Package 'kelvin'

April 14, 2025 Type Package Title Calculate Solutions to the Kelvin Differential Equation using **Bessel Functions** Version 2.0-3 Date 2025-04-13 Description Uses Bessel functions to calculate the fundamental and complementary analytic solutions to the Kelvin differential equation. **Depends** R (>= 2.10.1) Imports Bessel (>= 0.5-4) **Suggests** knitr, rmarkdown, testthat (>= 3.0.0) **License** GPL (≥ 2) URL https://github.com/abarbour/kelvin BugReports https://github.com/abarbour/kelvin/issues LazyLoad TRUE VignetteBuilder knitr **Encoding** UTF-8 Language en-US RoxygenNote 7.3.2 Config/testthat/edition 3 NeedsCompilation no Author Andrew J. Barbour [aut, cre] (<https://orcid.org/0000-0002-6890-2452>) Maintainer Andrew J. Barbour <andy.barbour@gmail.com> **Repository** CRAN Date/Publication 2025-04-14 08:00:02 UTC 1

Contents

kelvi	n-pa	icka	ige																								2
Beir																											3
Keir			•	•							•	•						•	•		•		•	•	•		5
																											7

Index

kelvin-package	Fundamental and equivalent solutions to the Kelvin differential equa-
	tion using Bessel functions

Description

The functions here use Bessel functions to calculate the analytic solutions to the Kelvin differential equation, namely the fundamental (Be) and equivalent (Ke) complex functions.

Details

The complex second-order ordinary differential equation, known as the Kelvin differential equation, is defined as

$$x^{2}\ddot{y} + x\dot{y} - (ix^{2} + \nu^{2})y = 0$$

and has a suite of complex solutions. One set of solutions, \mathcal{B}_{ν} , is defined in the following manner:

$$\mathcal{B}_{\nu} \equiv \operatorname{Ber}_{\nu}(x) + i\operatorname{Bei}_{\nu}(x)$$
$$= J_{\nu} \left(x \cdot \exp(3\pi i/4) \right)$$
$$= \exp(\nu\pi i) \cdot J_{\nu} \left(x \cdot \exp(-\pi i/4) \right)$$
$$= \exp(\nu\pi i/2) \cdot I_{\nu} \left(x \cdot \exp(\pi i/4) \right)$$
$$= \exp(3\nu\pi i/2) \cdot I_{\nu} \left(x \cdot \exp(-3\pi i/4) \right)$$

where J_{ν} is a Bessel function of the first kind, and I_{ν} is a *modified* Bessel function of the first kind. Similarly, the complementary solutions, \mathcal{K}_{ν} , are defined as

$$\mathcal{K}_{\nu} \equiv \operatorname{Ker}_{\nu}(x) + i\operatorname{Kei}_{\nu}(x)$$
$$= \exp(-\nu\pi i/2) \cdot K_{\nu} \left(x \cdot \exp(\pi i/4)\right)$$

where K_{ν} is a *modified* Bessel function of the second kind.

The relationships between y in the differential equation, and the solutions \mathcal{B}_{ν} and \mathcal{K}_{ν} are as follows

$$y = \operatorname{Ber}_{\nu}(x) + i\operatorname{Bei}_{\nu}(x)$$
$$= \operatorname{Ber}_{-\nu}(x) + i\operatorname{Bei}_{-\nu}(x)$$
$$= \operatorname{Ker}_{\nu}(x) + i\operatorname{Kei}_{\nu}(x)$$
$$= \operatorname{Ker}_{-\nu}(x) + i\operatorname{Kei}_{-\nu}(x)$$

Beir

In the case where $\nu = 0$, the differential equation reduces to

$$x^2\ddot{y} + x\dot{y} - ix^2y = 0$$

which has the set of solutions:

$$J_0\left(i\sqrt{i}\cdot x\right)$$
$$= J_0\left(\sqrt{2}\cdot(i-1)\cdot x/2\right)$$
$$= \operatorname{Ber}_0(x) + i\operatorname{Bei}_0(x) \equiv \mathcal{B}_0$$

This package has functions to calculate \mathcal{B}_{ν} and \mathcal{K}_{ν} .

