
Package ‘jmdem’
October 13, 2022

Type Package

Title Fitting Joint Mean and Dispersion Effects Models

Version 1.0.1

Date 2020-03-03

Author Ka Yui Karl Wu

Maintainer Ka Yui Karl Wu <karlwuky@suss.edu.sg>

Description Joint mean and dispersion effects models fit the mean and dispersion parameters of a re-
sponse variable by two separate linear models, the mean and dispersion submodels, simultane-
ously. It also allows the users to choose either the deviance or the Pearson residuals as the re-
sponse variable of the dispersion submodel. Furthermore, the package provides the possibil-
ity to nest the submodels in one another, if one of the parameters has significant explana-
tory power on the other. Wu & Li (2016) <doi:10.1016/j.csda.2016.04.015>.

License GPL-2

Imports VGAM, statmod

NeedsCompilation no

Repository CRAN

Date/Publication 2020-03-04 06:50:02 UTC

R topics documented:
anova.jmdem . 2
jmdem . 4
jmdem.control . 11
jmdem.sim . 14
jmdem.summaries . 18
model.matrix.jmdem . 20
predict.jmdem . 22
score.jmdem, wald.jmdem . 23
stat.anova.jmdem . 25
summary.jmdem . 27
summary.jmdem.sim . 29
update.jmdem . 31

1

https://doi.org/10.1016/j.csda.2016.04.015

2 anova.jmdem

Index 33

anova.jmdem Analysis of Deviance for Joint Mean and Dispersion Effect Models
Fits

Description

Compute an analysis of deviance table for one or more double generalised linear model fits.

Usage

S3 method for class 'jmdem'
anova(object, ..., test = NULL, type = c("1", "3"),

print.results = TRUE)

Arguments

object, ... one or several objects of class jmdem, typically the result of a call to jmdem.

test a character string, (partially) matching one of "Rao" or "Wald". See stat.anova.jmdem.

type a character string or integer, specifying whether a type "1" (sequential) analysis
or a type "3" (partial) analysis should be conducted. It is only relevant if a single
object is specified in object. Both numeric and character inputs are allowed.
See details for type 1 and type 3 analysis.

print.results logical, TRUE if the result table should be printed directly, FALSE if the results
should be saved in an user-defined object.

Details

Specifying a single object gives a analysis of deviance table for that fit. If type 1 analysis is specified,
a sequential analysis will be conducted. That is, the reductions in the residual deviance as each term
of the formula is added in turn are given in as the rows of a table, plus the residual deviances
themselves.

Type 3 analysis gives the reduction in the residual deviance of the fitted model after removing each
term of the formula individually, that in turn are given as the rows of a table.

If more than one object is specified, the table has a row for the residual degrees of freedom and
deviance for each model. For all but the first model, the change in degrees of freedom and deviance
is also given. (This only makes statistical sense if the models are nested.) It is conventional to list
the models from smallest to largest, but this is up to the user.

The table will optionally contain "Rao" or "Wald" test statistics (and P values) comparing the model
specified in the current row and the row above (type 1) or the full model (type 3). Both "Rao" and
"Wald" test statistics are asymptotically chi-square distributed. "LRT" (Likelihood ratio test) and
"F" ((F test) are not included in anova.jmdem because the comparison of the deviances of two joint
mean and dispersion effects models is questionable, if not even invalid. One important argument
is that the dependent variables of two different dispersion submodels given two different mean
submodels are not the identical.

anova.jmdem 3

Value

An object of class "anova" inheriting from class "data.frame".

If print.results = TRUE,

table.x the anova table constructed for the mean submodel.

table.z the anova table constructed for the dispersion submodel.

Warning

The comparison between two or more models will only be valid if they are fitted to the same dataset.
This may be a problem if there are missing values and R’s default of na.action = na.omit is used,
and anova will detect this with an error.

Author(s)

Karl Wu Ka Yui (karlwuky@suss.edu.sg)

References

Hastie, T. J. and Pregibon, D. (1992). Generalized linear models. Chapter 6 of Statistical Models
in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

McCullagh P. and Nelder, J.A. (1989) Generalized Linear Models. London: Chapman and Hall.

Smyth, G.K. (1989). Generalized linear models with varying dispersion. J. R. Statist. Soc. B, 51
(1), 47-60.

Smyth, G.K., Verbyla, A.P. (1996). A conditional likelihood approach to residual maximum linear
estimation in generalized linear models. J. R. Statist. Soc. B, 58 (3), 565-572.

Smyth, G.K., Verbyla, A.P. (1999). Adjusted likelihood methods for modelling dispersion in gener-
alized linear models. Environmetrics, 10, 695-709.

Wu, K.Y.K., Li, W.K. (2016). On a dispersion model with Pearson residual responses. Comput.
Statist. Data Anal., 103, 17-27.

See Also

jmdem, anova

Examples

Example in jmdem(...)
MyData <- simdata.jmdem.sim(mformula = y ~ x, dformula = ~ z,

mfamily = poisson(),
dfamily = Gamma(link = "log"),
beta.true = c(0.5, 4),
lambda.true = c(2.5, 3), n = 100)

fit <- jmdem(mformula = y ~ x, dformula = ~ z, data = MyData,
mfamily = poisson, dfamily = Gamma(link = "log"),
dev.type = "deviance", method = "CG")

4 jmdem

Run a partial analysis (type 3) with Wald test
anova(fit, test = "Wald", type = 3)

jmdem Fitting Joint Mean and Dispersion Effects Models

Description

jmdem is used to fit joint mean and dispersion effects models, specified by giving a symbolic descrip-
tion of the linear predictors for the mean and dispersion and a description of the error distribution

Usage

jmdem(mformula, dformula, data, mfamily = gaussian, dfamily = Gamma,
weights, subset, dev.type = c("deviance", "pearson"),
moffset = NULL, doffset = NULL, mustart = NULL, phistart = NULL,
betastart = NULL, lambdastart = NULL, hessian = TRUE, na.action,
grad.func = TRUE, fit.method = "jmdem.fit",
method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", "Brent"),
df.adj = FALSE, disp.adj = FALSE, full.loglik = FALSE,
beta.first = TRUE, prefit = TRUE, mcontrasts = NULL,
dcontrasts = NULL, control = list(...),
minv.method = c("solve", "chol2inv", "ginv"), ...)

jmdem.fit(x, y, z = NULL, weights, mfamily = gaussian, dfamily = Gamma,
mu, phi, beta, lambda, moffset = NULL, doffset = NULL,
dev.type = c("deviance", "pearson"), hessian = TRUE,
method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", "Brent"),
disp.adj = FALSE, df.adj = FALSE, full.loglik = FALSE,
control = list(), mintercept = TRUE, dintercept = TRUE,
grad.func = TRUE, lower = -Inf, upper = Inf, ...)

Arguments

mformula an object of class "formula" (or one that can be coerced to that class): a sym-
bolic description of the mean submodel to be fitted. The details of model speci-
fication are given under ’Details’.

dformula a symbolic description of the dispersion submodel to be fitted. The details are
also given under ’Details’.

data an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which jmdem is called.

mfamily a description of the error distribution and link function to be used in the mean
submodel. This can be a character string naming a family function, a family
function or the result of a call to a family function. (See family for details of
family functions.)

jmdem 5

dfamily a description of the error distribution and link function to be used in the disper-
sion submodel. (Also see family for details of family functions.)

weights an optional vector of ’prior weights’ to be used in the fitting process. Should be
NULL or a numeric vector.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

dev.type a specification of the type of residuals to be used as the response of the dis-
persion submodel. The ML estimates of the jmdem are the optima of either
the quasi-likelihood function for deviance residuals, or the pseudo-likelihood
function for Pearson residuals.

moffset an a priori known component to be included in the linear predictor of the mean
submodel during fitting. This should be NULL or a numeric vector of length
equal to the number of cases. One or more offset terms can be included in the
formula instead or as well, and if more than one is specified their sum is used.
See model.offset.

