting EFA results to CFA syntax (via efa_cfa_syntax), the simple structure is defined
as each variable loading onto a single factor. This is determined using the largest factor loading
for each variable. When simple = FALSE, variables are allowed to cross-load on multiple factors.
In this case, all pathways with loadings above the min.loading are retained. However, allowing
cross-loading variables can result in model under-identification. An identification check is run by
default, but can be turned off by setting identified = FALSE.

Value

A three-element 1ist:

* efas lavaan object for each m model
* loadings (rotated) factor loading matrix for each m model

* cfa.syntax CFA syntax generated from loadings

References

Millsap, R. E. (2001). When trivial constraints are not trivial: The choice of uniqueness con-
straints in confirmatory factor analysis. Structural Equation Modeling, 8(1), 1-17. doi:10.1207/
S15328007SEMO0801_1

Examples

simulate data based on a 3-factor model with standardized loadings

sim.mod <- "f1 =~ .7*%x1 + .8*x2 + .3*x3 + .7*x4 + .6%x5 + .8%x6 + .4%xx7
f2 =~ .8%x8 + .7%x9 + .6%x10 + .5%x11 + .5%x12 + .7*x13 + .6%x14
f3 =~ .6%x15 + .5%x16 + .9*x17 + .4*x18 + .7%x19 + .5xx20
f1 ~~ .2%f2
f2 ~~ .2%f3
f1 ~~ .2%f3

X9 ~~ .2*x10"

https://doi.org/10.1207/S15328007SEM0801_1
https://doi.org/10.1207/S15328007SEM0801_1

write_efa

set.seed(1161)
sim.data <- simstandard::sim_standardized(sim.mod, n = 900,
latent = FALSE,
errors = FALSE)[c(2:9,1,10:20)]
Run 1-, 2-, and 3-factor models
efas <- run_efa(sim.data, m = 3)

17

write_efa Write exploratory factor analysis syntax

Description

Converts variable names to lavaan-compatible exploratory factor analysis syntax

Usage

write_efa(nf, vnames)

Arguments

nf integer; number of factors

vhames character vector; names of variables to include in the efa
Value

character. Use cat() to best examine the returned syntax.

Examples

vhames <- paste("x"”, 1:10)
syntax <- write_efa(nf = 2, vnames = vnames)
cat(syntax)

Index

x datasets
example.kfa, 6

agg_cors, 2
agg_loadings, 3
agg_model_fit, 3
agg_rels, 4
detectCores, 10

efa_cfa_syntax, 5, 11, 16
example.kfa, 6

find_k, 7, 10
findRMSEAsamplesize, 7, 10

get_std_loadings, 8
index_available, 9, 12, 14
k_model_fit, 3, 13
kfa,2-4,6,9,9,12, 14
kfa_report, 9, 12
lavOptions, 10, 16

model_structure, 14

render, 12
rotations, 10, 15
run_efa, 15

standardizedSolution, 8

write_efa, 17

18

	agg_cors
	agg_loadings
	agg_model_fit
	agg_rels
	efa_cfa_syntax
	example.kfa
	find_k
	get_std_loadings
	index_available
	kfa
	kfa_report
	k_model_fit
	model_structure
	run_efa
	write_efa
	Index

