Package ‘irtQ’

July 17, 2025
Type Package
Title Unidimensional Item Response Theory Modeling
Version 1.0.0

Description Fit unidimensional item response theory (IRT) models to test
data, which includes both dichotomous and polytomous items, calibrate
pretest item parameters, estimate examinees' abilities, and examine
the IRT model-data fit on item-level in different ways as well as provide
useful functions related to IRT analyses such as IRT model-data fit
evaluation and differential item functioning analysis.
The bring.flexmirt() and write.flexmirt() functions were written by modifying
the read.flexmirt() function (Pritikin & Falk (2022) <doi:10.1177/0146621620929431>).
The bring.bilog() and bring.parscale() functions were written by modifying the read.bilog()
and read.parscale() functions, respectively (Weeks (2010) <doi:10.18637/jss.v035.112>).
The bisection() function was written by modifying the bisection() function
(Howard (2017, ISBN:9780367657918)). The code of the inverse test characteristic curve
scoring in the est_score() function was written by modifying the irt.eq.tse() function
(Gonzdlez (2014) <doi:10.18637/jss.v059.107>). In est_score() function, the code of weighted
likelihood estimation method was written by referring to the Pi(), Ji(), and Ii() functions
of the catR package (Magis & Barrada (2017) <doi:10.18637/jss.v076.c01>).

Depends R (>=4.3)
License GPL (>=2)
Encoding UTF-8
LazyData true

Imports stats, statmod, utils, tibble, dplyr, purrr, tidyr, rlang,
reshape?2, janitor, ggplot2, gridExtra, parallel, Matrix, Rfast,
mirt

RoxygenNote 7.3.2

NeedsCompilation no

Author Hwanggyu Lim [aut, cre],
Craig S. Wells [ctb],
James Howard [ctb],
Joshua Pritikin [ctb],
Jonathan P Weeks [ctb],

https://doi.org/10.1177/0146621620929431
https://doi.org/10.18637/jss.v035.i12
https://doi.org/10.18637/jss.v059.i07
https://doi.org/10.18637/jss.v076.c01

2 Contents

Jorge Gonzdlez [ctb],
David Magis [ctb]

Maintainer Hwanggyu Lim <hglim83@gmail.com>
Repository CRAN
Date/Publication 2025-07-17 04:00:02 UTC

Contents
bind.fill e e 3
DISECtion e 4
bring.flexmirt L e e 5
cac_lee e e 8
cac_rud e e e e e e 11
catsib . . L e e e e e e e 13
COVITL . . o o ot o e e e e e e e e e e e e e e e e e e e 19
crdif . . L e e e e 22
drm . e e e e e e e 29
] o 30
ESE_ALEIM e e e e e e e e e e e e e e e e e 44
ESELIME .« v v v et e e e e e e e e e e e 49
ESE_SCOTE . . v v v e v e 62
gen.weight L 68
eIt e 70
grdif . .. e 74
1o 82
Irtfit . .. 85
Hike_score e e 91
LSATO e 93
IWIC . o e e e e 93
ped2 . oL 95
plotinfo 99
plotirtfit L e 102
plot.traceline L e 105
PIML . o o e e e e e e 108
rdif . . L e 110
reval MSt L e e e 117
run_flexmirt e 122
shape_df oL 124
shape_df fipc 127
simCAT_DC e 128
SImMCAT_MX . . . e 129
simdat e 130
SIMMG . .. e 133
sImMST e 134
SUMMATY .« o v o v v v v e e e e e e e e e e e e e e e e 135
SX2 M1t . o o e, 136

bind.fill 3

write.flexmirt e 142
Index 145
bind.fill Bind Fill
Description

This function creates a matrix using either row-wise (rbind) or column-wise (cbind) binding of a
list of numeric vectors with varying lengths. Shorter vectors are padded with a specified fill value.

Usage
bind.fill(List, type = c("rbind”, "cbind"”), fill = NA)

Arguments
List A list containing numeric vectors of possibly different lengths.
type A character string indicating the type of binding to perform. Options are "rbind”
or "cbind”.
fill A value used to fill missing elements when aligning the vectors. For type =
"cbind”, this fills missing rows in shorter columns; for type = "rbind”, this
fills missing columns in shorter rows. Accepts any R object (e.g., numeric,
character, logical). Default is NA.
Value

A matrix formed by binding the elements of the list either row-wise or column-wise, with shorter
vectors padded by the specified fill value.

Author(s)

Hwanggyu Lim <hglim83@gmail.com>

Examples
Sample list
score_list <- list(iteml = 0:3, item2 = 0:2, item3 = 0:5, item4 = 0:4)

1) Create a row-bound matrix (rbind)
bind.fill(score_list, type = "rbind")

2) Create a column-bound matrix (cbind)
bind.fill(score_list, type = "cbind")

3) Create a column-bound matrix and fill missing values with @
bind.fill(score_list, type = "cbind", fill = L)

4 bisection

bisection The Bisection Method to Find a Root

Description

This function is a modified version of the bisection function in the ecmna R package (Howard,
2017), designed to find a root of the function . fun with respect to its first argument. Unlike the
original bisection() in cmna, this version allows additional arguments to be passed to . fun.

Usage

bisection(.fun, ..., 1lb, ub, tol = 1e-04, max.it = 100)
Arguments

.fun A function for which the root is to be found.

Additional arguments to be passed to . fun.

1b A numeric value specifying the lower bound of the search interval.

ub A numeric value specifying the upper bound of the search interval.

tol A numeric value specifying the tolerance for convergence. Default is 1e-4.

max.it An integer specifying the maximum number of iterations. Default is 100.
Details

The bisection method is a well-known root-finding numerical algorithm that applies to any con-
tinuous function, provided that the function values at the lower (1b) and upper (ub) bounds have
opposite signs. The method repeatedly bisects the interval until the absolute difference between
successive estimates is smaller than the error tolerance (tol) or the maximum number of iterations
(max.it) is reached.

Value

A list with the following components:

e root: The estimated root of the function.
e iter: The number of iterations performed.

* accuracy: The final absolute difference between the last two interval points with opposite
signs.
References

Howard, J. P. (2017). Computational methods for numerical analysis with R. New York: Chapman
and Hall/CRC.

See Also

est_score()

bring.flexmirt 5

Examples

Example: Find the theta value corresponding to a given probability
of a correct response using the item response function of a 2PLM
(a=1, b =20.2)

Define a function of theta
find.th <- function(theta, p) {

p - drm(theta = theta, a =1, b =0.2, D =1)
3

Find the theta value corresponding to p = 0.2

bisection(.fun = find.th, p = 0.2, 1b = -10, ub = 10)$root

Find the theta value corresponding to p = 0.8
bisection(.fun = find.th, p = 0.8, 1b = -10, ub = 10)$root

bring.flexmirt Import Item and Ability Parameters from IRT Software

Description

These functions import item and/or ability parameters from BILOG-MG 3, PARSCALE 4, flexMIRT,
and the mirt R package.

Usage
bring.flexmirt(
file,
type = c("par”, "sco"),
rePar = TRUE,

rePar.gpc = TRUE,

n.factor = 1
bring.bilog(file, type = c("par"”, "sco"))
bring.parscale(file, type = c("par”, "sco"))

bring.mirt(x)

Arguments
file A file name (including the full path) containing the item or ability parameter
estimates.
type A character string indicating the type of output file. Available options are "par"

for item parameter files and "sco” for ability parameter files.

6 bring.flexmirt

rePar Logical. If TRUE, and when a dichotomous IRT model (e.g., 3PLM) or the graded
response model (GRM) is fit, the item intercept and the logit of the guessing
parameter are reparameterized into the item difficulty and guessing parameters,
respectively. Default is TRUE.

rePar.gpc Logical. If TRUE, and when the generalized partial credit model (GPCM) is fit,
the nominal model parameters in the flexMIRT output are reparameterized into
GPCM slope and difficulty parameters. Default is TRUE.

n.factor A numeric value indicating the number of latent traits (factors) estimated. This
argument must be specified when type = "sco”. Default is 1.
X An object returned by the function mirt: :mirt().
Details

The bring. flexmirt() function was developed by modifying the read. flexmirt () function (Pri-
tikin & Falk, 2020). Similarly, bring.bilog() and bring.parscale() were based on modified
versions of the read.bilog() and read.parscale() functions (Weeks, 2010), respectively.

The supported file extensions for item and ability parameter files are: ".par" and ".sco" for BILOG-
MG and PARSCALE, and "-prm.txt" and "-sco.txt" for flexMIRT. For mirt, the user provides the
object name directly.

Although bring.flexmirt() can extract multidimensional item and ability parameter estimates,
the irtQ package is designed exclusively for unidimensional IRT applications.

For polytomous items, both bring. flexmirt() and bring.mirt() can import item parameters for
the graded response model (GRM) and the generalized partial credit model (GPCM).

Value

These functions return a list containing several components. For flexMIRT output files, results
from multiple-group analyses can be handled; in such cases, each list element corresponds to the
estimation results for a separate group.

Sample Output Files of IRT software

To illustrate how to import item parameter estimate files from PARSCALE 4 and flexMIRT using
bring.parscale() and bring.flexmirt(), two example output files are included in this package.

One file is from PARSCALE 4 with a ".PAR" extension (i.e., "parscale_sample.PAR"), and the other
is from flexMIRT with a "-prm.txt" extension (i.e., "flexmirt_sample-prm.txt").

Both files contain item parameter estimates from a mixed-format test with 55 items: fifty dichoto-
mous items following the 3PL model and five polytomous items with five response categories mod-
eled using the graded response model (GRM). The examples below demonstrate how to import
these output files.

Note

For item parameter files from any IRT software, only the internal object "full_df" in the returned
list is required for various functions in the irtQ package. This object is a data frame containing item
metadata (e.g., item parameters, number of categories, IRT model types). See info() or simdat ()
for more details on item metadata.

bring.flexmirt 7

In addition, when item parameters are estimated using the partial credit model (PCM) or the gen-
eralized partial credit model (GPCM), item step parameters are included in the "full_df" object.
These step parameters are calculated by subtracting the category threshold parameters from the
overall item difficulty (or location) parameter. See the IRT Models section in irtQ-package for
further details on the parameterization of the GPCM.

Author(s)
Hwanggyu Lim <hglim83@gmail.com>

References

Cai, L. (2017). flexMIRT 3.5 Flexible multilevel multidimensional item analysis and test scoring
(Computer software). Chapel Hill, NC: Vector Psychometric Group.

