
Package ‘janitor’
December 22, 2024

Title Simple Tools for Examining and Cleaning Dirty Data

Version 2.2.1

Description The main janitor functions can: perfectly format data.frame column
names; provide quick counts of variable combinations (i.e., frequency
tables and crosstabs); and explore duplicate records. Other janitor functions
nicely format the tabulation results. These tabulate-and-report functions
approximate popular features of SPSS and Microsoft Excel. This package
follows the principles of the ``tidyverse'' and works well with the pipe function
%>%. janitor was built with beginning-to-intermediate R users in mind and is
optimized for user-friendliness.

URL https://github.com/sfirke/janitor,

https://sfirke.github.io/janitor/

BugReports https://github.com/sfirke/janitor/issues

Depends R (>= 3.1.2)

Imports dplyr (>= 1.0.0), hms, lifecycle, lubridate, magrittr, purrr,
rlang, stringi, stringr, snakecase (>= 0.9.2), tidyselect (>=
1.0.0), tidyr (>= 0.7.0)

License MIT + file LICENSE

RoxygenNote 7.2.3

Suggests dbplyr, knitr, rmarkdown, RSQLite, sf, testthat (>= 3.0.0),
tibble, tidygraph

VignetteBuilder knitr

Encoding UTF-8

Config/testthat/edition 3

NeedsCompilation no

Author Sam Firke [aut, cre],
Bill Denney [ctb],
Chris Haid [ctb],
Ryan Knight [ctb],
Malte Grosser [ctb],
Jonathan Zadra [ctb]

1

https://github.com/sfirke/janitor
https://sfirke.github.io/janitor/
https://github.com/sfirke/janitor/issues

2 Contents

Maintainer Sam Firke <samuel.firke@gmail.com>

Repository CRAN

Date/Publication 2024-12-22 16:30:01 UTC

Contents
add_totals_col . 3
add_totals_row . 3
adorn_ns . 4
adorn_pct_formatting . 5
adorn_percentages . 7
adorn_rounding . 8
adorn_title . 9
adorn_totals . 10
as_tabyl . 11
chisq.test . 12
clean_names . 13
compare_df_cols . 16
compare_df_cols_same . 17
convert_to_date . 18
convert_to_NA . 20
describe_class . 20
excel_numeric_to_date . 21
find_header . 23
fisher.test . 24
get_dupes . 24
get_one_to_one . 25
janitor_deprecated . 26
make_clean_names . 26
mu_to_u . 29
remove_constant . 30
remove_empty . 31
remove_empty_cols . 32
remove_empty_rows . 32
round_half_up . 33
round_to_fraction . 33
row_to_names . 34
sas_numeric_to_date . 35
signif_half_up . 36
single_value . 37
tabyl . 38
top_levels . 39
untabyl . 40
use_first_valid_of . 40

Index 42

add_totals_col 3

add_totals_col Append a totals column to a data.frame.

Description

This function is deprecated, use adorn_totals instead.

Usage

add_totals_col(dat, na.rm = TRUE)

Arguments

dat an input data.frame with at least one numeric column.

na.rm should missing values (including NaN) be omitted from the calculations?

Value

Returns a data.frame with a totals column containing row-wise sums.

add_totals_row Append a totals row to a data.frame.

Description

This function is deprecated, use adorn_totals instead.

Usage

add_totals_row(dat, fill = "-", na.rm = TRUE)

Arguments

dat an input data.frame with at least one numeric column.

fill if there are more than one non-numeric columns, what string should fill the
bottom row of those columns?

na.rm should missing values (including NaN) be omitted from the calculations?

Value

Returns a data.frame with a totals row, consisting of "Total" in the first column and column sums in
the others.

4 adorn_ns

adorn_ns Add underlying Ns to a tabyl displaying percentages.

Description

This function adds back the underlying Ns to a tabyl whose percentages were calculated using
adorn_percentages(), to display the Ns and percentages together. You can also call it on a non-
tabyl data.frame to which you wish to append Ns.

Usage

adorn_ns(
dat,
position = "rear",
ns = attr(dat, "core"),
format_func = function(x) {

format(x, big.mark = ",")
},
...

)

Arguments

dat a data.frame of class tabyl that has had adorn_percentages and/or adorn_pct_formatting
called on it. If given a list of data.frames, this function will apply itself to each
data.frame in the list (designed for 3-way tabyl lists).

position should the N go in the front, or in the rear, of the percentage?

ns the Ns to append. The default is the "core" attribute of the input tabyl dat, where
the original Ns of a two-way tabyl are stored. However, if your Ns are stored
somewhere else, or you need to customize them beyond what can be done with
‘format_func‘, you can supply them here.

format_func a formatting function to run on the Ns. Consider defining with base::format().

... columns to adorn. This takes a tidyselect specification. By default, all columns
are adorned except for the first column and columns not of class numeric, but
this allows you to manually specify which columns should be adorned, for use
on a data.frame that does not result from a call to tabyl.

Value

a data.frame with Ns appended

Examples

mtcars %>%
tabyl(am, cyl) %>%
adorn_percentages("col") %>%

adorn_pct_formatting 5

adorn_pct_formatting() %>%
adorn_ns(position = "front")

Format the Ns with a custom format_func:
set.seed(1)
bigger_dat <- data.frame(sex = rep(c("m", "f"), 3000),

age = round(runif(3000, 1, 102), 0))
bigger_dat$age_group = cut(bigger_dat$age, quantile(bigger_dat$age, c(0, 1/3, 2/3, 1)))

bigger_dat %>%
tabyl(age_group, sex, show_missing_levels = FALSE) %>%
adorn_totals(c("row", "col")) %>%
adorn_percentages("col") %>%
adorn_pct_formatting(digits = 1) %>%
adorn_ns(format_func = function(x) format(x, big.mark = ".", decimal.mark = ","))

Control the columns to be adorned with the ... variable selection argument
If using only the ... argument, you can use empty commas as shorthand
to supply the default values to the preceding arguments:

cases <- data.frame(
region = c("East", "West"),
year = 2015,
recovered = c(125, 87),
died = c(13, 12)

)

cases %>%
adorn_percentages("col",,recovered:died) %>%
adorn_pct_formatting(,,,,,recovered:died) %>%
adorn_ns(,,,recovered:died)

adorn_pct_formatting Format a data.frame of decimals as percentages.

Description

Numeric columns get multiplied by 100 and formatted as percentages according to user specifica-
tions. This function defaults to excluding the first column of the input data.frame, assuming that it
contains a descriptive variable, but this can be overridden by specifying the columns to adorn in the
... argument. Non-numeric columns are always excluded.

The decimal separator character is the result of getOption("OutDec"), which is based on the user’s
locale. If the default behavior is undesirable, change this value ahead of calling the function, either
by changing locale or with options(OutDec = ","). This aligns the decimal separator character
with that used in base::print().

Usage

adorn_pct_formatting(

6 adorn_pct_formatting

dat,
digits = 1,
rounding = "half to even",
affix_sign = TRUE,
...

)

Arguments

dat a data.frame with decimal values, typically the result of a call to adorn_percentages
on a tabyl. If given a list of data.frames, this function will apply itself to each
data.frame in the list (designed for 3-way tabyl lists).

digits how many digits should be displayed after the decimal point?

rounding method to use for rounding - either "half to even", the base R default method, or
"half up", where 14.5 rounds up to 15.

affix_sign should the % sign be affixed to the end?