doffset an a priori known component to be included in the linear predictor of the disper-
sion submodel during fitting. See model.offset.

mustart, mu a vector of starting values of individual means.

phistart, phi a vector of starting values of individual dispersion.
betastart, beta

a vector of starting values for the regression parameters of the mean submodel.
lambdastart, lambda

a vector of starting values for the regression parameters of the dispersion sub-
model.

hessian the method used to compute the information matrix. Hessian matrix will be
calculated for "TRUE", Fisher matrix for "FALSE".

na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that is
unset. The ’factory-fresh’ default is na.omit. Another possible value is NULL,
no action. Value na.exclude can be useful.

grad.func the gradient function will be included in the optimisation for the "BFGS", "CG"
and "L-BFGS-B" methods for "TRUE". If it is NULL, a finite-difference approxi-
mation will be used.
For the "SANN" method it specifies a function to generate a new candidate point.
If it is NULL a default Gaussian Markov kernel is used.

fit.method the method to be used in fitting the model. The default method "jmdem.fit"
uses the general-purpose optimisation (optim): the alternative "model.frame"
returns the model frame and does no fitting.
User-supplied fitting functions can be supplied either as a function or a character
string naming a function, with a function which takes the same arguments as
jmdem.fit. If specified as a character string it is looked up from within the
stats namespace.

method the method to be used for the optimisation. See optim for details.

6 jmdem

df.adj an adjustment factor for the degrees of freedom (n-p)/n, where n is the number
of observations and p is the number of parameters to be estimated in jmdem, will
be multiplied to the likelihood function before the optimisation for "TRUE".

disp.adj an adjustment factor for the dispersion weight will be multiplied to the estimated
dispersion parameter during the optimisation for "TRUE". For details, please see
McCullagh and Nelder (1989, Ch. 10, P. 362).

full.loglik the full likelihood function instead of the quasi- or pseudo-likelihood function
will be used for the optimisation for TRUE.

beta.first the mean effects will be estimated (assuming constant sample dispersion) at the
initial stage for TRUE. For FALSE, the dispersion effects will be estimated first
(assuming constantly zero mean for the whole sample).

prefit a specfication whether jmdem uses glm to prefit the starting values of the mean
and dispersion parameters. For FALSE, the initial parameter values of all the
regressors are set to zero and the sample mean and sample dispersion will be
used as the starting values of the corresponding submodel intercepts instead.
If the submodels have no intercept, all parameters will also be set to zero. The
sample mean and sample dispersion will then be used as mustart and phistart
in the internal computation (they will not be officially recorded in mustart and
phistart in the output object). Defaule value is TRUE.

mcontrasts an optional list for the mean effect constrasts. See the contrasts.arg of model.matrix.default.

dcontrasts an optional list for the dispersion effect constrasts. See the contrasts.arg of
model.matrix.default.

control a list of parameters for controlling the fitting process. For jmdem.fit this is
passed to jmdem.control.

minv.method the method used to invert matrices during the estimation process. "solve"
gives the solutions of a system of equations, "chol2inv" gives the inverse from
Choleski or QR decomposition and "ginv" gives the generalized inverse of a
matrix. If none of the methods is specified or if they are specified in a vector
such as c("solve", "chol2inv", "ginv"), the matrices will be inverted by the
methods in the sequence as given in the vector until it is found.

x, y, z x is a mean submodel’s design matrix of dimension n * p, z is a dispersion
submodel’s design matrix of dimension n * k, and y is a vector of observations
of length n. If z is NULL, the dispersion submodel only contains an intercept.

mintercept a specification whether the intercept term is included in the mean submodel.

dintercept a specification whether the intercept term is included in the dispersion submodel.

lower, upper bounds on the variables for the "L-BFGS-B" optimisation method.

... For control: arguments to be used to form the default control argument if it is
not supplied directly. For jmdem and jmdem.fit: further arguments passed to or
from other methods.

Details

A typical predictor has the form response ~ terms where response is the (numeric) response vector
and terms is a series of terms which specifies a linear predictor for response.

jmdem 7

A terms specification of the form first + second indicates all the terms in first together with all the
terms in second with any duplicates removed. A specification of the form first:second indicates
the set of terms obtained by taking the interactions of all terms in first with all terms in second. The
specification first * second indicates the cross of first and second. This is the same as first +
second + first:second.

The terms in the formula will be re-ordered so that main effects come first, followed by the interac-
tions, all second-order, all third-order and so on: to avoid this pass a terms object as the formula.

An additional term response ~ terms + eta can be added to dformula if the mean submodel is
nested in the dispersion submodel in the form such that

g(E(yi)) = xiβ = ηi, h(φ) = ziλ+ ηiγ.

In the contrary, if the dispersion submodel is nested in the mean submodel such that

g(E(yi)) = xiβ + δiκ, h(φi) = ziλ = δi,

mformula can be specified as response ~ terms + delta.

Non-NULL weights can be used to indicate that different observations have different dispersions
(with the values in weights being inversely proportional to the dispersions); or equivalently, when
the elements of weights are positive integers wi, that each response yi is the mean of wi unit-weight
observations. For a binomial GLM prior weights are used to give the number of trials when the
response is the proportion of successes: they would rarely be used for a Poisson GLM.

If more than one of etastart and mustart is specified, the first in the list will be used. It is often
advisable to supply starting values for a quasi family, and also for families with unusual links such
as gaussian("log").

glm.fit is the workhorse function: it is not normally called directly but can be more efficient where
the response vector, design matrix and family have already been calculated.

Value

coefficients a named vector of estimated coefficients of both the mean and dispersion sub-
model

beta estimated coefficients of the mean submodel

lambda estimated coefficients of the dispersion submodel

residuals the working residuals, that is the residuals in the final iteration of the optim
fit. Depending on the type of deviance specified by dev.type, residuals cor-
responds to deviance.residuals or pearson.residuals. Since cases with
zero weights are omitted, their working residuals are NA.

deviance.residuals

the deviance residuals resulting from the final iteration of the optim fit.
pearson.residuals

the pearson residuals resulting from the final iteration of the optim fit.

fitted.values the fitted mean values, obtained by transforming the linear predictors by the
inverse of the link function.

dispersion the fitted individual dispersion values, obtained by transforming the linear pre-
dictors of the dispersion submodel by the corresponding inverse of the link func-
tion.

8 jmdem

mean.rank the numeric rank of the fitted mean submodel.
dispersion.rank

the numeric rank of the fitted dispersion submodel.

rank the total numeric rank of the fitted model. mean.rank and dispersion.rank
are the corresponding ranks of the fitted mean and dispersion submodels.

mean.family the family object used for the mean submodel.
dispersion.family

the family object used for the dispersion submodel.
mean.linear.predictors

the linear fit on link scale of the mean submodel.
dispersion.linear.predictors

the linear fit on link scale of the dispersion submodel.

deviance the residual sum of squares of the complete fitted model.
individual.loglik

individual value of the log-likelihood function given the estimated mean and
dispersion.

aic the Akaike Information Criterion, minus twice the maximised log-likelihood
plus twice the number of parameters.

iter number of iterations needed for the fit.

weights the working weights, that is the weights in the final iteration of the optim fit.

prior.weights the weights initially supplied, a vector of 1s if none were.

info.matrix the information matrix given the estimated model coefficients. The diagonal
elements of its inverse are the standard errors of the model parameters.

df.residual the residual degrees of freedom of the complete fitted model.

y the y vector used.

x the mean submodel design matrix.

z the dispersion submodel design matrix.

log.llh the maximised log-likelihood of the entire sample.

converged logical. Was the optim algorithm judged to have converged?

gradient logical. Was the gradient function included in the optim algorithm?

deviance.type the type of redidual deviance specified, it is either "deviance" or "pearson".
information.type

the type of information matrix specified, it is either "Hessian" or "Fisher".
dispersion.adjustment

logical. Was the dispersion parameter adjusted by an adjustment factor during
the optimisation?

df.adjustment logical. Was the likelihood function adjusted by the degrees of freedom adjust-
ment factor?

