
Package ‘jmvReadWrite’
June 15, 2025

Title Read and Write 'jamovi' Files ('.omv')

Version 0.4.11

Author Sebastian Jentschke [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0003-2576-5432>)

Maintainer Sebastian Jentschke <sebastian.jentschke@uib.no>

Description The free and open a statistical spreadsheet 'jamovi'
(<https://www.jamovi.org>) aims to make statistical analyses easy and
intuitive. 'jamovi' produces syntax that can directly be used in R (in
connection with the R-package 'jmv'). Having import / export routines for
the data files 'jamovi' produces ('.omv') permits an easy transfer of
data and analyses between 'jamovi' and R.

License AGPL-3

Language en-GB

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

VignetteBuilder knitr

URL https://sjentsch.github.io/jmvReadWrite/

BugReports https://github.com/sjentsch/jmvReadWrite/issues

Depends R (>= 3.5.0)

Imports jsonlite, methods, zip

Suggests jmv, jmvcore (>= 2.4.7), foreign, haven, knitr, rmarkdown,
RProtoBuf, testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation no

Repository CRAN

Date/Publication 2025-06-15 17:00:02 UTC

1

https://orcid.org/0000-0003-2576-5432
https://www.jamovi.org
https://sjentsch.github.io/jmvReadWrite/
https://github.com/sjentsch/jmvReadWrite/issues

2 AlbumSales

Contents

AlbumSales . 2
arrange_cols_omv . 3
bfi_sample . 5
bfi_sample2 . 7
bfi_sample3 . 8
combine_cols_omv . 10
convert_to_omv . 12
describe_omv . 14
distances_omv . 17
label_vars_omv . 21
long2wide_omv . 23
merge_cols_omv . 27
merge_rows_omv . 30
read_omv . 33
replace_omv . 34
search_omv . 36
sort_omv . 38
ToothGrowth . 40
transform_vars_omv . 41
transpose_omv . 43
wide2long_omv . 45
write_omv . 48

Index 51

AlbumSales Imagine that you worked for a record company and that your boss was
interested in predicting album sales from advertising.

Description

The data set is fictional and was constructed by Andy Field who therefore owns the copyright. The
data set is also publicly available on the website that accompanies Andy Field’s book, https://edge.sagepub.com/field5e.
Without Andy Field’s explicit consent, this data set may not be distributed for commercial purposes,
this data set may not be edited, and this data set may not be presented without acknowledging its
source (i.e., the terms of a CC BY-NC-ND license).

Usage

AlbumSales

arrange_cols_omv 3

Format

A data frame with 60 rows, each one representing a different album, and 5 variables:

selSbj Select the data in this row (1) or not (0)

Adverts Amount (in thousands of pounds) spent promoting the album before release

Airplay How many times songs from the album were played on a prominent national radio station
in the week before release

Image How attractive people found the band’s image (out of 10)

Sales Sales (in thousands) of each album in the week after release

Details

Reference: Field, A. P. (2017). Discovering Statistics Using IBM SPSS Statistics (5th ed.). Sage.

arrange_cols_omv Re-arrange columns / variables in .omv-files for the statistical spread-
sheet ’jamovi’ (https://www.jamovi.org)

Description

Re-arrange columns / variables in .omv-files for the statistical spreadsheet ’jamovi’ (https://www.
jamovi.org)

Usage

arrange_cols_omv(
dtaInp = NULL,
fleOut = "",
varOrd = c(),
varMve = list(),
psvAnl = FALSE,
usePkg = c("foreign", "haven"),
selSet = "",
...

)

Arguments

dtaInp Either a data frame or the name of a data file to be read (including the path, if
required; "FILENAME.ext"; default: NULL); files can be of any supported file
type, see Details below

fleOut Name of the data file to be written (including the path, if required; "FILE_OUT.omv";
default: ""); if empty, the resulting data frame is returned instead

varOrd Character vector with the desired order of variable(s) in the data frame (see
Details; default: c())

https://www.jamovi.org
https://www.jamovi.org
https://www.jamovi.org

4 arrange_cols_omv

varMve Named list defining to how much a particular variable (name of a list entry)
should be moved up (neg. value of a list entry) or down (pos. value) in the data
frame (see Details; default: c())

psvAnl Whether analyses that are contained in the input file shall be transferred to the
output file (default: FALSE)

usePkg Name of the package: "foreign" or "haven" that shall be used to read SPSS,
Stata and SAS files; "foreign" is the default (it comes with base R), but "haven"
is newer and more comprehensive

selSet Name of the data set that is to be selected from the workspace (only applies
when reading .RData-files)

... Additional arguments passed on to methods; see Details below

Details

• varOrd is a character vector. If not all variables of the original data set are contained in
varOrd, a warning is issued but otherwise the list of variables defined in varOrd is used
(removing variables not contained in varOrd).

• varMve is a named list. For example would list(VARNAME = -3) move the variable VARNAME
three positions up in the list of variables (towards the first column), and list(VARNAME = 3)
would move it three positions down (towards the last column). If the number of steps the
variable is to be moved leads to the position being either lower than the first or higher than
the total number of variables in the data set, an error message is issued. Please note that the
list entries are processed one after another, that is, for a second list entry, you have to consider
how the first list entry may have changed to order of variables.

• Using varOrd makes more sense for changing the position of several variables, whereas using
varMve makes more sense for one variable. If both parameters are given, a warning is issued
and varOrd takes precedence.

• The ellipsis-parameter (...) can be used to submit arguments / parameters to the functions
that are used for reading and writing the data. By clicking on the respective function un-
der “See also”, you can get a more detailed overview over which parameters each of those
functions take. The functions are: read_omv and write_omv (for jamovi-files), read.table
(for CSV / TSV files; using similar defaults as read.csv for CSV and read.delim for TSV
which both are based upon read.table), load (for .RData-files), readRDS (for .rds-files),
read_sav (needs the R-package haven) or read.spss (needs the R-package foreign) for
SPSS-files, read_dta (haven) / read.dta (foreign) for Stata-files, read_sas (haven) for
SAS-data-files, and read_xpt (haven) / read.xport (foreign) for SAS-transport-files. If
you would like to use haven, you may need to install it using install.packages("haven",
dep = TRUE).

Value

a data frame (only returned if fleOut is empty) where the order of variables / columns of the input
data set is re-arranged

See Also

arrange_cols_omv internally uses the following functions for reading and writing data files in dif-
ferent formats: read_omv() and write_omv() for jamovi-files, utils::read.table() for CSV

bfi_sample 5

/ TSV files, load() for reading .RData-files, readRDS() for .rds-files, haven::read_sav() or
foreign::read.spss() for SPSS-files, haven::read_dta() or foreign::read.dta() for Stata-
files, haven::read_sas() for SAS-data-files, and haven::read_xpt() or foreign::read.xport()
for SAS-transport-files.

Examples

Not run:
nmeInp <- system.file("extdata", "AlbumSales.omv", package = "jmvReadWrite")
nmeOut <- tempfile(fileext = ".omv")
the original file has the variables in the order: "Adverts", "Airplay", "Image", "Sales"
names(read_omv(nmeInp))
first, we move the variable "Sales" to the first place using the varOrd-parameter
jmvReadWrite::arrange_cols_omv(dtaInp = nmeInp, fleOut = nmeOut,

varOrd = c("Sales", "Adverts", "Airplay", "Image"))
names(jmvReadWrite::read_omv(nmeOut))
unlink(nmeOut)
now, we move the variable "Sales" to the first place using the varMve-parameter
jmvReadWrite::arrange_cols_omv(dtaInp = nmeInp, fleOut = nmeOut, varMve = list(Sales = -3))
names(jmvReadWrite::read_omv(nmeOut))
unlink(nmeOut)

End(Not run)

bfi_sample Twenty-five personality self-report items taken from the International
Personality Item Pool

Description

The data set contains responses from 250 participants filling in twenty-five personality self-report
items taken from the International Personality Item Pool (https://ipip.ori.org) as part of the Syn-
thetic Aperture Personality Assessment (SAPA) web-based personality assessment (https://sapa-
project.org) project. The 25 items are organized by five putative factors: Agreeableness (A1 to A5),
Conscientiousness (C1 to C5), Extraversion (E1 to E5), Neuroticism (N1 to N5), and Openness (N1
to N5). The items were short phrases that the respondent should answer by indicating how accu-
rately the statement describes their typical behaviour or attitude. Responses were collected using a
6-point scale: 1 - Very inaccurate, 2 - Moderately inaccurate, 3 - Slightly inaccurate, 4 - Slightly
accurate, 5 - Moderately accurate, 6 - Very accurate.

Usage

bfi_sample

6 bfi_sample

Format

A data frame with 254 rows (250 original respondents, 4 generated for testing) and 33 variables:

ID Respondent ID

A1 Am indifferent to the feelings of others. (reversed)

A2 Inquire about others’ well-being.

A3 Know how to comfort others.

A4 Love children.

A5 Make people feel at ease.

C1 Am exacting in my work.

C2 Continue until everything is perfect.

C3 Do things according to a plan.

C4 Do things in a half-way manner. (reversed)

C5 Waste my time. (reversed)

E1 Don’t talk a lot. (reversed)

E2 Find it difficult to approach others. (reversed)

E3 Know how to captivate people.

E4 Make friends easily.

E5 Take charge.

N1 Get angry easily.

N2 Get irritated easily.

N3 Have frequent mood swings.

N4 Often feel blue.

N5 Panic easily.

O1 Am full of ideas.

O2 Avoid difficult reading material. (reversed)

O3 Carry the conversation to a higher level.

O4 Spend time reflecting on things.

O5 Will not probe deeply into a subject. (reversed)

gender Gender of the respondent (female, male)

age Age of the respondent (years)

AD Exponent of age (computed: EXP(age))

AF Random data (for testing)

AG Random data (for testing)

age_tr Age of the respondent (transformed, as decades: 1 - 10-19, 2 - 20-29, 3 - 30-39, 4 - 40-49,
5 - 50-59, 6 - 60 and over)

ID2 Respondent ID (for testing; "A" + random-generated 5-digit-code)

bfi_sample2 7

bfi_sample2 Twenty-five personality self-report items taken from the International
Personality Item Pool (includes jamovi-attributes; should result in a
file identical to bfi_sample2.omv under "extdata" when written with
write_omv)

Description

The data set contains responses from 250 participants filling in twenty-five personality self-report
items taken from the International Personality Item Pool (https://ipip.ori.org) as part of the Syn-
thetic Aperture Personality Assessment (SAPA) web-based personality assessment (https://sapa-
project.org) project. The 25 items are organized by five putative factors: Agreeableness (A1 to A5),
Conscientiousness (C1 to C5), Extraversion (E1 to E5), Neuroticism (N1 to N5), and Openness (N1
to N5). The items were short phrases that the respondent should answer by indicating how accu-
rately the statement describes their typical behaviour or attitude. Responses were collected using a
6-point scale: 1 - Very inaccurate, 2 - Moderately inaccurate, 3 - Slightly inaccurate, 4 - Slightly
accurate, 5 - Moderately accurate, 6 - Very accurate. The data set includes the jamovi-attributes.
It is supposed to result in an identical file compared to the bfi_sample2.omv-file contained in the
extdata-directory of the package when written with write_omv.

Usage

bfi_sample2

Format

A data.frame with 250 rows and 29 variables

ID Respondent ID

A1 Am indifferent to the feelings of others. (reversed)

A2 Inquire about others’ well-being.

A3 Know how to comfort others.

A4 Love children.

A5 Make people feel at ease.

C1 Am exacting in my work.

C2 Continue until everything is perfect.

C3 Do things according to a plan.

C4 Do things in a half-way manner. (reversed)

C5 Waste my time. (reversed)

E1 Don’t talk a lot. (reversed)

E2 Find it difficult to approach others. (reversed)

E3 Know how to captivate people.

E4 Make friends easily.

8 bfi_sample3

E5 Take charge.

N1 Get angry easily.

N2 Get irritated easily.

N3 Have frequent mood swings.

N4 Often feel blue.

N5 Panic easily.

O1 Am full of ideas.

O2 Avoid difficult reading material. (reversed)

O3 Carry the conversation to a higher level.

O4 Spend time reflecting on things.

O5 Will not probe deeply into a subject. (reversed)

gender Gender of the respondent (female, male)

age Age of the respondent (years)

ID2 Respondent ID (for testing; "A" + random-generated 4-digit-code)

bfi_sample3 Twenty-five personality self-report items taken from the International
Personality Item Pool (testing file for ordered factors / "Ordinal"-
variables in jamovi)

Description

The data set contains responses from 250 participants filling in twenty-five personality self-report
items taken from the International Personality Item Pool (https://ipip.ori.org) as part of the Syn-
thetic Aperture Personality Assessment (SAPA) web-based personality assessment (https://sapa-
project.org) project. The 25 items are organized by five putative factors: Agreeableness (A1 to A5),
Conscientiousness (C1 to C5), Extraversion (E1 to E5), Neuroticism (N1 to N5), and Openness (N1
to N5). The items were short phrases that the respondent should answer by indicating how accu-
rately the statement describes their typical behaviour or attitude. Responses were collected using a
6-point scale: 1 - Very inaccurate, 2 - Moderately inaccurate, 3 - Slightly inaccurate, 4 - Slightly
accurate, 5 - Moderately accurate, 6 - Very accurate. The data set includes the jamovi-attributes.
It is supposed to result in an identical file compared to the bfi_sample2.omv-file contained in the
extdata-directory of the package when written with write_omv.

