Package ‘jti’

November 23, 2024

Title Junction Tree Inference
Version 1.0.0
Date 2024-11-22

Description Minimal and memory efficient implementation of the junction tree
algorithm using the Lauritzen-Spiegelhalter scheme;
S. L. Lauritzen and D. J. Spiegelhalter (1988)
<https://www.jstor.org/stable/2345762?seq=1>. The jti package is
part of the paper <doi:10.18637/jss.v111.i102>.

Depends R (>=3.5.0)

URL https://github.com/mlindsk/jti
License GPL-3

Encoding UTF-8

LazyData true

Imports Rcpp, igraph, sparta

LinkingTo Rcpp, ReppArmadillo
RoxygenNote 7.3.1

Suggests rmarkdown, knitr, tinytest, ess
VignetteBuilder knitr

NeedsCompilation yes

Author Mads Lindskou [aut, cre]
Maintainer Mads Lindskou <madslindskou@gmail.com>
Repository CRAN

Date/Publication 2024-11-23 15:30:12 UTC

Contents

https://www.jstor.org/stable/2345762?seq=1
https://doi.org/10.18637/jss.v111.i02
https://github.com/mlindsk/jti

2 jti-package
bnfit_to_cpts e e e 4
compile e 5
ept_list. . . . e 7
diMm_NAmeSs e e e e 8
get_cliques e e 9
get_graph L L e e e 10
get_triang_graph 10
initialize 11
L 11
jtlleaves . .o 15
JENbINary_ops e e e e e e e 16
mpd . .. e e e 16
10101 17
plot.charge L 18
PIOLIt o o e e e e 18
POt_LiSt . . L e e e 19
print.charge L 19
print.ept_Listo e e e 20
Printjt L e 21
PrOPagate e e e e e e e e e e e 21
query_belief 22
query_evidence e e e e e e e 22
SENA_MESSAZES . « . v v o e e e e e e e e e e e e e e e e e e e 23
Set_eVIAENCE e 23
sim_data_from_bn 24
sim_data_from_dmrf 25
triangulate L L 26
Index 28
jti-package Jjti: Junction Tree Inference
Description
Minimal and memory efficient implementation of the junction tree algorithm using the Lauritzen-
Spiegelhalter scheme.
Details
The main functions are cpt_list, compile,jt and query_belief which together is sufficient to
make inference using the junction tree algorithm.
Author(s)

Maintainer: Mads Lindskou <madslindskou@gmail.com>

asia 3

References

Local Computations with Probabilities on Graphical Structures and Their Application to Expert
Systems by S. L. Lauritzen and D. J. Spiegelhalter (1988). Journal of the Royal Statistical Society:
Series B (Methodological) volume 50, issue 2.

See Also
Useful links:

e https://github.com/mlindsk/jti

asia Asia

Description

Small synthetic data set from Lauritzen and Spiegelhalter (1988) about lung diseases (tuberculosis,
lung cancer or bronchitis) and visits to Asia. This copy of the data was taken from the R package
"bnlearn"” where all values "yes" have been converted to "y" and all values "no" have been converted

non

to 'n.

Usage

asia

Format

An object of class tbl_df (inherits from tbl, data. frame) with 5000 rows and 8 columns.

Details

D (dysponea)

T (tuberculosis)
L (lung cancer)
B (bronchitis)

A (visit to Asia)
S (smoking)

X (chest C-ray)

E (tuberculosis vs cancer/bronchitis)

References

bnlearn-asia

https://github.com/mlindsk/jti
https://www.bnlearn.com/documentation/man/asia.html

4 bnfit_to_cpts

asia2 Asia2

Description

See the asia data for information. This version, has class bn.fit.

Usage

asia2

Format

An object of class 1ist of length 8.

References

bnlearn-asia

bnfit_to_cpts bnfit to cpts

Description
Convert a bn.fit object (a list of cpts from the bnlearn package) into a list of ordinary array-like
cpts

Usage

bnfit_to_cpts(x)

Arguments

X A bn.fit object

https://www.bnlearn.com/bnrepository/discrete-small.html#asia

compile

compile Compile information

Description

Compiled objects are used as building blocks for junction tree inference

Usage

compile(

X,

evidence = NULL,
root_node = "",
joint_vars = NULL,
tri = "min_fill",
pmf_evidence = NULL,
alpha = NULL,

initialize_cpts = TRUE

)

S3 method for class 'cpt_list'

compile(
X’
evidence

root_node =
joint_vars

NULL,

nn

’

NULL,

tri = "min_fill",

pmf_evidence

alpha =

= NULL,

initialize_cpts = TRUE

Arguments

X

evidence
root_node

joint_vars

tri

An object returned from cpt_list (baeysian network) or pot_list (decompos-
able markov random field)

A named vector. The names are the variabes and the elements are the evidence.
A node for which we require it to live in the root clique (the first clique).

