
Package ‘jackalope’
November 28, 2023

Type Package

Title A Swift, Versatile Phylogenomic and High-Throughput Sequencing
Simulator

Version 1.1.5

Description Simply and efficiently
simulates (i) variants from reference genomes and (ii) reads from both Illumina
<https://www.illumina.com/>
and Pacific Biosciences (PacBio) <https://www.pacb.com/> platforms.
It can either read reference genomes from FASTA files or simulate new ones.
Genomic variants can be simulated using summary statistics, phylogenies,
Variant Call Format (VCF) files, and coalescent simulations—the latter of which
can include selection, recombination, and demographic fluctuations.
'jackalope' can simulate single, paired-end, or mate-pair Illumina reads,
as well as PacBio reads.
These simulations include sequencing errors, mapping qualities, multiplexing,
and optical/polymerase chain reaction (PCR) duplicates.
Simulating Illumina sequencing is based on ART
by Huang et al. (2012) <doi:10.1093/bioinformatics/btr708>.
PacBio sequencing simulation is based on
SimLoRD by Stöcker et al. (2016) <doi:10.1093/bioinformatics/btw286>.
All outputs can be written to standard file formats.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Depends R (>= 2.10)

biocViews
Imports ape, R6, Rcpp (>= 0.12.11), zlibbioc

LinkingTo Rcpp, RcppArmadillo, RcppProgress, Rhtslib, zlibbioc

SystemRequirements GNU make

RoxygenNote 7.2.3

Suggests coala, knitr, markdown, rmarkdown, scrm, testthat

VignetteBuilder knitr

1

https://www.illumina.com/
https://www.pacb.com/
https://doi.org/10.1093/bioinformatics/btr708
https://doi.org/10.1093/bioinformatics/btw286

2 create_genome

URL https://github.com/lucasnell/jackalope

BugReports https://github.com/lucasnell/jackalope/issues

NeedsCompilation yes

Author Lucas A. Nell [cph, aut, cre] (<https://orcid.org/0000-0003-3209-0517>)

Maintainer Lucas A. Nell <lucnell@gmail.com>

Repository CRAN

Date/Publication 2023-11-28 21:00:02 UTC

R topics documented:

create_genome . 2
create_haplotypes . 3
evo_rates . 5
haplotypes . 6
haps_functions . 11
haps_gtrees . 11
haps_phylo . 12
haps_ssites . 13
haps_theta . 14
haps_vcf . 15
illumina . 15
indels . 19
pacbio . 20
read_fasta . 23
ref_genome . 24
sub_models . 29
write_fasta . 32
write_vcf . 33

Index 35

create_genome Create a reference genome.

Description

Random chromosomes are generated to create a new ref_genome object. Note that this function
will never generate empty chromosomes.

https://github.com/lucasnell/jackalope
https://github.com/lucasnell/jackalope/issues
https://orcid.org/0000-0003-3209-0517

create_haplotypes 3

Usage

create_genome(
n_chroms,
len_mean,
len_sd = 0,
pi_tcag = rep(0.25, 4),
n_threads = 1

)

Arguments

n_chroms Number of chromosomes.

len_mean Mean for the gamma distribution of chromosome sizes.

len_sd Standard deviation for the gamma distribution of chromosome sizes. If set to <=
0, all chromosomes will be the same length. Defaults to 0.

pi_tcag Vector of length 4 containing the nucleotide equilibrium frequencies for "T",
"C", "A", and "G", respectively. Defaults to rep(0.25, 4).

n_threads Number of threads to use for parallel processing. This argument is ignored if
OpenMP is not enabled. Defaults to 1.

Value

A ref_genome object.

Examples

genome <- create_genome(10, 100e3, 100, pi_tcag = c(0.1, 0.2, 0.3, 0.4))

create_haplotypes Create haplotypes from a reference genome.

Description

Uses one of multiple methods to create variant haplotypes from a reference genome. See haps_functions
for the methods available.

Usage

create_haplotypes(
reference,
haps_info,
sub = NULL,
ins = NULL,
del = NULL,

4 create_haplotypes

epsilon = 0.03,
n_threads = 1,
show_progress = FALSE

)

Arguments

reference A ref_genome object from which to generate haplotypes. This argument is
required.

haps_info Output from one of the haps_functions. These functions organize higher-level
information for use here. See haps_functions for brief descriptions and links
to each method. If this argument is NULL, all arguments other than reference
are ignored, and an empty haplotypes object with no haplotypes is returned.
This is designed for use when you’d like to add mutations manually. If you
create a blank haplotypes object, you can use its add_haps method to add
haplotypes manually.

sub Output from one of the sub_models functions that organizes information for the
substitution models. See sub_models for more information on these models and
their required parameters. This argument is ignored if you are using a VCF file
to create haplotypes. Passing NULL to this argument results in no substitutions.
Defaults to NULL.

ins Output from the indels function that specifies rates of insertions by length. This
argument is ignored if you are using a VCF file to create haplotypes. Passing
NULL to this argument results in no insertions. Defaults to NULL.

del Output from the indels function that specifies rates of deletions by length. This
argument is ignored if you are using a VCF file to create haplotypes. Passing
NULL to this argument results in no deletions. Defaults to NULL.

epsilon Error control parameter for the "tau-leaping" approximation to the Doob–Gillespie
algorithm, as used for the indel portion of the simulations. Smaller values result
in a closer approximation. Larger values are less exact but faster. Values must
be >= 0 and < 1. For more information on the approximation, see Cao et al.
(2006) and Wieder et al. (2011), listed below. If epsilon is 0, then it reverts to
the exact Doob–Gillespie algorithm. Defaults to 0.03.

n_threads Number of threads to use for parallel processing. This argument is ignored if
OpenMP is not enabled. Threads are spread across chromosomes, so it doesn’t
make sense to supply more threads than chromosomes in the reference genome.
Defaults to 1.

show_progress Boolean for whether to show a progress bar during processing. Defaults to
FALSE.

Value

A haplotypes object.

References

Cao, Y., D. T. Gillespie, and L. R. Petzold. 2006. Efficient step size selection for the tau-leaping
simulation method. The Journal of Chemical Physics 124(4): 044109.

evo_rates 5

Doob, J. L. 1942. Topics in the theory of markoff chains. Transactions of the American Mathemat-
ical Society 52(1): 37–64.

Gillespie, D. T. 1976. A general method for numerically simulating the stochastic time evolution of
coupled chemical reactions. Journal of Computational Physics 22(4): 403–434.

Wieder, N., R. H. Fink, and F. von Wegner. 2011. Exact and approximate stochastic simulation of
intracellular calcium dynamics. Journal of Biomedicine and Biotechnology 2011: 572492.