Usage

bfi_sample3

bfi_sample3 9

Format

A data.frame with 250 rows and 28 variables

ID Respondent ID

A1 Am indifferent to the feelings of others. (reversed)

A2 Inquire about others’ well-being.

A3 Know how to comfort others.

A4 Love children.

A5 Make people feel at ease.

C1 Am exacting in my work.

C2 Continue until everything is perfect.

C3 Do things according to a plan.

C4 Do things in a half-way manner. (reversed)

C5 Waste my time. (reversed)

E1 Don’t talk a lot. (reversed)

E2 Find it difficult to approach others. (reversed)

E3 Know how to captivate people.

E4 Make friends easily.

E5 Take charge.

N1 Get angry easily.

N2 Get irritated easily.

N3 Have frequent mood swings.

N4 Often feel blue.

N5 Panic easily.

O1 Am full of ideas.

O2 Avoid difficult reading material. (reversed)

O3 Carry the conversation to a higher level.

O4 Spend time reflecting on things.

O5 Will not probe deeply into a subject. (reversed)

gender Gender of the respondent (Females, Males)

age Age of the respondent (years)

10 combine_cols_omv

combine_cols_omv Combines pairs of columns from a raw data matrix in .omv-files for
the statistical spreadsheet ’jamovi’ (https://www.jamovi.org)

Description

Combines pairs of columns from a raw data matrix in .omv-files for the statistical spreadsheet
’jamovi’ (https://www.jamovi.org)

Usage

combine_cols_omv(
dtaInp = NULL,
fleOut = "",
varPrs = list(),
mdeCmb = c("none", "first", "second"),
psvAnl = FALSE,
usePkg = c("foreign", "haven"),
selSet = "",
...

)

Arguments

dtaInp Either a data frame or the name of a data file to be read (including the path, if
required; "FILENAME.ext"; default: NULL); files can be of any supported file
type, see Details below.

fleOut Name of the data file to be written (including the path, if required; "FILE_OUT.omv";
default: ""); if empty, the resulting data frame is returned instead.

varPrs Definition of variable pairs; a list containing either list(s) or character vector(s)
with the names of pairs of variables to be combined (default: list()).

mdeCmb Mode of combining the variables when conflicting values occur, either "none",
"first", or "second" (default: "none"), see Details below.

psvAnl Whether analyses that are contained in the input file shall be transferred to the
output file (TRUE / FALSE; default: FALSE)

usePkg Name of the package: "foreign" or "haven" that shall be used to read SPSS,
Stata, and SAS files; "foreign" is the default (it comes with base R), but "haven"
is newer and more comprehensive.

selSet Name of the data set that is to be selected from the workspace (only applies
when reading .RData-files)

... Additional arguments passed on to methods; see Details below.

https://www.jamovi.org
https://www.jamovi.org

combine_cols_omv 11

Details

• The need to combine two columns into one is quite common after merging columns or rows
(using, e.g., merge_cols_omv or merge_rows_omv). varPrs defines the variable pairs to
be combined. It is a list containing the pairs of variables to be combined, either as list or
as character vector; e.g., list(c("A", "B"), c("C", "D")) or list(list("A", "B"), list("C", "D")).
mdeCmb defines what to to if values in the first and the second variable of a variable pair
contain conflicting / different values: "none" does not merge the variables (and instead throws
an error), "first" makes that the values from the first variable of each pair are taken if the values
are conflicting, and "second" use the values from the second variable of each pair in case of
conflicts.

• The ellipsis-parameter (...) can be used to submit arguments / parameters to the functions
that are used for reading and writing the data. By clicking on the respective function un-
der “See also”, you can get a more detailed overview over which parameters each of those
functions take. The functions are: read_omv and write_omv (for jamovi-files), read.table
(for CSV / TSV files; using similar defaults as read.csv for CSV and read.delim for TSV
which both are based upon read.table), load (for .RData-files), readRDS (for .rds-files),
read_sav (needs the R-package haven) or read.spss (needs the R-package foreign) for
SPSS-files, read_dta (haven) / read.dta (foreign) for Stata-files, read_sas (haven) for
SAS-data-files, and read_xpt (haven) / read.xport (foreign) for SAS-transport-files. If
you would like to use haven, you may need to install it using install.packages("haven",
dep = TRUE).

Value

a data frame containing the column pairs given in varPrs combined and the original columns re-
moved

See Also

combine_cols_omv uses the following functions for reading and writing data files in different for-
mats: read_omv() and write_omv() for jamovi-files, utils::read.table() for CSV / TSV files,
load() for reading .RData-files, readRDS() for .rds-files, haven::read_sav() or foreign::read.spss()
for SPSS-files, haven::read_dta() or foreign::read.dta() for Stata-files, haven::read_sas()
for SAS-data-files, and haven::read_xpt() or foreign::read.xport() for SAS-transport-files.

Examples

Not run:
dtaInp <- jmvReadWrite::bfi_sample2
create a new column (A1_1) containing a subset of the values in the original variable
whereas those lines are replaced with NAs
set.seed(1)
selRow <- rnorm(nrow(dtaInp)) < 0
dtaInp[selRow, "A1_1"] <- dtaInp[selRow, "A1"]
dtaInp[selRow, "A1"] <- NA
head(dtaInp[, c("A1", "A1_1")])
dtaOut <- combine_cols_omv(dtaInp, varPrs = list(c("A1", "A1_1")))
show the differences before and after combining the values in the columns and ensure
that all values are the same as in the original data set

12 convert_to_omv

dtaInp[, "A1"]
dtaOut[, "A1"]
all(dtaOut[, "A1"] == jmvReadWrite::bfi_sample2[, "A1"])

create a new column, containing values that are different from the original variable
dtaInp <- jmvReadWrite::bfi_sample2
dtaInp[selRow, "A1_1"] <- dtaInp[selRow, "A1"] + 1
[1] if mdeCmb is "none" (or if mdeCmb is not given - "none" is the default) an error would be
thrown (therefore the next line is commented out)
dtaOut <- combine_cols_omv(dtaInp, varPrs = list(c("A1", "A1_1")), mdeCmb = "none")
[2] if mdeCmb is "first", missing values are replaced and values from the first column ("A1")
take precedence if the values are unequal
dtaOut <- combine_cols_omv(dtaInp, varPrs = list(c("A1", "A1_1")), mdeCmb = "first")
head(cbind(dtaOut[, "A1"], dtaInp[, c("A1", "A1_1")]))
[3] if mdeCmb is "second", missing values are replaced and values from the second column
("A1_1") take precedence if the values are unequal
dtaOut <- combine_cols_omv(dtaInp, varPrs = list(c("A1", "A1_1")), mdeCmb = "second")
head(cbind(dtaOut[, "A1"], dtaInp[, c("A1", "A1_1")]))

End(Not run)

convert_to_omv Convert data files (CSV, R, other statistics packages) into .omv-files
for the statistical spreadsheet ’jamovi’ (https://www.jamovi.org)

Description

Convert data files (CSV, R, other statistics packages) into .omv-files for the statistical spreadsheet
’jamovi’ (https://www.jamovi.org)

Usage

convert_to_omv(
fleInp = "",
fleOut = "",
varSrt = c(),
usePkg = c("foreign", "haven"),
selSet = "",
...

)

Arguments

fleInp Name (including the path, if required) of the data file to be read ("FILENAME.ext";
default: ""); supports CSV and R-files natively, or other file types if "foreign" or
"haven" are installed, see Details below

https://www.jamovi.org
https://www.jamovi.org

convert_to_omv 13

fleOut Name (including the path, if required) of the data file to be written ("FILE-
NAME.omv"; default: ""); if empty, the extension of fleInp is replaced with
".omv"

varSrt Variable(s) that are used to sort the data frame (see Details; if empty, the row
order of the input file is kept; default: c())

usePkg Name of the package: "foreign" or "haven" that shall be used to read SPSS,
Stata and SAS files; "foreign" is the default (it comes with base R), but "haven"
is newer and more comprehensive

selSet Name of the data set that is to be selected from the workspace (only applies
when reading .RData-files)

... Additional arguments passed on to methods; see Details below

Details

• In difference to the remaining helper functions, convert_to_omv doesn’t accept a data frame
as input and it neither does return a data frame if fleOut is left empty: If you want to write
a data frame, use write_omv. If you want to have a data frame returned use read_omv for
jamovi-files or any of the functions listed in the bullet point below for any other file type.

• varSrt can be either a character or a character vector (with one or more variables respec-
tively). The sorting order for a particular variable can be inverted with preceding the variable
name with "-". Please note that this doesn’t make sense and hence throws a warning for certain
variable types (e.g., factors).

• The ellipsis-parameter (...) can be used to submit arguments / parameters to the functions
that are used for reading and writing the data. By clicking on the respective function un-
der “See also”, you can get a more detailed overview over which parameters each of those
functions take. The functions are: read_omv and write_omv (for jamovi-files), read.table
(for CSV / TSV files; using similar defaults as read.csv for CSV and read.delim for TSV
which both are based upon read.table), load (for .RData-files), readRDS (for .rds-files),
read_sav (needs the R-package haven) or read.spss (needs the R-package foreign) for
SPSS-files, read_dta (haven) / read.dta (foreign) for Stata-files, read_sas (haven) for
SAS-data-files, and read_xpt (haven) / read.xport (foreign) for SAS-transport-files. If
you would like to use haven, you may need to install it using install.packages("haven",
dep = TRUE).

Value

the function doesn’t have a return value (it returns NULL)

See Also

convert_to_omv internally uses the following functions for reading and writing data files in dif-
ferent formats: read_omv() and write_omv() for jamovi-files, utils::read.table() for CSV
/ TSV files, load() for reading .RData-files, readRDS() for .rds-files, haven::read_sav() or
foreign::read.spss() for SPSS-files, haven::read_dta() or foreign::read.dta() for Stata-
files, haven::read_sas() for SAS-data-files, and haven::read_xpt() or foreign::read.xport()
for SAS-transport-files.

14 describe_omv

Examples

Not run:
Example 1: Convert from RDS
(use ToothGrowth as example, save it as RDS)
nmeInp <- tempfile(fileext = ".rds")
nmeOut <- tempfile(fileext = ".omv")
saveRDS(jmvReadWrite::ToothGrowth, nmeInp)
jmvReadWrite::convert_to_omv(fleInp = nmeInp, fleOut = nmeOut)
cat(list.files(dirname(nmeOut), basename(nmeOut)))
-> "file[...].omv" ([...] contains a random combination of numbers / characters
cat(file.info(nmeOut)$size)
-> 2448 (size may differ on different OSes)
cat(str(jmvReadWrite::read_omv(nmeOut, sveAtt = FALSE)))
gives a overview of the dataframe (all columns and some attributes,
sveAtt is intentionally set to FALSE to make the output not too overwhelming)
unlink(nmeInp)
unlink(nmeOut)

Example 2: Convert from CSV
(use ToothGrowth again as example, this time save it as CSV)
nmeInp <- tempfile(fileext = ".csv")
nmeOut <- tempfile(fileext = ".omv")
write.csv(jmvReadWrite::ToothGrowth, nmeInp)
jmvReadWrite::convert_to_omv(fleInp = nmeInp, fleOut = nmeOut)
cat(list.files(dirname(nmeOut), basename(nmeOut)))
cat(file.info(nmeOut)$size)
-> 2104 (size may differ acc. to OS; the size is smaller than for the RDS-file
because CSV can store fewer attributes, e.g., labels)
cat(str(jmvReadWrite::read_omv(nmeOut, sveAtt = FALSE)))
gives a overview of the dataframe (all columns and some attributes)
unlink(nmeInp)
unlink(nmeOut)

End(Not run)

describe_omv Adds a title and a description for a data set stored as .omv-file for the
statistical spreadsheet ’jamovi’ (https://www.jamovi.org)

Description

Adds a title and a description for a data set stored as .omv-file for the statistical spreadsheet ’jamovi’
(https://www.jamovi.org)

Usage

describe_omv(
dtaInp = NULL,

https://www.jamovi.org
https://www.jamovi.org

describe_omv 15

fleOut = "",
dtaTtl = c(),
dtaDsc = c(),
usePkg = c("foreign", "haven"),
selSet = "",
...