Chalmers, R. P. (2012). mirt: A multidimensional item response theory package for the R environ-
ment. Journal of Statistical Software, 48(6), 1-29.

Weeks, J. P. (2010). plink: An R Package for Linking Mixed-Format Tests Using IRT-Based Meth-
ods. Journal of Statistical Software, 35(12), 1-33. URL http://www.jstatsoft.org/v35/i12/.

Pritikin, J. (2018). rpf: Response Probability Functions. R package version 0.59. https://CRAN.R-
project.org/package=rpf.

Pritikin, J. N., & Falk, C. F. (2020). OpenMx: A modular research environment for item response
theory method development. Applied Psychological Measurement, 44(7-8), 561-562.

Muraki, E. & Bock, R. D. (2003). PARSCALE 4: IRT item analysis and test scoring for rating scale
data (Computer Software). Chicago, IL: Scientific Software International. URL http://www.ssicentral.com

Zimowski, M. F., Muraki, E., Mislevy, R. J., & Bock, R. D. (2003). BILOG-MG 3: Multiple-group
IRT analysis and test maintenance for binary items (Computer Software). Chicago, IL: Scientific
Software International. URL http://www.ssicentral.com

See Also

irtQ-package

Examples

Example 1
Import the "-prm.txt"” output file from flexMIRT
flex_sam <- system.file("extdata”, "flexmirt_sample-prm.txt", package = "irtQ")

Read item parameters and convert them to item metadata
bring.flexmirt(file = flex_sam, "par")$Groupl$full_df

Example 2
Import the ".PAR" output file from PARSCALE
pscale_sam <- system.file("extdata”, "parscale_sample.PAR", package = "irtQ")

Read item parameters and convert them to item metadata
bring.parscale(file = pscale_sam, "par"”)$full_df

cac_lee

cac_lee

Classification Accuracy and Consistency Using Lee’s (2010) Ap-
proach

Description

This function computes classification accuracy and consistency indices for complex assessments
based on the method proposed by Lee (2010). This function supports both dichotomous and poly-
tomous item response theory (IRT) models.

Usage

cac_lee(x, cutscore, theta = NULL, weights = NULL, D = 1, cut.obs = TRUE)

Arguments

X

cutscore

theta

weights

cut.obs

Details

A data frame containing item metadata (e.g., item parameters, number of cat-
egories, IRT model types, etc.). See est_irt() or simdat() for more de-
tails about the item metadata. This data frame can be easily created using the
shape_df () function.

A numeric vector specifying the cut scores for classification. Cut scores are
the points that separate different performance categories (e.g., pass vs. fail, or
different grades).

A numeric vector of ability estimates. Ability estimates (theta values) are the
individual proficiency estimates obtained from the IRT model. The theta param-
eter is optional and can be NULL.

An optional two-column data frame or matrix where the first column is the
quadrature points (nodes) and the second column is the corresponding weights.
This is typically used in quadrature-based IRT analysis.

A scaling constant used in IRT models to make the logistic function closely
approximate the normal ogive function. A value of 1.7 is commonly used for
this purpose. Default is 1.

Logical. If TRUE, it indicates the cutscores on the observed-summed score met-
ric. If FALSE, it indicates they are on the IRT theta score metric. Default is
TRUE.

This function first validates the input arguments. If both theta and weights are NULL, the function
will stop and return an error message. Either theta (a vector of ability estimates) or weights (a
quadrature-based weight matrix) must be specified.

If cut.obs = FALSE, the provided cut scores are assumed to be on the theta (ability) scale, and
they are internally converted to the observed summed score scale using the test characteristic curve
(TCC). This transformation allows classification to be carried out on the summed score metric, even
if theta-based cut points are provided.

cac_lee 9

When weights are provided (D method), the function uses the Lord-Wingersky recursive algorithm
to compute the conditional distribution of observed total scores at each node. These conditional
distributions are used to compute:
* the probability of being classified into each performance level,
* conditional classification accuracy (probability of correct classification), and
* conditional classification consistency (probability of being assigned to the same level upon
repeated testing).

When theta values are provided instead (P method), the same logic applies, but using an empirical
distribution of examinees instead of quadrature-based integration. In this case, uniform weights are
assigned to all examinees.

Finally, marginal classification accuracy and consistency are computed as weighted averages of the
conditional statistics across the ability distribution.

Value
A list containing the following elements:

* confusion: A confusion matrix showing the cross table between true and expected levels.
* marginal: A data frame showing the marginal classification accuracy and consistency indices.

» conditional: A data frame showing the conditional classification accuracy and consistency
indices.

* prob.level: A data frame showing the probability of being assigned to each level category.

* cutscore: A numeric vector showing the cut scores used in the analysis.

Author(s)

Hwanggyu Lim <hglim83@gmail.com>

References
Lee, W. C. (2010). Classification consistency and accuracy for complex assessments using item
response theory. Journal of Educational Measurement, 47(1), 1-17.

See Also

gen.weight(), est_score(), cac_rud()

Examples

B oo
1. When the empirical ability distribution of the population is available
it (D method)

Import the "-prm.txt"” output file from flexMIRT
flex_prm <- system.file("extdata”, "flexmirt_sample-prm.txt"”, package = "irtQ")

10

Read item parameter data and convert it to item metadata
x <= bring.flexmirt(file = flex_prm, "par")$Groupl$full_df

Set the cut scores on the observed summed score scale
cutscore <- c(10, 20, 30, 50)

Create a data frame containing the quadrature points and corresponding weights
node <- seq(-4, 4, 0.25)
weights <- gen.weight(dist = "norm”, mu = @, sigma = 1, theta = node)

Calculate classification accuracy and consistency
cac_1 <- cac_lee(x = x, cutscore = cutscore, weights = weights, D = 1)
print(cac_1)

B oo
2. When individual ability estimates are available (P method)
et

Randomly draw true ability values from N(@, 1)
set.seed(12)
theta <- rnorm(n = 1000, mean = @, sd = 1)

Simulate item response data
data <- simdat(x = x, theta = theta, D = 1)

Estimate ability parameters using maximum likelihood (ML)
est_th <- est_score(

X = X, data = data, D = 1, method = "ML",

range = c(-4, 4), se = FALSE
)$est. theta

Calculate classification accuracy and consistency
cac_2 <- cac_lee(x = x, cutscore = cutscore, theta = est_th, D = 1)
print(cac_2)

B m o s
3. When individual ability estimates are available,

#it but cut scores are specified on the IRT theta scale
e G E L SR

Set the cut scores on the theta scale
cutscore <- c(-2, -0.4, 0.2, 1.0)

Calculate classification accuracy and consistency
cac_3 <- cac_lee(
X = X, cutscore = cutscore, theta = est_th, D = 1,
cut.obs = FALSE

)
print(cac_3)

cac_lee

cac_rud 11
cac_rud Classification Accuracy and Consistency Based on Rudner’s (2001,
2005) Approach
Description

This function computes classification accuracy and consistency indices using the method proposed
by Rudner in 2001 and 2005. This function supports both scenarios: when the empirical ability
distribution of the population is available, and when individual ability estimates are used.

Usage

cac_rud(cutscore, theta = NULL, se, weights = NULL)

Arguments

cutscore

theta

se

weights

Details

A numeric vector specifying the cut scores for classification. Cut scores are
the points that separate different performance categories (e.g., pass vs. fail, or
different grades).

A numeric vector of ability estimates. Ability estimates (theta values) are the
individual proficiency estimates obtained from the IRT model. The theta param-
eter is optional and can be NULL.

A numeric vector of the same length as theta representing the standard errors
associated with each ability estimate. See the Details section for more informa-
tion

An optional two-column data frame or matrix where the first column is the
quadrature points (nodes) and the second column is the corresponding weights.
This is typically used in quadrature-based IRT analysis.

This function first validates the input arguments. If both theta and weights are NULL, the function
will stop and return an error message. Either theta or weights must be specified. In addition,
se must be provided and must match the length of theta or the number of quadrature points in

weights.

It then computes the probability that an examinee with a given ability is classified into each per-
formance level using the normal distribution function centered at each theta (or quadrature point)
with standard deviation se. These probabilities are used to calculate conditional classification ac-
curacy (the probability of being correctly classified) and conditional classification consistency (the
probability of being consistently classified upon repeated testing) for each ability value.

Finally, the function computes marginal classification accuracy and consistency across all exami-
nees by aggregating the conditional indices with the associated weights.

12 cac_rud

Value
A list containing the following elements:

* confusion: A confusion matrix showing the cross table between true and expected levels.
* marginal: A data frame showing the marginal classification accuracy and consistency indices.

 conditional: A data frame showing the conditional classification accuracy and consistency
indices.

» prob.level: A data frame showing the probability of being assigned to each level category.

* cutscore: A numeric vector showing the cut scores used in the analysis.

Author(s)
Hwanggyu Lim <hglim83@gmail.com>

References

Rudner, L. M. (2001). Computing the expected proportions of misclassified examinees. Practical
Assessment, Research, and Evaluation, 7(1), 14.

Rudner, L. M. (2005). Expected classification accuracy. Practical Assessment, Research, and Eval-
uation, 10(1), 13.

See Also

gen.weight(), est_score(), cac_lee()

Examples
e
1. Using the empirical ability distribution
H mm

Import the "-prm.txt"” output file from flexMIRT
flex_prm <- system.file("extdata”, "flexmirt_sample-prm.txt"”, package = "irtQ")

Read item parameter estimates and convert them into item metadata
X <= bring.flexmirt(file = flex_prm, "par")$Groupl1$full_df

Define cut scores on the theta scale
cutscore <- c(-2, -0.5, 0.8)

Create quadrature points and corresponding weights
node <- seq(-4, 4, 0.25)
weights <- gen.weight(dist = "norm”, mu = @, sigma = 1, theta = node)

Compute conditional standard errors across quadrature points
tif <- info(x = x, theta = node, D = 1, tif = TRUE)$tif
se <- 1 / sqrt(tif)

Compute classification accuracy and consistency
cac_1 <- cac_rud(cutscore = cutscore, se = se, weights = weights)

catsib 13

print(cac_1)

oo
2. Using individual ability estimates
e

Generate true abilities from N(@, 1)
set.seed(12)
theta <- rnorm(n = 1000, mean = @, sd = 1)

Simulate item response data
data <- simdat(x = x, theta = theta, D = 1)

Estimate ability and standard errors using ML estimation
est_theta <- est_score(
X = X, data = data, D = 1, method = "ML",
range = c(-4, 4), se = TRUE
)
theta_hat <- est_theta$est.theta
se <- est_theta$se.theta

Compute classification accuracy and consistency
cac_2 <- cac_rud(cutscore = cutscore, theta = theta_hat, se = se)
print(cac_2)

catsib CATSIB DIF Detection Procedure

Description

This function performs DIF analysis on items using the CATSIB procedure (Nandakumar & Rous-
sos, 2004), a modified version of SIBTEST (Shealy & Stout, 1993). The CATSIB procedure is suit-
able for computerized adaptive testing (CAT) environments. In CATSIB, examinees are matched on
IRT-based ability estimates that have been adjusted using a regression correction method (Shealy &
Stout, 1993) to reduce statistical bias in the CATSIB statistic caused by impact.