optim.method the name of the method used in optim.

control the value of the control argument used.

data the evaluated dataset specified in the data argument.

jmdem 9

mean.model the model frame of the mean submodel.
dispersion.model

the model frame of the dispersion submodel.

call the matched call.

mean.formula the formula of the mean submodel supplied.
dispersion.formula

the formula of the dispersion submodel supplied.

fit.method the name of the fit function used, currently always "jmdem.fit".

mean.offset the offset vector used in the mean submodel.
dispersion.offset

the offset vector used in the dispersion submodel.
dispersion.deviance

the deviance sum of squares of the dispersion submodel.
dispersion.df.residual

the residual degrees of freedom of the dispersion submodel.

null.deviance the residual sum of squares of the complete null model.

df.null the residual degrees of freedom for the complete null model.
dispersion.null.deviance

the residual sum of squares of the dispersion null submodel.
dispersion.df.null

the residual degrees of freedom for the dispersion null submodel.

beta.null the estimated coefficients of the mean null submodel.

lambda.null the estimated coefficients of the dispersion null submodel.
dispersion.null

the estimated dispersion of the complete null model.

residuals.null the residuals of the complete null model.

mustart the vector of starting values for individual means used.

phistart the vector of starting values for individual dispersion used.

betastart the vector of starting values for the mean submodel parameters used.

lambdastart the vector of starting values for the dispersion submodel parameters used.

mean.terms the terms object used for the mean submodel.
dispersion.terms

the terms object used for the dispersion submodel.

xlevels a record of the levels of the factors used in fitting the mean submodel.

zlevels a record of the levels of the factors used in fitting the dispersion submodel.

mean.contrasts the contrasts used for the mean submodel.
dispersion.contrasts

the contrasts used for the dispersion submodel.

na.action information returned by model.frame on the special handling of NAs.

init.mean.fit the initial values of the mean submodel coefficients, linear predictors and fitted
values.

10 jmdem

init.dispersion.fit

the initial values of the dispersion submodel coefficients, linear predictors and
fitted values.

matrix.inverse.method

information returned on the method used for inverting matrices during optimi-
sation.

Author(s)

Karl Wu Ka Yui (karlwuky@suss.edu.sg)

References

Carroll, R.J., Ruppert, D. (1988). Transformation and Weighting in Regression. London: Chapman
and Hall.

Cordeiro, M.G., Simas, A.B. (2009). The distribution of pearson residuals in generalized linear
models. Comput. Statist. Data Anal., 53, 3397-3411.

McCullagh, P. (1983). Quasi-likelihood functions. Annals of Statistics 11 (1), 59-67.

McCullagh P. and Nelder, J.A. (1989) Generalized Linear Models. London: Chapman and Hall.

Nash, J.C. (1990). Compact Numerical Methods for Computers. Linear Algebra and Function
Minimisation. Adam Hilger.

Nelder, J.A., Lee, Y., Bergman, B., Hynen, A., Huele, A.F., Engel, J. (1998). Joint modelling of
mean and dispersion. Technometrics, 40 (2), 168-175.

Nelder, J.A., Pregibon, D. (1987). An extended quasi-likelihood function. Biometrika, 74 (2), 221-
232.

Nocedal, J., Wright, S.J. (1999). Numerical Optimization. Springer.

Smyth, G.K. (1989). Generalized linear models with varying dispersion. J. R. Statist. Soc. B, 51
(1), 47-60.

Smyth, G.K., Verbyla, A.P. (1996). A conditional likelihood approach to residual maximum linear
estimation in generalized linear models. J. R. Statist. Soc. B, 58 (3), 565-572.

Smyth, G.K., Verbyla, A.P. (1999). Adjusted likelihood methods for modelling dispersion in gener-
alized linear models. Environmetrics, 10, 695-709.

Wedderburn, R. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss-
Newton method. Biometrika, 61 (3), 439-447.

Wu, K.Y.K., Li, W.K. (2016). On a dispersion model with Pearson residual responses. Comput.
Statist. Data Anal., 103, 17-27.

See Also

anova.jmdem, summary.jmdem, etc. for jmdem methods, and the generic functions effects, fitted.values,
and residuals.

jmdem.control 11

Examples

Fit poisson counts by unnested mean and dispersion submodels.
Use log-links for both submodels. Set dispersion fitting based
on deviance residuals. Use conjugate gradient (CG) as
optimisation method.
MyData <- simdata.jmdem.sim(mformula = y ~ x, dformula = ~ z,

mfamily = poisson(),
dfamily = Gamma(link = "log"),
beta.true = c(0.5, 4),
lambda.true = c(2.5, 3), n = 100)

fit <- jmdem(mformula = y ~ x, dformula = ~ z, data = MyData,
mfamily = poisson, dfamily = Gamma(link = "log"),
dev.type = "deviance", method = "CG")

Fit Gaussian responses by nesting dispersion submodel in the mean
submodel. Use default link for both submodels. Set dispersion fitting
based on pearson residuals. Use quasi-Newton (BFGS) as optimisation
method. Adjust degrees of freedom for the likelihood function.
MyData <- simdata.jmdem.sim(mformula = y ~ x + delta, dformula = ~ z,

mfamily = gaussian(),
dfamily = Gamma(link = "log"),
beta.true = c(0.5, 4, 1),
lambda.true = c(2.5, 3), n = 100)

fit <- jmdem(mformula = y ~ x + delta, dformula = ~ z, data = MyData,
mfamily = gaussian, dfamily = Gamma, dev.type = "pearson",
method = "BFGS", df.adj = TRUE)

jmdem.control Auxiliary for Controlling JMDEM Fitting

Description

Auxiliary function for jmdem fitting. Typically only used internally by jmdem.fit, but may be used
to construct a control argument to either function.

Usage

jmdem.control(maxit = 100, epsilon = 1e-8, prefit.trace = FALSE,
fit.trace = FALSE, null.approx = 1e-8, trace = 0,
fnscale = -1, parscale = 1, ndeps = 0.001,
abstol = -Inf, reltol = sqrt(.Machine$double.eps),
alpha = 1, beta = 0.5, gamma = 2, REPORT = 10,
type = 1, lmm = 5, factr = 1e+07, pgtol = 0,
temp = 10, tmax = 10)

12 jmdem.control

Arguments

maxit integer giving the maximal number of optimisation iterations.

epsilon positive convergence tolerance ε; the iterations converge when |dev−devold|/(|dev|+
0.1) < ε.

prefit.trace logical indicating if output should be produced for each iteration in the prefit
process.

fit.trace logical indicating if output should be produced for each iteration in the jmdem.fit
process.

null.approx approximisation of zeros to avoid estimation abortion in the case of log(0) or
1/0. The following control arguments are used by optim. Please refer to optim
for details

trace non-negative integer. If positive, tracing information on the progress of the opti-
misation is produced. Higher values may produce more tracing information: for
method "L-BFGS-B" there are six levels of tracing.

fnscale An overall scaling to be applied to the value of fn and gr during optimisation.
If negative, turns the problem into a maximisation problem. Optimisation is
performed on fn(par)/fnscale.

parscale A vector of scaling values for the parameters. Optimisation is performed on
par/parscale and these should be comparable in the sense that a unit change
in any element produces about a unit change in the scaled value. Not used (nor
needed) for method = "Brent".

ndeps A vector of step sizes for the finite-difference approximation to the gradient, on
par/parscale scale. Defaults to 1e-3.

abstol The absolute convergence tolerance. Only useful for non-negative functions, as
a tolerance for reaching zero.

reltol Relative convergence tolerance. The algorithm stops if it is unable to reduce
the value by a factor of reltol * (abs(val) + reltol) at a step. Defaults to
sqrt(.Machine$double.eps), typically about 1e-8.

alpha, beta, gamma

Scaling parameters for the "Nelder-Mead" method. alpha is the reflection fac-
tor (default 1.0), beta the contraction factor (0.5) and gamma the expansion fac-
tor (2.0).