)

Arguments

dtaInp Either a data frame or the name of a data file to be read (including the path, if
required; "FILENAME.ext"; default: NULL); files can be of any supported file
type, see Details below

fleOut Name of the data file to be written (including the path, if required; "FILE_OUT.omv";
default: ""); if empty, the resulting data frame is returned instead

dtaTtl Character vector with a title to be added to the data set (see Details; default: "")

dtaDsc Description of the data set, either as character vector (HTML-formatted) or as
named list with the entries "description", "variables", "references", and "license"
(see Details; default: "")

usePkg Name of the package: "foreign" or "haven" that shall be used to read SPSS,
Stata and SAS files; "foreign" is the default (it comes with base R), but "haven"
is newer and more comprehensive

selSet Name of the data set that is to be selected from the workspace (only applies
when reading .RData-files)

... Additional arguments passed on to methods; see Details below

Details

• The aim of this function is to add a title and a data set description to jamovi data files. Two
typical use cases would be (1) to help creating data sets to be used in teaching (i.e., either
creating or using data sets in R, and afterwards adding a description to those), and (2) to
provide ”properly described“ data when publishing in a repository such as the OSF).

• NB: The data set should not contain any existing analyses. These will be overwritten (a warn-
ing is issued informing you about that).

• dtaTtl is a title for the dataset (at the top of the results output, i.e., that title which initially is
“Results” when you create a new data set in jamovi).

• dtaDsc can either be a character vector (with length = 1) containing HTML-formatted text
that describes the data set (see chrDsc in the examples for HTML tags that are currently
implemented; putting “unformatted” text is not a problem, but then the result is just plain text
without formatting). Alternatively, dtaDcs can be a named list with the entries description,
variables, references, license. All entries except from variables contain character
vectors (length = 1); variables shall be a named list with the variable name as name and a
description what the variable contains as entry. description and variables must be given,
references and license can be left blank (""; but the names must be present in the list). An
example for both a named list with a description (lstDsc), as well as a character vector with
all HTML tags that are implemented (chrDsc) can be found in the examples below.

16 describe_omv

• The ellipsis-parameter (...) can be used to submit arguments / parameters to the functions
that are used for reading and writing the data. By clicking on the respective function un-
der “See also”, you can get a more detailed overview over which parameters each of those
functions take. The functions are: read_omv and write_omv (for jamovi-files), read.table
(for CSV / TSV files; using similar defaults as read.csv for CSV and read.delim for TSV
which both are based upon read.table), load (for .RData-files), readRDS (for .rds-files),
read_sav (needs the R-package haven) or read.spss (needs the R-package foreign) for
SPSS-files, read_dta (haven) / read.dta (foreign) for Stata-files, read_sas (haven) for
SAS-data-files, and read_xpt (haven) / read.xport (foreign) for SAS-transport-files. If
you would like to use haven, you may need to install it using install.packages("haven",
dep = TRUE).

Value

a data frame (only returned if fleOut is empty) where the order of variables / columns of the input
data set is re-arranged

See Also

describe_omv internally uses the following functions for reading and writing data files in dif-
ferent formats: read_omv() and write_omv() for jamovi-files, utils::read.table() for CSV
/ TSV files, load() for reading .RData-files, readRDS() for .rds-files, haven::read_sav() or
foreign::read.spss() for SPSS-files, haven::read_dta() or foreign::read.dta() for Stata-
files, haven::read_sas() for SAS-data-files, and haven::read_xpt() or foreign::read.xport()
for SAS-transport-files.

Examples

Not run:
dtaFrm <- jmvReadWrite::ToothGrowth[, c("len", "supp", "dose")]
nmeOut <- tempfile(fileext = ".omv")

the paste's underneath are only for readability (without them, the vignettes are misformatted)
lstDsc <- list(description = paste("The response is the length of odontoblasts (cells responsible",

"for tooth growth) in 60 guinea pigs. Each animal received one",
"of three dose levels of vitamin C (0.5, 1, and 2 mg / day) by",
"one of two delivery methods, orange juice or ascorbic acid (a",

"form of vitamin C and coded as VC)."),
variables = list(len = "Tooth length",

supp = "Supplement type (VC or OJ)",
dose = "Dose (in milligrams / day"),

references = paste("Crampton, E. W. (1947). The growth of the odontoblast of the",
"incisor teeth as a criterion of vitamin C intake of the guinea",

"pig. The Journal of Nutrition, 33(5), 491-504.",
"https://doi.org/10.1093/jn/33.5.491"),

license = "")
jmvReadWrite::describe_omv(dtaInp = dtaFrm, fleOut = nmeOut, dtaTtl = "ToothGrowth",

dtaDsc = lstDsc)
don't include the unlink, if you copy the code and want to look at the resulting output file
unlink(nmeOut)

distances_omv 17

the code underneath should cover all formatting options jamovi is able to use (paste0 is only
for readability)
chrDsc <- paste0("<p>Trial – all formattings:
bold
",

"bold, italics
italics
<u>underlined",
"</u>
link:https://",
"jamovi.org
<s>strikethrough</s>
C₂H₅",

"OH
R²
background ",
"colour: red
foreground color: red",
"</p><p class=\"ql-align-center\">centered</p><p class=\"ql-align-right\">",
"right</p><p class=\"ql-align-justify\">justify justify justify justify justify ",
"justify justify justify justify justify justify justify justify justify justify ",
"justify justify justify justify justify justify justify justify justify justify",
"</p><p>
</p>numbered listnumbered list<p>
",
"</p>bullet pointbullet point<p class=\"ql-indent-1\">",

"indented once</p><p class=\"ql-indent-2\">indented twice</p><p ",
"class=\"ql-indent-1\">indented once</p><p>Formula: ",
"e=mc^2</p><pre>Preformatted</pre><p>normal again</p><h2>Heading</h2>")

jmvReadWrite::describe_omv(dtaInp = dtaFrm, fleOut = nmeOut, dtaTtl = "ToothGrowth",
dtaDsc = chrDsc)

unlink(nmeOut)

End(Not run)

distances_omv Calculates distances (returning a symmetric matrix) from a raw data
matrix in .omv-files for the statistical spreadsheet ’jamovi’ (https:
//www.jamovi.org)

Description

Calculates distances (returning a symmetric matrix) from a raw data matrix in .omv-files for the
statistical spreadsheet ’jamovi’ (https://www.jamovi.org)

Usage

distances_omv(
dtaInp = NULL,
fleOut = "",
varDst = c(),
clmDst = TRUE,
stdDst = "none",
nmeDst = "euclid",
mtxSps = FALSE,
mtxTrL = FALSE,
mtxDgn = TRUE,
usePkg = c("foreign", "haven"),
selSet = "",
...

)

https://www.jamovi.org
https://www.jamovi.org
https://www.jamovi.org

18 distances_omv

Arguments

dtaInp Either a data frame or the name of a data file to be read (including the path, if
required; "FILENAME.ext"; default: NULL); files can be of any supported file
type, see Details below.

fleOut Name of the data file to be written (including the path, if required; "FILE_OUT.omv";
default: ""); if empty, the resulting data frame is returned instead.

varDst Variable (default: c()) containing a character vector with the names of the vari-
ables for which distances are to be calculated. See Details for more information.

clmDst Whether the distances shall be calculated between columns (TRUE) or rows
(FALSE; default: TRUE). See Details for more information.

stdDst Character string indicating whether the variables in varDst are to be standardized
and how (default: "none"). See Details for more information.

nmeDst Character string indicating which distance measure is to be calculated calculated
(default: "euclidean"). See Details for more information.

mtxSps Whether the symmetric matrix to be returned should be sparse (default: FALSE)

mtxTrL Whether the symmetric matrix to be returned should only contain the lower
triangular (default: FALSE)

mtxDgn Whether the symmetric matrix to be returned should retain the values in the
main diagonal (default: TRUE)

usePkg Name of the package: "foreign" or "haven" that shall be used to read SPSS,
Stata, and SAS files; "foreign" is the default (it comes with base R), but "haven"
is newer and more comprehensive.

selSet Name of the data set that is to be selected from the workspace (only applies
when reading .RData-files)

... Additional arguments passed on to methods; see Details below.

Details

• varDst must a character vector containing the variables to calculated distances over. If clmDst
is set to TRUE, distances are calculated between all possible variable pairs and over subjects
/ rows in the original data frame. If clmDst is set to FALSE, distances are calculated between
participants and over all variables given in varDst. If clmDst is set to TRUE, the symmetric
matrix that is returned has the size V x V (V being the number of variables in varDst; if mtxSps
is set to TRUE, the size is V - 1 x V - 1, see below); if clmDst is set to FALSE, the symmetric
matrix that is returned has the size R x R (R being the number of rows in the original dataset;
it is if mtxSps is set to TRUE, the size is R - 1 x R - 1, see below).

• stdDst can be one of the following calculations to standardize the selected variables before
calculating the distances: none (do not standardize; default), z (z scores), sd (divide by the
std. dev.), range (divide by the range), max (divide by the absolute maximum), mean (divide
by the mean), rescale (subtract the mean and divide by the range).

• nmeDst can be one of the following distance measures. (1) For interval data: euclid (Eu-
clidean), seuclid (squared Euclidean), block (city block / Manhattan), canberra (Canberra).
chebychev (maximum distance / supremum norm / Chebychev), minkowski_p (Minkowski
with power p; NB: needs p), power_p_r (Minkowski with power p, and the r-th root; NB:

distances_omv 19

needs p and r), cosine (cosine between the two vectors), correlation (correlation between
the two vectors). (2) For frequency count data: chisq (chi-square dissimilarity between two
sets of frequencies), ph2 (chi-square dissimilarity normalized by the square root of the num-
ber of values used in the calculation). (3) For binary data, all measure have to optional parts
p and np which indicate presence (p; defaults to 1 if not given) or absence (np; defaults to
zero if not given). (a) matching coefficients: rr_p_np (Russell and Rao), sm_p_np (simple
matching), jaccard_p_np / jaccards_p_np (Jaccard similarity; as in SPSS), jaccardd_p_np
(Jaccard dissimiliarity; as in dist(..., "binary") in R), dice_p_np (Dice or Czekanowski
or Sorenson similarity), ss1_p_np (Sokal and Sneath measure 1), rt_p_np (Rogers and Tani-
moto), ss2_p_np (Sokal and Sneath measure 2), k1_p_np (Kulczynski measure 1), ss3_p_np
(Sokal and Sneath measure 3). (b) conditional probabilities: k2_p_np (Kulczynski mea-
sure 2), ss4_p_np (Sokal and Sneath measure 4), hamann_p_np (Hamann). (c) predictability
measures: lambda_p_np (Goodman and Kruskal Lambda), d_p_np (Anderberg’s D), y_p_np
(Yule’s Y coefficient of colligation), q_p_np (Yule’s Q). (d) other measures: ochiai_p_np
(Ochiai), ss5_p_np (Sokal and Sneath measure 5), phi_p_np (fourfold point correlation),
beuclid_p_np (binary Euclidean distance), bseuclid_p_np (binary squared Euclidean dis-
tance), size_p_np (size difference), pattern_p_np (pattern difference), bshape_p_np (bi-
nary Shape difference), disper_p_np (dispersion similarity), variance_p_np (variance dis-
similarity), blwmn_p_np (binary Lance and Williams non-metric dissimilarity). (4) none (only
carry out standardization, if stdDst is different from none).

• If mtxSps is set, a sparse matrix is returned. Those matrices are similar to the format one
often finds for correlation matrices. The values are only retained in the lower triangular, the
columns range from the first to the variable that is second to the last in varDst (or respectively,
the columns contain the first to the second to the last row of the original dataset when clmDst
is set to FALSE), and the rows contain the second to the last variable in varDst (or respectively,
the rows contain the second to the last row of the original dataset when clmDst is set to FALSE).

• By default, a full symmetric matrix is returned (i.e., a matrix that has no NAs in any cell).
This behaviour can be changed with setting mtxTrL and mtxDgn: If mtxTrL is set to TRUE, the
values from the upper triangular matrix are removed / replaced with NAs; if mtxDgn is set to
FALSE, the values from the main diagonal are removed / replaced with NAs.

• The ellipsis-parameter (...) can be used to submit arguments / parameters to the functions
that are used for reading and writing the data. By clicking on the respective function un-
der “See also”, you can get a more detailed overview over which parameters each of those
functions take. The functions are: read_omv and write_omv (for jamovi-files), read.table
(for CSV / TSV files; using similar defaults as read.csv for CSV and read.delim for TSV
which both are based upon read.table), load (for .RData-files), readRDS (for .rds-files),
read_sav (needs the R-package haven) or read.spss (needs the R-package foreign) for
SPSS-files, read_dta (haven) / read.dta (foreign) for Stata-files, read_sas (haven) for
SAS-data-files, and read_xpt (haven) / read.xport (foreign) for SAS-transport-files. If
you would like to use haven, you may need to install it using install.packages("haven",
dep = TRUE).

Value

a data frame containing a symmetric matrix (only returned if fleOut is empty) containing the
distances between the variables / columns (clmDst == TRUE) or rows (clmDst == FALSE)

20 distances_omv

See Also

distances_omv internally uses the following function for calculating the distances for interval data
stats::dist(). It furthermore uses the following functions for reading and writing data files
in different formats: read_omv() and write_omv() for jamovi-files, utils::read.table() for
CSV / TSV files, load() for reading .RData-files, readRDS() for .rds-files, haven::read_sav() or
foreign::read.spss() for SPSS-files, haven::read_dta() or foreign::read.dta() for Stata-
files, haven::read_sas() for SAS-data-files, and haven::read_xpt() or foreign::read.xport()
for SAS-transport-files.