Examples

r <- create_genome(10, 1000)
v_phylo <- create_haplotypes(r, haps_phylo(ape::rcoal(5)), sub_JC69(0.1))
v_theta <- create_haplotypes(r, haps_theta(0.001, 5), sub_K80(0.1, 0.2))

evo_rates Table of evolutionary rates.

Description

From Table 1 in Sung et al. (2016).

Usage

evo_rates

Format

A data frame with 15 rows and 8 variables:

domain Either Bacteria or Eukarya for what type of organism the species is.

species Species name.

Ge Effective genome size using only coding DNA.

Gc_Gnc Effective genome size using coding DNA and non-coding DNA that is under purifying
selection.

indels Rate of insertions and deletions (10−10 events per site per generation).

subs Base-substitution mutation rate (10−10 events per site per generation).

Ne Effective population size (×106).

theta_s Population mutation rate estimated using θs.

pi_s Population mutation rate estimated using πs.

Source

doi:10.1534/g3.116.030890

https://doi.org/10.1534/g3.116.030890

6 haplotypes

References

Sung, W., M. S. Ackerman, M. M. Dillon, T. G. Platt, C. Fuqua, V. S. Cooper, and M. Lynch. 2016.
Evolution of the insertion-deletion mutation rate across the tree of life. G3: Genes | Genomes |
Genetics 6:2583–2591.

haplotypes An R6 Class Representing Haploid Variants

Description

Interactive wrapper for a pointer to a C++ object that stores information about variant haplotypes
from a single reference genome.

Details

This class should NEVER be created using haplotypes$new. Only use create_haplotypes. Be-
cause this class wraps a pointer to a C++ object, there are no fields to manipulate directly. All
manipulations are done through this class’s methods.

Connections to ref_genome objects

Regarding the ref_genome object you use to create a haplotypes object, you should note the
following:

• This point is the most important. Both the ref_genome and haplotypes objects use the
same underlying C++ object to store reference genome information. Thus, if you make any
changes to the ref_genome object, those changes will also show up in the haplotypes object.
For example, if you make a haplotypes object named V based on an existing ref_genome
object named R, then you merge chromosomes in R, V will now have merged chromosomes. If
you’ve already started adding mutations to V, then all the indexes used to store those mutations
will be inaccurate. So when you do anything with V later, your R session will crash or have
errors. The lesson here is that you shouldn’t edit the reference genome after using it to
create haplotypes.

• If a ref_genome object is used to create a haplotypes object, deleting the ref_genome ob-
ject won’t cause issues with the haplotypes object. However, the haplotypes class doesn’t
provide methods to edit chromosomes, so only remove the ref_genome object when you’re
done editing the reference genome.

Methods

Public methods:
• haplotypes$new()

• haplotypes$print()

• haplotypes$ptr()

• haplotypes$n_chroms()

• haplotypes$n_haps()

haplotypes 7

• haplotypes$sizes()

• haplotypes$chrom_names()

• haplotypes$hap_names()

• haplotypes$chrom()

• haplotypes$gc_prop()

• haplotypes$nt_prop()

• haplotypes$set_names()

• haplotypes$add_haps()

• haplotypes$dup_haps()

• haplotypes$rm_haps()

• haplotypes$add_sub()

• haplotypes$add_ins()

• haplotypes$add_del()

Method new(): Do NOT use this; only use create_haplotypes to make new haplotypes.

Usage:
haplotypes$new(genomes_ptr, reference_ptr)

Arguments:

genomes_ptr An externalptr object pointing to a C++ object that stores the information
about the haplotypes.

reference_ptr An externalptr object pointing to a C++ object that stores the information
about the reference genome.

Method print(): Print a haplotypes object.

Usage:
haplotypes$print()

Method ptr(): View pointer to underlying C++ object (this is not useful to end users).

Usage:
haplotypes$ptr()

Returns: An externalptr object.

Method n_chroms(): View number of chromosomes.

Usage:
haplotypes$n_chroms()

Returns: Integer number of chromosomes.

Method n_haps(): View number of haplotypes.

Usage:
haplotypes$n_haps()

Returns: Integer number of haplotypes.

Method sizes(): View chromosome sizes for one haplotype.

8 haplotypes

Usage:
haplotypes$sizes(hap_ind)

Arguments:
hap_ind Index for the focal haplotype.

Returns: Integer vector of chromosome sizes for focal haplotype.

Method chrom_names(): View chromosome names.

Usage:
haplotypes$chrom_names()

Returns: Character vector of chromosome names.

Method hap_names(): View haplotype names.

Usage:
haplotypes$hap_names()

Returns: Character vector of haplotype names.

Method chrom(): View one haplotype chromosome.

Usage:
haplotypes$chrom(hap_ind, chrom_ind)

Arguments:
hap_ind Index for the focal haplotype.
chrom_ind Index for the focal chromosome.

Returns: A single string representing the chosen haplotype chromosome’s DNA sequence.

Method gc_prop(): View GC proportion for part of one haplotype chromosome.

Usage:
haplotypes$gc_prop(hap_ind, chrom_ind, start, end)

Arguments:
hap_ind Index for the focal haplotype.
chrom_ind Index for the focal chromosome.
start Point on the chromosome at which to start the calculation (inclusive).
end Point on the chromosome at which to end the calculation (inclusive).

Returns: A double in the range [0,1] representing the proportion of DNA sequence that is
either G or C.

Method nt_prop(): View nucleotide content for part of one haplotype chromosome

Usage:
haplotypes$nt_prop(nt, hap_ind, chrom_ind, start, end)

Arguments:
nt Which nucleotide to calculate the proportion that the DNA sequence is made of. Must be

one of T, C, A, G, or N.
hap_ind Index for the focal haplotype.

haplotypes 9

chrom_ind Index for the focal chromosome.
start Point on the chromosome at which to start the calculation (inclusive).
end Point on the chromosome at which to end the calculation (inclusive).

Returns: A double in the range [0,1] representing the proportion of DNA sequence that is nt.

Method set_names(): Change haplotype names.

Usage:
haplotypes$set_names(new_names)

Arguments:
new_names Vector of new names to use. This must be the same length as the number of current

names.

Returns: This R6 object, invisibly.

Method add_haps(): Add one or more blank, named haplotypes

Usage:
haplotypes$add_haps(new_names)

Arguments:
new_names Vector of name(s) for the new haplotype(s).

Returns: This R6 object, invisibly.

Method dup_haps(): Duplicate one or more haplotypes by name.

Usage:
haplotypes$dup_haps(hap_names, new_names = NULL)

Arguments:
hap_names Vector of existing haplotype name(s) that you want to duplicate.
new_names Optional vector specifying the names of the duplicates. If NULL, their names are

auto-generated. Defaults to NULL.