... columns to adorn. This takes a tidyselect specification. By default, all numeric
columns (besides the initial column, if numeric) are adorned, but this allows you
to manually specify which columns should be adorned, for use on a data.frame
that does not result from a call to tabyl.

Value

a data.frame with formatted percentages

Examples

mtcars %>%
tabyl(am, cyl) %>%
adorn_percentages("col") %>%
adorn_pct_formatting()

Control the columns to be adorned with the ... variable selection argument
If using only the ... argument, you can use empty commas as shorthand
to supply the default values to the preceding arguments:

cases <- data.frame(
region = c("East", "West"),
year = 2015,
recovered = c(125, 87),
died = c(13, 12)

)

cases %>%
adorn_percentages("col",,recovered:died) %>%
adorn_pct_formatting(,,,recovered:died)

adorn_percentages 7

adorn_percentages Convert a data.frame of counts to percentages.

Description

This function defaults to excluding the first column of the input data.frame, assuming that it contains
a descriptive variable, but this can be overridden by specifying the columns to adorn in the ...
argument.

Usage

adorn_percentages(dat, denominator = "row", na.rm = TRUE, ...)

Arguments

dat a tabyl or other data.frame with a tabyl-like layout. If given a list of data.frames,
this function will apply itself to each data.frame in the list (designed for 3-way
tabyl lists).

denominator the direction to use for calculating percentages. One of "row", "col", or "all".

na.rm should missing values (including NaN) be omitted from the calculations?

... columns to adorn. This takes a tidyselect specification. By default, all numeric
columns (besides the initial column, if numeric) are adorned, but this allows you
to manually specify which columns should be adorned, for use on a data.frame
that does not result from a call to tabyl.

Value

Returns a data.frame of percentages, expressed as numeric values between 0 and 1.

Examples

mtcars %>%
tabyl(am, cyl) %>%
adorn_percentages("col")

calculates correctly even with totals column and/or row:
mtcars %>%

tabyl(am, cyl) %>%
adorn_totals("row") %>%
adorn_percentages()

Control the columns to be adorned with the ... variable selection argument
If using only the ... argument, you can use empty commas as shorthand
to supply the default values to the preceding arguments:

cases <- data.frame(
region = c("East", "West"),
year = 2015,

8 adorn_rounding

recovered = c(125, 87),
died = c(13, 12)

)

cases %>%
adorn_percentages(,,recovered:died)

adorn_rounding Round the numeric columns in a data.frame.

Description

Can run on any data.frame with at least one numeric column. This function defaults to excluding
the first column of the input data.frame, assuming that it contains a descriptive variable, but this can
be overridden by specifying the columns to round in the ... argument.

If you’re formatting percentages, e.g., the result of adorn_percentages(), use adorn_pct_formatting()
instead. This is a more flexible variant for ad-hoc usage. Compared to adorn_pct_formatting(),
it does not multiply by 100 or pad the numbers with spaces for alignment in the results data.frame.
This function retains the class of numeric input columns.

Usage

adorn_rounding(dat, digits = 1, rounding = "half to even", ...)

Arguments

dat a tabyl or other data.frame with similar layout. If given a list of data.frames,
this function will apply itself to each data.frame in the list (designed for 3-way
tabyl lists).

digits how many digits should be displayed after the decimal point?

rounding method to use for rounding - either "half to even", the base R default method, or
"half up", where 14.5 rounds up to 15.

... columns to adorn. This takes a tidyselect specification. By default, all numeric
columns (besides the initial column, if numeric) are adorned, but this allows you
to manually specify which columns should be adorned, for use on a data.frame
that does not result from a call to tabyl.

Value

Returns the data.frame with rounded numeric columns.

adorn_title 9

Examples

mtcars %>%
tabyl(am, cyl) %>%
adorn_percentages() %>%
adorn_rounding(digits = 2, rounding = "half up")

tolerates non-numeric columns:
library(dplyr)
mtcars %>%

tabyl(am, cyl) %>%
adorn_percentages("all") %>%
mutate(dummy = "a") %>%
adorn_rounding()

Control the columns to be adorned with the ... variable selection argument
If using only the ... argument, you can use empty commas as shorthand
to supply the default values to the preceding arguments:
cases <- data.frame(

region = c("East", "West"),
year = 2015,
recovered = c(125, 87),
died = c(13, 12)

)

cases %>%
adorn_percentages(,,ends_with("ed")) %>%
adorn_rounding(,,one_of(c("recovered", "died")))

adorn_title Add column name to the top of a two-way tabyl.

Description

This function adds the column variable name to the top of a tabyl for a complete display of infor-
mation. This makes the tabyl prettier, but renders the data.frame less useful for further manipulation.

Usage

adorn_title(dat, placement = "top", row_name, col_name)

Arguments

dat a data.frame of class tabyl or other data.frame with a tabyl-like layout. If given
a list of data.frames, this function will apply itself to each data.frame in the list
(designed for 3-way tabyl lists).

placement whether the column name should be added to the top of the tabyl in an otherwise-
empty row "top" or appended to the already-present row name variable ("combined").
The formatting in the "top" option has the look of base R’s table(); it also

10 adorn_totals

wipes out the other column names, making it hard to further use the data.frame
besides formatting it for reporting. The "combined" option is more conservative
in this regard.

row_name (optional) default behavior is to pull the row name from the attributes of the
input tabyl object. If you wish to override that text, or if your input is not a
tabyl, supply a string here.

col_name (optional) default behavior is to pull the column_name from the attributes of the
input tabyl object. If you wish to override that text, or if your input is not a
tabyl, supply a string here.

Value

the input tabyl, augmented with the column title. Non-tabyl inputs that are of class tbl_df are
downgraded to basic data.frames so that the title row prints correctly.

Examples

mtcars %>%
tabyl(am, cyl) %>%
adorn_title(placement = "top")

Adding a title to a non-tabyl
library(tidyr); library(dplyr)
mtcars %>%

group_by(gear, am) %>%
summarise(avg_mpg = mean(mpg), .groups = "drop") %>%
spread(gear, avg_mpg) %>%
adorn_rounding() %>%
adorn_title("top", row_name = "Gears", col_name = "Cylinders")

adorn_totals Append a totals row and/or column to a data.frame.

Description

This function defaults to excluding the first column of the input data.frame, assuming that it contains
a descriptive variable, but this can be overridden by specifying the columns to be totaled in the ...
argument. Non-numeric columns are converted to character class and have a user-specified fill
character inserted in the totals row.

Usage

adorn_totals(dat, where = "row", fill = "-", na.rm = TRUE, name = "Total", ...)

as_tabyl 11

Arguments

dat an input data.frame with at least one numeric column. If given a list of data.frames,
this function will apply itself to each data.frame in the list (designed for 3-way
tabyl lists).

where one of "row", "col", or c("row", "col")

fill if there are non-numeric columns, what should fill the bottom row of those
columns? If a string, relevant columns will be coerced to character. If ‘NA‘
then column types are preserved.

na.rm should missing values (including NaN) be omitted from the calculations?

name name of the totals row and/or column. If both are created, and name is a single
string, that name is applied to both. If both are created and name is a vector of
length 2, the first element of the vector will be used as the row name (in column
1), and the second element will be used as the totals column name. Defaults to
"Total".

... columns to total. This takes a tidyselect specification. By default, all numeric
columns (besides the initial column, if numeric) are included in the totals, but
this allows you to manually specify which columns should be included, for use
on a data.frame that does not result from a call to tabyl.