Usage

catsib(
x = NULL,
data,
score = NULL,
se = NULL,
group,
focal.name,
item.skip = NULL,
D=1,

14 catsib

n.bin = c(80, 10),
min.binsize = 3,
max.del = 0.075,
weight.group = c("comb”, "foc", "ref"),
alpha = 0.05,

missing = NA,

purify = FALSE,
max.iter = 10,
min.resp = NULL,
method = "ML",

range = c(-5, 5),
norm.prior = c(@, 1),

nquad = 41,
weights = NULL,
ncore = 1,

verbose = TRUE,

)
Arguments

X A data frame containing item metadata (e.g., item parameters, number of cat-
egories, IRT model types, etc.). See est_irt() or simdat() for more de-
tails about the item metadata. This data frame can be easily created using the
shape_df () function.

data A matrix of examinees’ item responses corresponding to the items specified in
the x argument. Rows represent examinees and columns represent items.

score A numeric vector containing examinees’ ability estimates (theta values). If not
provided, catsib() will estimate ability parameters internally before comput-
ing the CATSIB statistics. See est_score() for more information on scoring
methods. Default is NULL.

se A vector of standard errors corresponding to the ability estimates. The order of
the standard errors must match the order of the ability estimates provided in the
score argument. Default is NULL.

group A numeric or character vector indicating examinees’ group membership. The
length of the vector must match the number of rows in the response data matrix.

focal.name A single numeric or character value specifying the focal group. For instance,
given group =c(@, 1, @, 1, 1) and’1’ indicating the focal group, set focal.name
=1.

item.skip A numeric vector of item indices to exclude from DIF analysis. If NULL, all
items are included. Useful for omitting specific items based on prior insights.

D A scaling constant used in IRT models to make the logistic function closely
approximate the normal ogive function. A value of 1.7 is commonly used for
this purpose. Default is 1.

n.bin A numeric vector of two positive integers specifying the maximum and mini-

mum numbers of bins (or intervals) on the ability scale. The first and second

catsib

min.binsize

max.del

weight.group

alpha

missing
purify

max.iter

min.resp

method

range

norm.prior

nquad

15

values represent the maximum and minimum numbers of bins, respectively. De-
fault is c (80, 10). See the Details section below for more information.

A positive integer specifying the minimum number of examinees required in
each bin. To ensure stable statistical estimation, each bin must contain at least
the specified number of examinees from both the reference and focal groups in
order to be included in the calculation of B . Bins that do not meet this minimum
are excluded from the computation. Default is 3. See the Details section for
further explanation.

A numeric value specifying the maximum allowable proportion of examinees
that may be excluded from either the reference or focal group during the binning
process. This threshold is used when determining the number of bins on the
ability scale automatically. Default is 0.075. See the Details section for more
information.

A character string specifying the target ability distribution used to compute the
expected DIF measure /3 and its corresponding standard error. Available op-
tions are: "comb"” for the combined distribution of both the reference and focal
groups, "foc” for the focal group’s distribution, and "ref” for the reference
group’s distribution. Default is "comb”. See the Details section below for more
information.

A numeric value specifying the significance level (a) for the hypothesis test
associated with the CATSIB (beta) statistic. Default is 0.05.

A value indicating missing responses in the data set. Default is NA.
Logical. Indicates whether to apply a purification procedure. Default is FALSE.

A positive integer specifying the maximum number of iterations allowed for the
purification process. Default is 10.

A positive integer specifying the minimum number of valid item responses re-
quired from an examinee in order to compute an ability estimate. Default is
NULL. See Details for more information.

A character string indicating the scoring method to use. Available options are:

e "ML": Maximum likelihood estimation

e "WL": Weighted likelihood estimation (Warm, 1989)

e "MAP": Maximum a posteriori estimation (Hambleton et al., 1991)
* "EAP": Expected a posteriori estimation (Bock & Mislevy, 1982)

Default is "ML".

A numeric vector of length two specifying the lower and upper bounds of the
ability scale. This is used for the following scoring methods: "ML", "WL", and
"MAP". Default is c(-5, 5).

A numeric vector of length two specifying the mean and standard deviation of
the normal prior distribution. These values are used to generate the Gaussian
quadrature points and weights. Ignored if method is "ML" or "WL". Default is
c(o, 1).

An integer indicating the number of Gaussian quadrature points to be generated
from the normal prior distribution. Used only when method is "EAP". Ignored
for "ML", "WL", and "MAP". Default is 41.

16 catsib

weights A two-column matrix or data frame containing the quadrature points (in the
first column) and their corresponding weights (in the second column) for the
latent variable prior distribution. The weights and points can be conveniently
generated using the function gen.weight().

If NULL and method = "EAP", default quadrature values are generated based on
the norm.prior and nquad arguments. Ignored if method is "ML", "WL", or
"MAP".

ncore An integer specifying the number of logical CPU cores to use for parallel pro-
cessing. Default is 1. See est_score() for details.

verbose Logical. If TRUE, progress messages from the purification procedure will be
displayed; if FALSE, the messages will be suppressed. Default is TRUE.

Additional arguments passed to the est_score() function.

Details

In the CATSIB procedure (Nandakumar & Roussos, 2004), 6*— the expected value of 0 regressed
on 6—is a continuous variable. The range of 6* is divided into K equal-width intervals, and exam-
inees are classified into one of these K intervals based on their 6* values. Any interval containing
fewer than three examinees from either the reference or focal group is excluded from the computa-
tion of 3, the DIF effect size, to ensure statistical stability. According to Nandakumar and Roussos
(2004), the default minimum bin size is 3, which can be controlled via the min.binsize argument.

To determine an appropriate number of intervals (K), catsib() automatically decreases K from
a large starting value (e.g., 80) based on the rule proposed by Nandakumar and Roussos (2004).
Specifically, if more than 7.5\ excluded due to small bin sizes, the number of bins is reduced by one
and the process is repeated. This continues until the retained examinees in each group comprise at
least 92.5\ few bins, they recommended a minimum of K = 10. Therefore, the default maximum
and minimum number of bins are set to 80 and 10, respectively, via n.bin. Likewise, the maxi-
mum allowable proportion of excluded examinees is set to 0.075 by default through the max.del
argument.

When it comes to the target ability distribution used to compute $, Li and Stout (1996) and Nan-
dakumar and Roussos (2004) employed the combined-group target ability distribution, which is the
default option in weight.group. See Nandakumar and Roussos (2004) for further details about the
CATSIB method.

Although Nandakumar and Roussos (2004) did not propose a purification procedure for DIF analy-
sis using CATSIB, catsib() can implement an iterative purification process in a manner similar to
that of Lim et al. (2022). Specifically, at each iteration, examinees’ latent abilities are recalculated
using the purified set of items and the scoring method specified in the method argument. The iter-
ative purification process terminates either when no additional DIF items are detected or when the
number of iterations reaches the limit set by max.iter. See Lim et al. (2022) for more details on
the purification procedure.

Scoring based on a limited number of items may result in large standard errors, which can negatively
affect the effectiveness of DIF detection using the CATSIB procedure. The min. resp argument can
be used to prevent the use of scores with large standard errors, particularly during the purification
process. For example, if min.resp is not NULL (e.g., min. resp = 5), item responses from exami-
nees whose total number of valid responses is below the specified threshold are treated as missing
(i.e., NA). As a result, their ability estimates are also treated as missing and are excluded from the

catsib

17

CATSIB statistic computation. If min.resp = NULL, a score will be computed for any examinee
with at least one valid item response.

Value

This function returns a list consisting of four elements:

no_purify

purify
with_purify

alpha

Author(s)

A list containing the results of the DIF analysis without applying a purification
procedure. This list includes:

dif_stat A data frame containing the results of the CATSIB statistics for all
evaluated items. The columns include the item ID, CATSIB (beta) statistic,
standard error of beta, standardized beta, p-value for beta, sample size of
the reference group, sample size of the focal group, and total sample size.

dif item A numeric vector identifying items flagged as potential DIF items
based on the CATSIB statistic.

contingency A list of contingency tables used for computing the CATSIB statis-
tics for each item.

A logical value indicating whether a purification procedure was applied.

A list containing the results of the DIF analysis with a purification procedure.
This list includes:

dif _stat A data frame containing the results of the CATSIB statistics for all
evaluated items. The columns include the item ID, CATSIB (beta) statistic,
standard error of beta, standardized beta, p-value for beta, sample size of
the reference group, sample size of the focal group, total sample size, and
the iteration number (n) in which the CATSIB statistics were computed.

dif_item A numeric vector identifying items flagged as potential DIF items
based on the CATSIB statistic.

n.iter An integer indicating the total number of iterations performed during the
purification process.

complete A logical value indicating whether the purification process was com-
pleted. If FALSE, the process reached the maximum number of iterations
without full convergence.

contingency A list of contingency tables used for computing the CATSIB statis-
tics for each item during the purification process.

The significance level o used to compute the p-values of the CATSIB statistics.

Hwanggyu Lim <hglim83@gmail.com>

References

Li, H. H., & Stout, W. (1996). A new procedure for detection of crossing DIF. Psychometrika,

61(4), 647-677.

Lim, H., Choe, E. M., & Han, K. T. (2022). A residual-based differential item functioning detection
framework in item response theory. Journal of Educational Measurement.