Returns: This R6 object, invisibly.

Method rm_haps(): Remove one or more haplotypes by name.

Usage:
haplotypes$rm_haps(hap_names)

Arguments:
hap_names Vector of existing haplotype name(s) that you want to remove.

Returns: This R6 object, invisibly.

Method add_sub(): Manually add a substitution.

Usage:
haplotypes$add_sub(hap_ind, chrom_ind, pos, nt)

Arguments:
hap_ind Index for the focal haplotype.
chrom_ind Index for the focal chromosome.

10 haplotypes

pos Position at which to add the mutation.

nt Single character representing the nucleotide to change the current one to.

Returns: This R6 object, invisibly.

Method add_ins(): Manually add an insertion.

Usage:

haplotypes$add_ins(hap_ind, chrom_ind, pos, nts)

Arguments:

hap_ind Index for the focal haplotype.

chrom_ind Index for the focal chromosome.

pos Position at which to add the mutation.

nts String representing the nucleotide(s) that will be inserted after the designated position.

Returns: This R6 object, invisibly.

\item{`add_del(hap_ind, chrom_ind, pos, n_nts)`}{Manually add a deletion
for a given haplotype (`hap_ind`), chromosome (`chrom_ind`), and position (`pos`).
The designated number of nucleotides to delete (`n_nts`) will be deleted
starting at `pos`, unless `pos` is near the chromosome end and doesn't have
`n_nts` nucleotides to remove; it simply stops at the chromosome end in
this case.}

Method add_del(): Manually add a deletion.

Usage:

haplotypes$add_del(hap_ind, chrom_ind, pos, n_nts)

Arguments:

hap_ind Index for the focal haplotype.

chrom_ind Index for the focal chromosome.

pos Position at which to add the mutation.

n_nts Single integer specifying the number of nucleotides to delete. These will be deleted
starting at pos. If pos is near the chromosome end and doesn’t have n_nts nucleotides to
remove, it simply removes nucleotides from pos to the chromosome end.

Returns: This R6 object, invisibly.

See Also

create_haplotypes

haps_functions 11

haps_functions Organize higher-level information for creating haplotypes.

Description

The following functions organize information that gets passed to create_haplotypes to generate
haplotypes from a reference genome. Each function represents a method of generation and starts
with "haps_". The first three are phylogenomic methods, and all functions but haps_vcf will use
molecular evolution information when passed to create_haplotypes.

Details

haps_theta Uses an estimate for theta, the population-scaled mutation rate, and a desired number
of haplotypes.

haps_phylo Uses phylogenetic tree(s) from phylo object(s) or NEWICK file(s), one tree per chro-
mosome or one for all chromosomes.

haps_gtrees Uses gene trees, either in the form of an object from the scrm or coala package or a
file containing output in the style of the ms program.

haps_ssites Uses matrices of segregating sites, either in the form of scrm or coala coalescent-
simulator object(s), or a ms-style output file.

haps_vcf Uses a haplotype call format (VCF) file that directly specifies haplotypes.

See Also

create_haplotypes

haps_gtrees Organize information to create haplotypes using gene trees

Description

This function organizes higher-level information for creating haplotypes from gene trees output
from coalescent simulations. Note that all gene trees must be rooted and binary.

Usage

haps_gtrees(obj = NULL, fn = NULL)

write_gtrees(gtrees, out_prefix)

12 haps_phylo

Arguments

obj Object containing gene trees. This can be one of the following: (1) A single list
with a trees field inside. This field must contain a set of gene trees for each
chromosome. (2) A list of lists, each sub-list containing a trees field of length
1. The top-level list must be of the same length as the number of chromosomes.
Defaults to NULL.

fn A single string specifying the name of the file containing the ms-style coalescent
output with gene trees. Defaults to NULL.

gtrees A haps_gtrees_info object output from haps_gtrees.

out_prefix Prefix for the output file of gene trees. The extension will be .trees.

Details

Using the obj argument is designed after the trees fields in the output from the scrm and coala
packages. (These packages are not required to be installed when installing jackalope.) To get gene
trees, make sure to add + sumstat_trees() to the coalmodel for coala, or make sure that "-T"
is present in args for scrm. If using either of these packages, I encourage you to cite them. For
citation information, see output from citation("scrm") or citation("coala").

If using an output file from a command-line program like ms/msms, add the -T option.

Value

A haps_gtrees_info object containing information used in create_haplotypes to create variant
haplotypes. This class is just a wrapper around a list of NEWICK tree strings, one for each gene
tree, which you can view (but not change) using the object’s trees() method.

Functions

• write_gtrees(): Write gene trees to ms-style output file.

haps_phylo Organize information to create haplotypes using phylogenetic tree(s)

Description

This function organizes higher-level information for creating haplotypes from phylogenetic tree(s)
output as phylo or multiPhylo objects (both from the ape package) or NEWICK files. Note that
all phylogenetic trees must be rooted and binary. If using this function, I encourage you to cite ape.
For citation information, see output from citation("ape").

Usage

haps_phylo(obj = NULL, fn = NULL)

haps_ssites 13

Arguments

obj Object containing phylogenetic tree(s). This can be (1) a single phylo object that
represents all chromosomes in the genome or (2) a list or multiPhylo object
containing a phylo object for each reference chromosome. In the latter case,
phylogenies will be assigned to chromosomes in the order provided. Defaults to
NULL.

fn One or more string(s), each of which specifies the file name of a NEWICK file
containing a phylogeny. If one name is provided, that phylogeny will be used
for all chromosomes. If more than one is provided, there must be a phylogeny
for each reference genome chromosome, and phylogenies will be assigned to
chromosomes in the order provided. Defaults to NULL.

Details

See ?ape::write.tree for writing phylogenies to an output file.

Value

A haps_phylo_info object containing information used in create_haplotypes to create variant
haplotypes. This class is just a wrapper around a list containing phylogenetic tree information
for each reference chromosome, which you can view (but not change) using the object’s phylo()
method.

haps_ssites Organize information to create haplotypes using segregating sites ma-
trices

Description

This function organizes higher-level information for creating haplotypes from matrices of segregat-
ing sites output from coalescent simulations.

Usage

haps_ssites(obj = NULL, fn = NULL)

Arguments

obj Object containing segregating sites information. This can be one of the follow-
ing: (1) A single list with a seg_sites field inside. This field must contain a
matrix for segregating sites for each chromosome. The matrix itself should con-
tain the haplotype information, coded using 0s and 1s: 0s indicate the ancestral
state and 1s indicate mutant. The matrix column names should indicate the po-
sitions of the polymorphisms on the chromosome. If positions are in the range
(0,1), they’re assumed to come from an infinite- sites model and are relative
positions. If positions are integers in the range [0, chromosome length - 1]
or [1, chromosome length], they’re assumed to come from an finite-sites
model and are absolute positions. Defaults to NULL.