A vector of variables for which we require them to be in the same clique. Edges
between all these variables are added to the moralized graph.

The optimization strategy used for triangulation if x originates from a Baeysian
network. One of

e “min_fill’
e “min_rfill’

* “min_sp’

6 compile

* “min_ssp’

* “min_lsp’

* “min_lssp’

* “min_elsp’

* “min_elssp’

e min_nei’

e ’minimal’

* ’alpha’

pmf_evidence A named vector of frequencies of the expected missingness of a variable. Vari-

ables with frequencies of 1 can be neglected; these are inferrred. A value of 0.25
means, that the given variable is expected to be missing (it is not a evidence
node) in one fourth of the future cases. Relevant for tri methods *min_elsp’
and “min_elssp’.

alpha Character vector. A permutation of the nodes in the graph. It specifies a user-
supplied eliminination ordering for triangulation of the moral graph.
initialize_cpts
TRUE if the CPTs should be initialized, i.e. multiplied together to form the clique
potentials. If FALSE, the compiled object will save the triangulation and other
information that needs only bee computed once. Herafter, it is possible to enter
evidence into the CPTs, using set_evidence, saving a lot of computations.

Details

The Junction Tree Algorithm performs both a forward and inward message pass (collect and dis-
tribute). However, when the forward phase is finished, the root clique potential is guaranteed to
be the joint pmf over the variables involved in the root clique. Thus, if it is known in advance
that a specific variable is of interest, the algortihm can be terminated after the forward phase. Use
the root_node to specify such a variable and specify propagate = "collect” in the juntion tree
algortihm function jt.

Moreover, if interest is in some joint pmf for variables that end up being in different cliques these
variables must be specified in advance using the joint_vars argument. The compilation step then
adds edges between all of these variables to ensure that at least one clique contains all of them.

Evidence can be entered either at compile stage or after compilation. Hence, one can also com-
bine evidence from before compilation with evidence after compilation. Before refers to entering
evidence in the ’compile’ function and after refers to entering evidence in the ’jt’ function.

Finally, one can either use a Bayesian network or a decomposable Markov random field (use the
ess package to fit these). Bayesian networks must be constructed with cpt_list and decomposable
MRFs can be constructed with both pot_list and cpt_list. However, pot_list is just an alias
for cpt_list which handles both cases internally.

Examples

cptl <- cpt_list(asia2)

cpl <- compile(cptl, evidence = c(bronc = "yes"), joint_vars = c("bronc”, "tub"))
print(cpl)

names(cp1)

dim_names(cp1)

cpt_list 7

plot(get_graph(cp1))

cpt_list Conditional probability list

Description

A check and conversion of cpts to be used in the junction tree algorithm

Usage
cpt_list(x, g = NULL)

S3 method for class 'list'
cpt_list(x, g = NULL)

S3 method for class 'data.frame'
cpt_list(x, g)

Arguments

X Either a named list with cpts in form of array-like object(s) where names must
be the child node or a data. frame

g Either a directed acyclic graph (DAG) as an igraph object or a decomposable
graph as an igraph object. If x is a list, g must be NULL. The procedure then
deduce the graph from the conditional probability tables.

Examples

library(igraph)

el <- matrix(c(

AT T

S KB =T

I

ngr Mg

"L, "E",

"E", "X",

"E", "D",

"B", "D"),

nc = 2,
byrow = TRUE
)

g <- igraph::graph_from_edgelist(el)
cl <- cpt_list(asia, g)

print(cl)
dim_names(cl)
names(cl)
plot(get_graph(cl))

8 dim_names

dim_names Various getters

Description

Getter methods for cpt_list, pot_list, charge and jt objects

Usage
dim_names(x)
has_inconsistencies(x)

S3 method for class 'cpt_list'
dim_names(x)

S3 method for class 'cpt_list'
names(x)

S3 method for class 'charge
dim_names(x)

S3 method for class 'charge
names(x)

[

S3 method for class 'charge
has_inconsistencies(x)