Examples

Not run:
create matrices for the different types of distance measures: continuous
(cntFrm), frequency counts (frqFrm) or binary (binFrm); all 20 R x 5 C
set.seed(1)
cntFrm <- stats::setNames(as.data.frame(matrix(rnorm(100, sd = 10),

ncol = 5)), sprintf("C_%02d", seq(5)))
frqFrm <- stats::setNames(as.data.frame(matrix(sample(seq(10), 100,

replace = TRUE), ncol = 5)), sprintf("F_%02d", seq(5)))
binFrm <- stats::setNames(as.data.frame(matrix(sample(c(TRUE, FALSE), 100,

replace = TRUE), ncol = 5)), sprintf("B_%02d", seq(5)))
nmeOut <- tempfile(fileext = ".omv")

calculates the distances between columns, nmeDst is not required: "euclid"
is the default
jmvReadWrite::distances_omv(dtaInp = cntFrm, fleOut = nmeOut, varDst =

names(cntFrm), nmeDst = "euclid")
dtaFrm <- jmvReadWrite::read_omv(nmeOut)
unlink(nmeOut)
the resulting matrix (10 x 10) with the Euclidian distances
print(dtaFrm)

calculates the (Euclidean) distances between rows (clmDst = FALSE)
jmvReadWrite::distances_omv(dtaInp = cntFrm, fleOut = nmeOut, varDst =

names(cntFrm), clmDst = FALSE, nmeDst = "euclid")
dtaFrm <- jmvReadWrite::read_omv(nmeOut)
unlink(nmeOut)
the resulting matrix (20 x 20) with the Euclidian distances
print(dtaFrm)

calculates the (Euclidean) distances between columns; the original data
are z-standardized before calculating the distances (stdDst = "z")
jmvReadWrite::distances_omv(dtaInp = cntFrm, fleOut = nmeOut, varDst =

names(cntFrm), stdDst = "z", nmeDst = "euclid")
dtaFrm <- jmvReadWrite::read_omv(nmeOut)
unlink(nmeOut)
the resulting matrix (10 x 10) with the Euclidian distances using the
z-standardized data
print(dtaFrm)

calculates the correlations between columns

label_vars_omv 21

jmvReadWrite::distances_omv(dtaInp = cntFrm, fleOut = nmeOut, varDst =
names(cntFrm), nmeDst = "correlation")

dtaFrm <- jmvReadWrite::read_omv(nmeOut)
unlink(nmeOut)
the resulting matrix (10 x 10) with the correlations
print(dtaFrm)

calculates the chi-square dissimilarity (nmeDst = "chisq") between columns
jmvReadWrite::distances_omv(dtaInp = frqFrm, fleOut = nmeOut, varDst =

names(frqFrm), nmeDst = "chisq")
dtaFrm <- jmvReadWrite::read_omv(nmeOut)
unlink(nmeOut)
the resulting matrix (10 x 10) with the chi-square dissimilarities
print(dtaFrm)

calculates the Jaccard similarity (nmeDst = "jaccard") between columns
jmvReadWrite::distances_omv(dtaInp = binFrm, fleOut = nmeOut, varDst =

names(binFrm), nmeDst = "jaccard")
dtaFrm <- jmvReadWrite::read_omv(nmeOut)
unlink(nmeOut)
the resulting matrix (10 x 10) with the Jaccard similarities
print(dtaFrm)

End(Not run)

label_vars_omv Label columns / variables in .omv-files for the statistical spreadsheet
’jamovi’ (https://www.jamovi.org)

Description

Label columns / variables in .omv-files for the statistical spreadsheet ’jamovi’ (https://www.
jamovi.org)

Usage

label_vars_omv(
dtaInp = NULL,
fleOut = "",
varLbl = NULL,
psvAnl = FALSE,
usePkg = c("foreign", "haven"),
selSet = "",
...

)

https://www.jamovi.org
https://www.jamovi.org
https://www.jamovi.org

22 label_vars_omv

Arguments

dtaInp Either a data frame or the name of a data file to be read (including the path, if
required; "FILENAME.ext"; default: NULL); files can be of any supported file
type, see Details below

fleOut Name of the data file to be written (including the path, if required; "FILE_OUT.omv";
default: ""); if empty, the resulting data frame is returned instead

varLbl Variable (default: NULL) containing either a character (a file name; the file
must contain two columns one with variable names, the other with the labels), a
data frame (one column the variable names, the other the labels), or a character
vector (with the same length as the data set, containing the variable labels). See
Details for more information.

psvAnl Whether analyses that are contained in the input file shall be transferred to the
output file (default: FALSE)

usePkg Name of the package: "foreign" or "haven" that shall be used to read SPSS,
Stata and SAS files; "foreign" is the default (it comes with base R), but "haven"
is newer and more comprehensive

selSet Name of the data set that is to be selected from the workspace (only applies
when reading .RData-files)

... Additional arguments passed on to methods; see Details below

Details

• varLbl can be either (1) a character with a file name to read (the file must contain to columns,
one with the variable names, the other with the variable labels); (2) a data frame with two
columns (one with the variable names, the other with the variable labels), or (3) a character
vector containing the variable labels (with a length equal to the number of variables in the
input data set).

• The ellipsis-parameter (...) can be used to submit arguments / parameters to the functions
that are used for reading and writing the data. By clicking on the respective function un-
der “See also”, you can get a more detailed overview over which parameters each of those
functions take. The functions are: read_omv and write_omv (for jamovi-files), read.table
(for CSV / TSV files; using similar defaults as read.csv for CSV and read.delim for TSV
which both are based upon read.table), load (for .RData-files), readRDS (for .rds-files),
read_sav (needs the R-package haven) or read.spss (needs the R-package foreign) for
SPSS-files, read_dta (haven) / read.dta (foreign) for Stata-files, read_sas (haven) for
SAS-data-files, and read_xpt (haven) / read.xport (foreign) for SAS-transport-files. If
you would like to use haven, you may need to install it using install.packages("haven",
dep = TRUE).

Value

a data frame (only returned if fleOut is empty) where the order of variables / columns of the input
data set is re-arranged

long2wide_omv 23

See Also

label_vars_omv internally uses the following functions for reading and writing data files in dif-
ferent formats: read_omv() and write_omv() for jamovi-files, utils::read.table() for CSV
/ TSV files, load() for reading .RData-files, readRDS() for .rds-files, haven::read_sav() or
foreign::read.spss() for SPSS-files, haven::read_dta() or foreign::read.dta() for Stata-
files, haven::read_sas() for SAS-data-files, and haven::read_xpt() or foreign::read.xport()
for SAS-transport-files.

Examples

Not run:
use one of the data files included in the package, but only the first 28 columns
(the latter columns contain data for testing calculations, etc.)
nmeInp <- system.file("extdata", "bfi_sample.omv", package = "jmvReadWrite")
dtaInp <- jmvReadWrite::read_omv(nmeInp)[1:28]
nmeOut <- tempfile(fileext = ".omv")
in the original file, the variable labels – attr(*, "jmv-desc") - are empty
lapply(dtaInp, attr, "jmv-desc")
the definition of the variable labels can be read from a file with two columns,
the first containing the variable name, the second the variable labels
you can easily create such a file in Excel and save it as CSV
if your CSV contains column names (e.g., varNme and varLbl) in the first row are they ignored
lblFle <- system.file("extdata", "label_example.csv", package = "jmvReadWrite")
lblDtF <- utils::read.csv(lblFle, header = FALSE)
str(lblDtF)

there are three options to give the varLbl parameter:
(1) as file name, ...
jmvReadWrite::label_vars_omv(dtaInp = dtaInp, fleOut = nmeOut, varLbl = lblFle)
lapply(jmvReadWrite::read_omv(nmeOut), attr, "jmv-desc")
unlink(nmeOut)

(2) as data frame (using lblDtF from above), or ...
jmvReadWrite::label_vars_omv(dtaInp = dtaInp, fleOut = nmeOut, varLbl = lblDtF)
lapply(jmvReadWrite::read_omv(nmeOut), attr, "jmv-desc")
unlink(nmeOut)

(3) as character vector (with the same length as there are columns in the input data set)
lblChr <- lblDtF[[2]]
head(lblChr)
jmvReadWrite::label_vars_omv(dtaInp = dtaInp, fleOut = nmeOut, varLbl = lblChr)
lapply(jmvReadWrite::read_omv(nmeOut), attr, "jmv-desc")
unlink(nmeOut)

End(Not run)

long2wide_omv Converts .omv-files for the statistical spreadsheet ’jamovi’ (https:
//www.jamovi.org) from long to wide format

https://www.jamovi.org
https://www.jamovi.org

24 long2wide_omv

Description

Converts .omv-files for the statistical spreadsheet ’jamovi’ (https://www.jamovi.org) from long
to wide format

Usage

long2wide_omv(
dtaInp = NULL,
fleOut = "",
varTgt = c(),
varExc = c(),
varID = "ID",
varTme = c(),
varSep = "_",
varOrd = c("times", "vars"),
varAgg = c("mean", "first"),
varSrt = c(),
usePkg = c("foreign", "haven"),
selSet = "",
...

)

Arguments

dtaInp Either a data frame or the name of a data file to be read (including the path, if
required; "FILENAME.ext"; default: NULL); files can be of any supported file
type, see Details below

fleOut Name of the data file to be written (including the path, if required; "FILE_OUT.omv";
default: ""); if empty, the resulting data frame is returned instead

varTgt Names of one or more variables to be transformed / reshaped (other variables
are excluded, if empty(c()) all variables except varTme, varID and varExc are
included; default: c())

varExc Name of the variable(s) should be excluded from the transformation, typically
this will be between-subject-variable(s) (default: c())

varID Names of one or more variables that identify the same group / individual (de-
fault: c())

varTme Name of the variable(s) that differentiates multiple records from the same group
/ individual (default: c())

varSep Separator character when concatenating the fixed and time-varying part of the
variable name ("VAR1_1", "VAR1_2"; default: "_")

varOrd How variables / columns are organized: for "times" (default) the steps of the
time varying variable are adjacent, for "vars" the steps of the original columns
in the long dataset

varAgg How multiple occurrences of particular combinations of time varying variables
are aggregated: either "mean" (calculate the mean over occurrences), or "first"
(take the first occurrence)

https://www.jamovi.org

long2wide_omv 25

varSrt Variable(s) that are used to sort the data frame (see Details; if empty, the order
returned from reshape is kept; default: c())

usePkg Name of the package: "foreign" or "haven" that shall be used to read SPSS,
Stata and SAS files; "foreign" is the default (it comes with base R), but "haven"
is newer and more comprehensive

selSet Name of the data set that is to be selected from the workspace (only applies
when reading .RData-files)

... Additional arguments passed on to methods; see Details below

Details

• If varTgt is empty, it is tried to generate it using all variables in the data frame except those
defined by varID, varTme and varExc. The variable(s) in varID need to be unique identifiers
(in the original dataset), those in varExc don’t have this requirement. It is generally recom-
mended that the variable names in varExc and varID should not contain the variable separator
(defined in varSep; default: "_").

• varSrt can be either a character or a character vector (with one or more variables respec-
tively). The sorting order for a particular variable can be inverted with preceding the variable
name with "-". Please note that this doesn’t make sense and hence throws a warning for certain
variable types (e.g., factors).

• The ellipsis-parameter (...) can be used to submit arguments / parameters to the functions
that are used for transforming, reading or writing the data. By clicking on the respective
function under “See also”, you can get a more detailed overview over which parameters each
of those functions take.

• The transformation from long to wide uses reshape. varTgt matches (~) v.names in reshape,
varID ~ idvar, varTme ~ timevar, and varSep ~ sep. The help for reshape is very ex-
planatory, click on the link under “See also” to access it, particularly what is explained under
“Details”.

• The functions for reading and writing the data are: read_omv and write_omv (for jamovi-
files), read.table (for CSV / TSV files; using similar defaults as read.csv for CSV and
read.delim for TSV which both are based upon read.table), load (for .RData-files), readRDS
(for .rds-files), read_sav (needs R-package haven) or read.spss (needs R-package foreign)
for SPSS-files, read_dta (haven) / read.dta (foreign) for Stata-files, read_sas (haven) for
SAS-data-files, and read_xpt (haven) / read.xport (foreign) for SAS-transport-files. If
you would like to use haven, you may need to install it using install.packages("haven",
dep = TRUE).

Value

a data frame (only returned if fleOut is empty) where the input data set is converted from long to
wide format

See Also

long2wide_omv internally uses the following functions: The transformation from long to wide
uses stats::reshape(). For reading and writing data files in different formats: read_omv()

26 long2wide_omv

and write_omv() for jamovi-files, utils::read.table() for CSV / TSV files, load() for read-
ing .RData-files, readRDS() for .rds-files, haven::read_sav() or foreign::read.spss() for
SPSS-files, haven::read_dta() or foreign::read.dta() for Stata-files, haven::read_sas()
for SAS-data-files, and haven::read_xpt() or foreign::read.xport() for SAS-transport-files.