14 haps_theta

fn A single string specifying the name of the file containing the ms-style coalescent
output with segregating site info. Defaults to NULL.

Details

For what the seg_sites field should look like in a list, see output from the scrm or coala pack-
age. (These packages are not required to be installed when installing jackalope.) If using ei-
ther of these packages, I encourage you to cite them. For citation information, see output from
citation("scrm") or citation("coala").

Value

A haps_ssites_info object containing information used in create_haplotypes to create variant
haplotypes. This class is just a wrapper around a list of matrices of segregating site info, which you
can view (but not change) using the object’s mats() method.

haps_theta Organize information to create haplotypes using theta parameter

Description

This function organizes higher-level information for creating haplotypes from the population-scaled
mutation rate and a desired number of haplotypes.

Usage

haps_theta(theta, n_haps)

Arguments

theta Population-scaled mutation rate.

n_haps Number of desired haplotypes.

Value

A haps_theta_info object containing information used in create_haplotypes to create variant
haplotypes. This class is just a wrapper around a list containing the phylogenetic tree and theta
parameter, which you can view (but not change) using the object’s phylo() and theta() methods,
respectively.

haps_vcf 15

haps_vcf Organize information to create haplotypes using a VCF file

Description

This function organizes higher-level information for creating haplotypes from Variant Call Format
(VCF) files.

Usage

haps_vcf(fn, print_names = FALSE)

Arguments

fn A single string specifying the name of the VCF file

print_names Logical for whether to print all unique chromosome names from the VCF file
when VCF chromosome names don’t match those from the reference genome.
This printing doesn’t happen until this object is passed to create_haplotypes.
This can be useful for troubleshooting. Defaults to FALSE.

Value

A haps_vcf_info object containing information used in create_haplotypes to create variant
haplotypes. This class is just a wrapper around a list containing the arguments to this function,
which you can view (but not change) using the object’s fn() and print_names() methods.

illumina Create and write Illumina reads to FASTQ file(s).

Description

From either a reference genome or set of variant haplotypes, create Illumina reads from error profiles
and write them to FASTQ output file(s). I encourage you to cite the reference below in addition to
jackalope if you use this function.

Usage

illumina(obj,
out_prefix,
n_reads,
read_length,
paired,
frag_mean = 400,
frag_sd = 100,
matepair = FALSE,

16 illumina

seq_sys = NULL,
profile1 = NULL,
profile2 = NULL,
ins_prob1 = 0.00009,
del_prob1 = 0.00011,
ins_prob2 = 0.00015,
del_prob2 = 0.00023,
frag_len_min = NULL,
frag_len_max = NULL,
haplotype_probs = NULL,
barcodes = NULL,
prob_dup = 0.02,
sep_files = FALSE,
compress = FALSE,
comp_method = "bgzip",
n_threads = 1L,
read_pool_size = 1000L,
show_progress = FALSE,
overwrite = FALSE)

Arguments

obj Sequencing object of class ref_genome or haplotypes.

out_prefix Prefix for the output file(s), including entire path except for the file extension.

n_reads Number of reads you want to create.

read_length Length of reads.

paired Logical for whether to use paired-end reads. This argument is changed to TRUE
if matepair is TRUE.

frag_mean Mean of the Gamma distribution that generates fragment sizes. Defaults to 400.

frag_sd Standard deviation of the Gamma distribution that generates fragment sizes. De-
faults to 100.

matepair Logical for whether to simulate mate-pair reads. Defaults to FALSE.

seq_sys Full or abbreviated name of sequencing system to use. See "Sequencing sys-
tems" section for options. See "Sequencing profiles" section for more informa-
tion on how this argument, profile1, and profile2 are used to specify profiles.
Defaults to NULL.

profile1 Custom profile file for read 1. See "Sequencing profiles" section for more in-
formation on how this argument, profile2, and seq_sys are used to specify
profiles. Defaults to NULL.

profile2 Custom profile file for read 2. See "Sequencing profiles" section for more in-
formation on how this argument, profile1, and seq_sys are used to specify
profiles. Defaults to NULL.

ins_prob1 Insertion probability for read 1. Defaults to 0.00009.

del_prob1 Deletion probability for read 1. Defaults to 0.00011.

ins_prob2 Insertion probability for read 2. Defaults to 0.00015.

illumina 17

del_prob2 Deletion probability for read 2. Defaults to 0.00023.

frag_len_min Minimum fragment size. A NULL value results in the read length. Defaults to
NULL.

frag_len_max Maximum fragment size. A NULL value results in 2^32-1, the maximum allowed
value. Defaults to NULL

haplotype_probs

Relative probability of sampling each haplotype. This is ignored if sequencing
a reference genome. NULL results in all having the same probability. Defaults to
NULL.

barcodes Character vector of barcodes for each haplotype, or a single barcode if sequenc-
ing a reference genome. NULL results in no barcodes. Defaults to NULL.

prob_dup A single number indicating the probability of duplicates. Defaults to 0.02.

sep_files Logical indicating whether to make separate files for each haplotype. This ar-
gument is coerced to FALSE if the obj argument is not a haplotypes object.
Defaults to FALSE.

compress Logical specifying whether or not to compress output file, or an integer specify-
ing the level of compression, from 1 to 9. If TRUE, a compression level of 6 is
used. Defaults to FALSE.

comp_method Character specifying which type of compression to use if any is desired. Options
include "gzip" and "bgzip". This is ignored if compress is FALSE, and it
throws an error if it’s set to "gzip" when n_threads > 1 (since I don’t have a
method to do gzip compression in parallel). Defaults to "bgzip".

n_threads The number of threads to use in processing. If compress is TRUE or > 0 (indi-
cating compressed output), setting n_threads to 2 or more makes this function
first create an uncompressed file/files using n_threads threads, then compress
that/those file/files also using n_threads threads. There is no speed increase
if you try to use multiple threads to create compressed output on the fly, so
that option is not included. If you want to be conservative with disk space (by
not having an uncompressed file present even temporarily), set n_threads to
1. Threads are NOT spread across chromosomes or haplotypes, so you don’t
need to think about these when choosing this argument’s value. However, all
threads write to the same file/files, so there are diminishing returns for provid-
ing many threads. This argument is ignored if the package was not compiled
with OpenMP. Defaults to 1.

read_pool_size The number of reads to store before writing to disk. Increasing this number
should improve speed but take up more memory. Defaults to 1000.

show_progress Logical for whether to show a progress bar. Defaults to FALSE.

overwrite Logical for whether to overwrite existing FASTQ file(s) of the same name, if
they exist.