Value

Returns a data.frame augmented with a totals row, column, or both. The data.frame is now also
of class tabyl and stores information about the attached totals and underlying data in the tabyl
attributes.

Examples

mtcars %>%
tabyl(am, cyl) %>%
adorn_totals()

as_tabyl Add tabyl attributes to a data.frame.

Description

A tabyl is a data.frame containing counts of a variable or co-occurrences of two variables (a.k.a., a
contingency table or crosstab). This specialized kind of data.frame has attributes that enable adorn_
functions to be called for precise formatting and presentation of results. E.g., display results as a
mix of percentages, Ns, add totals rows or columns, rounding options, in the style of Microsoft
Excel PivotTable.

A tabyl can be the result of a call to janitor::tabyl(), in which case these attributes are added
automatically. This function adds tabyl class attributes to a data.frame that isn’t the result of a call
to tabyl but meets the requirements of a two-way tabyl: 1) First column contains values of variable

12 chisq.test

1 2) Column names 2:n are the values of variable 2 3) Numeric values in columns 2:n are counts of
the co-occurrences of the two variables.*

* = this is the ideal form of a tabyl, but janitor’s adorn_ functions tolerate and ignore non-numeric
columns in positions 2:n.

For instance, the result of dplyr::count() followed by tidyr::spread() can be treated as a
tabyl.

The result of calling tabyl() on a single variable is a special class of one-way tabyl; this function
only pertains to the two-way tabyl.

Usage

as_tabyl(dat, axes = 2, row_var_name = NULL, col_var_name = NULL)

Arguments

dat a data.frame with variable values in the first column and numeric values in all
other columns.

axes is this a two_way tabyl or a one_way tabyl? If this function is being called by a
user, this should probably be "2". One-way tabyls are created by tabyl but are
a special case.

row_var_name (optional) the name of the variable in the row dimension; used by adorn_title().

col_var_name (optional) the name of the variable in the column dimension; used by adorn_title().

Value

Returns the same data.frame, but with the additional class of "tabyl" and the attribute "core".

Examples

as_tabyl(mtcars)

chisq.test Apply stats::chisq.test to a two-way tabyl

Description

This generic function overrides stats::chisq.test. If the passed table is a two-way tabyl, it runs it
through janitor::chisq.test.tabyl, otherwise it just calls stats::chisq.test.

clean_names 13

Usage

chisq.test(x, ...)

Default S3 method:
chisq.test(x, y = NULL, ...)

S3 method for class 'tabyl'
chisq.test(x, tabyl_results = TRUE, ...)

Arguments

x a two-way tabyl, a numeric vector or a factor
... other parameters passed to stats::chisq.test
y if x is a vector, must be another vector or factor of the same length
tabyl_results if TRUE and x is a tabyl object, also return ‘observed‘, ‘expected‘, ‘residuals‘

and ‘stdres‘ as tabyl

Value

The result is the same as the one of stats::chisq.test. If ‘tabyl_results‘ is TRUE, the returned tables
‘observed‘, ‘expected‘, ‘residuals‘ and ‘stdres‘ are converted to tabyls.

Examples

tab <- tabyl(mtcars, gear, cyl)
chisq.test(tab)
chisq.test(tab)$residuals

clean_names Cleans names of an object (usually a data.frame).

Description

Resulting names are unique and consist only of the _ character, numbers, and letters. Capitalization
preferences can be specified using the case parameter.

Accented characters are transliterated to ASCII. For example, an "o" with a German umlaut over it
becomes "o", and the Spanish character "enye" becomes "n".

This function takes and returns a data.frame, for ease of piping with `%>%`. For the underlying func-
tion that works on a character vector of names, see make_clean_names. clean_names relies on the
versatile function to_any_case, which accepts many arguments. See that function’s documentation
for ideas on getting the most out of clean_names. A few examples are included below.

A common issue is that the micro/mu symbol is replaced by "m" instead of "u". The replacement
with "m" is more correct when doing Greek-to-ASCII transliteration but less correct when doing
scientific data-to-ASCII transliteration. A warning will be generated if the "m" replacement occurs.
To replace with "u", please add the argument replace=janitor:::mu_to_u which is a character
vector mapping all known mu or micro Unicode code points (characters) to "u".

14 clean_names

Usage

clean_names(dat, ...)

Default S3 method:
clean_names(dat, ...)

S3 method for class 'sf'
clean_names(dat, ...)

S3 method for class 'tbl_graph'
clean_names(dat, ...)

S3 method for class 'tbl_lazy'
clean_names(dat, ...)

Arguments

dat the input data.frame.

... Arguments passed on to make_clean_names

case The desired target case (default is "snake") will be passed to snakecase::to_any_case()
with the exception of "old_janitor", which exists only to support legacy
code (it preserves the behavior of clean_names() prior to addition of the
"case" argument (janitor versions <= 0.3.1). "old_janitor" is not intended
for new code. See to_any_case for a wide variety of supported cases,
including "sentence" and "title" case.

replace A named character vector where the name is replaced by the value.
ascii Convert the names to ASCII (TRUE, default) or not (FALSE).
use_make_names Should make.names() be applied to ensure that the output is

usable as a name without quoting? (Avoiding make.names() ensures that
the output is locale-independent but quoting may be required.)

allow_dupes Allow duplicates in the returned names (TRUE) or not (FALSE, the
default).

sep_in (short for separator input) if character, is interpreted as a regular expres-
sion (wrapped internally into stringr::regex()). The default value is a
regular expression that matches any sequence of non-alphanumeric values.
All matches will be replaced by underscores (additionally to "_" and " ",
for which this is always true, even if NULL is supplied). These underscores
are used internally to split the strings into substrings and specify the word
boundaries.

parsing_option An integer that will determine the parsing_option.
• 1: "RRRStudio" -> "RRR_Studio"

• 2: "RRRStudio" -> "RRRS_tudio"

• 3: "RRRStudio" -> "RRRSStudio". This will become for example
"Rrrstudio" when we convert to lower camel case.

• -1, -2, -3: These parsing_options’s will suppress the conversion after
non-alphanumeric values.

clean_names 15

• 0: no parsing
transliterations A character vector (if not NULL). The entries of this argu-

ment need to be elements of stringi::stri_trans_list() (like "Latin-
ASCII", which is often useful) or names of lookup tables (currently only
"german" is supported). In the order of the entries the letters of the in-
put string will be transliterated via stringi::stri_trans_general() or
replaced via the matches of the lookup table. When named character ele-
ments are supplied as part of ‘transliterations‘, anything that matches the
names is replaced by the corresponding value. You should use this fea-
ture with care in case of case = "parsed", case = "internal_parsing"
and case = "none", since for upper case letters, which have translitera-
tions/replacements of length 2, the second letter will be transliterated to
lowercase, for example Oe, Ae, Ss, which might not always be what is in-
tended. In this case you can make usage of the option to supply named
elements and specify the transliterations yourself.

numerals A character specifying the alignment of numerals ("middle", left,
right, asis or tight). I.e. numerals = "left" ensures that no output
separator is in front of a digit.

Details

clean_names() is intended to be used on data.frames and data.frame-like objects. For this
reason there are methods to support using clean_names() on sf and tbl_graph (from tidygraph)
objects as well as on database connections through dbplyr. For cleaning other named objects like
named lists and vectors, use make_clean_names().

Value

Returns the data.frame with clean names.