Examples

Not run:
generate a test dataframe with 100 (imaginary) participants / units of
observation (ID), 8 measurement (measure) of one variable (X)
dtaInp <- data.frame(ID = rep(as.character(seq(1, 100)), each = 8),

measure = rep(seq(1, 8), times = 100),
X = runif(800, -10, 10))

cat(str(dtaInp))
the output should look like this
'data.frame': 800 obs. of 3 variables:
$ ID : chr "1" "1" "1" "1" ...
$ measure: int 1 2 3 4 5 6 7 8 1 2 ...
$ X : num ...
this data set is stored as (temporary) RDS-file and later processed by long2wide
nmeInp <- tempfile(fileext = ".rds")
nmeOut <- tempfile(fileext = ".omv")
saveRDS(dtaInp, nmeInp)
jmvReadWrite::long2wide_omv(dtaInp = nmeInp, fleOut = nmeOut, varTgt = "X", varID = "ID",

varTme = "measure")
it is required to give at least the arguments dtaInp, varID and varTme
check whether the file was created and its size
cat(list.files(dirname(nmeOut), basename(nmeOut)))
-> "file[...].omv" ([...] contains a random combination of numbers / characters
cat(file.info(nmeOut)$size)
-> 6851 (approximate size; size may differ in every run [in dependence of
how well the generated random data can be compressed])
cat(str(jmvReadWrite::read_omv(nmeOut, sveAtt = FALSE)))
the data set is now transformed into wide (and each the measurements is now
indicated as a suffix to X; X_1, X_2, ...)
'data.frame': 100 obs. of 9 variables:
$ ID : chr "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" ...
..- attr(*, "jmv-id")= logi TRUE
..- attr(*, "missingValues")= list()
$ X_1: num ...
..- attr(*, "missingValues")= list()
$ X_2: num ...
..- attr(*, "missingValues")= list()
$ X_3: num ...
..- attr(*, "missingValues")= list()
$ X_4: num ...
..- attr(*, "missingValues")= list()
$ X_5: num ...
..- attr(*, "missingValues")= list()
$ X_6: num ...
..- attr(*, "missingValues")= list()
$ X_7: num ...

merge_cols_omv 27

..- attr(*, "missingValues")= list()
$ X_8: num ...
..- attr(*, "missingValues")= list()

unlink(nmeInp)
unlink(nmeOut)

End(Not run)

merge_cols_omv Merges two or more data files by adding the content of other input
files as columns to the first input file and outputs them as files for the
statistical spreadsheet ’jamovi’ (https://www.jamovi.org)

Description

Merges two or more data files by adding the content of other input files as columns to the first input
file and outputs them as files for the statistical spreadsheet ’jamovi’ (https://www.jamovi.org)

Usage

merge_cols_omv(
dtaInp = NULL,
fleOut = "",
typMrg = c("outer", "inner", "left", "right"),
varBy = list(),
varSrt = c(),
psvAnl = FALSE,
usePkg = c("foreign", "haven"),
selSet = "",
...

)

Arguments

dtaInp Either a data frame (with the attribute "fleInp" containing the files to merge) or
vector with the names of the input files (including the path, if required; "FILE-
NAME.ext"; default: NULL); files can be of any supported file type, see Details
below

fleOut Name of the data file to be written (including the path, if required; "FILE_OUT.omv";
default: ""); if empty, the resulting data frame is returned instead

typMrg Type of merging operation: "outer" (default), "inner", "left" or "right"; see De-
tails below

varBy Name of the variable by which the data sets are matched, can either be a string,
a character or a list (see Details below; default: list())

https://www.jamovi.org
https://www.jamovi.org

28 merge_cols_omv

varSrt Variable(s) that are used to sort the data frame (see Details; if empty, the order
after merging is kept; default: c())

psvAnl Whether analyses that are contained in the input file shall be transferred to the
output file (TRUE / FALSE; default: FALSE)

usePkg Name of the package: "foreign" or "haven" that shall be used to read SPSS,
Stata and SAS files; "foreign" is the default (it comes with base R), but "haven"
is newer and more comprehensive

selSet Name of the data set that is to be selected from the workspace (only applies
when reading .RData-files)

... Additional arguments passed on to methods; see Details below

Details

• Using data frames with the input parameter dtaInp is primarily thought to be used when
calling merge_cols_omv from the jamovi-modules jTransform and Rj. For the use in R, it is
strongly recommended to use a character vector with the file names instead.

• There are four different types of merging operations (defined via typMrg): "outer" keeps all
cases (but columns in the resulting data set may contain empty cells / missing values if same
input data sets did not have a row containing the matching variable (defined in varBy). "inner"
keeps only those cases where all datasets contain the same value in the matching variable, for
"left" all cases from the first data set in dtaInp are kept (whereas cases that are only contained
in the second or any later input data set are dropped), for "right" all cases from the second (or
any higher) data set in dtaInp are kept. The behaviour of "left" and "right" may be somewhat
difficult to predict in case of merging several data sets, therefore "outer" might be a safer
choice if several data sets are merged.

• The variable that is used for matching (varBy) can either be a string (if all datasets contain a
matching variable with the same name), a character vector (containing more than one matching
variables that are contained in / the same for all data sets) or a list with the same length as
dtaInp. In such list, each cell can again contain either a string (one matching variable for each
data set in dtaInp) or a character vector (several matching variables for each data set in dtaInp;
NB: all character vectors in the cells of the list must have the same length as it is necessary to
always use the same number of matching variables when merging).

• varSrt can be either a character or a character vector (with one or more variables respec-
tively). The sorting order for a particular variable can be inverted with preceding the variable
name with "-". Please note that this doesn’t make sense and hence throws a warning for certain
variable types (e.g., factors).

• The ellipsis-parameter (...) can be used to submit arguments / parameters to the functions
that are used for transforming or reading the data. By clicking on the respective function
under “See also”, you can get a more detailed overview over which parameters each of those
functions take.

• Adding columns uses merge. typMrg is implemented by setting TRUE or FALSE to all.x and
all.y in merge, varBy matches by.x and by.y. The help for merge can be accessed by
clicking on the link under “See also”.

• The functions for reading and writing the data are: read_omv and write_omv (for jamovi-
files), read.table (for CSV / TSV files; using similar defaults as read.csv for CSV and
read.delim for TSV which both are based upon read.table), load (for .RData-files), readRDS

merge_cols_omv 29

(for .rds-files), read_sav (needs R-package haven) or read.spss (needs R-package foreign)
for SPSS-files, read_dta (haven) / read.dta (foreign) for Stata-files, read_sas (haven) for
SAS-data-files, and read_xpt (haven) / read.xport (foreign) for SAS-transport-files. If
you would like to use haven, you may need to install it using install.packages("haven",
dep = TRUE).

Value

a data frame (only returned if fleOut is empty) where the columns of all input data sets (given in
the dtaInp-argument) are concatenated

See Also

merge_cols_omv internally uses the following functions: Adding columns uses merge(). For
reading and writing data files in different formats: read_omv() and write_omv() for jamovi-
files, utils::read.table() for CSV / TSV files, load() for reading .RData-files, readRDS() for
.rds-files, haven::read_sav() or foreign::read.spss() for SPSS-files, haven::read_dta() or
foreign::read.dta() for Stata-files, haven::read_sas() for SAS-data-files, and haven::read_xpt()
or foreign::read.xport() for SAS-transport-files.

Examples

Not run:
dtaInp <- jmvReadWrite::bfi_sample2
nmeInp <- paste0(tempfile(), "_", 1:3, ".rds")
nmeOut <- tempfile(fileext = ".omv")
for (i in seq_along(nmeInp)) {

saveRDS(stats::setNames(dtaInp, c("ID", paste0(names(dtaInp)[-1], "_", i))), nmeInp[i])
}
save dtaInp three times (i.e., the length of nmeInp), adding "_" + 1 ... 3 as index
to the data variables (A1 ... O5, gender, age → A1_1, ...)
jmvReadWrite::merge_cols_omv(dtaInp = nmeInp, fleOut = nmeOut, varBy = "ID")
cat(file.info(nmeOut)$size)
-> 17731 (size may differ on different OSes)
dtaOut <- jmvReadWrite::read_omv(nmeOut, sveAtt = FALSE)
read the data set where the three original datasets were added as columns and show
the variable names
cat(names(dtaOut))
cat(names(dtaInp))
compared to the input data set, we have the same names (expect for "ID" which was
used for matching and that each variable had added an indicator from which data
set they came)
cat(dim(dtaInp), dim(dtaOut))
the first dimension of the data sets (rows) stayed the same (250), whereas the
second dimension is now approx. three times as large (28 -> 82):
28 - 1 (for "ID") = 27 * 3 + 1 (for "ID") = 82
cat(colMeans(dtaInp[2:11]))
cat(colMeans(dtaOut[2:11]))
it's therefore not much surprise that the values of the column means for the first
10 variables of dtaInp and dtaOut are the same too

unlink(nmeInp)

30 merge_rows_omv

unlink(nmeOut)

End(Not run)

merge_rows_omv Merges two .omv-files for the statistical spreadsheet ’jamovi’ (https:
//www.jamovi.org) by adding the content of the second, etc. file(s)
as rows to the first file

Description

Merges two .omv-files for the statistical spreadsheet ’jamovi’ (https://www.jamovi.org) by adding
the content of the second, etc. file(s) as rows to the first file

Usage

merge_rows_omv(
dtaInp = NULL,
fleOut = "",
typMrg = c("all", "common"),
colInd = FALSE,
rstRwN = TRUE,
rmvDpl = FALSE,
varSrt = c(),
usePkg = c("foreign", "haven"),
selSet = "",
...

)

Arguments

dtaInp Either a data frame (with the attribute "fleInp" containing the files to merge) or
vector with the names of the input files (including the path, if required; "FILE-
NAME.ext"; default: NULL); files can be of any supported file type, see Details
below

fleOut Name of the data file to be written (including the path, if required; "FILE_OUT.omv";
default: ""); if empty, the resulting data frame is returned instead

typMrg Type of merging operation: "all" (default) or "common"; see also Details

colInd Add a column with an indicator (the basename of the file minus the extension)
marking from which input data set the respective rows are coming (default:
FALSE)

rstRwN Reset row names (i.e., do not keep the row names of the original input data sets
but number them consecutively - one to the row number of all input data sets
added up; default: TRUE)

https://www.jamovi.org
https://www.jamovi.org
https://www.jamovi.org

merge_rows_omv 31

rmvDpl Remove duplicated rows (i.e., rows with the same content as a previous row in
all columns; default: FALSE)

varSrt Variable(s) that are used to sort the data frame (see Details; if empty, the order
after merging is kept; default: c())

usePkg Name of the package: "foreign" or "haven" that shall be used to read SPSS,
Stata and SAS files; "foreign" is the default (it comes with base R), but "haven"
is newer and more comprehensive

selSet Name of the data set that is to be selected from the workspace (only applies
when reading .RData-files)

... Additional arguments passed on to methods; see Details below

Details

• Using data frames with the input parameter dtaInp is primarily thought to be used when
calling merge_cols_omv from the jamovi-modules jTransform and Rj. For the use in R, it is
strongly recommended to use a character vector with the file names instead.

• There are four different types of merging operations (defined via typMrg): "all" keeps all
existing variables / columns that are contained in any of the input data sets and fills them up
with NA where the variable / column doesn’t exist in an input data set. "common" only keeps
the variables / columns that are common to all input data sets (i.e., that are contained in all
data sets).

• varSrt can be either a character or a character vector (with one or more variables respec-
tively). The sorting order for a particular variable can be inverted with preceding the variable
name with "-". Please note that this doesn’t make sense and hence throws a warning for certain
variable types (e.g., factors).

• The ellipsis-parameter (...) can be used to submit arguments / parameters to the functions that
are used for merging or reading the data. By clicking on the respective function under “See
also”, you can get a more detailed overview over which parameters each of those functions
take.

• Adding columns uses rbind (with some further operation, adding missing columns (filled
with NAs), if typMrg is "all").

• The functions for reading and writing the data are: read_omv and write_omv (for jamovi-
files), read.table (for CSV / TSV files; using similar defaults as read.csv for CSV and
read.delim for TSV which both are based upon read.table), load (for .RData-files), readRDS
(for .rds-files), read_sav (needs R-package haven) or read.spss (needs R-package foreign)
for SPSS-files, read_dta (haven) / read.dta (foreign) for Stata-files, read_sas (haven) for
SAS-data-files, and read_xpt (haven) / read.xport (foreign) for SAS-transport-files. If
you would like to use haven, you may need to install it using install.packages("haven",
dep = TRUE).

Value

a data frame (only returned if fleOut is empty) where the rows of all input data sets (given in the
dtaInp-argument) are concatenated

32 merge_rows_omv

See Also

merge_rows_omv internally uses the following functions: Adding columns uses rbind(). For
reading and writing data files in different formats: read_omv() and write_omv() for jamovi-
files, utils::read.table() for CSV / TSV files, load() for reading .RData-files, readRDS() for
.rds-files, haven::read_sav() or foreign::read.spss() for SPSS-files, haven::read_dta() or
foreign::read.dta() for Stata-files, haven::read_sas() for SAS-data-files, and haven::read_xpt()
or foreign::read.xport() for SAS-transport-files.