REPORT The frequency of reports for the "BFGS", "L-BFGS-B" and "SANN" methods if
control$trace is positive. Defaults to every 10 iterations for "BFGS" and
"L-BFGS-B", or every 100 temperatures for "SANN".

type for the conjugate-gradients ("CG") method. Takes value 1 for the Fletcher-Reeves
update, 2 for Polak-Ribiere and 3 for Beale-Sorenson.

lmm is an integer giving the number of BFGS updates retained in the "L-BFGS-B"
method, It defaults to 5.

factr controls the convergence of the "L-BFGS-B" method. Convergence occurs when
the reduction in the objective is within this factor of the machine tolerance. De-
fault is 1e7, that is a tolerance of about 1e-8.

jmdem.control 13

pgtol helps control the convergence of the "L-BFGS-B" method. It is a tolerance on the
projected gradient in the current search direction. This defaults to zero, when
the check is suppressed.

tmax controls the "SANN" method. It is the starting temperature for the cooling sched-
ule. Defaults to 10.

temp is the number of function evaluations at each temperature for the "SANN" method.
Defaults to 10.

Details

The control argument of jmdem is by default passed to the control argument of jmdem.fit, which
uses its elements as arguments to jmdem.control: the latter provides defaults and sanity checking.

When trace is true, calls to cat produce the output for each iteration. Hence, options(digits =
*) can be used to increase the precision, see the example.

Value

A list with components named as the arguments.

Author(s)

Karl Wu Ka Yui (karlwuky@suss.edu.sg)

References

Belisle, C.J.P. (1992). Convergence theorems for a class of simulated annealing algorithms on Rd.
Journal of Applied Probability, 29, 885-895.

Byrd, R. H., Lu, P., Nocedal, J. and Zhu, C. (1995). A limited memory algorithm for bound con-
strained optimisation. SIAM Journal on Scientific Computing, 16, 1190-1208.

Fletcher, R. and Reeves, C.M. (1964). Function minimization by conjugate gradients. Computer
Journal, 7, 148-154.

Hastie, T. J. and Pregibon, D. (1992). Generalized linear models. Chapter 6 of Statistical Models
in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

Nash, J.C. (1990). Compact Numerical Methods for Computers. Linear Algebra and Function
Minimisation. Adam Hilger.

Nelder, J.A., Mead, R. (1965). A simplex algorithm for function minimization. Computer Journal,
7, 308-313.

Nocedal, J., Wright, S.J. (1999). Numerical Optimisation. Springer.

Smyth, G.K. (1989). Generalised linear models with varying dispersion. J. R. Statist. Soc. B, 51
(1), 47-60.

Smyth, G.K., Verbyla, A.P. (1999). Adjusted likelihood methods for modelling dispersion in gener-
alised linear models. Environmetrics, 10, 695-709.

Wu, K.Y.K., Li, W.K. (2016). On a dispersion model with Pearson residual responses. Comput.
Statist. Data Anal., 103, 17-27.

14 jmdem.sim

See Also

jmdem.fit, the fitting procedure used by jmdem.

Examples

Example in jmdem(...). Limit maximum iteration number to 20 and
trace the deviance development in the fitting process
MyData <- simdata.jmdem.sim(mformula = y ~ x, dformula = ~ s,

mfamily = poisson(),
dfamily = Gamma(link = "log"),
beta.true = c(0.5, 4),
lambda.true = c(2.5, 3), n = 100)

fit <- jmdem(mformula = y ~ x, dformula = ~ s, data = MyData,
mfamily = poisson, dfamily = Gamma(link = "log"),
dev.type = "deviance", method = "CG",
control = list(maxit = 20, fit.trace = TRUE))

Change to a small convergence tolerance and trace the optimisation
process in optim
jmdem.control(list(epsilon = 1e-14, trace = 1))

jmdem.sim Simulate joint mean and dispersion effects models fits

Description

Simulate iterative jmdem fits on user-defined model settings

Usage

jmdem.sim(mformula = "y ~ 1 + x", dformula = "~ 1 + z", data = NULL,
beta.true, lambda.true, mfamily = gaussian,
dfamily = Gamma, dev.type = c("deviance", "pearson"),
x.str = list(type = "numeric", random.func = "runif", param = list()),
z.str = list(type = "numeric", random.func = "runif", param = list()),
n = NULL, simnum = NULL, trace = FALSE, asymp.test = FALSE,
weights = NULL, moffset = NULL, doffset = NULL,
mustart = NULL, phistart = NULL, betastart = NULL,
lambdastart = NULL, hessian = TRUE, na.action,
grad.func = TRUE, fit.method = "jmdem.fit",
method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", "Brent"),
df.adj = FALSE, disp.adj = FALSE, full.loglik = FALSE,
mcontrasts = NULL, dcontrasts = NULL, beta.first = TRUE,
prefit = TRUE, control = list(...),
minv.method = c("solve", "chol2inv", "ginv"), ...)

simdata.jmdem.sim(mformula = "y ~ 1 + x", dformula = "~ 1 + z", beta.true, lambda.true,

jmdem.sim 15

x.str = list(type = "numeric", random.func = "runif", param = list()),
z.str = list(type = "numeric", random.func = "runif", param = list()),

mfamily = gaussian, dfamily = Gamma, weights = NULL, n, simnum = 1,
moffset = NULL, doffset = NULL)

getdata.jmdem.sim(object)

Arguments

mformula the user-defined true mean submodel, expressed in form of an object of class
"formula". The number of regressors and their interactions can be specified
here, but not their true parameter values.

dformula the user-defined true dispersion submodel. See mformula.

data an optional data frame or list of several data frames. If no data are provided,
jmdem.sim will generate its own data for simulation by simdata.jmdem.sim.

beta.true a vector of the true parameter values of the mean submodel. The number of
elements in beta.true must be identical with the number of parameters to be
estimated in mformula, including the intercept if there exists one in the model.

lambda.true a vector of the true parameter values of the dispersion submodel. The number of
elements in lambda.true must be identical with the number of parameters to be
estimated in dformula, including the intercept if there exists one in the model.

mfamily a description of the error distribution and link function to be used in the mean
submodel. This can be a character string naming a family function, a family
function or the result of a call to a family function. (See family for details of
family functions.)

dfamily a description of the error distribution and link function to be used in the disper-
sion submodel. (Also see family for details of family functions.)

dev.type a specification of the type of residuals to be used as the response of the dis-
persion submodel. The ML estimates of the jmdem are the optima of either
the quasi-likelihood function for deviance residuals, or the pseudo-likelihood
function for Pearson residuals.

x.str a list of user-specified structure for the generation of the mean submodel de-
sign matrix, including the type (numeric, character, logical etc.), an r function
(random.func) to generate the values of the regressors and the corresponding
parameters (param) to be passed on to (random.func). Note that all parameters
that belong to the same random.func must be put in a list(...). See details.

z.str a list of user-specified structure for the generation of the dispersion submodel de-
sign matrix, including the type (numeric, character, logical etc.), an r function
(random.func) to generate the values of the regressors and the corresponding
parameters (param) to be passed on to (random.func). Note that all parameters
that belong to the same random.func must be put in a list(...). See details.

n a numeric value specifying the sample size in each simulation.

simnum a numeric value specifying the number of simulations.

trace a specification whether the estimated coefficients should be printed to screen
after each simulation.

16 jmdem.sim

asymp.test a specification whether the Rao’s score and Wald tests should be conducted for
each simulation.