S3 method for class 'jt'
dim_names(x)

S3 method for class 'jt'
names (x)

S3 method for class 'jt'
has_inconsistencies(x)

Arguments

X cpt_list, pot_list, charge or jt

get_cliques

get_cliques Return the cliques of a junction tree

Description

Return the cliques of a junction tree

Usage

get_cliques(x)

S3 method for class 'jt'
get_cliques(x)

S3 method for class 'charge'
get_cliques(x)

S3 method for class 'pot_list'
get_cliques(x)

get_clique_root_idx(x)

S3 method for class 'jt'
get_clique_root_idx(x)

get_clique_root(x)

S3 method for class 'jt'
get_clique_root(x)

Arguments

X A junction tree object, jt.

See Also

jt

Examples

See Example 5 and 6 of the 'jt' function

10

get_triang_graph

get_graph Get graph

Description

Retrieve the graph

Usage
get_graph(x)

S3 method for class 'charge'
get_graph(x)

S3 method for class 'cpt_list'
get_graph(x)

Arguments

X cpt_list or a compiled object

Value

A graph as an igraph object

get_triang_graph Get triangulated graph

Description

Retrieve the triangulated graph from

Usage

get_triang_graph(x)

Arguments

X A compiled object

Value

A triangulated graph as a neibor matrix

initialize 11
initialize Initialize
Description
Initialization of CPTs
Usage
initialize(x)
S3 method for class 'charge'
initialize(x)
Arguments
X A compiled object.
Details
Multiply the CPTs and allocate them to clique potentials.
jt Junction Tree
Description
Construction of a junction tree and message passing
Usage
jt(x, evidence = NULL, flow = "sum”, propagate =
S3 method for class 'charge'
jt(x, evidence = NULL, flow = "sum", propagate =
Arguments
X An object return from compile
evidence A named vector. The names are the variabes and the elements are the evidence
flow Either "sum" or "max"

propagate Either "no", "collect" or "full".

12 jt

Details

Evidence can be entered either at compile stage or after compilation. Hence, one can also com-
bine evidence from before compilation with evidence after compilation. Before refers to entering
evidence in the ’compile’ function and after refers to entering evidence in the ’jt’ function.

Value

A jt object

See Also

query_belief, mpe, get_cliques, get_clique_root, propagate

Examples

Setting up the network

library(igraph)
el <- matrix(c(

AT NT

"T", "E",

"st, oL,

"s", "B",

"L", "E",

"g", "X",

"EM O "DM,

"B", "D"),

nc = 2,

byrow = TRUE

)

g <- igraph::graph_from_edgelist(el)
plot(g)

Data
—_———

We use the asia data; see the man page (?asia)
Compilation

cl <- cpt_list(asia, g) # Checking and conversion
cp <- compile(cl)

After the network has been compiled, the graph has been triangulated and
moralized. Furthermore, all conditional probability tables (CPTs) has been
designated one of the cliques (in the triangulated and moralized graph).

Example 1: sum-flow without evidence

jt1 <= jt(cp)

jt

13

plot(jt1)

print(jt1)

query_belief(jt1, c("E", "L", "T"))
query_belief(jt1, c("B", "D", "E"), type = "joint")

Notice, that jt1 is equivalent to:
jt1 <= jt(cp, propagate = "no")
jt1 <- propagate(jt1, prop = "full”)

*

That is; it is possible to postpone the actual propagation
In this setup, the junction tree is saved in the jt1 object,
and one can repeadetly enter evidence for new observations
using the set_evidence function on jt1 and then query
several probabilites without repeadetly calculating the

the junction tree over and over again. One just needs

to use the propagate function on jti.

e R

Example 2: sum-flow with evidence

e2 <_ C(A = Ilyll, X = Ilnll>
jt2 <- jt(cp, e2)
query_belief(jt2, c("B", "D", "E"), type

"joint")

Notice that, the configuration (D,E,B) (y,y,n) has changed
dramatically as a consequence of the evidence

We can get the probability of the evidence:
query_evidence(jt2)

Example 3: max-flow without evidence

jt3 <= jt(cp, flow = "max")
mpe(jt3)

Example 4: max-flow with evidence
e4 <_ C(T = Ilyll, X = Ilyll’ D = Vlyll)
jt4 <- jt(cp, e4, flow = "max")

mpe (jt4)

Notice, that T, E, S, B, X and D has changed from "n” to "y"
as a consequence of the new evidence e4