Examples

Not run:
dtaInp <- jmvReadWrite::bfi_sample2
nmeInp <- paste0(tempfile(), "_", 1:3, ".rds")
nmeOut <- tempfile(fileext = ".omv")
for (i in seq_along(nmeInp)) saveRDS(dtaInp[-i - 1], nmeInp[i])
save dtaInp three times (i.e., the length of nmeInp), removing one data columns in
each data set (for demonstration purposes, A1 in the first, A2 in the second, ...)
jmvReadWrite::merge_rows_omv(dtaInp = nmeInp, fleOut = nmeOut, colInd = TRUE)
cat(file.info(nmeOut)$size)
-> 10767 (size may differ on different OSes)
dtaOut <- jmvReadWrite::read_omv(nmeOut, sveAtt = FALSE)
unlink(nmeOut)
read the data set where the three original datasets were added as rows and show
the variable names
cat(names(dtaInp))
cat(names(dtaOut))
compared to the input data set, we have the same variable names; fleInd (switched
on by colInd = TRUE and showing from which data set the rows are coming from) is
new and A1 is moved to the end of the list (the "original" order of variables may
not always be preserved and columns missing from at least one of the input data
sets may be added at the end)
cat(dim(dtaInp), dim(dtaOut))
the first dimension of the data sets (rows) is now three times of that of the input
data set (250 -> 750), the second dimension (columns / variables) is increased by 1
(for "fleInd")

jmvReadWrite::merge_rows_omv(dtaInp = nmeInp, fleOut = nmeOut, typMrg = "common")
the argument typMrg = "common" removes the columns that are not present in all of
the input data sets (i.e., A1, A2, A3)
dtaOut <- jmvReadWrite::read_omv(nmeOut, sveAtt = FALSE)
unlink(nmeOut)
read the data set where the three original datasets were added as rows and show
the variable names
cat(names(dtaInp))
cat(names(dtaOut))
compared to the input data set, the variables that were missing in at least one
data set (i.e., "A1", "A2" and "A3") are removed
cat(dim(dtaInp), dim(dtaOut))
the first dimension of the data sets (rows) is now three times of that of the
input data set (250 -> 750), the second dimension (columns / variables) is
reduced by 3 (i.e., "A1", "A2", "A3")

read_omv 33

unlink(nmeInp)

End(Not run)

read_omv Read files created of the statistical spreadsheet ’jamovi’ (https://
www.jamovi.org)

Description

Read files created of the statistical spreadsheet ’jamovi’ (https://www.jamovi.org)

Usage

read_omv(
fleInp = "",
useFlt = FALSE,
rmMsVl = FALSE,
sveAtt = TRUE,
getSyn = FALSE,
getHTM = FALSE

)

Arguments

fleInp Name (including the path, if required) of the ’jamovi’-file to be read ("FILE-
NAME.omv"; default: "")

useFlt Apply filters (remove the lines where the filter is set to 0; default: FALSE)?

rmMsVl Remove values defined as missing values (replace them with NA; default: FALSE)?

sveAtt Store attributes that are not required in the data set (if you want to write the same
data set using write_omv; default: FALSE)?

getSyn Extract syntax from the analyses in the ’jamovi’-file and store it in the attribute
"syntax" (default: FALSE)?

getHTM Store index.html in the attribute "HTML" (default: FALSE)?

Value

data frame (can be directly used with functions included in the R-package jmv and syntax from
’jamovi’; also compatible with the format of the R-package foreign)

https://www.jamovi.org
https://www.jamovi.org
https://www.jamovi.org

34 replace_omv

Examples

Not run:
nmeInp <- system.file("extdata", "ToothGrowth.omv", package = "jmvReadWrite")
data <- jmvReadWrite::read_omv(fleInp = nmeInp, getSyn = TRUE)
if the syntax couldn't be extracted, an empty list - length = 0 - is returned,
otherwise, the commands are shown and the first analysis is run, with the output
from the second analysis being assigned to the variable result
if (length(attr(data, "syntax")) >= 1) {

print(attr(data, "syntax"))
if (nzchar(system.file(package = "jmv"))) {

the print-function is only used to force devtools::run_examples() to show output
eval(parse(text = paste0("result = ", attr(data, "syntax")[1])))
without assigning the output to a variable, the command would be:
eval(parse(text = attr(data, "syntax")[1]))
print(names(result))
print(result$main)
-> "main" "assump" "contrasts" "postHoc" "emm" "residsOV"
(the names of the six output tables)

}
}

End(Not run)

replace_omv Search values in .omv-files for the statistical spreadsheet ’jamovi’
(https://www.jamovi.org)

Description

Search values in .omv-files for the statistical spreadsheet ’jamovi’ (https://www.jamovi.org)

Usage

replace_omv(
dtaInp = NULL,
fleOut = "",
rplLst = list(),
whlTrm = TRUE,
varInc = c(),
varExc = c(),
incNum = TRUE,
incOrd = TRUE,
incNom = TRUE,
incID = TRUE,
incCmp = TRUE,
incRcd = TRUE,
psvAnl = FALSE,

https://www.jamovi.org
https://www.jamovi.org

replace_omv 35

...
)

Arguments

dtaInp Either a data frame or the name of a jamovi data file to be read (including the
path, if required; "FILENAME.omv"; default: NULL)

fleOut Name of the data file to be written (including the path, if required; "FILE_OUT.omv";
default: ""); if empty, the resulting data frame is returned instead

rplLst A list where each entry is a vector (with length 2) containing the original value
and the to-replace-value (default: list())

whlTrm Whether the search term (first entry in the vectors) must be found exactly (TRUE)
or whether a partial match is sufficient (FALSE; default: TRUE)

varInc Names of variables (character vector) to be included in the replacement (default:
c())

varExc Names of variables (character vector) to be excluded from the replacement (de-
fault: c())

incNum Whether to include continuous variables in the replacement (default: TRUE)

incOrd Whether to include ordinal variables in the replacement (default: TRUE)

incNom Whether to include nominal variables in the replacement (default: TRUE)

incID Whether to include ID variables in the replacement (default: TRUE)

incCmp Whether to include Computed variables in the replacement (default: TRUE)

incRcd Whether to include Recoded variables in the replacement (default: TRUE)

psvAnl Whether analyses that are contained in the input file shall be transferred to the
output file (default: FALSE)

... Additional arguments passed on to methods; see Details below

Details

• rplLst is a list. Each list entry contains a vector (with length 2), where the first entry is the
original value, and the second entry is the value the original value is to be replaced with.

• whlTrm indicates whether partial matches of the original value(s) shall replaced (e.g., for orig-
inal: 24 and replacement: 34, 241 will be changed into 341).

• varInc and varExc determine which variables are included or excluded from the replacement.
If both are given, a warning is issued and varInc takes precedence. varInc makes that only
in these variables, the replacement requested by rplLst is carried out, if varExc is given, for
all variables of the input data set, except those defined in varExc, the replacement is carried
out.

• The ellipsis-parameter (...) can be used to submit arguments / parameters to the function that
is used for reading and writing the data. Clicking on the respective function under “See also”,
you can get a more detailed overview over which parameters each of those functions take. The
functions are: read_omv and write_omv (for jamovi-files).

36 search_omv

Value

a data frame (only returned if fleOut is empty) with the replaced values

See Also

replace_omv uses read_omv() and write_omv() for reading and writing jamovi-files.

Examples

Not run:
bfi_sample <- jmvReadWrite::bfi_sample
the gender in the original data file is plural...
table(bfi_sample$gender)
and shall be converted to singular
rplDF <- jmvReadWrite::replace_omv(dtaInp = bfi_sample,

rplLst = list(c("Females", "Female"), c("Males", "Male")))
table(rplDF$gender)
with giving an output file name, the data set is written
nmeOut <- tempfile(fileext = ".omv")
jmvReadWrite::replace_omv(bfi_sample, fleOut = nmeOut,

rplLst = list(c("Females", "Female"), c("Males", "Male")))
file.exists(nmeOut)
rplDF <- jmvReadWrite::read_omv(nmeOut)
table(rplDF$gender)
unlink(nmeOut)
it is sensible to check / search for the original values before running replace_omv
jmvReadWrite::search_omv(bfi_sample, 24, whlTrm = TRUE)
rplDF <- jmvReadWrite::replace_omv(bfi_sample, rplLst = list(c(24, NA)))
table(rplDF$age)

End(Not run)

search_omv Search values in .omv-files for the statistical spreadsheet ’jamovi’
(https://www.jamovi.org)

Description

Search values in .omv-files for the statistical spreadsheet ’jamovi’ (https://www.jamovi.org)

Usage

search_omv(
dtaInp = NULL,
srcTrm = c(),
whlTrm = FALSE,
ignCse = FALSE,
incNum = TRUE,

https://www.jamovi.org
https://www.jamovi.org

search_omv 37

incOrd = TRUE,
incNom = TRUE,
incID = TRUE,
incCmp = TRUE,
incRcd = TRUE,
...

)

Arguments

dtaInp Either a data frame or the name of a jamovi data file to be read (including the
path, if required; "FILENAME.omv"; default: NULL)

srcTrm (Character or numeric) Vector (with length = 1) with a search term to be found
in the data frame (default: c())

whlTrm Whether the exact search term shall be found (TRUE) or whether a partial match
is sufficient (FALSE; default: FALSE)

ignCse Whether to ignore the case of the search term (default: FALSE)

incNum Whether to include continuous variables in the search (default: TRUE)

incOrd Whether to include ordinal variables in the search (default: TRUE)

incNom Whether to include nominal variables in the search (default: TRUE)

incID Whether to include ID variables in the search (default: TRUE)

incCmp Whether to include Computed variables in the search (default: TRUE)

incRcd Whether to include Recoded variables in the search (default: TRUE)

... Additional arguments passed on to methods; see Details below

Details

• The ellipsis-parameter (...) can be used to submit arguments / parameters to the function that
is used for reading and writing the data. Clicking on the respective function under “See also”,
you can get a more detailed overview over which parameters each of those functions take. The
functions are: read_omv and write_omv (for jamovi-files).

Value

a named list with the places where the search term was found: names in the list are the variables
/ columns, the entries the respective row names within that variable / column (row names are used
for being tolerant to filtered-out cases in jamovi, if a filter is used, row numbers would be incorrect)

See Also

replace_omv uses read_omv() and write_omv() for reading and writing jamovi-files.

38 sort_omv

Examples

Not run:
the exact value 24 appears 13 times in age
bfi_sample <- jmvReadWrite::bfi_sample
jmvReadWrite::search_omv(bfi_sample, 24, whlTrm = TRUE)
taking the fifth entry from the search results
bfi_sample["61", "age"]
with the following search, both Males and Females are found
(the M of Males, wouldn't be matched if ignCse were FALSE and males is
only a partial match within Females, thus whlTrm must be set to FALSE)
jmvReadWrite::search_omv(bfi_sample, "males", whlTrm = FALSE, ignCse = TRUE)
the first entry is a female, the first entry is a male
bfi_sample["1", "gender"] # Females
bfi_sample["6", "gender"] # Males
using the search results assigned to a variable
srcRes <- jmvReadWrite::search_omv(bfi_sample, "males", whlTrm = FALSE, ignCse = TRUE)
bfi_sample[srcRes[[1]][1], names(srcRes[1])] # Females
bfi_sample[srcRes[[1]][6], names(srcRes[1])] # Males

End(Not run)

sort_omv Sort data (using one or more variables) in .omv-files for the statistical
spreadsheet ’jamovi’ (https://www.jamovi.org)

Description

Sort data (using one or more variables) in .omv-files for the statistical spreadsheet ’jamovi’ (https:
//www.jamovi.org)

Usage

sort_omv(
dtaInp = NULL,
fleOut = "",
varSrt = c(),
psvAnl = FALSE,
usePkg = c("foreign", "haven"),
selSet = "",
...

)

Arguments

dtaInp Either a data frame or the name of a data file to be read (including the path, if
required; "FILENAME.ext"; default: NULL); files can be of any supported file
type, see Details below

https://www.jamovi.org
https://www.jamovi.org
https://www.jamovi.org

sort_omv 39

fleOut Name of the data file to be written (including the path, if required; "FILE_OUT.omv";
default: ""); if empty, the resulting data frame is returned instead

varSrt Variable(s) that are used to sort the data frame (see Details; default: c())

psvAnl Whether analyses that are contained in the input file shall be transferred to the
output file (TRUE / FALSE; default: FALSE)

usePkg Name of the package: "foreign" or "haven" that shall be used to read SPSS,
Stata and SAS files; "foreign" is the default (it comes with base R), but "haven"
is newer and more comprehensive

selSet Name of the data set that is to be selected from the workspace (only applies
when reading .RData-files)

... Additional arguments passed on to methods; see Details below

Details

• varSrt can be either a character or a character vector (with one or more variables respec-
tively). The sorting order for a particular variable can be inverted with preceding the variable
name with "-". Please note that this doesn’t make sense and hence throws a warning for certain
variable types (e.g., factors).