See Also

Other Set names: find_header(), mu_to_u, row_to_names()

Examples

--- Simple Usage ---
x <- data.frame(caseID = 1, DOB = 2, Other = 3)
clean_names(x)

or pipe in the input data.frame:
x %>%

clean_names()

if you prefer camelCase variable names:
x %>%

clean_names(., "lower_camel")

(not run) run clean_names after reading in a spreadsheet:
library(readxl)

16 compare_df_cols

read_excel("messy_excel_file.xlsx") %>%
clean_names()

--- Taking advantage of the underlying snakecase::to_any_case arguments ---

Restore column names to Title Case, e.g., for plotting
mtcars %>%

clean_names(case = "title")

Tell clean_names to leave certain abbreviations untouched:
x %>%

clean_names(case = "upper_camel", abbreviations = c("ID", "DOB"))

compare_df_cols Generate a comparison of data.frames (or similar objects) that indi-
cates if they will successfully bind together by rows.

Description

Generate a comparison of data.frames (or similar objects) that indicates if they will successfully
bind together by rows.

Usage

compare_df_cols(
...,
return = c("all", "match", "mismatch"),
bind_method = c("bind_rows", "rbind"),
strict_description = FALSE

)

Arguments

... A combination of data.frames, tibbles, and lists of data.frames/tibbles. The val-
ues may optionally be named arguments; if named, the output column will be
the name; if not named, the output column will be the data.frame name (see
examples section).

return Should a summary of "all" columns be returned, only return "match"ing columns,
or only "mismatch"ing columns?

bind_method What method of binding should be used to determine matches? With "bind_rows",
columns missing from a data.frame would be considered a match (as in dplyr::bind_rows();
with "rbind", columns missing from a data.frame would be considered a mis-
match (as in base::rbind().

strict_description

Passed to describe_class. Also, see the Details section.

compare_df_cols_same 17

Details

Due to the returned "column_name" column, no input data.frame may be named "column_name".

The strict_description argument is most typically used to understand if factor levels match
or are bindable. Factors are typically bindable, but the behavior of what happens when they bind
differs based on the binding method ("bind_rows" or "rbind"). Even when strict_description is
FALSE, data.frames may still bind because some classes (like factors and characters) can bind even
if they appear to differ.

Value

A data.frame with a column named "column_name" with a value named after the input data.frames’
column names, and then one column per data.frame (named after the input data.frame). If more
than one input has the same column name, the column naming will have suffixes defined by
sequential use of base::merge() and may differ from expected naming. The rows within the
data.frame-named columns are descriptions of the classes of the data within the columns (generated
by describe_class).

See Also

Other Data frame type comparison: compare_df_cols_same(), describe_class()

Examples

compare_df_cols(data.frame(A=1), data.frame(B=2))
user-defined names
compare_df_cols(dfA=data.frame(A=1), dfB=data.frame(B=2))
a combination of list and data.frame input
compare_df_cols(listA=list(dfA=data.frame(A=1), dfB=data.frame(B=2)), data.frame(A=3))

compare_df_cols_same Do the the data.frames have the same columns & types?

Description

Check whether a set of data.frames are row-bindable. Calls compare_df_cols()and returns TRUE
if there are no mis-matching rows. ‘

Usage

compare_df_cols_same(
...,
bind_method = c("bind_rows", "rbind"),
verbose = TRUE

)

18 convert_to_date

Arguments

... A combination of data.frames, tibbles, and lists of data.frames/tibbles. The val-
ues may optionally be named arguments; if named, the output column will be
the name; if not named, the output column will be the data.frame name (see
examples section).

bind_method What method of binding should be used to determine matches? With "bind_rows",
columns missing from a data.frame would be considered a match (as in dplyr::bind_rows();
with "rbind", columns missing from a data.frame would be considered a mis-
match (as in base::rbind().

verbose Print the mismatching columns if binding will fail.

Value

TRUE if row binding will succeed or FALSE if it will fail.

See Also

Other Data frame type comparison: compare_df_cols(), describe_class()

Examples

compare_df_cols_same(data.frame(A=1), data.frame(A=2))
compare_df_cols_same(data.frame(A=1), data.frame(B=2))
compare_df_cols_same(data.frame(A=1), data.frame(B=2), verbose=FALSE)
compare_df_cols_same(data.frame(A=1), data.frame(B=2), bind_method="rbind")

convert_to_date Convert many date and datetime formats as may be received from Mi-
crosoft Excel

Description

Convert many date and datetime formats as may be received from Microsoft Excel

Usage

convert_to_date(
x,
...,
character_fun = lubridate::ymd,
string_conversion_failure = c("error", "warning")

)

convert_to_datetime(
x,
...,
tz = "UTC",

convert_to_date 19

character_fun = lubridate::ymd_hms,
string_conversion_failure = c("error", "warning")

)

Arguments

x The object to convert

... Passed to further methods. Eventually may be passed to ‘excel_numeric_to_date()‘,
‘base::as.POSIXct()‘, or ‘base::as.Date()‘.

character_fun A function to convert non-numeric-looking, non-NA values in ‘x‘ to POSIXct
objects.

string_conversion_failure

If a character value fails to parse into the desired class and instead returns ‘NA‘,
should the function return the result with a warning or throw an error?

tz The timezone for POSIXct output, unless an object is POSIXt already. Ignored
for Date output.

Details

Character conversion checks if it matches something that looks like a Microsoft Excel numeric date,
converts those to numeric, and then runs convert_to_datetime_helper() on those numbers. Then,
character to Date or POSIXct conversion occurs via ‘character_fun(x, ...)‘ or ‘character_fun(x,
tz=tz, ...)‘, respectively.

Value

POSIXct objects for ‘convert_to_datetime()‘ or Date objects for ‘convert_to_date()‘.

Functions

• convert_to_datetime(): Convert to a date-time (POSIXct)

See Also

Other Date-time cleaning: excel_numeric_to_date(), sas_numeric_to_date()

Examples

convert_to_date("2009-07-06")
convert_to_date(40000)
convert_to_date("40000.1")
Mixed date source data can be provided.
convert_to_date(c("2020-02-29", "40000.1"))
convert_to_datetime(

c("2009-07-06", "40000.1", "40000", NA),
character_fun=lubridate::ymd_h, truncated=1, tz="UTC"

)

20 describe_class

convert_to_NA Convert string values to true NA values.

Description

Converts instances of user-specified strings into NA. Can operate on either a single vector or an entire
data.frame.

Usage

convert_to_NA(dat, strings)

Arguments

dat vector or data.frame to operate on.

strings character vector of strings to convert.

Value

Returns a cleaned object. Can be a vector, data.frame, or tibble::tbl_df depending on the pro-
vided input.

Warning

Deprecated, do not use in new code. Use dplyr::na_if() instead.

See Also

janitor_deprecated

describe_class Describe the class(es) of an object

Description

Describe the class(es) of an object

Usage

describe_class(x, strict_description = TRUE)

S3 method for class 'factor'
describe_class(x, strict_description = TRUE)

Default S3 method:
describe_class(x, strict_description = TRUE)

excel_numeric_to_date 21

Arguments

x The object to describe
strict_description

Should differing factor levels be treated as differences for the purposes of identi-
fying mismatches? strict_description = `TRUE` is stricter and factors with
different levels will be treated as different classes. FALSE is more lenient: for
class comparison purposes, the variable is just a "factor".

Details

For package developers, an S3 generic method can be written for describe_class() for cus-
tom classes that may need more definition than the default method. This function is called by
compare_df_cols.