Value

Nothing is returned.

18 illumina

Sequencing profiles

This section outlines how to use the seq_sys, profile1, and profile2 arguments. If all arguments
are NULL (their defaults), a sequencing system is chosen based on the read length. If, however, one
or more arguments has been provided, then how they’re provided should depend on whether you
want single- or paired-end reads.

For single-end reads

• profile2 should be NULL.

• Only seq_sys or profile1 should be provided, not both.

For paired-end reads

• If providing seq_sys, don’t provide either profile1 or profile2.

• If providing profile1, you must also provide profile2 (they can be the same if you want)
and you cannot provide seq_sys.

Sequencing systems

Sequencing system options are the following, where, for each system, "name" is the full name, "ab-
brev" is the abbreviated name, "max_len" indicates the maximum allowed read length, and "paired"
indicates whether paired-end sequencing is allowed.

name abbrev max_len paired
Genome Analyzer I GA1 44 Yes
Genome Analyzer II GA2 75 Yes
HiSeq 1000 HS10 100 Yes
HiSeq 2000 HS20 100 Yes
HiSeq 2500 HS25 150 Yes
HiSeqX v2.5 PCR free HSXn 150 Yes
HiSeqX v2.5 TruSeq HSXt 150 Yes
MiniSeq TruSeq MinS 50 No
MiSeq v1 MSv1 250 Yes
MiSeq v3 MSv3 250 Yes
NextSeq 500 v2 NS50 75 Yes

ID lines

The ID lines for FASTQ files are formatted as such:
@<genome name>-<chromosome name>-<starting position>-<strand>[/<read#>]

where the part in [] is only for paired-end Illumina reads, and where genome name is always REF
for reference genomes (as opposed to haplotypes).

References

Huang, W., L. Li, J. R. Myers, and G. T. Marth. 2012. ART: a next-generation sequencing read
simulator. Bioinformatics 28:593–594.

indels 19

Examples

rg <- create_genome(10, 100e3, 100)
dir <- tempdir(TRUE)
illumina(rg, paste0(dir, "/illumina_reads"), n_reads = 100,

read_length = 100, paired = FALSE)

indels Insertions and deletions (indels) specification

Description

Construct necessary information for insertions and deletions (indels) that will be used in create_haplotypes.

Usage

indels(rate, max_length = 10, a = NULL, rel_rates = NULL)

Arguments

rate Single number specifying the overall indel rate among all lengths.

max_length Maximum length of indels. Defaults to 10.

a Extra parameter necessary for generating rates from a Lavalette distribution. See
Details for more info. Defaults to NULL.

rel_rates A numeric vector of relative rates for each indel length from 1 to the maximum
length. If provided, all arguments other than rate are ignored. Defaults to NULL.

Details

All indels require the rate parameter, which specifies the overall indels rate among all lengths. The
rate parameter is ultimately combined with a vector of relative rates among the different lengths of
indels from 1 to the maximum possible length. There are three different ways to specify/generate
relative-rate values.

1. Assume that rates are proportional to exp(-L) for indel length L from 1 to the maximum
length (Albers et al. 2011). This method will be used if the following arguments are provided:

• rate

• max_length

2. Generate relative rates from a Lavalette distribution (Fletcher and Yang 2009), where the rate
for length L is proportional to {L * max_length / (max_length - L + 1)}^(-a). This method
will be used if the following arguments are provided:

• rate

• max_length

20 pacbio

• a

3. Directly specify values by providing a numeric vector of relative rates for each insertion/deletion
length from 1 to the maximum length. This method will be used if the following arguments
are provided:

• rate

• rel_rates

Value

An indel_info object, which is an R6 class that wraps the info needed for the create_haplotypes
function. It does not allow the user to directly manipulate the info inside, as that should be done
using this function. You can use the rates() method to view the indel rates by size.

References

Albers, C. A., G. Lunter, D. G. MacArthur, G. McVean, W. H. Ouwehand, and R. Durbin. 2011.
Dindel: accurate indel calls from short-read data. Genome Research 21:961–973.

Fletcher, W., and Z. Yang. 2009. INDELible: a flexible simulator of biological sequence evolution.
Molecular Biology and Evolution 26:1879–1888.

Examples

relative rates are proportional to `exp(-L)` for indel
length `L` from 1 to 5:
indel_rates1 <- indels(0.1, max_length = 5)

relative rates are proportional to Lavalette distribution
for length from 1 to 10:
indel_rates2 <- indels(0.2, max_length = 10, a = 1.1)

relative rates are all the same for lengths from 1 to 100:
indel_rates3 <- indels(0.2, rel_rates = rep(1, 100))

pacbio Create and write PacBio reads to FASTQ file(s).

Description

From either a reference genome or set of variant haplotypes, create PacBio reads and write them to
FASTQ output file(s). I encourage you to cite the reference below in addition to jackalope if you
use this function.

pacbio 21

Usage

pacbio(obj,
out_prefix,
n_reads,
chi2_params_s = c(0.01214, -5.12, 675, 48303.0732881,

1.4691051212330266),
chi2_params_n = c(0.00189237136, 2.53944970, 5500),
max_passes = 40,
sqrt_params = c(0.5, 0.2247),
norm_params = c(0, 0.2),
prob_thresh = 0.2,
ins_prob = 0.11,
del_prob = 0.04,
sub_prob = 0.01,
min_read_length = 50,
lognorm_read_length = c(0.200110276521, -10075.4363813,

17922.611306),
custom_read_lengths = NULL,
prob_dup = 0.0,
haplotype_probs = NULL,
sep_files = FALSE,
compress = FALSE,
comp_method = "bgzip",
n_threads = 1L,
read_pool_size = 100L,
show_progress = FALSE,
overwrite = FALSE)

Arguments

obj Sequencing object of class ref_genome or haplotypes.

out_prefix Prefix for the output file(s), including entire path except for the file extension.

n_reads Number of reads you want to create.

chi2_params_s Vector containing the 5 parameters for the curve determining the scale parameter
for the chi^2 distribution. Defaults to c(0.01214, -5.12, 675, 48303.0732881,
1.4691051212330266).

chi2_params_n Vector containing the 3 parameters for the function determining the n parameter
for the chi^2 distribution. Defaults to c(0.00189237136, 2.53944970, 5500).

max_passes Maximal number of passes for one molecule. Defaults to 40.

sqrt_params Vector containing the 2 parameters for the square root function for the quality
increase. Defaults to c(0.5, 0.2247).

norm_params Vector containing the 2 parameters for normal distributed noise added to quality
increase square root function Defaults to c(0, 0.2).

prob_thresh Upper bound for the modified total error probability. Defaults to 0.2.

ins_prob Probability for insertions for reads with one pass. Defaults to 0.11.