Example 5: specifying a root node and only collect to save run time

cp5 <- compile(cpt_list(asia, g), root_node = "X")
jt5 <- jt(cp5, propagate = "collect")

14

query_belief(jt5, get_clique_root(jt5), "joint")

H+

We can only query from the variables in the root clique now
but we have ensured that the node of interest, "X", does indeed live in
this clique. The variables are found using 'get_clique_root'

*

ES

Example 6: Compiling from a list of conditional probabilities

* We need a list with CPTs which we extract from the asia2 object
- the list must be named with child nodes
- The elements need to be array-like objects

cl <- cpt_list(asia2)
cp6 <- compile(cl)

Inspection; see if the graph correspond to the cpts
g <- get_graph(cp6)
plot(g)

This time we specify that no propagation should be performed
jt6 <- jt(cp6, propagate = "no")

We can now inspect the collecting junction tree and see which cliques
are leaves and parents

plot(jt6)

get_cliques(jt6)

get_clique_root(jt6)

jt_leaves(jt6)
unlist(jt_parents(jt6))

That is;
- clique 2 is parent of clique 1
- clique 3 is parent of clique 4 etc.

Next, we send the messages from the leaves to the parents
jt6 <- send_messages(jt6)

Inspect again
plot(jt6)

Send the last message to the root and inspect
jt6 <- send_messages(jt6)
plot(jt6)

The arrows are now reversed and the outwards (distribute) phase begins
jt_leaves(jt6)
jt_parents(jt6)

Clique 2 (the root) is now a leave and it has 1, 3 and 6 as parents.

jt

jt_leaves

Finishing the message passing
jt6 <- send_messages(jt6)
jt6 <- send_messages(jt6)

Queries can now be performed as normal
query_belief(jt6, c("either”, "tub"), "joint")

15

jt_leaves Query Parents or Leaves in a Junction Tree

Description

Return the clique indices of current parents or leaves in a junction tree

Usage
jt_leaves(jt)

S3 method for class 'jt'
jt_leaves(jt)

jt_parents(jt)
S3 method for class 'jt'

jt_parents(jt)

Arguments

jt A junction tree object, jt.

See Also

jt, get_cliques

Examples

See example 6 in the help page for the jt function

16 mpd

jt_nbinary_ops Number of Binary Operations

Description

Number of binary operations needed to propagate in a junction tree given evidence, using the
Lauritzen-Spiegelhalter scheme

Usage

NULL, nc 1)

jt_nbinary_ops(x, evidence = list(), root

S3 method for class 'triangulation'
jt_nbinary_ops(x, evidence = list(), root = NULL, nc = 1)

Arguments
X A junction tree object or an object returned from the triangulation function
evidence List of character vectors with evidence nodes
root Integer specifying the root node in the junction tree
nc Integer. The number of cores to be used in parallel
mpd Maximal Prime Decomposition
Description

Find the maximal prime decomposition and its associated junction tree
Usage
mpd(x, save_graph = TRUE)

S3 method for class 'matrix'
mpd(x, save_graph = TRUE)

S3 method for class 'cpt_list'
mpd(x, save_graph = TRUE)

Arguments
X Either a neighbor matrix or a cpt_list object
save_graph Logical indicating if the moralized graph should be kept. Useful when x is a

cpt_list object.

mpe 17

Value

- prime_ints: a list with the prime components, - flawed: indicating which prime components
that are triangulated - jt_collect: the MPD junction tree prepared for collecting

Examples
library(igraph)
el <- matrix(c(
A", T,

"T", "E",
"st, oL,
"s", "B",
"L, "E",
"E", X",

"g", "D",
"8", "D"),

nc = 2,
byrow = TRUE
)

g <- igraph::graph_from_edgelist(el, directed = FALSE)
A <- igraph::as_adjacency_matrix(g, sparse = FALSE)
mpd (A)

mpe Most Probable Explanation

Description

Returns the most probable explanation given the evidence entered in the junction tree
Usage
mpe (x)

S3 method for class 'jt'
mpe (x)

Arguments

X A junction tree object, jt, with max-flow.
See Also
jt

Examples

See the 'jt' function

18 plot.jt
plot.charge A plot method for junction trees

Description

A plot method for junction trees
Usage

S3 method for class 'charge'

plot(x, ...)
Arguments

X A compile object

For S3 compatability. Not used.

See Also

compile

plot.jt A plot method for junction trees

Description

A plot method for junction trees
Usage

S3 method for class 'jt'

plot(x, ...)
Arguments

X A junction tree object, jt.

