Package ‘kamila’

October 13, 2022

Type Package
Version 0.1.2

Date 2020-03-10

Author Alexander Foss [aut, cre],
Marianthi Markatou [aut]

Maintainer Alexander Foss <alexanderhfoss@gmail.com>
Title Methods for Clustering Mixed-Type Data

Description Implements methods for clustering mixed-type data,
specifically combinations of continuous and nominal data. Special attention
is paid to the often-overlooked problem of equitably balancing the
contribution of the continuous and categorical variables. This package
implements KAMILA clustering, a novel method for clustering
mixed-type data in the spirit of k-means clustering. It does not require
dummy coding of variables, and is efficient enough to scale to rather large
data sets. Also implemented is Modha-Spangler clustering, which uses a
brute-force strategy to maximize the cluster separation simultaneously in the
continuous and categorical variables. For more information, see Foss, Markatou,
Ray, & Heching (2016) <doi:10.1007/s10994-016-5575-7> and Foss & Markatou
(2018) <doi:10.18637/jss.v083.113>.

Depends R (>=3.0.0)

License GPL-3 | file LICENSE
URL https://github.com/ahfoss/kamila

BugReports https://github.com/ahfoss/kamila/issues
Imports stats, abind, KernSmooth, gtools, Rcpp, plyr
LinkingTo Rcpp

Suggests testthat, clustMD, ggplot2, Hmisc

RoxygenNote 7.1.0

NeedsCompilation yes

Repository CRAN

Date/Publication 2020-03-13 07:20:02 UTC

https://doi.org/10.1007/s10994-016-5575-7
https://doi.org/10.18637/jss.v083.i13
https://github.com/ahfoss/kamila
https://github.com/ahfoss/kamila/issues

2 kamila-package

R topics documented:

kamila-package L. 2
classifyKamila L 4
dptmCpp e e 5
dummyCodeFactorDf 5
genMixedData e 6
emsClust e e e e 7
kamila L e 9
WKMeans e e e e e 12

Index 14

kamila-package Clustering for mixed continuous and categorical data sets
Description

A collection of methods for clustering mixed type data, including KAMILA (KAy-means for MIxed
LArge data) and a flexible implementation of Modha-Spangler clustering

Details
Package: kamila
Type: Package
Version: 0.1.0
Date: 2015-10-06
License: GPL-3
Author(s)

Alex Foss and Marianthi Markatou

Maintainer: Alex Foss <alexanderhfoss @ gmail.com>

References

AH Foss, M Markatou, B Ray, and A Heching (in press). A semiparametric method for clustering
mixed data. Machine Learning, DOI: 10.1007/s10994-016-5575-7.

DS Modha and S Spangler (2003). Feature weighting in k-means clustering. Machine Learning
52(3),217-237.

Examples

Not run:

kamila-package

import and format a mixed-type data set

data(Byar, package='clustMD')

Byar$logSpap <- log(Byar$Serum.prostatic.acid.phosphatase)
conlnd <- ¢(5,6,8:10,16)

conVars <- Byar[,conInd]

conVars <- data.frame(scale(conVars))

catVarsFac <- Byar[,-c(1:2,conInd,11,14,15)]
catVarsFac[] <- lapply(catVarsFac, factor)
catVarsDum <- dummyCodeFactorDf (catVarsFac)

Modha-Spangler clustering with kmeans default Hartigan-Wong algorithm
gmsResHw <- gmsClust(conVars, catVarsDum, nclust = 3)

Modha-Spangler clustering with kmeans Forgy-Lloyd algorithm

NOTE searchDensity should be >= 10 for optimal performance:

this is just a syntax demo

gmsResLloyd <- gmsClust(conVars, catVarsDum, nclust = 3,
algorithm = "Lloyd"”, searchDensity = 3)

KAMILA clustering
kamRes <- kamila(conVars, catVarsFac, numClust=3, numInit=10)