Value

A character scalar describing the class(es) of an object where if the scalar will match, columns in a
data.frame (or similar object) should bind together without issue.

Methods (by class)

• describe_class(factor): Describe factors with their levels and if they are ordered.

• describe_class(default): List all classes of an object.

See Also

Other Data frame type comparison: compare_df_cols_same(), compare_df_cols()

Examples

describe_class(1)
describe_class(factor("A"))
describe_class(ordered(c("A", "B")))
describe_class(ordered(c("A", "B")), strict_description=FALSE)

excel_numeric_to_date Convert dates encoded as serial numbers to Date class.

Description

Converts numbers like 42370 into date values like 2016-01-01.

Defaults to the modern Excel date encoding system. However, Excel for Mac 2008 and earlier Mac
versions of Excel used a different date system. To determine what platform to specify: if the date
2016-01-01 is represented by the number 42370 in your spreadsheet, it’s the modern system. If
it’s 40908, it’s the old Mac system. More on date encoding systems at http://support.office.com/en-
us/article/Date-calculations-in-Excel-e7fe7167-48a9-4b96-bb53-5612a800b487.

22 excel_numeric_to_date

A list of all timezones is available from base::OlsonNames(), and the current timezone is available
from base::Sys.timezone().

If your input data has a mix of Excel numeric dates and actual dates, see the more powerful functions
convert_to_date() and convert_to_datetime().

Usage

excel_numeric_to_date(
date_num,
date_system = "modern",
include_time = FALSE,
round_seconds = TRUE,
tz = Sys.timezone()

)

Arguments

date_num numeric vector of serial numbers to convert.

date_system the date system, either "modern" or "mac pre-2011".

include_time Include the time (hours, minutes, seconds) in the output? (See details)

round_seconds Round the seconds to an integer (only has an effect when include_time is
TRUE)?

tz Time zone, used when include_time = TRUE (see details for more information
on timezones).

Details

When using include_time=TRUE, days with leap seconds will not be accurately handled as they do
not appear to be accurately handled by Windows (as described in https://support.microsoft.com/en-
us/help/2722715/support-for-the-leap-second).

Value

Returns a vector of class Date if include_time is FALSE. Returns a vector of class POSIXlt if
include_time is TRUE.

See Also

Other Date-time cleaning: convert_to_date(), sas_numeric_to_date()

Examples

excel_numeric_to_date(40000)
excel_numeric_to_date(40000.5) # No time is included
excel_numeric_to_date(40000.5, include_time = TRUE) # Time is included
excel_numeric_to_date(40000.521, include_time = TRUE) # Time is included
excel_numeric_to_date(40000.521, include_time = TRUE,

round_seconds = FALSE) # Time with fractional seconds is included

find_header 23

find_header Find the header row in a data.frame

Description

Find the header row in a data.frame

Usage

find_header(dat, ...)

Arguments

dat The input data.frame

... See details

Details

If ... is missing, then the first row with no missing values is used.

When searching for a specified value or value within a column, the first row with a match will
be returned, regardless of the completeness of the rest of that row. If ... has a single character
argument, then the first column is searched for that value. If ... has a named numeric argument,
then the column whose position number matches the value of that argument is searched for the name
(see the last example below). If more than one row is found matching a value that is searched for,
the number of the first matching row will be returned (with a warning).

Value

The row number for the header row

See Also

Other Set names: clean_names(), mu_to_u, row_to_names()

Examples

the first row
find_header(data.frame(A="B"))
the second row
find_header(data.frame(A=c(NA, "B")))
the second row since the first has an empty value
find_header(data.frame(A=c(NA, "B"), B=c("C", "D")))
The third row because the second column was searched for the text "E"
find_header(data.frame(A=c(NA, "B", "C", "D"), B=c("C", "D", "E", "F")), "E"=2)

24 get_dupes

fisher.test Apply stats::fisher.test to a two-way tabyl

Description

This generic function overrides stats::fisher.test. If the passed table is a two-way tabyl, it runs it
through janitor::fisher.test.tabyl, otherwise it just calls stats::fisher.test.

Usage

fisher.test(x, ...)

Default S3 method:
fisher.test(x, y = NULL, ...)

S3 method for class 'tabyl'
fisher.test(x, ...)

Arguments

x a two-way tabyl, a numeric vector or a factor

... other parameters passed to stats::fisher.test

y if x is a vector, must be another vector or factor of the same length

Value

The result is the same as the one of stats::fisher.test.

Examples

tab <- tabyl(mtcars, gear, cyl)
fisher.test(tab)

get_dupes Get rows of a data.frame with identical values for the specified vari-
ables.

Description

For hunting duplicate records during data cleaning. Specify the data.frame and the variable combi-
nation to search for duplicates and get back the duplicated rows.

Usage

get_dupes(dat, ...)

get_one_to_one 25

Arguments

dat The input data.frame.

... Unquoted variable names to search for duplicates. This takes a tidyselect speci-
fication.

Value

Returns a data.frame with the full records where the specified variables have duplicated values, as
well as a variable dupe_count showing the number of rows sharing that combination of duplicated
values. If the input data.frame was of class tbl_df, the output is as well.

Examples

get_dupes(mtcars, mpg, hp)

or called with the magrittr pipe %>% :
mtcars %>% get_dupes(wt)

You can use tidyselect helpers to specify variables:
mtcars %>% get_dupes(-c(wt, qsec))
mtcars %>% get_dupes(starts_with("cy"))

get_one_to_one Find the list of columns that have a 1:1 mapping to each other

Description

Find the list of columns that have a 1:1 mapping to each other

Usage

get_one_to_one(dat)

Arguments

dat A data.frame or similar object

Value

A list with one element for each group of columns that map identically to each other.

26 make_clean_names

Examples

foo <- data.frame(
Lab_Test_Long=c("Cholesterol, LDL", "Cholesterol, LDL", "Glucose"),
Lab_Test_Short=c("CLDL", "CLDL", "GLUC"),
LOINC=c(12345, 12345, 54321),
Person=c("Sam", "Bill", "Sam"),
stringsAsFactors=FALSE

)
get_one_to_one(foo)

janitor_deprecated Deprecated Functions in Package janitor

Description

These functions have already become defunct or may be defunct as soon as the next release.

Details

• adorn_crosstab

• crosstab

• use_first_valid_of

• convert_to_NA

• add_totals_col

• add_totals_row

• remove_empty_rows

• remove_empty_cols

make_clean_names Cleans a vector of text, typically containing the names of an object.

Description

Resulting strings are unique and consist only of the _ character, numbers, and letters. By default,
the resulting strings will only consist of ASCII characters, but non-ASCII (e.g. Unicode) may
be allowed by setting ascii=FALSE. Capitalization preferences can be specified using the case
parameter.

For use on the names of a data.frame, e.g., in a `%>%` pipeline, call the convenience function
clean_names.

When ascii=TRUE (the default), accented characters are transliterated to ASCII. For example, an
"o" with a German umlaut over it becomes "o", and the Spanish character "enye" becomes "n".

make_clean_names 27

The order of operations is: make replacements, (optional) ASCII conversion, remove initial spaces
and punctuation, apply base::make.names(), apply snakecase::to_any_case, and add numeric
suffixes to resolve any duplicated names.

This function relies on snakecase::to_any_case and can take advantage of its versatility. For
instance, an abbreviation like "ID" can have its capitalization preserved by passing the argument
abbreviations = "ID". See the documentation for snakecase::to_any_case for more about
how to use its features.