... for control: arguments to be used to form the default control argument if it is
not supplied directly. For jmdem.sim: further arguments passed to or from other
methods.
The following arguments are used for JMDEM fitting. See jmdem for details.

weights an optional vector of ’prior weights’ to be used in the fitting process. Should be
NULL or -a numeric vector.

moffset an a priori known component to be included in the linear predictor of the mean
submodel during fitting. This should be NULL or a numeric vector of length
equal to the number of cases. One or more offset terms can be included in the
formula instead or as well, and if more than one is specified their sum is used.
See model.offset.

doffset an a priori known component to be included in the linear predictor of the disper-
sion submodel during fitting. See model.offset.

mustart a vector of starting values of individual means.
phistart a vector of starting values of individual dispersion.
betastart a vector of starting values for the regression parameters of the mean submodel.
lambdastart a vector of starting values for the regression parameters of the dispersion sub-

model.
hessian the method used to compute the information matrix. Hessian matrix will be

calculated for "TRUE", Fisher matrix for "FALSE".
na.action a function which indicates what should happen when the data contain NAs. The

default is set by the na.action setting of options, and is na.fail if that is
unset. The ’factory-fresh’ default is na.omit. Another possible value is NULL,
no action. Value na.exclude can be useful.

grad.func the gradient function will be included in the optimisation for the "BFGS", "CG"
and "L-BFGS-B" methods for "TRUE". If it is NULL, a finite-difference approxi-
mation will be used.
For the "SANN" method it specifies a function to generate a new candidate point.
If it is NULL a default Gaussian Markov kernel is used.

fit.method the method to be used in fitting the model. The default method "jmdem.fit"
uses the general-purpose optimisation (optim): the alternative "model.frame"
returns the model frame and does no fitting.
User-supplied fitting functions can be supplied either as a function or a character
string naming a function, with a function which takes the same arguments as
jmdem.fit. If specified as a character string it is looked up from within the
stats namespace.

method the method to be used for the optimisation. See optim for details.
df.adj an adjustment factor for the degrees of freedom (n-p)/n, where n is the number

of observations and p is the number of parameters to be estimated in jmdem, will
be multiplied to the likelihood function before the optimisation for "TRUE".

disp.adj an adjustment factor for the dispersion weight will be multiplied to the estimated
dispersion parameter during the optimisation for "TRUE". For details, please see
McCullagh and Nelder (1989, Ch. 10, P. 362).

jmdem.sim 17

full.loglik the full likelihood function instead of the quasi- or pseudo-likelihood function
will be used for the optimisation for TRUE.

mcontrasts an optional list for the mean effect constrasts. See the contrasts.arg of model.matrix.default.

dcontrasts an optional list for the dispersion effect constrasts. See the contrasts.arg of
model.matrix.default.

beta.first the mean effects will be estimated (assuming constant sample dispersion) at the
initial stage for TRUE. For FALSE, the dispersion effects will be estimated first
(assuming constantly zero mean for the whole sample).

prefit a specfication whether jmdem uses glm to prefit the starting values of the mean
and dispersion parameters. For FALSE, the initial parameter values of all the
regressors are set to zero and the sample mean and sample dispersion will be
used as the starting values of the corresponding submodel intercepts instead.
If the submodels have no intercept, all parameters will also be set to zero. The
sample mean and sample dispersion will then be used as mustart and phistart
in the internal computation (they will not be officially recorded in mustart and
phistart in the output object). Defaule value is TRUE.

control a list of parameters for controlling the fitting process. For jmdem.fit this is
passed to jmdem.control.

minv.method the method used to invert matrices during the estimation process. "solve"
gives the solutions of a system of equations, "chol2inv" gives the inverse from
Choleski or QR decomposition and "ginv" gives the generalised inverse of a
matrix. If none of the methods is specified or if they are specified in a vector
such as c("solve", "chol2inv", "ginv"), the matrices will be inverted by the
methods in the sequence as given in the vector until it is found.

object one or several objects of class jmdem.sim, typically the result of a call to jmdem.sim.

Details

jmdem.sim simulates the fitting of datasets in which the regressors of the mean and dispersion
submodels are generated according to the specification given in x.str and z.str. The response
variable will be then generated according to the distribution specified in mfamily with linear pre-
dictor of the mean given by mformula and the linear predictor of the dispersion given by dformula.

The specifications in x.str and z.str are rather flexible if more than one independent variables are
included in any of the submodels. For instance, if one of the two independent variables of the mean
submodel is numeric generated from the normal distribution of mean 0 and standard deviation 1,
and the other one is a 4-level factor 0, 1, 2, 3 generated from the uniform distribution, then they can
be specified in a vector using c(...), such as: x.str = list(type = c("numeric", "factor"),
random.func = c("rnorm", "runif"), param = c(list(mean = 0, sd = 1), list(min = 0, max =
3))).

Note that the higher the number of simulations specified in simnum, the more stabilised are the
aggregated simulation results. The larger the sample size in each simulation, the less fluctuated are
the estimated results among the simulations.

Users gain simdata.jmdem.sim higher control on the simulation by generating a number of datasets
upon their own settings first, and not running jmdem.sim at the same time. By taking these steps,
users also have the flexiblility to edit the datasets according their own individual requirements,
before calling them in jmdem.sim.

18 jmdem.summaries

Users can also extract the datasets used in jmdem.sim by getdata.jmdem.sim. This function is
useful if the datasets are generated in jmdem.sim where users do not have access prior to the simu-
lations.

getdata.jmdem.sim and simdata.jmdem.sim can also be useful if the users would like to conduct
various simulations with different jmdem settings on the same data.

Value

An object of class jmdem.sim contains of a list of jmdem fits with full model information. That
means, each element of the jmdem.sim object contains the same attributes as a jmdem object. See
values of jmdem for details.

Author(s)

Karl Wu Ka Yui (karlwuky@suss.edu.sg)

See Also

jmdem, summary.jmdem.sim

Examples

Run 10 JMDEM simulations with samples of size 50. The response
variable is Gaussian with mean beta_0 + beta_1 * x and variance
log(sigma^2) = lambda_0 + lambda_1 * z. The observations of
the predictor x should be random numbers generated from the normal
distribution with mean 0 and standard deviation 2. The observations
of z are factors with three levels between 0 and 2, generated from
the uniform distribution. The true values of the mean submodel's
intercept and slope are 1.5 and 4, as well as 2.5, 3 and -0.2 for
the dispersion submodel's intercept and slope.
sim <- jmdem.sim(mformula = y ~ x, dformula = ~ z, beta.first = TRUE,

mfamily = gaussian, dfamily = Gamma(link = "log"),
x.str = list(type = "numeric", random.func = "rnorm",

param = list(mean = 0, sd = 2)),
z.str = list(type = "factor", random.func = "runif",

param = list(min = 0, max = 2)),
beta.true = c(1.5, 4), lambda.true = c(2.5, 3, -0.2),
grad.func = TRUE, method = "BFGS", n = 50,
simnum = 10)

jmdem.summaries Accessing Joint Mean and Dispersion Effect Model Fits

Description

These functions are all methods for class jmdem or summary.jmdem objects.

jmdem.summaries 19

Usage

S3 method for class 'jmdem'
formula(x, submodel = c("both", "mean", "dispersion"), ...)

S3 method for class 'jmdem'
family(object, submodel = c("both", "mean", "dispersion"), ...)

S3 method for class 'jmdem'
residuals(object, type = c("deviance", "pearson", "working",

"response", "partial"), ...)

Arguments

x, object the function family accesses the family objects which are stored within objects
created by jmdem.

submodel character. The family of the specified submodel. For both, the families of the
mean and dispersion submodels will be return in a list of 2 elements.

type character. For residuals, the type of residuals which should be returned. The
alternatives are: "deviance" (default), "pearson", "working", "response", and
"partial".

... further arguments passed to methods.

Details

family is a generic function with methods for class "jmdem". See family for details.

Here formula is referred to the case that it is called on a fitted jmdem model object. The de-
fault first, depending on the specified submodel argument, looks for a "mean.formula" and/or
"dispersion.formula" component of the jmdem object (and evaluates it), then a "mean.terms"
and/or "dispersion.terms" component, then a mformula and/or dformula parameter of the call
(and evaluates its value) and finally a "formula" attribute.

The references define the types of residuals: Davison & Snell is a good reference for the usages of
each.

The partial residuals are a matrix of working residuals, with each column formed by omitting a term
from the model.