18 catsib

Nandakumar, R., & Roussos, L. (2004). Evaluation of the CATSIB DIF procedure in a pretest
setting. Journal of Educational and Behavioral Statistics, 29(2), 177-199.

Shealy, R. T., & Stout, W. F. (1993). A model-based standardization approach that separates true
bias/DIF from group ability differences and detects test bias/DIF as well as item bias/DIF. Psy-
chometrika, 58, 159-194.

See Also

rdif (), est_irt, est_item(), simdat (), shape_df (), est_score()

Examples

Load required package
library("dplyr")

Uniform DIF Detection
S
(1) Simulate data with true uniform DIF
S

Import the "-prm.txt"” output file from flexMIRT
flex_sam <- system.file("extdata”, "flexmirt_sample-prm.txt", package = "irtQ")

Select 36 3PLM items that are non-DIF

par_nstd <-
bring.flexmirt(file = flex_sam, "par")$Group1$full_df %>%
dplyr::filter(.data$model == "3PLM") %>%

dplyr::filter(dplyr::row_number() %in% 1:36) %>%
dplyr::select(1:6)
par_nstd$id <- paste@("nondif”, 1:36)

Generate four new items to contain uniform DIF
difpar_ref <-
shape_df(
par.drm = list(a = c(0.8, 1.5, 0.8, 1.5), b = c(0.0, 0.0, -0.5, -0.5), g = 0.15),
item.id = paste@("dif"”, 1:4), cats = 2, model = "3PLM"

)

Introduce uniform DIF in the focal group by shifting b-parameters
difpar_foc <-

difpar_ref %>%

dplyr::mutate_at(.vars = "par.2", .funs = function(x) x + rep(0.7, 4))

Combine the 4 DIF and 36 non-DIF items for both reference and focal groups
Threfore, the first four items now exhibit uniform DIF

par_ref <- rbind(difpar_ref, par_nstd)

par_foc <- rbind(difpar_foc, par_nstd)

Generate true theta values
set.seed(123)

theta_ref <- rnorm(500, 0.0, 1.0)
theta_foc <- rnorm(500, 0.0, 1.0)

covirt 19

Simulate response data

resp_ref <- simdat(par_ref, theta = theta_ref, D = 1)
resp_foc <- simdat(par_foc, theta = theta_foc, D = 1)
data <- rbind(resp_ref, resp_foc)

SEHHHHHHEEHHEEHEE R B E R
(2) Estimate item and ability parameters

using the aggregated data
B

Estimate item parameters
est_mod <- est_irt(data = data, D = 1, model = "3PLM")
est_par <- est_mod$par.est

Estimate ability parameters using ML

theta_est <- est_score(x = est_par, data = data, method = "ML")
score <- theta_est$est.theta

se <- theta_est$se.theta

AR AR R
(3) Conduct DIF analysis

HHHHEHHHHHAHHEHAHHHAH AR
Create a vector of group membership indicators
where '1' indicates the focal group

group <- c(rep(@, 500), rep(1, 500))

(a)-1 Compute the CATSIB statistic using provided scores,
without purification
dif_1 <- catsib(
x = NULL, data = data, D = 1, score = score, se = se, group
weight.group = "comb”, alpha = 0.05, missing = NA, purify =
)
print(dif_1)

= group, focal.name = 1,
FALSE

(a)-2 Compute the CATSIB statistic using provided scores,

with purification

dif_2 <- catsib(
x = est_par, data = data, D = 1, score = score, se = se, group = group, focal.name = 1,
weight.group = "comb”, alpha = .05, missing = NA, purify = TRUE

)

print(dif_2)

covirt Asymptotic Variance-Covariance Matrices of Item Parameter Esti-
mates

20

Description

covirt

This function computes the analytical asymptotic variance-covariance matrices of item parameter
estimates for dichotomous and polytomous IRT models, without requiring examinee response data.
Given a set of item parameter estimates and the corresponding sample sizes, the function derives the
matrices using analytical formulas (e.g., Li & Lissitz, 2004; Thissen & Wainer, 1982). The square
roots of the diagonal elements (variances) provide the asymptotic standard errors of the maximum
likelihood estimates.

Usage

covirt(
X!
D=1,
nstd = 1000,

pcm.loc = NULL,

norm.prior =
nquad = 41,

c(o, 1),

weights = NULL

Arguments

X

nstd

pcm. loc

norm.prior

nquad

weights

A data frame containing item metadata (e.g., item parameters, number of cat-
egories, IRT model types, etc.). See est_irt() or simdat() for more de-
tails about the item metadata. This data frame can be easily created using the
shape_df () function.

A scaling constant used in IRT models to make the logistic function closely
approximate the normal ogive function. A value of 1.7 is commonly used for
this purpose. Default is 1.

An integer or a vector of integers indicating the sample size(s). If a vector is
provided, its length must match the number of items in the x argument. Default
is 1,000. See Details.

A vector of integers indicating the positions of items calibrated using the partial
credit model (PCM). For PCM items, the variance-covariance matrices are com-
puted only for the item category difficulty parameters. Default is NULL. See the
Details for more information.

A numeric vector of length two specifying the mean and standard deviation of
the normal prior distribution. These values are used to generate the Gaussian
quadrature points and weights when weights = NULL. Default is c(@, 1).

An integer indicating the number of Gaussian quadrature points to be generated
from the normal prior distribution. The specified value is used when weights is
not NULL. Default is 41.

An optional two-column data frame or matrix where the first column is the
quadrature points (nodes) and the second column is the corresponding weights.
This is typically used in quadrature-based IRT analysis.

covirt 21

Details

The standard errors obtained from this analytical approach are generally considered lower bounds of
the true standard errors (Thissen & Wainer, 1982). Thus, they may serve as useful approximations
for evaluating the precision of item parameter estimates when empirical standard errors are not
reported in the literature or research reports.

If the item parameters provided in the x argument were calibrated using different sample sizes, a
corresponding vector of sample sizes must be specified via the nstd argument. For example, sup-
pose you wish to compute the variance-covariance matrices of five 3PLM items that were calibrated
using 500, 600, 1,000, 2,000, and 700 examinees, respectively. In this case, set nstd = c(500, 600,
1000, 2000, 700).

Since the item metadata allows only "GPCM"” to denote both the partial credit model (PCM) and
the generalized partial credit model (GPCM), PCM items must be explicitly identified using the
pcm. loc argument. This is necessary because the category difficulty parameters of PCM items
require special handling when computing variance-covariance matrices. For instance, if you wish
to compute the matrices for five polytomous items and the last two were calibrated using PCM, then
specify pcm.loc = c(4, 5).

Value

A named list with the following two components:

* cov: A named list of variance-covariance matrices for item parameter estimates. Each element
corresponds to a single item and contains a square matrix whose dimensions match the number
of estimated parameters for that item. For dichotomous items, this typically includes slopes
and intercepts. For polytomous items, it includes category difficulty parameters (for PCM) or
both slope and difficulty (or threshold) parameters (for GRM and GPCM).

* se: A named list of vectors containing the asymptotic standard errors (ASEs) of the item
parameter estimates, computed as the square roots of the diagonal elements of each corre-
sponding variance-covariance matrix in cov.

The names of the list elements in both cov and se correspond to the item identifiers (e.g., item
names or labels) as given in the first column of the input x.
Author(s)

Hwanggyu Lim <hglim83@gmail.com>

References

Li, Y. & Lissitz, R. (2004). Applications of the analytically derived asymptotic standard errors of
item response theory item parameter estimates. Journal of educational measurement, 41(2), 85-117.

Thissen, D. & Wainer, H. (1982). Weighted likelihood estimation of ability in item response theory.
Psychometrika, 54(3), 427-450.

See Also

est_irt(), simdat(), shape_df (), gen.weight()

22 crdif

Examples

Example using a "-prm.txt"” file exported from flexMIRT
flex_prm <- system.file("extdata”, "flexmirt_sample-prm.txt"”, package = "irtQ")

Select the first two dichotomous items and the last polytomous item
X <= bring.flexmirt(file = flex_prm, "par")$Groupl1$full_df[c(1:2, 55),]

Compute the variance-covariance matrices assuming a sample size of 2,000
covirt(x, D = 1, nstd = 2000, norm.prior = c(@, 1), nquad = 41)

crdif Residual-Based DIF Detection Framework Using Categorical Resid-
uals (RDIF-CR)

Description

This function computes three statistics of the residual-based DIF detection framework using cate-
gorical residuals (RDIF-CR)—RDIFr —CR, RDIFs—CR, and RDI Frg — C R—for detecting
global differential item functioning (DIF), particularly in polytomously scored items. The RDIF-
CR framework evaluates DIF by comparing categorical residual vectors, which are calculated as the
difference between a one-hot encoded response vector (with 1 for the selected category and O for all
others) and the IRT model—predicted probability vector across all score categories. This approach
enables fine-grained detection of global DIF patterns at the category level.

Usage
crdif(x, ...)

Default S3 method:
crdif(
X,
data,
score = NULL,
group,
focal.name,
item.skip = NULL,
D=1,
alpha = 0.05,
missing = NA,
purify = FALSE,
purify.by = c("crdifrs”, "crdifr”, "crdifs"),
max.iter = 10,
min.resp = NULL,
method = "ML",
range = c(-5, 5),
norm.prior = c(@, 1),

crdif

nquad = 41,
weights = NULL,
ncore = 1,
verbose = TRUE,

)

S3 method for class 'est_irt'

crdif(
X,
score = NULL,
group,
focal.name,
item.skip = NULL,
alpha = 0.05,

)

missing = NA,

purify = FALSE,

purify.by = c("crdifrs”, "crdifr”, "crdifs"),
max.iter = 10,

min.resp = NULL,

method = "ML",

range = c(-5, 5),

norm.prior = c(@, 1),

nquad = 41,

weights = NULL,

ncore =
verbose

’

TRUE,

I =1

S3 method for class 'est_item'
crdif(

X,

group,

focal.name,

item.skip = NULL,
alpha = 0.05,

missing = NA,

purify = FALSE,
purify.by = c("crdifrs”, "crdifr"”, "crdifs"),
max.iter = 10,
min.resp = NULL,
method = "ML",

range = c(-5, 5),
norm.prior = c(@, 1),
nquad = 41,

weights = NULL,

ncore = 1,

23

24 crdif

verbose = TRUE,

)
Arguments

X A data frame containing item metadata (e.g., item parameters, number of cat-
egories, IRT model types, etc.); or an object of class est_irt obtained from
est_irt(), or est_itemfrom est_item().
See est_irt() or simdat () for more details about the item metadata. This data
frame can be easily created using the shape_df () function.
Additional arguments passed to the est_score() function.

data A matrix of examinees’ item responses corresponding to the items specified in
the x argument. Rows represent examinees and columns represent items.

score A numeric vector containing examinees’ ability estimates (theta values). If not
provided, crdif () will estimate ability parameters internally before computing
the RDIF statistics. See est_score() for more information on scoring methods.
Default is NULL.

group A numeric or character vector indicating examinees’ group membership. The
length of the vector must match the number of rows in the response data matrix.

focal.name A single numeric or character value specifying the focal group. For instance,
given group =c(@, 1, @, 1, 1) and’1’ indicating the focal group, set focal.name
=1.

item.skip A numeric vector of item indices to exclude from DIF analysis. If NULL, all
items are included. Useful for omitting specific items based on prior insights.