On some systems, not all transliterators to ASCII are available. If this is the case on your system,
all available transliterators will be used, and a warning will be issued once per session indicating
that results may be different when run on a different system. That warning can be disabled with
options(janitor_warn_transliterators=FALSE).

If the objective of your call to make_clean_names() is only to translate to ASCII, try the following
instead: stringi::stri_trans_general(x, id="Any-Latin;Greek-Latin;Latin-ASCII").

Usage

make_clean_names(
string,
case = "snake",
replace = c(`'` = "", `"` = "", `%` = "_percent_", `#` = "_number_"),
ascii = TRUE,
use_make_names = TRUE,
allow_dupes = FALSE,
sep_in = "\\.",
transliterations = "Latin-ASCII",
parsing_option = 1,
numerals = "asis",
...

)

Arguments

string A character vector of names to clean.

case The desired target case (default is "snake") will be passed to snakecase::to_any_case()
with the exception of "old_janitor", which exists only to support legacy code (it
preserves the behavior of clean_names() prior to addition of the "case" argu-
ment (janitor versions <= 0.3.1). "old_janitor" is not intended for new code. See
to_any_case for a wide variety of supported cases, including "sentence" and
"title" case.

replace A named character vector where the name is replaced by the value.

ascii Convert the names to ASCII (TRUE, default) or not (FALSE).

use_make_names Should make.names() be applied to ensure that the output is usable as a name
without quoting? (Avoiding make.names() ensures that the output is locale-
independent but quoting may be required.)

allow_dupes Allow duplicates in the returned names (TRUE) or not (FALSE, the default).

28 make_clean_names

sep_in (short for separator input) if character, is interpreted as a regular expression
(wrapped internally into stringr::regex()). The default value is a regular
expression that matches any sequence of non-alphanumeric values. All matches
will be replaced by underscores (additionally to "_" and " ", for which this is
always true, even if NULL is supplied). These underscores are used internally to
split the strings into substrings and specify the word boundaries.

transliterations

A character vector (if not NULL). The entries of this argument need to be ele-
ments of stringi::stri_trans_list() (like "Latin-ASCII", which is often
useful) or names of lookup tables (currently only "german" is supported). In
the order of the entries the letters of the input string will be transliterated via
stringi::stri_trans_general() or replaced via the matches of the lookup
table. When named character elements are supplied as part of ‘transliterations‘,
anything that matches the names is replaced by the corresponding value. You
should use this feature with care in case of case = "parsed", case = "internal_parsing"
and case = "none", since for upper case letters, which have transliterations/replacements
of length 2, the second letter will be transliterated to lowercase, for example Oe,
Ae, Ss, which might not always be what is intended. In this case you can make
usage of the option to supply named elements and specify the transliterations
yourself.

parsing_option An integer that will determine the parsing_option.
• 1: "RRRStudio" -> "RRR_Studio"

• 2: "RRRStudio" -> "RRRS_tudio"

• 3: "RRRStudio" -> "RRRSStudio". This will become for example "Rrrstudio"
when we convert to lower camel case.

• -1, -2, -3: These parsing_options’s will suppress the conversion after
non-alphanumeric values.

• 0: no parsing
numerals A character specifying the alignment of numerals ("middle", left, right, asis

or tight). I.e. numerals = "left" ensures that no output separator is in front
of a digit.

... Arguments passed on to snakecase::to_any_case

abbreviations character. (Case insensitive) matched abbreviations are sur-
rounded by underscores. In this way, they can get recognized by the parser.
This is useful when e.g. parsing_option 1 is needed for the use case, but
some abbreviations but some substrings would require parsing_option 2.
Furthermore, this argument also specifies the formatting of abbreviations in
the output for the cases title, mixed, lower and upper camel. E.g. for upper
camel the first letter is always in upper case, but when the abbreviation is
supplied in upper case, this will also be visible in the output.
Use this feature with care: One letter abbreviations and abbreviations next
to each other are hard to read and also not easy to parse for further process-
ing.

sep_out (short for separator output) String that will be used as separator. The
defaults are "_" and "", regarding the specified case. When length(sep_out)
> 1, the last element of sep_out gets recycled and separators are incorpo-
rated per string according to their order.

mu_to_u 29

unique_sep A string. If not NULL, then duplicated names will get a suffix inte-
ger in the order of their appearance. The suffix is separated by the supplied
string to this argument.

empty_fill A string. If it is supplied, then each entry that matches "" will be
replaced by the supplied string to this argument.

prefix prefix (string).
postfix postfix (string).

Value

Returns the "cleaned" character vector.

See Also

to_any_case()

Examples

cleaning the names of a vector:
x <- structure(1:3, names = c("name with space", "TwoWords", "total $ (2009)"))
x
names(x) <- make_clean_names(names(x))
x # now has cleaned names

if you prefer camelCase variable names:
make_clean_names(names(x), "small_camel")

similar to janitor::clean_names(poorly_named_df):
not run:
make_clean_names(names(poorly_named_df))

mu_to_u Constant to help map from mu to u

Description

This is a character vector with names of all known Unicode code points that look like the Greek mu
or the micro symbol and values of "u". This is intended to simplify mapping from mu or micro in
Unicode to the character "u" with clean_names() and make_clean_names().

Usage

mu_to_u

Format

An object of class character of length 10.

30 remove_constant

Details

See the help in clean_names() for how to use this.

See Also

Other Set names: clean_names(), find_header(), row_to_names()

remove_constant Remove constant columns from a data.frame or matrix.

Description

Remove constant columns from a data.frame or matrix.

Usage

remove_constant(dat, na.rm = FALSE, quiet = TRUE)

Arguments

dat the input data.frame or matrix.

na.rm should NA values be removed when considering whether a column is constant?
The default value of FALSE will result in a column not being removed if it’s a
mix of a single value and NA.

quiet Should messages be suppressed (TRUE) or printed (FALSE) indicating the sum-
mary of empty columns or rows removed?

See Also

remove_empty() for removing empty columns or rows.

Other remove functions: remove_empty()

Examples

remove_constant(data.frame(A=1, B=1:3))

To find the columns that are constant
data.frame(A=1, B=1:3) %>%

dplyr::select_at(setdiff(names(.), names(remove_constant(.)))) %>%
unique()

remove_empty 31

remove_empty Remove empty rows and/or columns from a data.frame or matrix.

Description

Removes all rows and/or columns from a data.frame or matrix that are composed entirely of NA
values.

Usage

remove_empty(dat, which = c("rows", "cols"), cutoff = 1, quiet = TRUE)

Arguments

dat the input data.frame or matrix.

which one of "rows", "cols", or c("rows", "cols"). Where no value of which is
provided, defaults to removing both empty rows and empty columns, declaring
the behavior with a printed message.

cutoff What fraction (>0 to <=1) of rows or columns must be empty to be removed?

quiet Should messages be suppressed (TRUE) or printed (FALSE) indicating the sum-
mary of empty columns or rows removed?

Value

Returns the object without its missing rows or columns.

See Also

remove_constant() for removing constant columns.