Plot results
ternarySurvival <- factor(Byar$SurvStat)
levels(ternarySurvival) <- c('Alive', 'DeadProst', 'DeadOther')[c(1,2,rep(3,8))]
plottingData <- cbind(
conVars,
catVarsFac,
KamilaCluster = factor(kamRes$finalMemb),
MSCluster = factor(gmsResHw$results$cluster))
plottingData$Bone.metastases <- ifelse(
plottingData$Bone.metastases == '1', yes='Yes',no='No"')

Plot Modha-Spangler/Hartigan-Wong results
msPlot <- ggplot(
plottingData,
aes(
x=logSpap,
y=Index.of.tumour.stage.and.histolic.grade,
color=ternarySurvival,
shape=MSCluster))
plotOpts <- function(pl) (pl + geom_point() +
scale_shape_manual (values=c(2,3,7)) + geom_jitter())
plotOpts(msPlot)

Plot KAMILA results
kamPlot <- ggplot(
plottingData,
aes(
x=logSpap,
y=Index.of.tumour.stage.and.histolic.grade,
color=ternarySurvival,

4 classifyKamila

shape=KamilaCluster))
plotOpts(kamPlot)

End(Not run)

classifyKamila Classify new data into existing KAMILA clusters

Description
A function that classifies a new data set into existing KAMILA clusters using the output object from
the kamila function.

Usage

classifyKamila(obj, newData)

Arguments
obj An output object from the kamila function.
newData A list of length 2, with first element a data frame of continuous variables, and
second element a data frame of categorical factors.
Details

A function that takes obj, the output from the kamila function, and newData, a list of length 2,
where the first element is a data frame of continuous variables, and the second element is a data
frame of categorical factors. Both data frames must have the same format as the original data used
to construct the kamila clustering.

Value

An integer vector denoting cluster assignments of the new data points.

References

Foss A, Markatou M; kamila: Clustering Mixed-Type Data in R and Hadoop. Journal of Statistical
Software, 83(13). 2018. doi: 10.18637/jss.v083.113

Examples

Generate toy data set

set.seed(1234)

datl <- genMixedData(40@, nConVar = 2, nCatVar = 2, nCatlLevels = 4,
nConWithErr = 2, nCatWithErr = 2, popProportions = c(.5,.5),
conErrLev = 0.2, catErrLev = 0.2)

Partition the data into training/test set

trainingIds <- sample(nrow(datli$conVars), size = 300, replace = FALSE)

catTrain <- data.frame(apply(dati$catVars[traininglds,], 2, factor), stringsAsFactors = TRUE)

dptmCpp 5

conTrain <- data.frame(scale(dati1$conVars)[traininglds,], stringsAsFactors = TRUE)

catTest <- data.frame(apply(dati$catVars[-traininglds,], 2, factor), stringsAsFactors = TRUE)
conTest <- data.frame(scale(dati$conVars)[-traininglds,], stringsAsFactors = TRUE)

Run the kamila clustering procedure on the training set

kamilaObj <- kamila(conTrain, catTrain, numClust = 2, numInit = 10)
table(dat1$trueID[trainingIds], kamilaObj$finalMemb)

Predict membership in the test data set

kamilaPred <- classifyKamila(kamilaObj, list(conTest, catTest))
table(dat1$trueID[-trainingIds], kamilaPred)

dptmCpp Calculate distances from a set of points to a set of centroids

Description
A function that calculates a NxM matrix of distances between a NxP set of points and a MxP set of
points.

Usage

dptmCpp(pts, myMeans, wgts)

Arguments
pts A matrix of points
myMeans A matrix of centroids, must have same ncol as pts
wgts A Px1 vector of variable weights

Value

A MxP matrix of distances

dummyCodeFactorDf Dummy coding of a data frame of factor variables

Description
Given a data frame of factor variables, this function returns a numeric matrix of 0—1 dummy-coded
variables.

Usage

dummyCodeFactorDf (dat)

Arguments

dat A data frame of factor variables

Value

genMixedData

A numeric matrix of 0—1 dummy coded variables

Examples

dd <- data.frame(a=factor(1:8), b=factor(letters[1:8]), stringsAsFactors = TRUE)
dummyCodeFactorDf (dd)

genMixedData

Generate simulated mixed-type data with cluster structure.