22 pacbio

del_prob Probability for deletions for reads with one pass. Defaults to 0.04.

sub_prob Probability for substitutions for reads with one pass. Defaults to 0.01.
min_read_length

Minium read length for lognormal distribution. Defaults to 50.
lognorm_read_length

Vector containing the 3 parameters for lognormal read length distribution. De-
faults to c(0.200110276521, -10075.4363813, 17922.611306).

custom_read_lengths

Sample read lengths from a vector or column in a matrix; if a matrix, the second
column specifies the sampling weights. If NULL, it samples read lengths from the
lognormal distribution using parameters in lognorm_read_length. Defaults to
NULL.

prob_dup A single number indicating the probability of duplicates. Defaults to 0.0.
haplotype_probs

Relative probability of sampling each haplotype. This is ignored if sequencing
a reference genome. NULL results in all having the same probability. Defaults to
NULL.

sep_files Logical indicating whether to make separate files for each haplotype. This ar-
gument is coerced to FALSE if the obj argument is not a haplotypes object.
Defaults to FALSE.

compress Logical specifying whether or not to compress output file, or an integer specify-
ing the level of compression, from 1 to 9. If TRUE, a compression level of 6 is
used. Defaults to FALSE.

comp_method Character specifying which type of compression to use if any is desired. Options
include "gzip" and "bgzip". This is ignored if compress is FALSE, and it
throws an error if it’s set to "gzip" when n_threads > 1 (since I don’t have a
method to do gzip compression in parallel). Defaults to "bgzip".

n_threads The number of threads to use in processing. If compress is TRUE or > 0 (indi-
cating compressed output), setting n_threads to 2 or more makes this function
first create an uncompressed file/files using n_threads threads, then compress
that/those file/files also using n_threads threads. There is no speed increase
if you try to use multiple threads to create compressed output on the fly, so
that option is not included. If you want to be conservative with disk space (by
not having an uncompressed file present even temporarily), set n_threads to
1. Threads are NOT spread across chromosomes or haplotypes, so you don’t
need to think about these when choosing this argument’s value. However, all
threads write to the same file/files, so there are diminishing returns for provid-
ing many threads. This argument is ignored if the package was not compiled
with OpenMP. Defaults to 1.

read_pool_size The number of reads to store before writing to disk. Increasing this number
should improve speed but take up more memory. Defaults to 100.

show_progress Logical for whether to show a progress bar. Defaults to FALSE.

overwrite Logical for whether to overwrite existing FASTQ file(s) of the same name, if
they exist.

read_fasta 23

Value

Nothing is returned.

ID lines

The ID lines for FASTQ files are formatted as such:
@<genome name>-<chromosome name>-<starting position>-<strand>

where genome name is always REF for reference genomes (as opposed to haplotypes).

References

Stöcker, B. K., J. Köster, and S. Rahmann. 2016. SimLoRD: simulation of long read data. Bioin-
formatics 32:2704–2706.

Examples

rg <- create_genome(10, 100e3, 100)
dir <- tempdir(TRUE)
pacbio(rg, paste0(dir, "/pacbio_reads"), n_reads = 100)

read_fasta Read a fasta file.

Description

Accepts uncompressed and gzipped fasta files.

Usage

read_fasta(fasta_files, fai_files = NULL, cut_names = FALSE)

Arguments

fasta_files File name(s) of the fasta file(s).

fai_files File name(s) of the fasta index file(s). Providing this argument speeds up the
reading process significantly. If this argument is provided, it must be the same
length as the fasta_files argument. Defaults to NULL, which indicates the
fasta file(s) is/are not indexed.

cut_names Boolean for whether to cut chromosome names at the first space. This argument
is ignored if fai_file is not NULL. Defaults to FALSE.

Value

A ref_genome object.

24 ref_genome

ref_genome R6 Class Representing a Reference Genome

Description

Interactive wrapper for a pointer to a C++ object that stores reference genome information.

Details

This class should NEVER be created using ref_genome$new. Only use read_fasta or create_genome.
Because this class wraps a pointer to a C++ object, there are no fields to manipulate directly. All
manipulations are done through this class’s methods.

Methods

Public methods:
• ref_genome$new()

• ref_genome$print()

• ref_genome$ptr()

• ref_genome$n_chroms()

• ref_genome$sizes()

• ref_genome$chrom_names()

• ref_genome$chrom()

• ref_genome$gc_prop()

• ref_genome$nt_prop()

• ref_genome$set_names()

• ref_genome$clean_names()

• ref_genome$add_chroms()

• ref_genome$rm_chroms()

• ref_genome$merge_chroms()

• ref_genome$filter_chroms()

• ref_genome$replace_Ns()

Method new(): Do NOT use this; only use read_fasta or create_genome to make a new
ref_genome.

Usage:
ref_genome$new(genome_ptr)

Arguments:

genome_ptr An externalptr object pointing to a C++ object that stores the information about
the reference genome.

Method print(): Print a ref_genome object.

Usage:

ref_genome 25

ref_genome$print()

Method ptr(): View pointer to underlying C++ object (this is not useful to end users).

Usage:
ref_genome$ptr()

Returns: An externalptr object.

Method n_chroms(): View number of chromosomes.

Usage:
ref_genome$n_chroms()

Returns: Integer number of chromosomes.

Method sizes(): View chromosome sizes.

Usage:
ref_genome$sizes()

Returns: Integer vector of chromosome sizes.

Method chrom_names(): View chromosome names.

Usage:
ref_genome$chrom_names()

Returns: Character vector of chromosome names.

Method chrom(): View one reference chromosome.

Usage:
ref_genome$chrom(chrom_ind)

Arguments:
chrom_ind Index for the focal chromosome.

Returns: A single string representing the chosen chromosome’s DNA sequence.

Method gc_prop(): View GC proportion for part of one reference chromosome.

Usage:
ref_genome$gc_prop(chrom_ind, start, end)

Arguments:
chrom_ind Index for the focal chromosome.
start Point on the chromosome at which to start the calculation (inclusive).
end Point on the chromosome at which to end the calculation (inclusive).

Returns: A double in the range [0,1] representing the proportion of DNA sequence that is
either G or C.

Method nt_prop(): View nucleotide content for part of one reference chromosome

Usage:
ref_genome$nt_prop(nt, chrom_ind, start, end)

Arguments:

26 ref_genome

nt Which nucleotide to calculate the proportion that the DNA sequence is made of. Must be
one of T, C, A, G, or N.

chrom_ind Index for the focal chromosome.
start Point on the chromosome at which to start the calculation (inclusive).
end Point on the chromosome at which to end the calculation (inclusive).