Other remove functions: remove_constant()

Examples

not run:
dat %>% remove_empty("rows")
addressing a common untidy-data scenario where we have a mixture of
blank values in some (character) columns and NAs in others:
library(dplyr)
dd <- tibble(x=c(LETTERS[1:5],NA,rep("",2)),

y=c(1:5,rep(NA,3)))
remove_empty() drops row 5 (all NA) but not 6 and 7 (blanks + NAs)
dd %>% remove_empty("rows")
solution: preprocess to convert whitespace/empty strings to NA,
then remove empty (all-NA) rows
dd %>% mutate(across(is.character,~na_if(trimws(.),""))) %>%

remove_empty("rows")

32 remove_empty_rows

remove_empty_cols Removes empty columns from a data.frame.

Description

This function is deprecated, use remove_empty("cols") instead.

Usage

remove_empty_cols(dat)

Arguments

dat the input data.frame.

Value

Returns the data.frame with no empty columns.

Examples

not run:
dat %>% remove_empty_cols

remove_empty_rows Removes empty rows from a data.frame.

Description

This function is deprecated, use remove_empty("rows") instead.

Usage

remove_empty_rows(dat)

Arguments

dat the input data.frame.

Value

Returns the data.frame with no empty rows.

Examples

not run:
dat %>% remove_empty_rows

round_half_up 33

round_half_up Round a numeric vector; halves will be rounded up, ala Microsoft
Excel.

Description

In base R round(), halves are rounded to even, e.g., 12.5 and 11.5 are both rounded to 12. This
function rounds 12.5 to 13 (assuming digits = 0). Negative halves are rounded away from zero,
e.g., -0.5 is rounded to -1.

This may skew subsequent statistical analysis of the data, but may be desirable in certain contexts.
This function is implemented exactly from https://stackoverflow.com/a/12688836; see that
question and comments for discussion of this issue.

Usage

round_half_up(x, digits = 0)

Arguments

x a numeric vector to round.

digits how many digits should be displayed after the decimal point?

Examples

round_half_up(12.5)
round_half_up(1.125, 2)
round_half_up(1.125, 1)
round_half_up(-0.5, 0) # negatives get rounded away from zero

round_to_fraction Round to the nearest fraction of a specified denominator.

Description

Round a decimal to the precise decimal value of a specified fractional denominator. Common use
cases include addressing floating point imprecision and enforcing that data values fall into a certain
set.

E.g., if a decimal represents hours and values should be logged to the nearest minute, round_to_fraction(x,
60) would enforce that distribution and 0.57 would be rounded to 0.566667, the equivalent of 34/60.
0.56 would also be rounded to 34/60.

Set denominator = 1 to round to whole numbers.

The digits argument allows for rounding of the subsequent result.

https://stackoverflow.com/a/12688836

34 row_to_names

Usage

round_to_fraction(x, denominator, digits = Inf)

Arguments

x A numeric vector

denominator The denominator of the fraction for rounding (a scalar or vector positive integer).

digits Integer indicating the number of decimal places to be used after rounding to the
fraction. This is passed to base::round()). Negative values are allowed (see
Details). (Inf indicates no subsequent rounding)

Details

If digits is Inf, x is rounded to the fraction and then kept at full precision. If digits is "auto",
the number of digits is automatically selected as ceiling(log10(denominator)) + 1.

Value

the input x rounded to a decimal value that has an integer numerator relative to denominator (pos-
sibly subsequently rounded to a number of decimal digits).

Examples

round_to_fraction(1.6, denominator = 2)
round_to_fraction(pi, denominator = 7) # 22/7
round_to_fraction(c(8.1, 9.2), denominator = c(7, 8))
round_to_fraction(c(8.1, 9.2), denominator = c(7, 8), digits = 3)
round_to_fraction(c(8.1, 9.2, 10.3), denominator = c(7, 8, 1001), digits = "auto")

row_to_names Elevate a row to be the column names of a data.frame.

Description

Elevate a row to be the column names of a data.frame.

Usage

row_to_names(dat, row_number, ..., remove_row = TRUE, remove_rows_above = TRUE)

Arguments

dat The input data.frame

row_number The row of dat containing the variable names or the string "find_header" to
use find_header(dat=dat, ...) to find the row_number.

... Sent to find_header(), if row_number = "find_header". Otherwise, ignored.

sas_numeric_to_date 35

remove_row Should the row row_number be removed from the resulting data.frame?
remove_rows_above

If row_number != 1, should the rows above row_number - that is, between 1:(row_number-1)
- be removed from the resulting data.frame?

Value

A data.frame with new names (and some rows removed, if specified)

See Also

Other Set names: clean_names(), find_header(), mu_to_u

Examples

x <- data.frame(X_1 = c(NA, "Title", 1:3),
X_2 = c(NA, "Title2", 4:6))

x %>%
row_to_names(row_number = 2)

x %>%
row_to_names(row_number = "find_header")

sas_numeric_to_date Convert a SAS date, time or date/time to an R object

Description

Convert a SAS date, time or date/time to an R object

Usage

sas_numeric_to_date(date_num, datetime_num, time_num, tz = "UTC")

Arguments

date_num numeric vector of serial numbers to convert.

datetime_num numeric vector of date/time numbers (seconds since midnight 1960-01-01) to
convert

time_num numeric vector of time numbers (seconds since midnight on the current day) to
convert

tz Time zone, used when include_time = TRUE (see details for more information
on timezones).

Value

If a date and time or datetime are provided, a POSIXct object. If a date is provided, a Date object.
If a time is provided, an hms::hms object

36 signif_half_up

References

SAS Date, Time, and Datetime Values reference (retrieved on 2022-03-08): https://v8doc.sas.com/sashtml/lrcon/zenid-
63.htm

See Also

Other Date-time cleaning: convert_to_date(), excel_numeric_to_date()

Examples

sas_numeric_to_date(date_num=15639) # 2002-10-26
sas_numeric_to_date(datetime_num=1217083532, tz="UTC") # 1998-07-26T14:45:32Z
sas_numeric_to_date(date_num=15639, time_num=3600, tz="UTC") # 2002-10-26T01:00:00Z
sas_numeric_to_date(time_num=3600) # 01:00:00

signif_half_up Round a numeric vector to the specified number of significant digits;
halves will be rounded up.

Description

In base R signif(), halves are rounded to even, e.g., signif(11.5, 2) and signif(12.5, 2) are
both rounded to 12. This function rounds 12.5 to 13 (assuming digits = 2). Negative halves are
rounded away from zero, e.g., signif(-2.5, 1) is rounded to -3.

This may skew subsequent statistical analysis of the data, but may be desirable in certain contexts.
This function is implemented from https://stackoverflow.com/a/1581007/; see that question
and comments for discussion of this issue.

Usage

signif_half_up(x, digits = 6)

Arguments

x a numeric vector to round.

digits integer indicating the number of significant digits to be used.

Examples

signif_half_up(12.5, 2)
signif_half_up(1.125, 3)
signif_half_up(-2.5, 1) # negatives get rounded away from zero

https://stackoverflow.com/a/1581007/

single_value 37

single_value Ensure that a vector has only a single value throughout.

Description

Missing values are replaced with the single value, and if all values are missing, the first value in
missing is used throughout.

Usage

single_value(x, missing = NA, warn_if_all_missing = FALSE, info = NULL)

Arguments

x The vector which should have a single value

missing The vector of values to consider missing in x

warn_if_all_missing

Generate a warning if all values are missing?

info If more than one value is found, append this to the warning or error to assist with
determining the location of the issue.

Value

x as the scalar single value found throughout (or an error if more than one value is found).