D A scaling constant used in IRT models to make the logistic function closely
approximate the normal ogive function. A value of 1.7 is commonly used for
this purpose. Default is 1.

alpha A numeric value specifying the significance level («) for hypothesis testing us-
ing the CRDIF statistics. Default is . @5.

missing A value indicating missing responses in the data set. Default is NA.

purify Logical. Indicates whether to apply a purification procedure. Default is FALSE.

purify.by A character string specifying which RDIF statistic is used to perform the pu-

rification. Available options are "crdifrs” for RDIFrs — CR, "crdifr"” for
RDIFr — CR, and "crdifs” for RDIFs — CR.

max.iter A positive integer specifying the maximum number of iterations allowed for the
purification process. Default is 10.

min.resp A positive integer specifying the minimum number of valid item responses re-
quired from an examinee in order to compute an ability estimate. Default is
NULL.

method A character string indicating the scoring method to use. Available options are:

e "ML": Maximum likelihood estimation
e "WL": Weighted likelihood estimation (Warm, 1989)
e "MAP": Maximum a posteriori estimation (Hambleton et al., 1991)

crdif 25

* "EAP": Expected a posteriori estimation (Bock & Mislevy, 1982)
Default is "ML".

range A numeric vector of length two specifying the lower and upper bounds of the
ability scale. This is used for the following scoring methods: "ML", "WL", and
"MAP". Default is c(-5, 5).

norm.prior A numeric vector of length two specifying the mean and standard deviation of
the normal prior distribution. These values are used to generate the Gaussian
quadrature points and weights. Ignored if method is "ML" or "WL". Default is
c(o, 1).

nquad An integer indicating the number of Gaussian quadrature points to be generated
from the normal prior distribution. Used only when method is "EAP". Ignored
for "ML", "WL", and "MAP". Default is 41.

weights A two-column matrix or data frame containing the quadrature points (in the
first column) and their corresponding weights (in the second column) for the
latent variable prior distribution. The weights and points can be conveniently
generated using the function gen.weight().
If NULL and method = "EAP", default quadrature values are generated based on
the norm.prior and nquad arguments. Ignored if method is "ML", "WL", or
"MAP".

ncore An integer specifying the number of logical CPU cores to use for parallel pro-
cessing. Default is 1. See est_score() for details.

verbose Logical. If TRUE, progress messages from the purification procedure will be
displayed; if FALSE, the messages will be suppressed. Default is TRUE.

Details

According to Penfield (2010), differential item functioning (DIF) in polytomously scored items can
be conceptualized in two forms: global DIF and net DIF. Global DIF refers to differences between
groups in the conditional probabilities of responding in specific score categories, thus offering a
fine-grained view of DIF at the category level. In contrast, net DIF summarizes these differences
into a single value representing the overall impact of DIF on the item’s expected score.

The RDIF framework using categorical residuals (RDIF-CR), implemented in crdif(), extends
the original residual-based DIF framework proposed by Lim et al. (2022) to detect global DIF in
polytomous items. This framework includes three statistics: RDIFr — CR, RDIFs — CR, and
RDIFrg— CR, each designed to capture different aspects of group-level differences in categorical
response patterns.

To illustrate how the RDIF-CR framework operates, consider an item with five ordered score cat-
egories (k € {0,1,2,3,4}). Suppose an examinee with latent ability 6 responds with category
2. The one-hot encoded response vector for this response is (0,0, 1,0,0)7. Assume that the IRT
model estimates the examinee’s expected score as 2.5 and predicts the category probabilities as
(0.1,0.2,0.4,0.25,0.05)7. In the RDIF-CR framework, the categorical residual vector is calcu-
lated by subtracting the predicted probability vector from the one-hot response vector, resulting in
(—-0.1,-0.2,0.6,—0.25, —0.05)%".

In contrast to the RDIF-CR framework, net DIF is assessed using a unidimensional item score
residual. In this example, the residual would be 2 — 2.5 = —0.5. For detecting net DIF, the rdif ()
function should be used instead.

26 crdif

Note that for dichotomous items, crdif () and rdif() yield identical results. This is because the
categorical probability vector for a binary item reduces to a scalar difference, making the global and
net DIF evaluations mathematically equivalent.

Value

This function returns a list containing four main components:

no_purify A list of sub-objects containing the results of DIF analysis without applying a
purification procedure. The sub-objects include:

dif_stat A data frame summarizing the RDIF-CR analysis results for all items.
Columns include item ID, RDIFr — CR, degrees of freedom, RDIFs —
CR, degrees of freedom, RDIFrgs — C'R, degrees of freedom, associated
p-values, and sample sizes for the reference and focal groups.

moments A list containing the first and second moments (means and covariance
matrices) of the RDIF-CR statistics. The elements include: mu.crdifr,
mu.crdifs, mu.crdifrs (means), and cov.crdifr, cov.crdifs, cov.crdifrs
(covariances), each indexed by item ID.

dif_item A list of three numeric vectors identifying items flagged as DIF based
on each statistic: crdifr, crdifs, and crdifrs.

score A numeric vector of ability estimates used to compute the RDIF-CR
statistics. These may be user-supplied or internally estimated.

purify A logical value indicating whether a purification procedure was applied.

with_purify A list of sub-objects containing the results of DIF analysis after applying the
purification procedure. The sub-objects include:

purify.by A character string indicating the RDIF-CR statistic used for purifica-
tion. Possible values are "crdifr", "crdifs", or "crdifrs".

dif_stat A data frame summarizing the final RDIF-CR statistics after purifica-
tion. Same structure as in no_purify, with an additional column indicating
the iteration in which the result was obtained.

moments A list of moments (means and covariance matrices) of the RDIF-CR
statistics for all items, updated based on the final iteration.

dif_item A list of three numeric vectors identifying items flagged as DIF at any
iteration, by each statistic.

n.iter An integer indicating the number of iterations performed during the pu-
rification procedure.

score A numeric vector of updated ability estimates used in the final iteration.

complete A logical value indicating whether the purification process converged.
If FALSE, the maximum number of iterations was reached before conver-
gence.

alpha A numeric value indicating the significance level (a) used for hypothesis testing
with RDIF-CR statistics.
Methods (by class)

e crdif(default): Default method for computing the three RDIF-CR statistics using a data
frame x that contains item metadata

crdif 27

e crdif(est_irt): An object created by the function est_irt().

e crdif(est_item): An object created by the function est_item().

Author(s)

Hwanggyu Lim <hglim83@gmail.com>

References

Lim, H., Choe, E. M., & Han, K. T. (2022). A residual-based differential item functioning de-
tection framework in item response theory. Journal of Educational Measurement, 59(1), 80-104.
doi:10.1111/jedm.12313.

Penfield, R. D. (2010). Distinguishing between net and global DIF in polytomous items. Journal of
Educational Measurement, 47(2), 129—-149.

See Also

rdif (), est_irt(), est_item(), est_score()

Examples

HHHHHHARHEEHE A R R
This example demonstrates how to detect global DIF in polytomous items

using the RDIF-CR framework implemented in ~irtQ::crdif()".

Simulated response data are generated from 5 GRM items with 4 score

categories. DIF is introduced in the 1st and 5th items.

B e R iR i i i i i i S iR i

A A A
(1) Simulate response data with DIF
HHH

set.seed(1)

Generate ability parameters for 1000 examinees in each group
Reference and focal groups follow N(@, 1.5*2)

theta_ref <- rnorm(1000, @, 1.5)

theta_foc <- rnorm(1000, @, 1.5)

Combine abilities from both groups
theta_all <- c(theta_ref, theta_foc)

Define item parameters using ~irtQ::shape_df ()"
Items 1 and 5 are intentionally modified to exhibit DIF
par_ref <- irtQ::shape_df(

par.prm = list(

a=c, 1,1, 2, 2,
d = list(c(-2, 0, 1),
c(-2, 0, 2),
c(-2, 0, 1),

https://doi.org/10.1111/jedm.12313

28

C(_1Y 0’ 2)’
c(-2, 0, 0.5))
)?
cats = 4, model = "GRM"
)

par_foc <- irtQ::shape_df(
par.prm = list(
a=c(2, 1,1, 2, 0.5),
d = list(c(-0.5, @, 0.5),

c(-2, 0, 2),
c(-2, o0, 1),
c(-1, 0, 2),
c(-1.5, -1, 0))
),
cats = 4, model = "GRM"

)

Generate response data
resp_ref <- irtQ::simdat(x = par_ref, theta = theta_ref, D = 1)
resp_foc <- irtQ::simdat(x = par_foc, theta = theta_foc, D = 1)

Combine response data across groups
data <- rbind(resp_ref, resp_foc)

HHHHEHHHHHAHEEHHHHHEH AR
(2) Estimate item and ability parameters
S HEHHRHRHEHR A EHRHRHHEH SRR

Estimate GRM item parameters using ~irtQ::est_irt()"
fit_mod <- irtQ::est_irt(data = data, D = 1, model = "GRM", cats

Extract estimated item parameters
x <- fit_mod$par.est

Estimate ability scores using ML method
score <- est_score(x = x, data = data, method = "ML")$est.theta

HEHHHHHHHEREHHHHA AR
(3) Perform RDIF-CR DIF analysis
HHHHHHHEHEE AR

Define group membership: 1 = focal group
group <- c(rep(@, 1000), rep(1, 1000))

(a) DIF detection without purification
dif_nopuri <- crdif(
X = x, data = data, score = score,
group = group, focal.name = 1, D = 1, alpha = 0.05
)
print(dif_nopuri)

(b) DIF detection with purification using RDIF_{R}-CR

4)

crdif

drm 29

dif_puri_1 <- crdif(
X = X, data = data, score = score,
group = group, focal.name = 1, D = 1, alpha = 0.05,
purify = TRUE, purify.by = "crdifr”

)

print(dif_puri_1)

(c) DIF detection with purification using RDIF_{S}-CR
dif_puri_2 <- crdif(
X = X, data = data, score = score,
group = group, focal.name = 1, D = 1, alpha = 0.05,
purify = TRUE, purify.by = "crdifs”
)
print(dif_puri_2)

(d) DIF detection with purification using RDIF_{RS}-CR
dif_puri_3 <- crdif(
X = x, data = data, score = score,
group = group, focal.name = 1, D = 1, alpha = 0.05,
purify = TRUE, purify.by = "crdifrs”
)
print(dif_puri_3)

drm Dichotomous Response Model (DRM) Probabilities

Description

This function computes the probability of a correct response for multiple items given a set of theta
values using the 1PL, 2PL, or 3PL item response models.