Returns: A double in the range [0,1] representing the proportion of DNA sequence that is nt.

Method set_names(): Change chromosome names.

Usage:
ref_genome$set_names(new_names)

Arguments:
new_names Vector of new names to use. This must be the same length as the number of current

names.

Returns: This R6 object, invisibly.

Examples:
ref <- create_genome(4, 10)
ref$set_names(c("a", "b", "c", "d"))

Method clean_names(): Clean chromosome names, converting " :;=%,\\|/\"\'" to "_".

Usage:
ref_genome$clean_names()

Returns: This R6 object, invisibly.

Examples:
ref <- create_genome(4, 10)
ref$set_names(c("a:", "b|", "c;", "d'"))
ref$clean_names()

Method add_chroms(): Add one or more chromosomes.

Usage:
ref_genome$add_chroms(new_chroms, new_names = NULL)

Arguments:
new_chroms Character vector of DNA strings representing new chromosomes.
new_names Optional character vector of names for the new chromosomes. It should be the

same length as new_chroms. If NULL, new names will be automatically generated. Defaults
to NULL.

Returns: This R6 object, invisibly.

Examples:
ref <- create_genome(4, 10)
ref$add_chroms("TCAGTCAG")

Method rm_chroms(): Remove one or more chromosomes by name

ref_genome 27

Usage:
ref_genome$rm_chroms(chrom_names)

Arguments:
chrom_names Vector of the name(s) of the chromosome(s) to remove.

Returns: This R6 object, invisibly.

Examples:
ref <- create_genome(4, 10)
ref$set_names(c("a", "b", "c", "d"))
ref$rm_chroms("b")

Method merge_chroms(): Merge chromosomes into one.

Usage:
ref_genome$merge_chroms(chrom_names)

Arguments:
chrom_names Vector of the names of the chromosomes to merge into one. Duplicates are not

allowed, and chromosomes are merged in the order they’re provided. If this is NULL, then
all chromosomes are merged after first shuffling their order.

Returns: This R6 object, invisibly.

Examples:
ref <- create_genome(4, 10)
ref$merge_chroms(ref$chrom_names()[1:2])
ref$merge_chroms(NULL)

Method filter_chroms(): Filter chromosomes by size or for a proportion of total bases.

Usage:
ref_genome$filter_chroms(threshold, method)

Arguments:
threshold Number used as a threshold. If method == "size", then this is the minimum length

of a chromosome that will remain after filtering. If method == "prop", chromosomes are
first size-sorted, then the largest N chromosomes are retained that allow at least threshold * sum(<all chromosome sizes>)
base pairs remaining after filtering.

method String indicating which filter method to use: chromosome size (method = "size") or
proportion of total bases (method = "prop").

Returns: This R6 object, invisibly.

Examples:
ref <- create_genome(4, 100, 50)
ref$filter_chroms(90, "size")
ref$filter_chroms(0.4, "prop")

Method replace_Ns(): Replace Ns in the reference genome.

28 ref_genome

Usage:
ref_genome$replace_Ns(pi_tcag, n_threads = 1, show_progress = FALSE)

Arguments:

pi_tcag Numeric vector (length 4) indicating the sampling weights for T, C, A, and G, respec-
tively, for generating new nucleotides with which to replace the Ns.

n_threads Optional integer specifying the threads to use. Ignored if the package wasn’t com-
piled with OpenMP. Defaults to 1.

show_progress Optional logical indicating whether to show a progress bar. Defaults to FALSE.

Returns: This R6 object, invisibly.

See Also

read_fasta create_genome

Examples

--
Method `ref_genome$set_names`
--

ref <- create_genome(4, 10)
ref$set_names(c("a", "b", "c", "d"))

--
Method `ref_genome$clean_names`
--

ref <- create_genome(4, 10)
ref$set_names(c("a:", "b|", "c;", "d'"))
ref$clean_names()

--
Method `ref_genome$add_chroms`
--

ref <- create_genome(4, 10)
ref$add_chroms("TCAGTCAG")

--
Method `ref_genome$rm_chroms`
--

ref <- create_genome(4, 10)
ref$set_names(c("a", "b", "c", "d"))
ref$rm_chroms("b")

sub_models 29

--
Method `ref_genome$merge_chroms`
--

ref <- create_genome(4, 10)
ref$merge_chroms(ref$chrom_names()[1:2])
ref$merge_chroms(NULL)

--
Method `ref_genome$filter_chroms`
--

ref <- create_genome(4, 100, 50)
ref$filter_chroms(90, "size")
ref$filter_chroms(0.4, "prop")

sub_models Construct necessary information for substitution models.

Description

For a more detailed explanation, see vignette("sub-models").

Usage

sub_JC69(lambda, mu = 1, gamma_shape = NULL, gamma_k = 5, invariant = 0)

sub_K80(alpha, beta, mu = 1, gamma_shape = NULL, gamma_k = 5, invariant = 0)

sub_F81(pi_tcag, mu = 1, gamma_shape = NULL, gamma_k = 5, invariant = 0)

sub_HKY85(
pi_tcag,
alpha,
beta,
mu = 1,
gamma_shape = NULL,
gamma_k = 5,
invariant = 0

)

sub_F84(
pi_tcag,
beta,
kappa,
mu = 1,

30 sub_models

gamma_shape = NULL,
gamma_k = 5,
invariant = 0

)

sub_TN93(
pi_tcag,
alpha_1,
alpha_2,
beta,
mu = 1,
gamma_shape = NULL,
gamma_k = 5,
invariant = 0

)

sub_GTR(
pi_tcag,
abcdef,
mu = 1,
gamma_shape = NULL,
gamma_k = 5,
invariant = 0

)

sub_UNREST(Q, mu = 1, gamma_shape = NULL, gamma_k = 5, invariant = 0)

Arguments

lambda Substitution rate for all possible substitutions.

mu Total rate of substitutions. Defaults to 1, which makes branch lengths in units of
substitutions per site. Passing NULL results in no scaling.

gamma_shape Numeric shape parameter for discrete Gamma distribution used for among-site
variability. Values must be greater than zero. If this parameter is NULL, among-
site variability is not included. Defaults to NULL.

gamma_k The number of categories to split the discrete Gamma distribution into. Val-
ues must be an integer in the range [2,255]. This argument is ignored if
gamma_shape is NA. Defaults to 5.

invariant Proportion of sites that are invariant. Values must be in the range [0,1). De-
faults to 0.

alpha Substitution rate for transitions.

beta Substitution rate for transversions.

pi_tcag Vector of length 4 indicating the equilibrium distributions of T, C, A, and G
respectively. Values must be >= 0, and they are forced to sum to 1.

kappa The transition/transversion rate ratio.

alpha_1 Substitution rate for T <-> C transition.

sub_models 31

alpha_2 Substitution rate for A <-> G transition.

abcdef A vector of length 6 that contains the off-diagonal elements for the substitution
rate matrix. See vignette("sub-models") for how the values are ordered in
the matrix.