For S3 compatability. Not used.

See Also

jt

pot_list 19

pot_list A check and extraction of clique potentials from a Markov random
field to be used in the junction tree algorithm

Description
A check and extraction of clique potentials from a Markov random field to be used in the junction
tree algorithm

Usage

pot_list(x, g)

S3 method for class 'data.frame'
pot_list(x, g)

Arguments

X Character data. frame

g A decomposable Markov random field as an igraph object.
Examples

Typically one would use the ess package:
library(ess)

g <- ess::fit_graph(derma)

pl <- pot_list(derma, ess::as_igraph(g))
pl

Another example

g <- igraph::sample_gnm(ncol(asia), 12)

while(!igraph::is.chordal(g)$chordal) g <- igraph::sample_gnm(ncol(asia), 12, FALSE)
igraph::V(g)$name <- colnames(asia)

plot(g)

pot_list(asia, g)

print.charge A print method for compiled objects

Description

A print method for compiled objects

20 print.cpt_list

Usage
S3 method for class 'charge'
print(x, ...)

Arguments

X A compiled object

For S3 compatability. Not used.

See Also

jt

print.cpt_list A print method for cpt lists

Description

A print method for cpt lists

Usage
S3 method for class 'cpt_list'
print(x, ...)
Arguments
X A cpt_list object
For S3 compatability. Not used.
See Also

compile

print.jt

print.jt A print method for junction trees

Description

A print method for junction trees

Usage
S3 method for class 'jt'
print(x, ...)

Arguments

X A junction tree object, jt.
For S3 compatability. Not used.

See Also

jt

propagate Propagation of junction trees

Description

Given a junction tree object, propagation is conducted

Usage

propagate(x, prop = "full")

S3 method for class 'jt'
propagate(x, prop = "full")
Arguments

X A junction tree object jt
prop Either "collect" or "full".

See Also
jt

Examples

See Example 1 in the 'jt' function

22

query_evidence

query_belief Query probabilities

Description

Get probabilities from a junction tree object

Usage

query_belief(x, nodes, type = "marginal”)

S3 method for class 'jt'
query_belief(x, nodes, type = "marginal")
Arguments
X A junction tree object, jt.
nodes The nodes for which the probability is desired
type Either "'marginal’ or ’joint’
See Also

jt, mpe

Examples

See the 'jt' function

query_evidence Query Evidence

Description

Get the probability of the evidence entered in the junction tree object

Usage

query_evidence(x)

S3 method for class 'jt'
query_evidence(x)

Arguments

X A junction tree object, jt.

send_messages 23

See Also

jt, mpe

send_messages Send Messages in a Junction Tree

Description

Send messages from the current leaves to the current parents in a junction tree

Usage

send_messages(jt)

Arguments

jt A jt object return from the jt function

See Also

jt, get_cliques, jt_leaves, jt_parents

Examples

See example 6 in the help page for the jt function

set_evidence Enter Evidence

Description

Enter evidence into a the junction tree object that has not been propagated
Usage
set_evidence(x, evidence, initialize_cpts = TRUE)

S3 method for class 'jt'
set_evidence(x, evidence, initialize_cpts = FALSE)

S3 method for class 'charge'
set_evidence(x, evidence, initialize_cpts

TRUE)

24 sim_data_from_bn

Arguments
X A junction tree object, jt.
evidence A named vector. The names are the variabes and the elements are the evidence.

initialize_cpts
TRUE if the CPTs should be initialized and then create the clique potentials. Only
relevant on objects returned from compile.

See Also

jt, mpe

Examples

See the 'jt' function

sim_data_from_bn Simulate data from a Bayesian network

Description

Simulate data from a Bayesian network

Usage

sim_data_from_bn(
net,
lvls,
nsims = 1000,
increasing_prob = FALSE,

pl = 0.8,
p2 =1
)
Arguments
net A Bayesian network as an igraph object
1vls Named integer vector where each element is the size of the statespace of the
corresponding variable
nsims Number of simulations distributions from which the simulatios are drawn.

increasing_prob
Logical. If true, probabilities in the underlying CPTs increases with as the num-
ber of levels increses.