• The ellipsis-parameter (...) can be used to submit arguments / parameters to the functions
that are used for reading and writing the data. By clicking on the respective function un-
der “See also”, you can get a more detailed overview over which parameters each of those
functions take. The functions are: read_omv and write_omv (for jamovi-files), read.table
(for CSV / TSV files; using similar defaults as read.csv for CSV and read.delim for TSV
which both are based upon read.table), load (for .RData-files), readRDS (for .rds-files),
read_sav (needs the R-package haven) or read.spss (needs the R-package foreign) for
SPSS-files, read_dta (haven) / read.dta (foreign) for Stata-files, read_sas (haven) for
SAS-data-files, and read_xpt (haven) / read.xport (foreign) for SAS-transport-files. If
you would like to use haven, you may need to install it using install.packages("haven",
dep = TRUE).

Value

a data frame (only returned if fleOut is empty) where the input data set is sorted (according to the
variables in varSrt)

See Also

sort_omv internally uses the following functions for reading and writing data files in different for-
mats: read_omv() and write_omv() for jamovi-files, utils::read.table() for CSV / TSV files,
load() for reading .RData-files, readRDS() for .rds-files, haven::read_sav() or foreign::read.spss()
for SPSS-files, haven::read_dta() or foreign::read.dta() for Stata-files, haven::read_sas()
for SAS-data-files, and haven::read_xpt() or foreign::read.xport() for SAS-transport-files.

Examples

Not run:
nmeInp <- system.file("extdata", "AlbumSales.omv", package = "jmvReadWrite")
nmeOut <- tempfile(fileext = ".omv")

40 ToothGrowth

jmvReadWrite::sort_omv(dtaInp = nmeInp, fleOut = nmeOut, varSrt = "Image")
dtaFrm <- jmvReadWrite::read_omv(nmeOut)
unlink(nmeOut)
cat(dtaFrm$Image)
shows that the variable "Image" is sorted in ascending order
cat(is.unsorted(dtaFrm$Image))
is.unsorted (which checks for whether the variable is NOT sorted) returns FALSE
jmvReadWrite::sort_omv(dtaInp = nmeInp, fleOut = nmeOut, varSrt = "-Image")
variables can also be sorted in descending order by preceding them with "-"
dtaFrm <- jmvReadWrite::read_omv(nmeOut)
unlink(nmeOut)
cat(dtaFrm$Image)
shows that the variable "Image" is now sorted in descending order
cat(is.unsorted(dtaFrm$Image))
this first returns TRUE (the variable is not in ascending order, i.e., unsorted)
cat(is.unsorted(-dtaFrm$Image))
if the sign of the variable is changed, it returns FALSE (i.e., the variable is
NOT unsorted)

End(Not run)

ToothGrowth The Effect of Vitamin C on Tooth Growth in Guinea Pigs

Description

The Effect of Vitamin C on Tooth Growth in Guinea Pigs

Usage

ToothGrowth

Format

A data frame with 60 rows and 6 variables:

ID ID of the guinea pig

supp Supplement type (VC: Vitamin C or OJ: Orange juice)

supp2 Transformation of the supplement type (factor to numerical: VC = 1; OJ = 2)

dose Dose in grams / day

dose2 Dose in grams / day

len Tooth length

logLen Natural logarithm of the tooth length (len)

transform_vars_omv 41

transform_vars_omv Transform skewed variables (aiming at they conform to a normal dis-
tribution) in .omv-files for the statistical spreadsheet ’jamovi’ (https:
//www.jamovi.org)

Description

Transform skewed variables (aiming at they conform to a normal distribution) in .omv-files for the
statistical spreadsheet ’jamovi’ (https://www.jamovi.org)

Usage

transform_vars_omv(
dtaInp = NULL,
fleOut = "",
varXfm = NULL,
psvAnl = FALSE,
usePkg = c("foreign", "haven"),
selSet = "",
...

)

Arguments

dtaInp Either a data frame or the name of a data file to be read (including the path, if
required; "FILENAME.ext"; default: NULL); files can be of any supported file
type, see Details below

fleOut Name of the data file to be written (including the path, if required; "FILE_OUT.omv";
default: ""); if empty, the resulting data frame is returned instead

varXfm Named list variable where the name indicates which transformation is to be
carried out and where each list entry points to one or more variables to be trans-
formed using this transformation. See Details for more information.

psvAnl Whether analyses that are contained in the input file shall be transferred to the
output file (default: FALSE)

usePkg Name of the package: "foreign" or "haven" that shall be used to read SPSS,
Stata and SAS files; "foreign" is the default (it comes with base R), but "haven"
is newer and more comprehensive

selSet Name of the data set that is to be selected from the workspace (only applies
when reading .RData-files)

... Additional arguments passed on to methods; see Details below

Details

• varXfm has to be a named list variable where the names can either indicate the type of trans-
formation or the kind and degree of skewness that shall be corrected. For the type of transfor-
mation, the following names are valid: posSqr, negSqr, posLog, negLog, posInv, negInv;

https://www.jamovi.org
https://www.jamovi.org
https://www.jamovi.org

42 transform_vars_omv

where the second part of the name indicates the transformation to be carried out: ...Sqr -
square root, ...Log - logarithm to the basis 10, ...Inv - inversion, i.e., 1 / original value),
and where the first part of the name indicates whether the original value is used (pos...) or
whether the original value is subtracted from the maximum value of that variable (neg...; a
constant of 1 is added to the maximum value for ...Log and ...Inv transformations). For
the degree and kind of skewness, the following names are valid: mdrPos, strPos, svrPos,
mdrNeg, strNeg, svrNeg (degree: moderate, strong, severe; kind: positive or negative).

• The ellipsis-parameter (...) can be used to submit arguments / parameters to the functions
that are used for reading and writing the data. By clicking on the respective function un-
der “See also”, you can get a more detailed overview over which parameters each of those
functions take. The functions are: read_omv and write_omv (for jamovi-files), read.table
(for CSV / TSV files; using similar defaults as read.csv for CSV and read.delim for TSV
which both are based upon read.table), load (for .RData-files), readRDS (for .rds-files),
read_sav (needs the R-package haven) or read.spss (needs the R-package foreign) for
SPSS-files, read_dta (haven) / read.dta (foreign) for Stata-files, read_sas (haven) for
SAS-data-files, and read_xpt (haven) / read.xport (foreign) for SAS-transport-files. If
you would like to use haven, you may need to install it using install.packages("haven",
dep = TRUE).

Value

a data frame (only returned if fleOut is empty) where the order of variables / columns of the input
data set is re-arranged

See Also

transform_vars_omv internally uses the following functions for reading and writing data files
in different formats: read_omv() and write_omv() for jamovi-files, utils::read.table() for
CSV / TSV files, load() for reading .RData-files, readRDS() for .rds-files, haven::read_sav() or
foreign::read.spss() for SPSS-files, haven::read_dta() or foreign::read.dta() for Stata-
files, haven::read_sas() for SAS-data-files, and haven::read_xpt() or foreign::read.xport()
for SAS-transport-files.

Examples

Not run:
generate skewed variables
set.seed(335)
dtaInp <- data.frame(MP = rnorm(1000) * 1e-1 + rexp(1000, 2) * (1 - 1e-1),

MN = rnorm(1000) * 1e-1 - rexp(1000, 2) * (1 - 1e-1),
SP = rnorm(1000) * 1e-2 + rexp(1000, 2) * (1 - 1e-2),
SN = rnorm(1000) * 1e-2 - rexp(1000, 2) * (1 - 1e-2),
EP = rnorm(1000) * 1e-4 + rexp(1000, 2) * (1 - 1e-4),
EN = rnorm(1000) * 1e-4 - rexp(1000, 2) * (1 - 1e-4))

jmv::descriptives(data = dtaInp, skew = TRUE, sw = TRUE)

crrXfm <- list(posSqr = c("MP"), negSqr = c("MN"), posLog = c("MP", "SP"), negLog = c("SN"),
posInv = c("MP", "SP", "EP"), negInv = c("EN"))

dtaOut <- jmvReadWrite::transform_vars_omv(dtaInp = dtaInp, varXfm = crrXfm)
jmv::descriptives(data = dtaOut, skew = TRUE, sw = TRUE)

transpose_omv 43

crrXfm <- list(mdrPos = c("MP"), mdrNeg = c("MN"), strPos = c("SP"), strNeg = c("SN"),
svrPos = c("EP"), svrNeg = c("EN"))

dtaOut <- jmvReadWrite::transform_vars_omv(dtaInp = dtaInp, varXfm = crrXfm)
jmv::descriptives(data = dtaOut, skew = TRUE, sw = TRUE)

End(Not run)

transpose_omv Transpose .omv-files for the statistical spreadsheet ’jamovi’ (https:
//www.jamovi.org)

Description

Transpose .omv-files for the statistical spreadsheet ’jamovi’ (https://www.jamovi.org)

Usage

transpose_omv(
dtaInp = NULL,
fleOut = "",
varNme = "",
usePkg = c("foreign", "haven"),
selSet = "",
...

)

Arguments

dtaInp Either a data frame or the name of a data file to be read (including the path, if
required; "FILENAME.ext"; default: NULL); files can be of any supported file
type, see Details below

fleOut Name of the data file to be written (including the path, if required; "FILE_OUT.omv";
default: ""); if empty, the resulting data frame is returned instead

varNme Name of the variables in the output data frame; see Details below

usePkg Name of the package: "foreign" or "haven" that shall be used to read SPSS,
Stata and SAS files; "foreign" is the default (it comes with base R), but "haven"
is newer and more comprehensive

selSet Name of the data set that is to be selected from the workspace (only applies
when reading .RData-files)

... Additional arguments passed on to methods; see Details below

https://www.jamovi.org
https://www.jamovi.org
https://www.jamovi.org

44 transpose_omv

Details

• If varNme empty, the row names of the input data set are used (preceded by "V_" if all row
names are numbers); if varNme has length 1, then it is supposed to point to a variable in the
input data frame; if varNme has the same length as the number of rows in the input data frame,
then the values in varNme are assigned as column names to the output data frame.

• The ellipsis-parameter (...) can be used to submit arguments / parameters to the functions
that are used for reading and writing the data. By clicking on the respective function un-
der “See also”, you can get a more detailed overview over which parameters each of those
functions take. The functions are: read_omv and write_omv (for jamovi-files), read.table
(for CSV / TSV files; using similar defaults as read.csv for CSV and read.delim for TSV
which both are based upon read.table), load (for .RData-files), readRDS (for .rds-files),
read_sav (needs the R-package haven) or read.spss (needs the R-package foreign) for
SPSS-files, read_dta (haven) / read.dta (foreign) for Stata-files, read_sas (haven) for
SAS-data-files, and read_xpt (haven) / read.xport (foreign) for SAS-transport-files. If
you would like to use haven, you may need to install it using install.packages("haven",
dep = TRUE).

Value

a data frame (only returned if fleOut is empty) where the input data set is transposed

See Also

transpose_omv internally uses the following functions for reading and writing data files in dif-
ferent formats: read_omv() and write_omv() for jamovi-files, utils::read.table() for CSV
/ TSV files, load() for reading .RData-files, readRDS() for .rds-files, haven::read_sav() or
foreign::read.spss() for SPSS-files, haven::read_dta() or foreign::read.dta() for Stata-
files, haven::read_sas() for SAS-data-files, and haven::read_xpt() or foreign::read.xport()
for SAS-transport-files.

Examples

Not run:
set.seed(1)
tmpDF <- stats::setNames(as.data.frame(matrix(sample(6, 1200, replace = TRUE), nrow = 16)),

sprintf("sbj_%03d", seq(75)))
str(tmpDF)
Data sets that were extracted, e.g., from PsychoPy, may look like this (trials as rows
and participants as columns, one for each participant, manually assembled / copy-and-pasted).
However, for analyses, one wants the data set transposed (units / participants as columns)...
nmeOut <- tempfile(fileext = ".omv")
jmvReadWrite::transpose_omv(dtaInp = tmpDF, fleOut = nmeOut)
dtaFrm <- jmvReadWrite::read_omv(nmeOut)
unlink(nmeOut)
str(dtaFrm)
if no varNme-parameter is given, generic variable names are created (V_...)
jmvReadWrite::transpose_omv(dtaInp = tmpDF, fleOut = nmeOut, varNme = sprintf("Trl_%02d", seq(16)))
dtaFrm <- jmvReadWrite::read_omv(nmeOut)
unlink(nmeOut)
str(dtaFrm)

wide2long_omv 45

alternatively, the character vector with the desired variable names (of the same length as
the number of rows in tmpDF) may be given, "Trl" can easily be exchanged by the name of your
questionnaire, experimental conditions, etc.

End(Not run)

wide2long_omv Converts .omv-files for the statistical spreadsheet ’jamovi’ (https:
//www.jamovi.org) from wide to long format

Description

Converts .omv-files for the statistical spreadsheet ’jamovi’ (https://www.jamovi.org) from wide
to long format

Usage

wide2long_omv(
dtaInp = NULL,
fleOut = "",
varLst = c(),
varExc = c(),
varID = NULL,
varTme = "cond",
varSep = "_",
varOrd = TRUE,
varSrt = c(),
excLvl = NULL,
usePkg = c("foreign", "haven"),
selSet = "",
...