Author(s)

Andrew Barbour <andy.barbour@gmail.com>

References

Abramowitz, M. and Stegun, I. A. (Eds.). "Kelvin Functions." §9.9 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 379-381, 1972.

Kelvin functions: http://mathworld.wolfram.com/KelvinFunctions.html

Bessel functions: http://mathworld.wolfram.com/BesselFunction.html

See Also

Useful links:

- https://github.com/abarbour/kelvin
- Report bugs at https://github.com/abarbour/kelvin/issues

Fundamental solution: Beir

Equivalent solution: Keir

Beir

Fundamental solution to the Kelvin differential equation (J)

Description

This function calculates the complex solution to the Kelvin differential equation using modified Bessel functions of the *first kind*, specifically those produced by Bessel J.

Usage

```
Beir(x, ...)
## Default S3 method:
Beir(x, nu. = 0, nSeq. = 1, return.list = FALSE, ...)
Bei(...)
Ber(...)
```

Arguments

х	numeric; values to evaluate the complex solution at
•••	additional arguments passed to BesselK or Beir
nu.	numeric; value of ν in \mathcal{B}_{ν} solutions
nSeq.	positive integer; equivalent to nSeq in BesselJ
return.list	logical; Should the result be a list instead of matrix?

Details

Ber and Bei are wrapper functions which return the real and imaginary components of Beir, respectively.

Value

If return.list==FALSE (the default), a complex matrix with as many columns as using nSeq. creates. Otherwise the result is a list with matrices for Real and Imaginary components.

Author(s)

Andrew Barbour

References

https://mathworld.wolfram.com/KelvinFunctions.html Imaginary: https://mathworld.wolfram.com/Bei.html Real: https://mathworld.wolfram.com/Ber.html

See Also

kelvin-package, Keir, BesselJ

4

Keir

Examples

```
Beir(1:10) # defaults to nu.=0
Beir(1:10, nu.=2)
Beir(1:10, nSeq.=2)
Beir(1:10, nSeq.=2, return.list=TRUE)
# Imaginary component only
Bei(1:10)
# Real component only
Ber(1:10)
```

Keir

Complementary solution to the Kelvin differential equation (K)

Description

This function calculates the complex solution to the Kelvin differential equation using modified Bessel functions of the *second kind*, specifically those produced by BesselK.

Usage

```
Keir(x, ...)
## Default S3 method:
Keir(
    x,
    nu. = 0,
    nSeq. = 1,
    add.tol = TRUE,
    return.list = FALSE,
    show.scaling = FALSE,
    ...
)
Kei(...)
Ker(...)
```

Arguments

х	numeric; values to evaluate the complex solution at
	additional arguments passed to BesselK or Keir
nu.	numeric; value of ν in \mathcal{K}_{ν} solutions
nSeq.	positive integer; equivalent to nSeq in BesselK

add.tol	logical; Should a fudge factor be added to prevent an error for zero-values?
return.list	logical; Should the result be a list instead of matrix?
show.scaling	logical; Should the normalization values be given as a message?

Details

Ker and Kei are wrapper functions which return the real and imaginary components of Keir,, respectively.

Value

If return.list==FALSE (the default), a complex matrix with as many columns as using nSeq. creates. Otherwise the result is a list with matrices for Real and Imaginary components.

Author(s)

Andrew Barbour

References

https://mathworld.wolfram.com/KelvinFunctions.html Imaginary: https://mathworld.wolfram.com/Kei.html Real: https://mathworld.wolfram.com/Ker.html

See Also

kelvin-package, Beir, BesselK

Examples

```
Keir(1:10) # defaults to nu.=0, nSeq=1
Keir(1:10, nu.=2)
Keir(1:10, nSeq=2)
Keir(1:10, nSeq=2, return.list=TRUE)
```

Imaginary component only
Kei(1:10)

Real component only
Ker(1:10)

Index

Bei, 4
Bei (Beir), 3
Beir, 3, 3, 4, 6
Ber, 4
Ber (Beir), 3
BesselJ, 3, 4
BesselK, 4-6
Kei, 6
Kei (Keir), 5
Keir, 3-5, 5, 6
kelvin (kelvin-package), 2
kelvin-package, 2
Ker, 6
Ker (Keir), 5