Usage
drm(theta, a, b, g = NULL, D = 1)

Arguments
theta A numeric vector of ability values (latent traits).
a A numeric vector of item discrimination (slope) parameters.
b A numeric vector of item difficulty parameters.
g A numeric vector of item guessing parameters. Not required for 1PL or 2PL
models.
D A scaling constant used in IRT models to make the logistic function closely

approximate the normal ogive function. A value of 1.7 is commonly used for
this purpose. Default is 1.

30 est_irt

Details

If g is not specified, the function assumes a guessing parameter of 0 for all items, corresponding to
the 1PL or 2PL model. The function automatically adjusts the model form based on the presence of

g.

Value

A matrix of response probabilities, where rows represent ability values (theta) and columns repre-
sent items.

Author(s)

Hwanggyu Lim <hglim83@gmail.com>

See Also

prm()

Examples

Example 1: theta and item parameters for 3PL model
drm(c(-0.1, 0.0, 1.5), a =c(1, 2), b =c(0, 1), g =c(0.2, 0.1), D =1)

Example 2: single theta value with 2PL item parameters
drm(@.0, a = c(1, 2), b =c(0, 1), D=1)

Example 3: multiple theta values with a single item (3PL model)
drm(c(-0.1, 0.0, 1.5), a=1, b =1, g=0.2, D=1)

est_irt Item parameter estimation using MMLE-EM algorithm

Description

This function fits unidimensional item response theory (IRT) models to mixed-format data com-
prising both dichotomous and polytomous items, using marginal maximum likelihood estimation
via the expectation—-maximization (MMLE-EM) algorithm (Bock & Aitkin, 1981). It also sup-
ports fixed item parameter calibration (FIPC; Kim, 2006), a practical method for pretest (or newly
developed) item calibration in computerized adaptive testing (CAT). FIPC enables the parameter
estimates of pretest items to be placed on the same scale as those of operational items (Ban et al.,
2001). For dichotomous items, the function supports the one-, two-, and three-parameter logistic
models. For polytomous items, it supports the graded response model (GRM) and the (generalized)
partial credit model (GPCM).

est_irt

Usage

31

est_irt(

x = NULL,

data,

D=1,

model = NULL,

cats = NULL,

item.id = NULL,

fix.a.1pl = FALSE,

fix.a.gpcm = FALSE,

fix.g = FALSE,

a.val.lpl =1,

a.val.gpcm = 1,

g.val = 0.2,

use.aprior = FALSE,

use.bprior = FALSE,

use.gprior = TRUE,

aprior = list(dist = "lnorm”, params = c(@, 0.5)),
bprior = list(dist = "norm”, params = c(0, 1)),
gprior = list(dist = "beta”, params = c(5, 16)),
missing = NA,

Quadrature = c(49, 6),

weights = NULL,

group.mean = 0,

group.var = 1,

EmpHist = FALSE,

use.startval = FALSE,

Etol = 1e-04,

MaxE = 500,

control = list(iter.max = 200),
fipc = FALSE,

fipc.method = "MEM",
fix.loc = NULL,

fix.id = NULL,
se = TRUE,
verbose = TRUE
)
Arguments
X A data frame containing item metadata. This metadata is required to retrieve

essential information for each item (e.g., number of score categories, IRT model
type, etc.) necessary for calibration. You can create an empty item metadata
frame using the function shape_df ().

When use. startval = TRUE, the item parameters specified in the metadata will
be used as starting values for parameter estimation. If x = NULL, both model and
cats arguments must be specified. Note that when fipc = TRUE to implement
FIPC, item metadata for the test form must be supplied via the x argument. See

32

data

model

cats

item.id

fix.a.1pl

fix.a.gpcm

fix.g

a.val.lpl

a.val.gpcm

g.val

use.aprior

use.bprior

use.gprior

est_irt

below for more details. Default is NULL.

A matrix of examinees’ item responses corresponding to the items specified in
the x argument. Rows represent examinees and columns represent items.

A scaling constant used in IRT models to make the logistic function closely
approximate the normal ogive function. A value of 1.7 is commonly used for
this purpose. Default is 1.

A character vector specifying the IRT model to fit each item. Available values
are:

e "1PLM", "2PLM", "3PLM", "DRM" for dichotomous items
e "GRM", "GPCM" for polytomous items

Here, "GRM" denotes the graded response model and "GPCM" the (generalized)
partial credit model. Note that "DRM" serves as a general label covering all three
dichotomous IRT models. If a single model name is provided, it is recycled for
all items. This argument is only used when x = NULL and fipc = FALSE. Default
is NULL.

Numeric vector specifying the number of score categories per item. For dichoto-
mous items, this should be 2. If a single value is supplied, it will be recycled
across all items. When cats = NULL and all models specified in the model ar-
gument are dichotomous ("1PLM"”, "2PLM", "3PLM", or "DRM"), the function de-
faults to 2 categories per item. This argument is used only when x = NULL and
fipc = FALSE. Default is NULL.

Character vector of item identifiers. If NULL, IDs are generated automatically.
When fipc = TRUE, a provided item. id will override any IDs present in x. De-
fault is NULL.

Logical. If TRUE, the slope parameters of all IPLM items are fixed to a.val. 1pl;
otherwise, they are constrained to be equal and estimated. Default is FALSE.

Logical. If TRUE, GPCM items are calibrated as PCM with slopes fixed to
a.val.gpcm; otherwise, each item’s slope is estimated. Default is FALSE.

Logical. If TRUE, all 3PLM guessing parameters are fixed to g.val; otherwise,
each guessing parameter is estimated. Default is FALSE.

Numeric. Value to which the slope parameters of 1PLM items are fixed when
fix.a.1pl = TRUE. Default is 1.

Numeric. Value to which the slope parameters of GPCM items are fixed when
fix.a.gpcm = TRUE. Default is 1.

Numeric. Value to which the guessing parameters of 3PLM items are fixed when
fix.g = TRUE. Default is 0.2.

Logical. If TRUE, applies a prior distribution to all item discrimination (slope)
parameters during calibration. Default is FALSE.

Logical. If TRUE, applies a prior distribution to all item difficulty (or threshold)
parameters during calibration. Default is FALSE.

Logical. If TRUE, applies a prior distribution to all 3PLM guessing parameters
during calibration. Default is TRUE.

est_irt 33

aprior, bprior, gprior
A list specifying the prior distribution for all item discrimination (slope), dif-
ficulty (or threshold), guessing parameters. Three distributions are supported:
Beta, Log-normal, and Normal. The list must have two elements:

* dist: A character string, one of "beta”, "1norm”, or "norm”.
e params: A numeric vector of length two giving the distribution’s parame-

ters. For details on each parameterization, see stats: :dbeta(), stats: :dlnorm(),
and stats: :dnorm().

Defaults are:
e aprior =1ist(dist ="1lnorm", params =c(0.0, 0.5))
* bprior =1list(dist ="norm", params =c(0.0, 1.0))
e gprior =1list(dist = "beta"”, params =c(5, 16))
for discrimination, difficulty, and guessing parameters, respectively.
missing A value indicating missing responses in the data set. Default is NA.
Quadrature A numeric vector of length two:

* first element: number of quadrature points

* second element: symmetric bound (absolute value) for those points For
example, c(49, 6) specifies 49 evenly spaced points from —6 to 6. These
points are used in the E-step of the EM algorithm. Default is c(49, 6).

weights A two-column matrix or data frame containing the quadrature points (in the
first column) and their corresponding weights (in the second column) for the
latent variable prior distribution. If not NULL, the scale of the latent ability
distribution is fixed to match the scale of the provided quadrature points and
weights. The weights and points can be conveniently generated using the func-
tion gen.weight().
If NULL, a normal prior density is used instead, based on the information pro-
vided in the Quadrature, group.mean, and group.var arguments. Default is
NULL.

group.mean A numeric value specifying the mean of the latent variable prior distribution
when weights = NULL. Default is 0. This value is fixed to resolve the indetermi-
nacy of the item parameter scale during calibration. However, the scale of the
prior distribution is updated when FIPC is implemented.

group.var A positive numeric value specifying the variance of the latent variable prior
distribution when weights = NULL. Default is 1. This value is fixed to resolve
the indeterminacy of the item parameter scale during calibration. However, the
scale of the prior distribution is updated when FIPC is implemented.

EmpHist Logical. If TRUE, the empirical histogram of the latent variable prior distribution
is estimated simultaneously with the item parameters using the approach pro-
posed by Woods (2007). Item calibration is conducted relative to the estimated
empirical prior. See below for details.

use.startval Logical. If TRUE, the item parameters provided in the item metadata (i.e., the x
argument) are used as starting values for item parameter estimation. Otherwise,
internally generated starting values are used. Default is FALSE.

Etol A positive numeric value specifying the convergence criterion for the E-step of
the EM algorithm. Default is 1e-4.