Description

This function simulates mixed-type data sets with a latent cluster structure, with continuous and

nominal variables.

Usage
genMixedData(
sampSize,
nConVar,
nCatVvar,
nCatlLevels,
nConWithErr,
nCatWithErr,
popProportions,
conkrrLev,
catErrLev
)
Arguments
sampSize Integer: Size of the simulated data set.
nConVar The number of continuous variables.
nCatVar The number of categorical variables.
nCatlLevels Integer: The number of categories per categorical variables. Currently must be
a multiple of the number of populations specified in popProportions.
nConWithErr Integer: The number of continuous variables with error.
nCatWithErr Integer: The number of categorical variables with error.
popProportions A vector of scalars that sums to one. The length gives the number of populations
(clusters), with values denoting the prior probability of observing a member
of the corresponding population. NOTE: currently only two populations are
supported.
conErrLev A scalar between 0.01 and 1 denoting the univariate overlap between clusters on
the continuous variables specified to have error.
catErrLev Univariate overlap level for the categorical variables with error.

gmsClust 7

Details

This function simulates mixed-type data sets with a latent cluster structure. Continuous variables
follow a normal mixture model, and categorical variables follow a multinomial mixture model.
Overlap of the continuous and categorical variables (i.e. how clear the cluster structure is) can be
manipulated by the user. Overlap between two clusters is the area of the overlapping region de-
fined by their densities (or, for categorical variables, the summed height of overlapping segments
defined by their point masses). The default overlap level is 0.01 (i.e. almost perfect separation).
A user-specified number of continuous and categorical variables can be specified to be "error vari-
ables" with arbitrary overlap within 0.01 and 1.00 (where 1.00 corresponds to complete overlap).
NOTE: Currently, only two populations (clusters) are supported. While exact control of overlap
between two clusters is straightforward, controlling the overlap between the K choose 2 pairwise
combinations of clusters is a more difficult task.

Value

A list with the following elements:

truelD Integer vector giving population (cluster) membership of each observation

trueMus Mean parameters used for population (cluster) centers in the continuous vari-
ables

conVars The continuous variables

errVariance Variance parameter used for continuous error distribution

popProbsNoErr Multinomial probability vectors for categorical variables without measurement

error
popProbsWithErr
Multinomial probability vectors for categorical variables with measurement er-
ror
catVars The categorical variables
Examples

dat <- genMixedData(100, 2, 2, nCatLevels=4, nConWithErr=1, nCatWithErr=1,
popProportions=c(0.3,0.7), conErrLev=0.3, catErrLev=0.2)

with(dat,plot(conVars,col=truelD))

with(dat,table(data.frame(catVars[,1:2],truelD, stringsAsFactors = TRUE)))

gmsClust A general implementation of Modha-Spangler clustering for mixed-
type data.

Description

Modha-Spangler clustering estimates the optimal weighting for continuous vs categorical variables
using a brute-force search strategy.

8 gmsClust

Usage

gmsClust(
conData,
catData,
nclust,
searchDensity = 10,
clustFun = wkmeans,
conDist = squaredEuc,
catDist = squaredEuc,

)
Arguments
conData A data frame of continuous variables.
catData A data frame of categorical variables; the allowable variable types depend on
the specific clustering function used.
nclust An integer specifying the number of clusters.

searchDensity An integer determining the number of distinct cluster weightings evaluated in
the brute-force search.

clustFun The clustering function to be applied.
conDist The continuous distance function used to construct the objective function.
catDist The categorical distance function used to construct the objective function.

Arguments to be passed to the clustFun.

Details

Modha-Spangler clustering uses a brute-force search strategy to estimate the optimal weighting for
continuous vs categorical variables. This implementation admits an arbitrary clustering function
and arbitrary objective functions for continuous and categorical variables.

The input parameter clustFun must be a function accepting inputs (conData, catData, conWeight,
nclust, ...) and returning a list containing (at least) the elements cluster, conCenters, and catCenters.
The list element "cluster” contains cluster memberships denoted by the integers 1:nclust. The list
elements "conCenters" and "catCenters" must be data frames whose rows denote cluster centroids.
The function clustFun must allow nclust = 1, in which case $centers returns a data frame with a
single row. Input parameters conDist and catDist are functions that must each take two data frame
rows as input and return a scalar distance measure.