)

Arguments

dtaInp Either a data frame or the name of a data file to be read (including the path, if
required; "FILENAME.ext"; default: NULL); files can be of any supported file
type, see Details below

fleOut Name of the data file to be written (including the path, if required; "FILE_OUT.omv";
default: ""); if empty, the resulting data frame is returned instead

varLst List / set of variables that are to be transformed into single (time-varying) vari-
ables in long format (default: c())

varExc Name of the variable(s) should be excluded from the transformation, typically
this will be between-subject-variable(s) (default: c())

https://www.jamovi.org
https://www.jamovi.org
https://www.jamovi.org

46 wide2long_omv

varID Name(s) of one or more variables that (is created to) identify the same group /
individual (if empty, "ID" is added with row numbers identifying cases; default:
NULL)

varTme Name of the variable that (is created to) differentiate multiple records from the
same group / individual (default: "cond"; a counter is added for each time-
varying part)

varSep Character that separates the variables in varLst into a time-varying part and a part
that forms the variable name in long format ("" in "VAR_1", "VAR_2", default:
"")

varOrd Whether to arrange the variables before the transformation, so that they are in
accordance with the different split levels (default: TRUE)

varSrt Variable(s) that are used to sort the data frame (see Details; if empty, the order
returned from reshape is kept; default: c())

excLvl Integer (or vector of integers) determining which parts of the variable names in
varLst shall not be transformed (default: NULL), see Details below

usePkg Name of the package: "foreign" or "haven" that shall be used to read SPSS,
Stata and SAS files; "foreign" is the default (it comes with base R), but "haven"
is newer and more comprehensive

selSet Name of the data set that is to be selected from the workspace (only applies
when reading .RData-files)

... Additional arguments passed on to methods; see Details below

Details

• If varLst is empty, it is tried to generate it using all variables in the data frame except those
defined by varExc and varID. The variable(s) in varID need to be unique identifiers (in the
original dataset), those in varExc don’t have this requirement. It is recommended that the
variable names in varExc and varID should not contain the variable separator (defined in
varSep; default: "_").

• varOrd determines whether the variables are rearranged to match the order of split levels.
Consider the varLst X_1, Y_1, X_2, Y_2. If varOrd were set to FALSE, the original order
would be preserved and the second part of the variable name (1, 2, ...) would become condition
1, and the first part condition 2. In most cases, leaving varOrd set to TRUE is recommended.

• varSrt can be either a character or a character vector (with one or more variables respec-
tively). The sorting order for a particular variable can be inverted with preceding the variable
name with "-". Please note that this doesn’t make sense and hence throws a warning for certain
variable types (e.g., factors).

• exclLvl points to a part of the variable names in varLst to be excluded. For example, if
the variable name is PART1_PART2_PART3 (split at _), then excLvl = 1 would exclude PART1
from the transformation. Quite often, one has more that one variable of a particular type (e.g.,
responses, reaction times, etc.). Those would typically be the first part of each variable name
in varLst (the conditions then being PART2, PART3, and so on). excLvl = 1 would exclude
those variable types / categories from being transformed into long (i.e., they would be kept as
separate columns).

wide2long_omv 47

• The ellipsis-parameter (...) can be used to submit arguments / parameters to the functions
that are used for transforming or reading the data. By clicking on the respective function
under “See also”, you can get a more detailed overview over which parameters each of those
functions take.

• The transformation from long to wide uses reshape: varID matches (~) idvar in reshape,
varTme ~ timevar, varLst ~ varying, and varSep ~ sep. The help for reshape is very
explanatory, click on the link under “See also” to access it, particularly what is explained
under “Details”.

• The functions for reading and writing the data are: read_omv and write_omv (for jamovi-
files), read.table (for CSV / TSV files; using similar defaults as read.csv for CSV and
read.delim for TSV which both are based upon read.table), load (for .RData-files), readRDS
(for .rds-files), read_sav (needs R-package haven) or read.spss (needs R-package foreign)
for SPSS-files, read_dta (haven) / read.dta (foreign) for Stata-files, read_sas (haven) for
SAS-data-files, and read_xpt (haven) / read.xport (foreign) for SAS-transport-files. If
you would like to use haven, you may need to install it using install.packages("haven",
dep = TRUE).

Value

a data frame (only returned if fleOut is empty) where the input data set is converted from wide to
long format

See Also

long2wide_omv internally uses the following functions: The transformation from long to wide
uses stats::reshape(). For reading and writing data files in different formats: read_omv()
and write_omv() for jamovi-files, utils::read.table() for CSV / TSV files, load() for read-
ing .RData-files, readRDS() for .rds-files, haven::read_sav() or foreign::read.spss() for
SPSS-files, haven::read_dta() or foreign::read.dta() for Stata-files, haven::read_sas()
for SAS-data-files, and haven::read_xpt() or foreign::read.xport() for SAS-transport-files.

Examples

Not run:
generate a test dataframe with 100 (imaginary) participants / units of
observation (ID), and 8 repeated measurements of variable (X_1, X_2, ...)
dtaInp <- cbind(data.frame(ID = as.character(seq(1:100))),

stats::setNames(
as.data.frame(matrix(runif(800, -10, 10), nrow = 100)),
paste0("X_", 1:8)))

cat(str(dtaInp))
'data.frame': 100 obs. of 9 variables:
$ ID : chr "1" "2" "3" "4" ...
$ X_1: num ...
$ X_2: num ...
$ X_3: num ...
$ X_4: num ...
$ X_5: num ...
$ X_6: num ...
$ X_7: num ...

48 write_omv

$ X_8: num ...
this data set is stored as (temporary) RDS-file and later processed by wide2long
nmeInp <- tempfile(fileext = ".rds")
nmeOut <- tempfile(fileext = ".omv")
saveRDS(dtaInp, nmeInp)
jmvReadWrite::wide2long_omv(dtaInp = nmeInp, fleOut = nmeOut, varID = "ID",

varTme = "measure", varLst = setdiff(names(dtaInp), "ID"),
varSrt = c("ID", "measure"))

it is required to give at least the arguments dtaInp (if dtaInp is a data frame,
fleOut needs to be provided too) and varID
"reshape" then assigns all variables expect the variable defined by varID to
varLst (but throws a warning)
varSrt enforces sorting the data set after the transformation (sorted, the
measurements within one person come after another; unsorted all measurements
for one repetition would come after another)

check whether the file was created and its size
cat(list.files(dirname(nmeOut), basename(nmeOut)))
-> "file[...].omv" ([...] contains a random combination of numbers / characters
cat(file.info(nmeOut)$size)
-> 6939 (approximate size; size may differ in every run [in dependence of how
well the generated random data can be compressed])
cat(str(jmvReadWrite::read_omv(nmeOut, sveAtt = FALSE)))
the data set is now transformed into long (and each the measurements is now
indicated by the "measure")
'data.frame': 800 obs. of 3 variables:
$ ID : Factor w/ 100 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 2 2 ...
..- attr(*, "missingValues")= list()
$ measure: Factor w/ 8 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 1 2 ...
..- attr(*, "missingValues")= list()
$ X : num ...
..- attr(*, "missingValues")= list()

unlink(nmeInp)
unlink(nmeOut)

End(Not run)

write_omv Write files to be used with the statistical spreadsheet ’jamovi’ (https:
//www.jamovi.org)

Description

Write files to be used with the statistical spreadsheet ’jamovi’ (https://www.jamovi.org)

Usage

write_omv(

https://www.jamovi.org
https://www.jamovi.org
https://www.jamovi.org

write_omv 49

dtaFrm = NULL,
fleOut = "",
wrtPtB = FALSE,
frcWrt = FALSE,
retDbg = FALSE

)

Arguments

dtaFrm Data frame to be exported (default: NULL)

fleOut Name / position of the output file to be generated ("FILENAME.omv"; default:
"")

wrtPtB Whether to write protocol buffers (see Details; default: FALSE)

frcWrt Whether to overwrite existing files with the same name (see Details; default:
FALSE)

retDbg Whether to return a list with debugging information (see Value; default: FALSE)

Details

• jamovi has a specific measurement level / type "ID" (in addition to the "standard" ones "Nom-
inal", "Ordinal", and "Continuous"). "ID" is used for columns that contain some form of ID
(e.g., a participant code). In order to set a variable of your data frame to "ID", you have to set
the attribute jmv-id (e.g., attr(dtaFrm$column, "jmv-id") = TRUE).

• CAUTION: Setting wrtPtB to TRUE currently overwrites analyses that already exist in a data
file. It is meant to be used for describe_omv only. If you set wrtPtB to TRUE, ensure to use
an output file name that isn’t would not overwrite any existing file. Protocol buffers are used
to exchange data between the different parts of jamovi (the server and the client) and also the
format in which analyses are stored in the jamovi data files.

• write_omv checks whether the output file already exists and throws an error if this is the case.
frcWrt permits you to overwrite the existing file.

Value

a list (if retDbg == TRUE), containing the meta data (mtaDta, metadata.json in the OMV-file), the
extended data (xtdDta, xdata.json in the OMV-file) and the original data frame (dtaFrm)

Examples

Not run:
use the data set "ToothGrowth" and, if it exists, write it as
jamovi-file using write_omv()
jmvReadWrite::ToothGrowth
nmeOut <- tempfile(fileext = ".omv")
typically, one would use a "real" file name instead of tempfile(),
e.g., "Data1.omv"
dtaDbg = jmvReadWrite::write_omv(dtaFrm = ToothGrowth, fleOut = nmeOut, retDbg = TRUE)
print(names(dtaDbg))
the print-function is only used to force devtools::run_examples()

50 write_omv

to show output
-> "mtaDta" "xtdDta" "dtaFrm"
returns a list with the metadata (mtaDta, e.g., column and data type),
the extended data (xtdDta, e.g., variable lables), and the data frame
(dtaFrm) the purpose of these variables is merely for checking (under-
standing the file format) and debugging

check whether the file was written to the disk, get the file informa-
tion (size, etc.) and delete the file afterwards
print(list.files(dirname(nmeOut), basename(nmeOut)))
-> "file[...].omv" ([...] is a combination of random numbers / characters
print(file.info(nmeOut)$size)
-> approx. 2600 (size may differ on different OSes)
unlink(nmeOut)

End(Not run)

Index

∗ datasets
AlbumSales, 2
bfi_sample, 5
bfi_sample2, 7
bfi_sample3, 8
ToothGrowth, 40

AlbumSales, 2
arrange_cols_omv, 3

bfi_sample, 5
bfi_sample2, 7
bfi_sample3, 8

combine_cols_omv, 10
convert_to_omv, 12

describe_omv, 14
distances_omv, 17

foreign::read.dta(), 5, 11, 13, 16, 20, 23,
26, 29, 32, 39, 42, 44, 47

foreign::read.spss(), 5, 11, 13, 16, 20, 23,
26, 29, 32, 39, 42, 44, 47

foreign::read.xport(), 5, 11, 13, 16, 20,
23, 26, 29, 32, 39, 42, 44, 47

haven::read_dta(), 5, 11, 13, 16, 20, 23, 26,
29, 32, 39, 42, 44, 47

haven::read_sas(), 5, 11, 13, 16, 20, 23, 26,
29, 32, 39, 42, 44, 47

haven::read_sav(), 5, 11, 13, 16, 20, 23, 26,
29, 32, 39, 42, 44, 47

haven::read_xpt(), 5, 11, 13, 16, 20, 23, 26,
29, 32, 39, 42, 44, 47

label_vars_omv, 21
load(), 5, 11, 13, 16, 20, 23, 26, 29, 32, 39,

42, 44, 47
long2wide_omv, 23

merge(), 29
merge_cols_omv, 27
merge_rows_omv, 30

rbind(), 32
read_omv, 33
read_omv(), 4, 11, 13, 16, 20, 23, 25, 29, 32,

36, 37, 39, 42, 44, 47
readRDS(), 5, 11, 13, 16, 20, 23, 26, 29, 32,

39, 42, 44, 47
replace_omv, 34

search_omv, 36
sort_omv, 38
stats::dist(), 20
stats::reshape(), 25, 47

ToothGrowth, 40
transform_vars_omv, 41
transpose_omv, 43

utils::read.table(), 4, 11, 13, 16, 20, 23,
26, 29, 32, 39, 42, 44, 47

wide2long_omv, 45
write_omv, 48
write_omv(), 4, 11, 13, 16, 20, 23, 26, 29, 32,

36, 37, 39, 42, 44, 47

51

	AlbumSales
	arrange_cols_omv
	bfi_sample
	bfi_sample2
	bfi_sample3
	combine_cols_omv
	convert_to_omv
	describe_omv
	distances_omv
	label_vars_omv
	long2wide_omv
	merge_cols_omv
	merge_rows_omv
	read_omv
	replace_omv
	search_omv
	sort_omv
	ToothGrowth
	transform_vars_omv
	transpose_omv
	wide2long_omv
	write_omv
	Index