34 est_irt

MaxE A positive integer specifying the maximum number of iterations for the E-step
in the EM algorithm. Default is 500.

control A list of control parameters to be passed to the optimization function stats: :nlminb().
These parameters control the M-step of the EM algorithm. For example, the
maximum number of iterations in each M-step can be specified using control
=list(iter.max =200). The default maximum number of iterations per M-
step is 200. See stats: :nlminb() for additional control options.

fipc Logical. If TRUE, fixed item parameter calibration (FIPC) is applied during item
parameter estimation. When fipc = TRUE, the information on which items are
fixed must be provided via either fix.loc or fix. id. See below for details.

fipc.method A character string specifying the FIPC method. Available options are:

e "OEM": No Prior Weights Updating and One EM Cycle (NWU-OEM; Wainer
& Mislevy, 1990)

* "MEM": Multiple Prior Weights Updating and Multiple EM Cycles (MWU-
MEM; Kim, 2006) When fipc.method = "OEM", the maximum number of
E-steps is automatically set to 1, regardless of the value specified in MaxE.

fix.loc A vector of positive integers specifying the row positions of the items to be fixed
in the item metadata (i.e., x) when FIPC is implemented (i.e., fipc = TRUE). For
example, suppose that five items located in the 1st, 2nd, 4th, 7th, and 9th rows of
x should be fixed. Then use fix.loc =c(1, 2, 4, 7, 9). Note thatif fix.idis
not NULL, the information provided in fix. loc is ignored. See below for details.

fix.id A character vector specifying the IDs of the items to be fixed when FIPC is im-
plemented (i.e., fipc = TRUE). For example, suppose five items with IDs "CMC1",
"CMC2", "CMC3", "CMC4", and "CMCS5" are to be fixed, and that all item
IDs are supplied via item.id column in the x argument. Then use fix.id
= c(”CMC1”, "CMC2", "CMC3", "CMC4", "CMC5"). Note that if fix.1id is not
NULL, the information in fix.loc is ignored. See below for details.

se Logical. If FALSE, standard errors of the item parameter estimates are not com-
puted. Default is TRUE.

verbose Logical. If FALSE, all progress messages, including information about the EM
algorithm process, are suppressed. Default is TRUE.

Details

A specific format of data frame should be used for the argument x. The first column should contain
item IDs, the second column should contain the number of unique score categories for each item,
and the third column should specify the IRT model to be fitted to each item. Available IRT models
are:

e "1PLM", "2PLM", "3PLM", and "DRM" for dichotomous item data
* "GRM" and "GPCM" for polytomous item data

Note that "DRM" serves as a general label covering all dichotomous IRT models (i.e., "1PLM",
"2PLM", and "3PLM"), while "GRM" and "GPCM" represent the graded response model and (gen-
eralized) partial credit model, respectively.

est_irt 35

The subsequent columns should contain the item parameters for the specified models. For dichoto-
mous items, the fourth, fifth, and sixth columns represent item discrimination (slope), item diffi-
culty, and item guessing parameters, respectively. When "1PLM" or "2PLM" is specified in the third
column, NAs must be entered in the sixth column for the guessing parameters.

For polytomous items, the item discrimination (slope) parameter should appear in the fourth col-
umn, and the item difficulty (or threshold) parameters for category boundaries should occupy the
fifth through the last columns. When the number of unique score categories differs across items,
unused parameter cells should be filled with NAs.

In the irtQ package, the threshold parameters for GPCM items are expressed as the item location
(or overall difficulty) minus the threshold values for each score category. Note that when a GPCM
item has K unique score categories, K - [threshold parameters are required, since the threshold
for the first category boundary is always fixed at 0. For example, if a GPCM item has five score
categories, four threshold parameters must be provided.

An example of a data frame for a single-format test is shown below:

ITEM1 2 1PLM 1.000 1.461 NA
ITEM2 2 2PLM 1.921 -1.049 NA
ITEM3 2 3PLM 1736 1501 0.203
ITEM4 2 3PLM 0.835 -1.049 0.182
ITEM5 2 DRM 0926 0394 0.099

An example of a data frame for a mixed-format test is shown below:

ITEM1 2 IPLM 1.000 1.461 NA NA NA
ITEM2 2 2PLM 1921 -1.049 NA NA NA
ITEM3 2 3PLM 0926 0.394 0.099 NA NA
ITEM4 2 DRM 1.052 -0.407 0.201 NA NA
ITEMS 4 GRM 1913 -1.869 -1.238 -0.714 NA
ITEM6 5 GRM 1.278 -0.724 -0.068 0.568 1.072
ITEM7 4 GPCM 1.137 -0374 0215 0.848 NA

5

ITEM8 GPCM 1233 -2.078 -1.347 -0.705 -0.116

See the IRT Models section in the irtQ-package documentation for more details about the IRT
models used in the irtQ package. A convenient way to create a data frame for the argument x is by
using the function shape_df ().

To fit IRT models to data, the item response data must be accompanied by information on the
IRT model and the number of score categories for each item. There are two ways to provide this
information:

1. Supply item metadata to the argument x. As explained above, such metadata can be easily
created using shape_df ().
2. Specify the IRT models and score category information directly through the arguments model
and cats.
If x = NULL, the function uses the information specified in model and cats.

To implement FIPC, the item metadata must be provided via the x argument. This is because
the item parameters of the fixed items in the metadata are used to estimate the characteristics of the

36

est_irt

underlying latent variable prior distribution when calibrating the remaining (freely estimated) items.
More specifically, the latent prior distribution is estimated based on the fixed items, and then used
to calibrate the new (pretest) items so that their parameters are placed on the same scale as those of
the fixed items (Kim, 2006).The full item metadata, including both fixed and non-fixed items, can
be conveniently created using the shape_df_fipc() function.

In terms of approaches for FIPC, Kim (2006) described five different methods. Among them, two
methods are available in the est_irt() function. The first method is "NWU-OEM", which uses a
single E-step in the EM algorithm (involving only the fixed items) followed by a single M-step
(involving only the non-fixed items). This method was proposed by Wainer and Mislevy (1990) in
the context of online calibration and can be implemented by setting fipc.method = "OEM".

The second method is "MWU-MEM", which iteratively updates the latent variable prior distribution
and estimates the parameters of the non-fixed items. In this method, the same procedure as the
NWU-OEM approach is applied during the first EM cycle. From the second cycle onward, both
the parameters of the non-fixed items and the weights of the prior distribution are concurrently
updated. This method can be implemented by setting fipc.method = "MEM". See Kim (2006) for
more details.

When fipc = TRUE, information about which items are to be fixed must be provided via either the
fix.loc or fix.id argument. For example, suppose that five items with IDs "CMC1", "CMC2",
"CMC3", "CMC4", and "CMCS5" should be fixed, and all item IDs are provided via the x or item. id
argument. Also, assume these five items are located in the 1st through 5th rows of the item metadata
(i.e., x). In this case, the fixed items can be specified using either fix.loc =c(1, 2, 3, 4, 5) or
fix.id=c("CMC1", "CMC2", "CMC3", "CMC4", "CMC5"). Note that if both fix.loc and fix.id
are not NULL, the information in fix. loc is ignored.

When EmpHist = TRUE, the empirical histogram of the latent variable prior distribution (i.e., the den-
sities at the quadrature points) is estimated simultaneously with the item parameters. If EmpHist
= TRUE and fipc = TRUE, the scale parameters of the empirical prior distribution (e.g., mean and
variance) are also estimated. If EmpHist = TRUE and fipc = FALSE, the scale parameters are fixed to
the values specified in group.mean and group.var. When EmpHist = FALSE, a normal prior distri-
bution is used instead. If fipc = TRUE, the scale parameters of this normal prior are estimated along
with the item parameters. If fipc = FALSE, they are fixed to the values specified in group.mean and
group.var.

Value

This function returns an object of class est_irt. The returned object contains the following com-
ponents:

estimates A data frame containing both the item parameter estimates and their correspond-
ing standard errors.

par.est A data frame of item parameter estimates, structured according to the item meta-
data format.

se.est A data frame of standard errors for the item parameter estimates, computed
using the cross-product approximation method (Meilijson, 1989).

pos.par A data frame indicating the position index of each estimated item parameter. The
position information is useful for interpreting the variance-covariance matrix of
item parameter estimates

covariance A variance-covariance matrix of the item parameter estimates.

est_irt

loglikelihood

aic
bic

group.par

weights

posterior.dist

data
scale.D
ncase
nitem
Etol

MaxE
aprior
bprior
gprior
npar.est
niter
maxpar.diff
EMtime
SEtime
TotalTime
test. 1

test.2
var.note
fipc

fipc.method

fix.loc

37

The marginal log-likelihood, calculated as the sum of the log-likelihoods across
all items.

Akaike Information Criterion (AIC) based on the log-likelihood.
Bayesian Information Criterion (BIC) based on the log-likelihood.

A data frame containing the mean, variance, and standard deviation of the latent
variable prior distribution.

A two-column data frame of quadrature points (column 1) and corresponding
weights (column 2) of the (updated) latent prior distribution.

A matrix of normalized posterior densities for all response patterns at each
quadrature point. Rows and columns represent response patterns and quadra-
ture points, respectively.

A data frame of examinees’ response data.

The scaling factor used in the IRT model.

The total number of response patterns.

The total number of items in the response data.

The convergence criterion for the E-step of the EM algorithm.

The maximum number of E-steps allowed in the EM algorithm.

A list describing the prior distribution used for discrimination parameters.
A list describing the prior distribution used for difficulty parameters.
A list describing the prior distribution used for guessing parameters.
The total number of parameters estimated.

The number of completed EM cycles.

The maximum absolute change in parameter estimates at convergence.
Time (in seconds) spent on EM cycles.

Time (in seconds) spent computing standard errors.

Total computation time (in seconds).

First-order test result indicating whether the gradient sufficiently vanished for
solution stability.

Second-order test result indicating whether the information matrix is positive
definite, a necessary condition for identifying a local maximum.

A note indicating whether the variance-covariance matrix was successfully ob-
tained from the information matrix.

Logical. Indicates whether FIPC was used.
The method used for FIPC.

A vector of integers specifying the row locations of fixed items when FIPC was
applied.

Note that you can easily extract components from the output using the getirt () function.

Author(s)

Hwanggyu Lim <hglim83@gmail.com>

38 est_irt

References

Ban, J. C., Hanson, B. A., Wang, T., Yi, Q., & Harris, D., J. (2001) A comparative study of on-line
pretest item calibration/scaling methods in computerized adaptive testing. Journal of Educational
Measurement, 38(3), 191-212.

Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters:
Application of an EM algorithm. Psychometrika, 46, 443-459.

Kim, S. (2006). A comparative study of IRT fixed parameter calibration methods. Journal of
Educational Measurement, 43(4), 355-381.