Q Matrix of substitution rates for "T", "C", "A", and "G", respectively. Item
Q[i,j] is the rate of substitution from nucleotide i to nucleotide j. Do not
include indel rates here! Values on the diagonal are calculated inside the func-
tion so are ignored.

Value

A sub_info object, which is an R6 class that wraps the info needed for the create_haplotypes
function. It does not allow the user to directly manipulate the info inside, as that should be done
using the sub_models functions. You can use the following methods from the class to view infor-
mation:

Q() View a list of substitution rate matrices, one for each Gamma category.

pi_tcag() View the equilibrium nucleotide frequencies.

gammas() View the discrete Gamma-class values.

invariant() View the proportion of invariant sites.

model() View the substitution model.

U() View list of the U matrices (one matrix per Gamma category) used for calculating transition-
probability matrices. This is empty for UNREST models.

Ui() View list of the U^-1 matrices (one matrix per Gamma category) used for calculating transition-
probability matrices. This is empty for UNREST models.

L() View list of the lambda vectors (one vector per Gamma category) used for calculating transition-
probability matrices. This is empty for UNREST models.

Functions

• sub_JC69(): JC69 model.

• sub_K80(): K80 model.

• sub_F81(): F81 model.

• sub_HKY85(): HKY85 model.

• sub_F84(): F84 model.

• sub_TN93(): TN93 model.

• sub_GTR(): GTR model.

• sub_UNREST(): UNREST model.

See Also

create_haplotypes

32 write_fasta

Examples

Same substitution rate for all types:
obj_JC69 <- sub_JC69(lambda = 0.1)

Transitions 2x more likely than transversions:
obj_K80 <- sub_K80(alpha = 0.2, beta = 0.1)

Incorporating equilibrium frequencies:
obj_HKY85 <- sub_HKY85(pi_tcag = c(0.1, 0.2, 0.3, 0.4),

alpha = 0.2, beta = 0.1)

10-category Gamma distribution for among-site variability:
obj_K80 <- sub_K80(alpha = 0.2, beta = 0.1,

gamma_shape = 1, gamma_k = 10)

Invariant sites:
obj_K80 <- sub_K80(alpha = 0.2, beta = 0.1,

invariant = 0.25)

write_fasta Write a ref_genome or haplotypes object to a FASTA file.

Description

This file produces 1 FASTA file for a ref_genome object and one file for each haplotype in a
haplotypes object.

Usage

write_fasta(
obj,
out_prefix,
compress = FALSE,
comp_method = "bgzip",
text_width = 80,
show_progress = FALSE,
n_threads = 1,
overwrite = FALSE

)

Arguments

obj A ref_genome or haplotypes object.

out_prefix Prefix for the output file.

compress Logical specifying whether or not to compress output file, or an integer specify-
ing the level of compression, from 1 to 9. If TRUE, a compression level of 6 is
used. Defaults to FALSE.

write_vcf 33

comp_method Character specifying which type of compression to use if any is desired. Options
include "gzip" and "bgzip". This is ignored if compress is FALSE. Defaults to
"bgzip".

text_width The number of characters per line in the output fasta file. Defaults to 80.

show_progress Logical for whether to show a progress bar. Defaults to FALSE.

n_threads Number of threads to use if writing from a haplotypes object. Threads are split
among haplotypes, so it’s not useful to provide more threads than haplotypes.
This argument is ignored if obj is a ref_genome object, or if OpenMP is not
enabled. Defaults to 1.

overwrite Logical for whether to overwrite existing file(s) of the same name, if they exist.
Defaults to FALSE.

Value

NULL

write_vcf Write haplotype info from a haplotypes object to a VCF file.

Description

Compression in this function always uses "bgzip" for compatibility with "tabix".

Usage

write_vcf(
haps,
out_prefix,
compress = FALSE,
sample_matrix = NULL,
show_progress = FALSE,
overwrite = FALSE

)

Arguments

haps A haplotypes object.

out_prefix Prefix for the output file.

compress Logical specifying whether or not to compress output file, or an integer specify-
ing the level of compression, from 1 to 9. If TRUE, a compression level of 6 is
used. Defaults to FALSE.

sample_matrix Matrix to specify how haplotypes are grouped into samples if samples are not
haploid. There should be one row for each sample, and each row should contain
indices or names for the haplotypes present in that sample. Indices/names for
haplotypes cannot be repeated. Instead of repeating indices here, you should

34 write_vcf

use the dup_haps method of the haplotypes class to duplicate the necessary
haplotype(s). The number of columns indicates the ploidy level: 2 columns
for diploid, 3 for triploid, 4 for tetraploid, and so on; there is no limit to the
ploidy level. If this argument is NULL, it’s assumed that each haplotype is its
own separate sample. Defaults to NULL.

show_progress Logical for whether to show a progress bar. Defaults to FALSE.

overwrite Logical for whether to overwrite existing file(s) of the same name, if they exist.
Defaults to FALSE.

Value

NULL

Index

∗ datasets
evo_rates, 5

create_genome, 2, 28
create_haplotypes, 3, 10, 11, 31

evo_rates, 5

haplotypes, 4, 6
haps_functions, 3, 4, 11
haps_gtrees, 11, 11
haps_phylo, 11, 12
haps_ssites, 11, 13
haps_theta, 11, 14
haps_vcf, 11, 15

illumina, 15
indels, 4, 19

pacbio, 20

read_fasta, 23, 28
ref_genome, 3, 23, 24

sub_F81 (sub_models), 29
sub_F84 (sub_models), 29
sub_GTR (sub_models), 29
sub_HKY85 (sub_models), 29
sub_JC69 (sub_models), 29
sub_K80 (sub_models), 29
sub_models, 4, 29
sub_TN93 (sub_models), 29
sub_UNREST (sub_models), 29

write_fasta, 32
write_gtrees (haps_gtrees), 11
write_vcf, 33

35

	create_genome
	create_haplotypes
	evo_rates
	haplotypes
	haps_functions
	haps_gtrees
	haps_phylo
	haps_ssites
	haps_theta
	haps_vcf
	illumina
	indels
	pacbio
	read_fasta
	ref_genome
	sub_models
	write_fasta
	write_vcf
	Index