Value

A list containing the following results objects:

results A results object corresponding to the base clustering algorithm

objFun A numeric vector of length searchDensity containing the values of the objec-
tive function for each weight used

kamila 9

Qcon A numeric vector of length searchDensity containing the values of the contin-
uous component of the objective function

Qcon A numeric vector of length searchDensity containing the values of the cate-
gorical component of the objective function

bestInd The index of the most successful run

weights A numeric vector of length searchDensity containing the continuous weights
used

References

Foss A, Markatou M; kamila: Clustering Mixed-Type Data in R and Hadoop. Journal of Statistical
Software, 83(13). 2018. doi: 10.18637/jss.v083.i13

Modha DS, Spangler WS; Feature Weighting in k-Means Clustering. Machine Learning, 52(3).
2003. doi: 10.1023/a:1024016609528

Examples

Not run:
Generate toy data set with poor quality categorical variables and good
quality continuous variables.
set.seed(1)
dat <- genMixedData(200, nConVar=2, nCatVar=2, nCatLevels=4, nConWithErr=2,
nCatWithErr=2, popProportions=c(.5,.5), conErrLev=0.3, catErrLev=0.8)
catDf <- dummyCodeFactorDf (data.frame(apply(dat$catVars, 2, factor), stringsAsFactors = TRUE))
conDf <- data.frame(scale(dat$conVars), stringsAsFactors = TRUE)

msRes <- gmsClust(conDf, catDf, nclust=2)
table(msRes$results$cluster, dat$truelD)

End(Not run)

kamila KAMILA clustering of mixed-type data.

Description

KAMILA is an iterative clustering method that equitably balances the contribution of continuous
and categorical variables.

Usage

kamila(
conVar,
catFactor,
numClust,
numInit,

10 kamila

conWeights = rep(1, ncol(conVar)),
catWeights = rep(1, ncol(catFactor)),
maxIter = 25,

conInitMethod = "runif”,

catBw = 0.025,

verbose = FALSE,

calcNumClust = "none”,
numPredStrCvRun = 10,

predStrThresh = 0.8

)
Arguments
conVar A data frame of continuous variables.
catFactor A data frame of factors.
numClust The number of clusters returned by the algorithm.
numInit The number of initializations used.
conWeights A vector of continuous weights for the continuous variables.
catWeights A vector of continuous weights for the categorical variables.
maxIter The maximum number of iterations in each run.

conInitMethod Character: The method used to initialize each run.
catBw The bandwidth used for the categorical kernel.
verbose Logical: Whether detailed results should be printed and returned.

calcNumClust Character: Method for selecting the number of clusters.
numPredStrCvRun

Numeric: Number of CV runs for prediction strength method. Ignored unless
calcNumClust == "ps’

predStrThresh Numeric: Threshold for prediction strength method. Ignored unless calcNum-
Clust =="ps’

Details

KAMILA (KAy-means for MIxed LArge data sets) is an iterative clustering method that equitably
balances the contribution of the continuous and categorical variables. It uses a kernel density estima-
tion technique to flexibly model spherical clusters in the continuous domain, and uses a multinomial
model in the categorical domain.

Weighting scheme: If no weights are desired, set all weights to 1 (the default setting). Let a_1,
..., a_p denote the weights for p continuous variables. Let b_1, ..., b_q denote the weights for q
categorical variables. Currently, continuous weights are applied during the calculation of Euclidean
distance, as: Categorical weights are applied to the log-likelihoods obtained by the level probabil-
ities given cluster membership as: Total log likelihood for the kth cluster is obtained by weighting
the single continuous log-likelihood by the mean of all continuous weights plus logLikCat_k: Note
that weights between 0 and 1 are admissible; weights equal to zero completely remove a variable’s
influence on the clustering; weights equal to 1 leave a variable’s contribution unchanged. Weights
between 0 and 1 may not be comparable across continuous and categorical variables. Estimating

kamila 11

the number of clusters: Default is no estimation method. Setting calcNumClust to "ps’ uses the
prediction strength method of Tibshirani & Walther (J. of Comp. and Graphical Stats. 14(3), 2005).
There is no perfect method for estimating the number of clusters; PS tends to give a smaller number
than, say, BIC based methods for large sample sizes. The user must specify the number of cross-
validation runs and the threshold for determining the number of clusters. The smaller the threshold,
the larger the number of clusters selected.