How residuals treats cases with missing values in the original fit is determined by the na.action
argument of that fit. If na.action = na.omit omitted cases will not appear in the residuals, whereas
if na.action = na.exclude they will appear, with residual value NA. See also naresid.

For fits done with y = FALSE the response values are computed from other components.

Author(s)

Karl Wu Ka Yui (karlwuky@suss.edu.sg)

20 model.matrix.jmdem

References

Cox, D. R. and Snell, E. J. (1981). Applied Statistics; Principles and Examples. London: Chapman
and Hall.

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

Davison, A. C. and Snell, E. J. (1991). Residuals and diagnostics. In: Statistical Theory and
Modelling. In Honour of Sir David Cox, FRS, eds. Hinkley, D. V., Reid, N. and Snell, E. J.,
Chapman & Hall.

Dobson, A. J. (1983). An Introduction to Statistical Modelling. London: Chapman and Hall.

Hastie, T. J. and Pregibon, D. (1992). Generalized linear models. Chapter 6 of Statistical Models
in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

McCullagh P. and Nelder, J. A. (1989). Generalized Linear Models. London: Chapman and Hall.

See Also

jmdem, anova.jmdem, coef, deviance, df.residual, effects, fitted, weighted.residuals,
residuals, residuals.jmdem, summary.jmdem, weights.

Examples

The jmdem(...) example
MyData <- simdata.jmdem.sim(mformula = y ~ x, dformula = ~ z,

mfamily = poisson(),
dfamily = Gamma(link = "log"),
beta.true = c(0.5, 4),
lambda.true = c(2.5, 3), n = 100)

fit <- jmdem(mformula = y ~ x, dformula = ~ z, data = MyData,
mfamily = poisson, dfamily = Gamma(link = "log"),
dev.type = "deviance", method = "CG")

coef(fit)
plot(resid(fit), fitted(fit))
abline(h = 0, lty = 2, col = "gray")

model.matrix.jmdem Construct Design Matrices

Description

model.matrix creates a design (or model) matrix, e.g., by expanding factors to a set of dummy
variables (depending on the contrasts) and expanding interactions similarly.

Usage

S3 method for class 'jmdem'
model.matrix(object, submodel = c("both", "mean", "dispersion"), ...)

model.matrix.jmdem 21

Arguments

object the function family accesses the family objects which are stored within objects
created by jmdem.

submodel character. The family of the specified submodel. For both, the families of the
mean and dispersion submodels will be return in a list of 2 elements.

... further arguments passed to or from other methods.

Details

model.matrix creates a design matrix from the description given in terms(object), using the
data in data which must supply variables with the same names as would be created by a call to
model.frame(object) or, more precisely, by evaluating attr(terms(object), "variables").

Value

The design matrix for a regression-like model with the specified formula and data.

There is an attribute "assign", an integer vector with an entry for each column in the matrix giving
the term in the formula which gave rise to the column. Value 0 corresponds to the intercept (if any),
and positive values to terms in the order given by the term.labels attribute of the terms structure
corresponding to object.

If there are any factors in terms in the model, there is an attribute "contrasts", a named list with an
entry for each factor. This specifies the contrasts that would be used in terms in which the factor is
coded by contrasts (in some terms dummy coding may be used), either as a character vector naming
a function or as a numeric matrix.

Author(s)

Karl Wu Ka Yui (karlwuky@suss.edu.sg)

References

Chambers, J. M. (1992). Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

model.frame, model.extract, terms

Examples

Example in jmdem(...)
MyData <- simdata.jmdem.sim(mformula = y ~ x, dformula = ~ z,

mfamily = poisson(),
dfamily = Gamma(link = "log"),
beta.true = c(0.5, 4),
lambda.true = c(2.5, 3), n = 100)

fit <- jmdem(mformula = y ~ x, dformula = ~ z, data = MyData,
mfamily = poisson, dfamily = Gamma(link = "log"),

22 predict.jmdem

dev.type = "deviance", method = "CG")

Extract the design matrix of the mean submodel
model.matrix(fit, submodel = "mean")

predict.jmdem Predict Method for JMDEM Fits

Description

Obtains predictions and optionally estimates standard errors of those predictions from a fitted joint
mean and dispersion effect model object.

Usage

S3 method for class 'jmdem'
predict(object, newdata = NULL, type = c("link", "response"),

se.fit = FALSE, na.action = na.pass, ...)

Arguments

object a fitted object of class inheriting from "jmdem".
newdata optionally, a data frame in which to look for variables with which to predict. If

omitted, the fitted linear predictors are used.
type the type of prediction required. The default is on the scale of the linear predic-

tors; the alternative "response" is on the scale of the response variable. Thus for
a default binomial model the default predictions are of log-odds (probabilities
on logit scale) and type = "response" gives the predicted probabilities.

se.fit logical switch indicating if standard errors are required.
na.action function determining what should be done with missing values in newdata. The

default is to predict NA.
... further arguments passed to or from other methods.

Details

If newdata is omitted the predictions are based on the data used for the fit. In that case how
cases with missing values in the original fit is determined by the na.action argument of that fit.
If na.action = na.omit omitted cases will not appear in the residuals, whereas if na.action =
na.exclude they will appear (in predictions and standard errors), with residual value NA. See also
napredict.

Value

If se.fit = FALSE, a vector or matrix of predictions.

If se.fit = TRUE, a list with components

fit Predictions, as for se.fit = FALSE.
se.fit Estimated standard errors.

score.jmdem, wald.jmdem 23

Note

Variables are first looked for in newdata and then searched for in the usual way (which will include
the environment of the formula used in the fit). A warning will be given if the variables found are
not of the same length as those in newdata if it was supplied.

Author(s)

Karl Wu Ka Yui (karlwuky@suss.edu.sg)

See Also

jmdem

Examples

Example in jmdem(...)
MyData <- simdata.jmdem.sim(mformula = y ~ x, dformula = ~ z,

mfamily = poisson(),
dfamily = Gamma(link = "log"),
beta.true = c(0.5, 4),
lambda.true = c(2.5, 3), n = 100)

fit <- jmdem(mformula = y ~ x, dformula = ~ z, data = MyData,
mfamily = poisson, dfamily = Gamma(link = "log"),
dev.type = "deviance", method = "CG")

Predict on the scale of the response variable with standard errors.
predict(fit, type = "response", se.fit = TRUE)

Predict based on a new observation on the scale of the linear
predictors with standard errors.
predict(fit, newdata = data.frame(x = -1.5, z = 100), se.fit = TRUE)

score.jmdem, wald.jmdem

Asymptotic tests for fits of joint mean and dispersion effects models

Description

Computes a score (Rao) or Wald chi-squared test statistics for comparing two jmdem models.

Usage

score.jmdem(object, ...)

wald.jmdem(object, ...)

24 score.jmdem, wald.jmdem

Arguments

object a model or list of two or more models fitted by jmdem to be tested. Pairwise
tests will be conducted.

... a list of two or more fitted models to be tested.

Details

Given a vector of model coefficients of length p, Θ = (θ1, . . . , θq, θq+1, . . . , θp)T , the score and
Wald tests are usually used to test the null hypothesis against an alternative

H0 : θq+1 = . . . = θp = 0vs.H0nottrue

Thus, they are asymptotic tests on the explanatory power of one or more regressors. And the result
of the score and Wald tests only makes sense if the models involved are nested, i.e. all coefficients
of a "smaller" (null, restricted) model are included in a "bigger" (alternative, unrestricted) model.

The main difference between the score and Wald tests is that the score test only requires the knowl-
edge of the fitted coefficients of the "small" model. The Wald test, on the other hand, only need
the estimates of the "bigger" model. Nevertheless, these tests are asymptotically equivalent, i.e. for
large samples, the test statistics of these tests on the same set of models should be very close.