Examples

A simple use case with vectors of input

single_value(c(NA, 1))
Multiple, different values of missing can be given
single_value(c(NA, "a"), missing = c(NA, "a"))

A typical use case with a grouped data.frame used for input and the output
(`B` is guaranteed to have a single value and only one row, in this case)
data.frame(A = rep(1:3, each = 2),

B = c(rep(4:6, each = 2))) %>%
dplyr::group_by(A) %>%
dplyr::summarize(
B = single_value(B)

)

try(
info is useful to give when multiple values may be found to see what
grouping variable or what calculation is causing the error
data.frame(A = rep(1:3, each = 2),

B = c(rep(1:2, each = 2), 1:2)) %>%
dplyr::group_by(A) %>%

38 tabyl

dplyr::mutate(
C = single_value(B, info = paste("Calculating C for group A=", A))

)
)

tabyl Generate a frequency table (1-, 2-, or 3-way).

Description

A fully-featured alternative to table(). Results are data.frames and can be formatted and enhanced
with janitor’s family of adorn_ functions.

Specify a data.frame and the one, two, or three unquoted column names you want to tabulate. Three
variables generates a list of 2-way tabyls, split by the third variable.

Alternatively, you can tabulate a single variable that isn’t in a data.frame by calling tabyl on a
vector, e.g., tabyl(mtcars$gear).

Usage

tabyl(dat, ...)

Default S3 method:
tabyl(dat, show_na = TRUE, show_missing_levels = TRUE, ...)

S3 method for class 'data.frame'
tabyl(dat, var1, var2, var3, show_na = TRUE, show_missing_levels = TRUE, ...)

Arguments

dat a data.frame containing the variables you wish to count. Or, a vector you want
to tabulate.

... the arguments to tabyl (here just for the sake of documentation compliance, as
all arguments are listed with the vector- and data.frame-specific methods)

show_na should counts of NA values be displayed? In a one-way tabyl, the presence of
NA values triggers an additional column showing valid percentages(calculated
excluding NA values).

show_missing_levels

should counts of missing levels of factors be displayed? These will be rows
and/or columns of zeroes. Useful for keeping consistent output dimensions even
when certain factor levels may not be present in the data.

var1 the column name of the first variable.

var2 (optional) the column name of the second variable (the rows in a 2-way tabula-
tion).

var3 (optional) the column name of the third variable (the list in a 3-way tabulation).

top_levels 39

Value

Returns a data.frame with frequencies and percentages of the tabulated variable(s). A 3-way tabu-
lation returns a list of data.frames.

Examples

tabyl(mtcars, cyl)
tabyl(mtcars, cyl, gear)
tabyl(mtcars, cyl, gear, am)

or using the %>% pipe
mtcars %>%

tabyl(cyl, gear)

illustrating show_na functionality:
my_cars <- rbind(mtcars, rep(NA, 11))
my_cars %>% tabyl(cyl)
my_cars %>% tabyl(cyl, show_na = FALSE)

Calling on a single vector not in a data.frame:
val <- c("hi", "med", "med", "lo")
tabyl(val)

top_levels Generate a frequency table of a factor grouped into top-n, bottom-n,
and all other levels.

Description

Get a frequency table of a factor variable, grouped into categories by level.

Usage

top_levels(input_vec, n = 2, show_na = FALSE)

Arguments

input_vec the factor variable to tabulate.

n number of levels to include in top and bottom groups

show_na should cases where the variable is NA be shown?

Value

Returns a data.frame (actually a tbl_df) with the frequencies of the grouped, tabulated variable.
Includes counts and percentages, and valid percentages (calculated omitting NA values, if present in
the vector and show_na = TRUE.)

40 use_first_valid_of

Examples

top_levels(as.factor(mtcars$hp), 2)

untabyl Remove tabyl attributes from a data.frame.

Description

Strips away all tabyl-related attributes from a data.frame.

Usage

untabyl(dat)

Arguments

dat a data.frame of class tabyl.

Value

Returns the same data.frame, but without the tabyl class and attributes.

Examples

mtcars %>%
tabyl(am) %>%
untabyl() %>%
attributes() # tabyl-specific attributes are gone

use_first_valid_of Returns first non-NA value from a set of vectors.

Description

At each position of the input vectors, iterates through in order and returns the first non-NA value.
This is a robust replacement of the common ifelse(!is.na(x), x, ifelse(!is.na(y), y, z)).
It’s more readable and handles problems like ifelse’s inability to work with dates in this way.

Usage

use_first_valid_of(..., if_all_NA = NA)

use_first_valid_of 41

Arguments

... the input vectors. Order matters: these are searched and prioritized in the order
they are supplied.

if_all_NA what value should be used when all of the vectors return NA for a certain index?
Default is NA.

Value

Returns a single vector with the selected values.

Warning

Deprecated, do not use in new code. Use dplyr::coalesce() instead.

See Also

janitor_deprecated

Index

∗ Data frame type comparison
compare_df_cols, 16
compare_df_cols_same, 17
describe_class, 20

∗ Date-time cleaning
convert_to_date, 18
excel_numeric_to_date, 21
sas_numeric_to_date, 35

∗ Set names
clean_names, 13
find_header, 23
mu_to_u, 29
row_to_names, 34

∗ datasets
mu_to_u, 29

∗ remove functions
remove_constant, 30
remove_empty, 31

add_totals_col, 3, 26
add_totals_row, 3, 26
adorn_crosstab, 26
adorn_ns, 4
adorn_pct_formatting, 5
adorn_percentages, 7
adorn_rounding, 8
adorn_title, 9
adorn_totals, 10
as_tabyl, 11

chisq.test, 12
clean_names, 13, 23, 26, 30, 35
compare_df_cols, 16, 18, 21
compare_df_cols_same, 17, 17, 21
convert_to_date, 18, 22, 36
convert_to_datetime (convert_to_date),

18
convert_to_NA, 20, 26
crosstab, 26

describe_class, 17, 18, 20

excel_numeric_to_date, 19, 21, 36

find_header, 15, 23, 30, 35
fisher.test, 24

get_dupes, 24
get_one_to_one, 25

janitor_deprecated, 26

make_clean_names, 13, 14, 26
mu_to_u, 15, 23, 29, 35

remove_constant, 30, 31
remove_constant(), 31
remove_empty, 30, 31
remove_empty(), 30
remove_empty_cols, 26, 32
remove_empty_rows, 26, 32
round_half_up, 33
round_to_fraction, 33
row_to_names, 15, 23, 30, 34

sas_numeric_to_date, 19, 22, 35
signif_half_up, 36
single_value, 37
snakecase::to_any_case, 27, 28

tabyl, 38
to_any_case, 13, 14, 27, 29
top_levels, 39

untabyl, 40
use_first_valid_of, 26, 40

42

	add_totals_col
	add_totals_row
	adorn_ns
	adorn_pct_formatting
	adorn_percentages
	adorn_rounding
	adorn_title
	adorn_totals
	as_tabyl
	chisq.test
	clean_names
	compare_df_cols
	compare_df_cols_same
	convert_to_date
	convert_to_NA
	describe_class
	excel_numeric_to_date
	find_header
	fisher.test
	get_dupes
	get_one_to_one
	janitor_deprecated
	make_clean_names
	mu_to_u
	remove_constant
	remove_empty
	remove_empty_cols
	remove_empty_rows
	round_half_up
	round_to_fraction
	row_to_names
	sas_numeric_to_date
	signif_half_up
	single_value
	tabyl
	top_levels
	untabyl
	use_first_valid_of
	Index