Value
A list with the following results objects:
finalMemb A numeric vector with cluster assignment indicated by integer.

numlter

finalloglLik The pseudo log-likelihood of the returned clustering.

finalObj
finalCenters
finalProbs
input Object with the given input parameter values.
nClust An object describing the results of selecting the number of clusters, empty if
calcNumClust == "none’.
verbose An optionally returned object with more detailed information.
References

Foss A, Markatou M; kamila: Clustering Mixed-Type Data in R and Hadoop. Journal of Statistical
Software, 83(13). 2018. doi: 10.18637/jss.v083.i13

Examples

Generate toy data set with poor quality categorical variables and good

quality continuous variables.

set.seed(1)

dat <- genMixedData(200, nConVar = 2, nCatVar = 2, nCatlLevels = 4,
nConWithErr = 2, nCatWithErr = 2, popProportions = c(.5, .5),
conErrLev = 0.3, catErrLev = 0.8)

catDf <- data.frame(apply(dat$catVars, 2, factor), stringsAsFactors = TRUE)

conDf <- data.frame(scale(dat$conVars), stringsAsFactors = TRUE)

kamRes <- kamila(conDf, catDf, numClust = 2, numInit = 10)

table(kamRes$finalMemb, dat$truelD)

12 wkmeans

wkmeans Weighted k-means for mixed-type data

Description

Weighted k-means for mixed continuous and categorical variables. A user-specified weight conWeight
controls the relative contribution of the variable types to the cluster solution.

Usage
wkmeans(conData, catData, conWeight, nclust, ...)
Arguments
conData The continuous variables. Must be coercible to a data frame.
catData The categorical variables, either as factors or dummy-coded variables. Must be
coercible to a data frame.
conWeight The continuous weight; must be between 0 and 1. The categorical weight is
1-conWeight.
nclust The number of clusters.
Optional arguments passed to kmeans.
Details

A simple adaptation of stats::kmeans to mixed-type data. Continuous variables are multiplied
by the input parameter conWeight, and categorical variables are multipled by 1-conWeight. If
factor variables are input to catData, they are transformed to 0-1 dummy coded variables with the
function dummyCodeFactorDf.

Value

A stats::kmeans results object, with additional slots conCenters and catCenters giving the actual
centers adjusted for the weighting process.

See Also

dummyCodeFactorDf

kmeans

Examples

Generate toy data set with poor quality categorical variables and good

quality continuous variables.

set.seed(1)

dat <- genMixedData(200, nConVar=2, nCatVar=2, nCatLevels=4, nConWithErr=2,
nCatWithErr=2, popProportions=c(.5,.5), conErrLev=0.3, catErrLev=0.8)

catDf <- data.frame(apply(dat$catVars, 2, factor), stringsAsFactors = TRUE)

wkmeans

conDf <- data.frame(scale(dat$conVars), stringsAsFactors = TRUE)

A clustering that emphasizes the continuous variables
r1 <- with(dat,wkmeans(conDf, catDf, 0.9, 2))
table(ri$cluster, dat$trueID)

A clustering that emphasizes the categorical variables; note argument
passed to the underlying stats::kmeans function

r2 <- with(dat,wkmeans(conDf, catDf, @.1, 2, nstart=4))
table(r2$cluster, dat$truelD)

13

Index

classifyKamila, 4

dptmCpp, 5
dummyCodeFactorDf, 5, 12

genMixedData, 6
gmsClust, 7

kamila, 9
kamila-package, 2
kmeans, 12

wkmeans, 12

14

	kamila-package
	classifyKamila
	dptmCpp
	dummyCodeFactorDf
	genMixedData
	gmsClust
	kamila
	wkmeans
	Index