The key assumption is that the coefficient estimates asymptotically follow a (multivariate) normal
distribution with mean and variance equal to the model parameters and their variance-covariance
matrix.

score.jmdem and wald.jmdem extract the fitted coefficients and their variance-covariance matrix
from the model objects, and evaluate the test statistics subsequently. So it is not necessary to specify
the coefficients and variance-covariance matrix in the function arguments.

score.jmdem and wald.jmdem only return the test statistics. They are asymptotically chi-square
distributed with p− q degrees of freedom.

Value

score.jmdem and wald.jmdem return a column matrix containing the test statistics of the pairwise
comparisons of all models given by the user in object and

Note

The score test is sometimes also called the Rao’s score test or Lagrange multiplier (LM) test in
different literatures.

Normally, asymptotic tests include likelihood ratio (LR), Rao’s score and Wald tests. The likelihood
ratio test is omitted here because the comparison of the deviances of two joint mean and dispersion
effects models is questionable, if not even invalid. One important argument is that the dependent
variables of two different dispersion submodels given two different mean submodels are not the
identical.

Author(s)

Karl Wu Ka Yui (karlwuky@suss.edu.sg)

stat.anova.jmdem 25

References

Engle, R.F. (1983). Wald, Likelihood Ratio, and Lagrange Multiplier Tests in Econometrics. In
Intriligator, M. D.; Griliches, Z. Handbook of Econometrics. II. Elsevier. pp. 796-801.

McCullagh P. and Nelder, J.A. (1989) Generalized Linear Models. London: Chapman and Hall.

Wu, K.Y.K., Li, W.K. (2016). On a dispersion model with Pearson residual responses. Comput.
Statist. Data Anal., 103, 17-27.

See Also

anova.jmdem, anova, jmdem

Examples

Example in jmdem(...)
MyData <- simdata.jmdem.sim(mformula = y ~ x + delta, dformula = ~ z,

mfamily = gaussian(),
dfamily = Gamma(link = "log"),
beta.true = c(0.5, 4, 1),
lambda.true = c(2.5, 3), n = 100)

fit <- jmdem(mformula = y ~ x + delta, dformula = ~ z, data = MyData,
mfamily = gaussian, dfamily = Gamma, dev.type = "pearson",
method = "BFGS", df.adj = TRUE)

fit.1 <- update(fit, mformula = . ~ . - delta)

fit.2 <- update(fit.1, mformula = . ~ . - x)

conduct a Wald tests
wald.jmdem(fit, fit.1, fit.2)

should deliver the same results as above
wald.jmdem(object = list(fit, fit.1, fit.2))

conduct the score test and compute the p-value directly.
raotest <- score.jmdem(fit, fit.2)
pchisq(raotest, df = abs(df.residual(fit) - df.residual(fit.2)),

lower.tail = FALSE)

stat.anova.jmdem JMDEM Anova Statistics

Description

This is a utility function, used in jmdem method for anova(..., test != NULL) and should not be
used by the average user.

26 stat.anova.jmdem

Usage

stat.anova.jmdem(table, test = c("Rao", "Wald"))

Arguments

table numeric matrix as results from anova.jmdem(..., test = NULL, print.results
= FALSE) saved as the attributes table.x or table.z.

test a character string, partially matching one of "Rao" or "Wald".

Value

A matrix which is the original table, augmented by a column of test statistics, depending on the
test argument.

Author(s)

Karl Wu Ka Yui (karlwuky@suss.edu.sg)

References

Hastie, T. J. and Pregibon, D. (1992). Generalized linear models. Chapter 6 of Statistical Models
in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

anova.jmdem

Examples

Example in jmdem(...)
MyData <- simdata.jmdem.sim(mformula = y ~ x, dformula = ~ z,

mfamily = poisson(),
dfamily = Gamma(link = "log"),
beta.true = c(0.5, 4),
lambda.true = c(2.5, 3), n = 100)

fit <- jmdem(mformula = y ~ x, dformula = ~ z, data = MyData,
mfamily = poisson, dfamily = Gamma(link = "log"),
dev.type = "deviance", method = "CG")

stat.anova.jmdem(anova(fit, test = "Rao", print.results = FALSE)$table.x)

summary.jmdem 27

summary.jmdem Summarising Joint Mean and Dispersion Effects Model Fits

Description

These functions are all methods for class jmdem or summary.jmdem objects.

Usage

S3 method for class 'jmdem'
summary(object, correlation = FALSE, symbolic.cor = FALSE, ...)

S3 method for class 'summary.jmdem'
print(x, digits = max(3L, getOption("digits") - 3L),

scientific = FALSE, symbolic.cor = x$symbolic.cor,
signif.stars = getOption("show.signif.stars"), ...)

Arguments

object an object of class "jmdem", usually, a result of a call to jmdem.

x an object of class "summary.jmdem", usually, a result of a call to summary.jmdem.

correlation logical; if TRUE, the correlation matrix of the estimated parameters is returned
and printed.

digits the number of significant digits to use when printing.

scientific logical; if TRUE, scientific notation is used when printing.

symbolic.cor logical. If TRUE, print the correlations in a symbolic form (see symnum) rather
than as numbers.

signif.stars logical. If TRUE, ’significance stars’ are printed for each coefficient.

... further arguments passed to or from other methods.

Details

print.summary.jmdem tries to be smart about formatting the coefficients, standard errors, etc. and
additionally gives ’significance stars’ if signif.stars is TRUE. The coefficients, mean.coefficients
and dispersion.coefficients components of the result give the estimated coefficients and their
estimated standard errors, together with their ratio. This third column is labelled t-ratio and
a fourth column gives the two-tailed p-value corresponding to the t-ratio based on a Student t
distribution.

Aliased coefficients are omitted in the returned object but restored by the print method.

Correlations are printed to the same decimal places specified in digits (or symbolically): to see
the actual correlations print summary(object)$correlation directly.

For more details, see summary.glm.

28 summary.jmdem

Value

call the component from object.
mean.family the component from object.
dispersion.family

the component from object.
deviance the component from object.
mean.terms the component from object.
dispersion.terms

the component from object.
aic the component from object.
mean.contrasts the component from object.
dispersion.contrasts

the component from object.
df.residual the component from object.
null.deviance the component from object.
df.null the component from object.
information.type

the component from object.
iter the component from object.
mean.na.action the component from object.
dispersion.na.action

the component from object.
deviance.resid the deviance residuals.
pearson.resid the pearson residuals.
resid the working residuals depends on the setting of deviance.type.
coefficients the matrix of coefficients, standard errors, z-values and p-values. Aliased coef-

ficients are omitted.
mean.coefficients

the matrix of coefficients, standard errors, z-values and p-values of the mean
submodel.

dispersion.coefficients

the matrix of coefficients, standard errors, z-values and p-values of the disper-
sion submodel.

deviance.type the type of redidual deviance specified, it is either "deviance" or "pearson".
aliased named logical vector showing if the original coefficients are aliased.
df a 3-vector of the rank of the model and the number of residual degrees of free-

dom, plus number of coefficients (including aliased ones).
covariance the estimated covariance matrix of the estimated coefficients.
digits the number of significant digits to use when printing.
scientific logical value of using scientific notation when printing.
covmat.method named method used to invert the covariance matrix.
correlation (only if correlation is true.) The estimated correlations of the estimated coeffi-

cients.
symbolic.cor (only if correlation is true.) The value of the argument symbolic.cor.

summary.jmdem.sim 29

Author(s)

Karl Wu Ka Yui (karlwuky@suss.edu.sg)

See Also

jmdem, summary

Examples

Example in jmdem(...)
MyData <- simdata.jmdem.sim(mformula = y ~ x, dformula = ~ z,

mfamily = poisson(),
dfamily = Gamma(link = "log"),
beta.true = c(0.5, 4),
lambda.true = c(2.5, 3), n = 100)

fit <- jmdem(mformula = y ~ x, dformula = ~ z, data = MyData,
mfamily = poisson, dfamily = Gamma(link = "log"),
dev.type = "deviance", method = "CG")

Summarise fit with correlation matrix
summary(fit, correlation = TRUE, digits = 4)

summary.jmdem.sim Summarising JMDEM Simulations

Description

These functions are all methods for class jmdem.sim or summary.jmdem.sim objects.