p1 Probability
p2 Probability

sim_data_from_dmrf

Examples

25

net <- igraph::graph(as.character(c(1,2,1,3,3,4,3,5,5,4,2,6,6,7,5,7)), directed = TRUE)
nodes_net <- igraph::V(net)$name

lvls_net <- structure(sample(3:9, length(nodes_net)), names = nodes_net)

lvls_net <- structure(rep(3, length(nodes_net)), names = nodes_net)
sim_data_from_bn(net, lvls_net, 10)

sim_data_from_dmrf Simulate data from a decomposable discrete markov random field

Description

Simulate data from a decomposable discrete markov random field

Usage

sim_data_from_dmrf(

graph,
lvls,
nsims = 1000,

increasing_prob = FALSE,

pl = 0.8,
p2 =1

Arguments

graph
1vls

nsims

increasing_prob

pl
p2

A decomposable discrete markov random field as an igraph object

Named integer vector where each element is the size of the statespace of the
corresponding variable

Number of simulations distributions from which the simulatios are drawn.
Logical. If true, probabilities in the underlying CPTs increases with as the num-
ber of levels increses.

Probability

Probability

26 triangulate
triangulate Triangulate a Bayesian network
Description
Given a list of CPTs, this function finds a triangulation
Usage
triangulate(
X ’
root_node = "",
joint_vars = NULL,
tri = "min_fill”,
pmf_evidence = NULL,
alpha = NULL,
perm = FALSE,
mpd_based = FALSE
)
S3 method for class 'cpt_list'
triangulate(
X,
root_node = "",
joint_vars = NULL,
tri = "min_fill",
pmf_evidence = NULL,
alpha = NULL,
perm = FALSE,
mpd_based = FALSE
)
Arguments
X An object returned from cpt_list (baeysian network) or pot_list (decompos-
able markov random field)
root_node A node for which we require it to live in the root clique (the first clique).

joint_vars

tri

network. One of
e "min_fill’
e “min_rfill’
* ‘min_sp’
* “min_ssp’

A vector of variables for which we require them to be in the same clique. Edges
between all these variables are added to the moralized graph.

The optimization strategy used for triangulation if x originates from a Baeysian

triangulate

pmf_evidence

alpha

perm

mpd_based

27

* “min_lsp’

* “min_lssp’

* “min_elsp’

* “min_elssp’

e “min_nei’

* ’minimal’

* ’alpha’
A named vector of frequencies of the expected missingness of a variable. Vari-
ables with frequencies of 1 can be neglected; these are inferrred. A value of 0.25
means, that the given variable is expected to be missing (it is not a evidence

node) in one fourth of the future cases. Relevant for tri methods 'min_elsp’
and “min_elssp’.

Character vector. A permutation of the nodes in the graph. It specifies a user-
supplied eliminination ordering for triangulation of the moral graph.

Logical. If TRUE the moral graph is permuted

Logical. True if the triangulation should be performed on a maximal peime
decomposition

Index

x datasets
asia, 3
asia2, 4

asia, 3
asia2, 4

bnfit_to_cpts, 4

compile, 5, 18, 20
cpt_list, 7

dim_names, 8

get_clique_root, 12

get_clique_root (get_cliques), 9
get_clique_root_idx (get_cliques), 9

get_cliques, 9,12, 15,23
get_graph, 10
get_triang_graph, 10

has_inconsistencies (dim_names), 8

initialize, 11

jt,9,11,15,17, 18, 20-24
jt_leaves, 15,23
jt_nbinary_ops, 16
jt_parents, 23
jt_parents (jt_leaves), 15
jti(jti-package), 2
jti-package, 2

mpd, 16
mpe, 12, 17, 22-24

names.charge (dim_names), 8
names.cpt_list (dim_names), 8
names. jt (dim_names), 8

plot.charge, 18
plot.jt, 18

28

pot_list, 19
print.charge, 19
print.cpt_list, 20
print.jt, 21
propagate, 12,21

query_belief, 12,22
query_evidence, 22

send_messages, 23
set_evidence, 23
sim_data_from_bn, 24
sim_data_from_dmrf, 25

triangulate, 26

	jti-package
	asia
	asia2
	bnfit_to_cpts
	compile
	cpt_list
	dim_names
	get_cliques
	get_graph
	get_triang_graph
	initialize
	jt
	jt_leaves
	jt_nbinary_ops
	mpd
	mpe
	plot.charge
	plot.jt
	pot_list
	print.charge
	print.cpt_list
	print.jt
	propagate
	query_belief
	query_evidence
	send_messages
	set_evidence
	sim_data_from_bn
	sim_data_from_dmrf
	triangulate
	Index