Usage

S3 method for class 'jmdem.sim'
summary(object, digits = max(3L, getOption("digits") - 3L),

scientific = FALSE, pvalue = 0.05,
minv.method = c("solve", "chol2inv", "ginv"),
other.call = FALSE, details = FALSE, ...)

S3 method for class 'summary.jmdem.sim'
print(x, digits = max(3L, getOption("digits") - 3L), scientific = FALSE,

pvalue = 0.05, signif.stars = getOption("show.signif.stars"),
other.call = FALSE, details = FALSE, ...)

Arguments

object an object of class "jmdem.sim", usually, a result of a call to jmdem.sim.

x an object of class "summary.jmdem.sim", usually, a result of a call to summary.jmdem.sim.

digits the number of significant digits to use when printing.

30 summary.jmdem.sim

scientific logical; if TRUE, scientific notation is used when printing.

pvalue a value between 0 and 1. It is used to compute the coverage proportion of the
true parameter values by the simulated fits.

minv.method the method used to invert matrices during the estimation process. "solve"
gives the solutions of a system of equations, "chol2inv" gives the inverse from
Choleski or QR decomposition and "ginv" gives the generalised inverse of a
matrix. If none of the methods is specified or if they are specified in a vector
such as c("solve", "chol2inv", "ginv"), the matrices will be inverted by the
methods in the sequence as given in the vector until it is found.

signif.stars logical. If TRUE, ’significance stars’ are printed for each coefficient.

other.call logical. If true, the rest of simulation call (i.e. without the mean and dispersion
submodel formulas, families, true values) will be shown.

details logical. If true, coefficients, standard errors, true parameter coverage (TRUE/FALSE)
and asymptotic test statistics of each simulation will be listed.

... further arguments passed to or from other methods.

Details

The arithmetric mean of the coefficients, standard errors and coverage by the confidence intervals
estimated in all simulations will be listed in a table. A detail listing of each simulation’s results can
be provided if required by details = TRUE. The summary also includes the averages of the Rao’s
score and Wald test statistics of all simulation fits.

print.summary.jmdem.sim tries to be smart about formatting the coefficients, standard errors, etc
according the number of significant digits (default of user-specified) or the usage of scientific
notation or not.

Value

digits the number of significant digits to use when printing.

scientific logical value of using scientific notation when printing.

details logical value of printing details of each simulation.

other.call logical value of printing other parameters of the simulation call.

pvalue numeric value between 0 and 1 used for the computation of the true parameter
coverage.

beta.true user-defined vector containing the true parameter values of the mean submodel.

lambda.true user-defined vector containing the true parameter values of the dispersion sub-
model.

simcall the component from object.

mformula the component from object.

dformula the component from object.

mfamily the component from object.

dfamily the component from object.

coefficients mean and dispersion submodel parameter coefficients fitted in each simulation
saved in a data.frame.

update.jmdem 31

stderr standard erros of all mean and dispersion submodel parameter coefficients esti-
mated in each simulation saved in a data.frame.

iterations a vectror containing the running numbers of each simulation.

confint confidence intervals of all mean and dispersion submodel parameter coefficients
estimated in each simulation saved in a data.frame.

coverage the coverage of all true submodel parameters by the confidence intervals esti-
mated in each simulation saved in a data.frame.

asymp.test Rao’s score and Wald test statistics of each simulation saved in a data.frame.
average.summary

Arithmetric means of the coefficients, standard errors, confidence interval con-
verage estimated in all simulations saved in a data.frame.

average.asymp.test

(Arithmetric means of the Rao’s score and Wald test statistics estimated in all
simulations saved in a data.frame.

Author(s)

Karl Wu Ka Yui (karlwuky@suss.edu.sg)

See Also

jmdem.sim, jmdem, summary

Examples

Example in jmdem.sim(...)
sim <- jmdem.sim(mformula = y ~ x, dformula = ~ z, beta.first = TRUE,

mfamily = gaussian, dfamily = Gamma(link = "log"),
x.str = list(type = "numeric", random.func = "rnorm",

param = list(mean = 0, sd = 2)),
z.str = list(type = "factor", random.func = "runif",

param = list(min = 0, max = 2)),
beta.true = c(1.5, 4), lambda.true = c(2.5, 3, -0.2),
grad.func = TRUE, method = "BFGS", n = 50,
simnum = 10)

Summarise simulation
summary(sim, details = FALSE, other.call = TRUE)

update.jmdem Update and Re-fit a JMDEM Call

Description

update will update and (by default) re-fit a model. It does this by extracting the call stored in the
object, updating the call and (by default) evaluating that call. Sometimes it is useful to call update
with only one argument, for example if the data frame has been corrected.

32 update.jmdem

Usage

S3 method for class 'jmdem'
update(object, mformula, dformula, ...)

Arguments

object An existing fit from a jmdem model function

mformula Changes to the formula of the mean submodel - see update.formula for details.

dformula Changes to the formula of the dispersion submodel - see update.formula for
details.

... Additional arguments to the call, or arguments with changed values. Use name
= NULL to remove the argument name.

Author(s)

Karl Wu Ka Yui (karlwuky@suss.edu.sg)

References

Chambers, J. M. (1992). Linear models. Chapter 4 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

update.formula

Examples

Example in jmdem(...): Update the dispersion fitting based on Pearson
residuals and change from Nelder-Mead to BFGS as optimisation method.
MyData <- simdata.jmdem.sim(mformula = y ~ x, dformula = ~ z,

mfamily = poisson(),
dfamily = Gamma(link = "log"),
beta.true = c(0.5, 4),
lambda.true = c(2.5, 3), n = 100)

fit <- jmdem(mformula = y ~ x, dformula = ~ z, data = MyData,
mfamily = poisson, dfamily = Gamma(link = "log"),
dev.type = "deviance", method = "CG")

update(fit, dev.type = "pearson", method = "BFGS")

Index

anova, 3, 25
anova.jmdem, 2, 10, 20, 25, 26
as.data.frame, 4

cat, 13
coef, 20

deviance, 20
df.residual, 20

effects, 10, 20

family, 4, 5, 15, 19
family.jmdem (jmdem.summaries), 18
fitted, 20
fitted.values, 10
formula, 4, 15
formula.jmdem (jmdem.summaries), 18

getdata.jmdem.sim (jmdem.sim), 14

jmdem, 3, 4, 11, 14, 16, 18, 20, 23, 25, 27, 29,
31

jmdem.control, 11
jmdem.fit, 11, 14
jmdem.sim, 14, 29, 31
jmdem.summaries, 18

methods, 18, 27, 29
model.extract, 21
model.frame, 21
model.matrix.jmdem, 20
model.offset, 5, 16

na.exclude, 5, 16
na.fail, 5, 16
na.omit, 5, 16
napredict, 22
naresid, 19

optim, 5, 12, 16

options, 5, 16

predict.jmdem, 22
print.summary.jmdem (summary.jmdem), 27
print.summary.jmdem.sim

(summary.jmdem.sim), 29

residuals, 10, 20
residuals.jmdem, 20
residuals.jmdem (jmdem.summaries), 18

score.jmdem (score.jmdem, wald.jmdem),
23

score.jmdem, wald.jmdem, 23
simdata.jmdem.sim (jmdem.sim), 14
stat.anova.jmdem, 2, 25
summary, 29, 31
summary.glm, 27
summary.jmdem, 10, 20, 27
summary.jmdem.sim, 18, 29
symnum, 27

terms, 21

update.formula, 32
update.jmdem, 31

wald.jmdem (score.jmdem, wald.jmdem), 23
weighted.residuals, 20
weights, 20

33

	anova.jmdem
	jmdem
	jmdem.control
	jmdem.sim
	jmdem.summaries
	model.matrix.jmdem
	predict.jmdem
	score.jmdem, wald.jmdem
	stat.anova.jmdem
	summary.jmdem
	summary.jmdem.sim
	update.jmdem
	Index