Meilijson, I. (1989). A fast improvement to the EM algorithm on its own terms. Journal of the
Royal Statistical Society: Series B (Methodological), 51, 127-138.

Stocking, M. L. (1988). Scale drift in on-line calibration (Research Rep. 88-28). Princeton, NJ:
ETS.

Wainer, H., & Mislevy, R. J. (1990). Item response theory, item calibration, and proficiency esti-
mation. In H. Wainer (Ed.), Computer adaptive testing: A primer (Chap. 4, pp.65-102). Hillsdale,
NJ: Lawrence Erlbaum.

Woods, C. M. (2007). Empirical histograms in item response theory with ordinal data. Educational
and Psychological Measurement, 67(1), 73-87.

See Also
shape_df (), shape_df_fipc(), getirt()

Examples

e e e ST

Fit the TPL model to LSAT6 data and estimate a common slope parameter

(i.e., constrain slope parameters to be equal)

(mod.1pl.c <- est_irt(data = LSAT6, D = 1, model = "1PLM", cats = 2,
fix.a.1pl = FALSE))

Display a summary of the estimation results
summary(mod. 1pl.c)

Extract the item parameter estimates
getirt(mod.1pl.c, what = "par.est")

Extract the standard error estimates
getirt(mod.1pl.c, what = "se.est")

Fit the T1PL model to LSAT6 data and fix slope parameters to 1.0
(mod.1pl.f <- est_irt(data = LSAT6, D = 1, model = "1PLM", cats = 2,
fix.a.1pl = TRUE, a.val.lpl = 1))

Display a summary of the estimation results
summary (mod. 1pl.f)

est_irt

Fit the 2PL model to LSAT6 data
(mod.2pl <- est_irt(data = LSAT6, D = 1, model = "2PLM", cats = 2))

Display a summary of the estimation results
summary (mod. 2pl)

Assess the model fit for the 2PL model using the S-X2 fit statistic
(sx2fit.2pl <- sx2_fit(x = mod.2pl))

Compute item and test information functions at a range of theta values
theta <- seq(-4, 4, 0.1)
(info.2pl <- info(x = mod.2pl, theta = theta))

Plot the test characteristic curve (TCC)
(trace.2pl <- traceline(x = mod.2pl, theta = theta))
plot(trace.2pl)

Plot the item characteristic curve (ICC) for the first item
plot(trace.2pl, item.loc = 1)

Fit the 2PL model and simultaneously estimate an empirical histogram

of the latent variable prior distribution

Also apply a looser convergence threshold for the E-step

(mod.2pl.hist <- est_irt(data = LSAT6, D = 1, model = "2PLM", cats = 2,
EmpHist = TRUE, Etol = 0.001))

(emphist <- getirt(mod.2pl.hist, what = "weights"))

plot(emphist$weight ~ emphist$theta, type = "h")

Fit the 3PL model and apply a Beta prior to the guessing parameters
(mod.3pl <- est_irt(
data = LSAT6, D = 1, model = "3PLM", cats = 2, use.gprior = TRUE,
gprior = list(dist = "beta”, params = c(5, 16))
))

Display a summary of the estimation results
summary (mod. 3pl)

Fit the 3PL model and fix the guessing parameters at 0.2
(mod.3pl.f <- est_irt(data = LSAT6, D = 1, model = "3PLM", cats = 2,
fix.g = TRUE, g.val = 0.2))

Display a summary of the estimation results
summary (mod. 3pl.f)

Fit different dichotomous models to each item in the LSAT6 data:

Fit the constrained 1PL model to items 1-3, the 2PL model to item 4,

and the 3PL model with a Beta prior on guessing to item 5

(mod.drm.mix <- est_irt(
data = LSAT6, D = 1, model = c("1PLM", "1PLM", "1PLM", "2PLM" 6 "3PLM"),
cats = 2, fix.a.1pl = FALSE, use.gprior = TRUE,
gprior = list(dist = "beta”, params = c(5, 16))

))

40

est_irt

Display a summary of the estimation results
summary (mod.drm.mix)

B m o s
Import the "-prm.txt"” output file from flexMIRT
flex_sam <- system.file("extdata”, "flexmirt_sample-prm.txt"”, package = "irtQ")

Extract item metadata
x <= bring.flexmirt(file = flex_sam, "par")$Groupl$full_df

Modify the item metadata so that the 39th and 40th items use the GPCM
x[39:40, 3] <- "GPCM”

Generate 1,000 examinees' latent abilities from N(0, 1)
set.seed(37)
scorel <- rnorm(1000, mean = @, sd = 1)

Simulate item response data
sim.dat1 <- simdat(x = x, theta = scorel, D = 1)

Fit the 3PL model to all dichotomous items, the GPCM to items 39 and 40,
and the GRM to items 53, 54, and 55.
Use a Beta prior for guessing parameters, a log-normal prior for slope
parameters, and a normal prior for difficulty (threshold) parameters.
Also, specify the argument “x~ to provide IRT model and score category information.
item.meta <- shape_df(item.id = x$id, cats = x$cats, model = x$model,
default.par = TRUE)
(mod.mix1 <- est_irt(
X = item.meta, data = sim.dat1l, D = 1, use.aprior = TRUE, use.bprior = TRUE,
use.gprior = TRUE,
aprior = list(dist = "lnorm”, params = c(0.9, 0.5)),
bprior = list(dist = "norm”, params = c(0.0, 2.90)),
gprior = list(dist = "beta”, params = c(5, 16))
))

Display a summary of the estimation results
summary (mod.mix1)

Estimate examinees' latent scores using MLE and the estimated item parameters
(score.mle <- est_score(x = mod.mix1, method = "ML", range = c(-4, 4), ncore = 2))

Compute traditional model-fit statistics

(fit.mix1 <= irtfit(
x = mod.mix1, score = score.mle$est.theta, group.method = "equal.width"”,
n.width = 10, loc.theta = "middle”

)

Residual plot for the first item (dichotomous)

plot(
x = fit.mix1, item.loc = 1, type = "both"”, ci.method = "wald",
show.table = TRUE, ylim.sr.adjust = TRUE

est_irt 41

)

Residual plot for the last item (polytomous)

plot(
x = fit.mix1, item.loc = 55, type = "both”, ci.method = "wald",
show.table = FALSE, ylim.sr.adjust = TRUE

)

Fit the 2PL model to all dichotomous items, the GPCM to items 39 and 40,

and the GRM to items 53, 54, and 55.

Provide IRT model and score category information via “model” and ~cats”

arguments.

(mod.mix2 <- est_irt(
data = sim.dat1l, D = 1,
model = c(rep("2PLM", 38), rep("GPCM", 2), rep("2PLM", 12), rep("GRM", 3)),
cats = c(rep(2, 38), rep(5, 2), rep(2, 12), rep(5, 3))

)

Display a summary of the estimation results
summary (mod.mix2)

Fit the 2PL model to all dichotomous items, the GPCM to items 39 and 40,
and the GRM to items 53, 54, and 55.
Also estimate the empirical histogram of the latent prior distribution.
Provide IRT model and score category information via “model” and “cats™ arguments.
(mod.mix3 <- est_irt(
data = sim.dat1, D = 1,
model = c(rep("”2PLM", 38), rep("GPCM", 2), rep("2PLM", 12), rep("GRM", 3)),
cats = c(rep(2, 38), rep(5, 2), rep(2, 12), rep(5, 3)), EmpHist = TRUE
))
(emphist <- getirt(mod.mix3, what = "weights"))
plot(emphist$weight ~ emphist$theta, type = "h")

Fit the 2PL model to all dichotomous items, the PCM to items 39 and 40 by
fixing slope parameters to 1, and the GRM to items 53, 54, and 55.
Provide IRT model and score category information via “model”™ and “cats”™ arguments.
(mod.mix4 <- est_irt(
data = sim.dat1l, D = 1,
model = c(rep("2PLM", 38), rep("GPCM", 2), rep("2PLM", 12), rep("GRM", 3)),
cats = c(rep(2, 38), rep(5, 2), rep(2, 12), rep(5, 3)),
fix.a.gpcm = TRUE, a.val.gpcm = 1
))

Display a summary of the estimation results
summary (mod.mix4)

-

3. Fixed item parameter calibration (FIPC) for mixed-format data

(simulated)

B = m o mmmmm

Import the "-prm.txt” output file from flexMIRT

flex_sam <- system.file("extdata”, "flexmirt_sample-prm.txt"”, package = "irtQ")

42

Select item metadata
x <= bring.flexmirt(file = flex_sam, "par")$Groupl$full_df

Generate 1,000 examinees' latent abilities from N(0.4, 1.3)
set.seed(20)
score2 <- rnorm(1000, mean = 0.4, sd = 1.3)

Simulate response data
sim.dat2 <- simdat(x = x, theta = score2, D = 1)

Fit the 3PL model to all dichotomous items and the GRM to all polytomous items
Fix five 3PL items (1st-5th) and three GRM items (53rd-55th)
Also estimate the empirical histogram of the latent variable distribution
Use the MEM method
fix.loc <- c(1:5, 53:55)
(mod. fix1 <- est_irt(
X = x, data = sim.dat2, D = 1, use.gprior = TRUE,
gprior = list(dist = "beta"”, params = c(5, 16)), EmpHist = TRUE,
Etol = 1e-3, fipc = TRUE, fipc.method = "MEM", fix.loc = fix.loc
))

Extract group-level parameter estimates
(prior.par <- mod.fix1$group.par)

Visualize the empirical prior distribution
(emphist <- getirt(mod.fix1, what = "weights"))
plot(emphist$weight ~ emphist$theta, type = "h")

Display a summary of the estimation results
summary (mod. fix1)

Alternatively, fix the same items by providing their item IDs
using the “fix.id™ argument. In this case, set “fix.loc = NULL"®
fix.id <- c(x$id[1:5], x$id[53:55])
(mod.fix1 <- est_irt(
X = x, data = sim.dat2, D = 1, use.gprior = TRUE,
gprior = list(dist = "beta"”, params = c(5, 16)), EmpHist = TRUE,
Etol = 1e-3, fipc = TRUE, fipc.method = "MEM", fix.loc = NULL,
fix.id = fix.id
))

Display a summary of the estimation results
summary (mod. fix1)

Fit the 3PL model to all dichotomous items and the GRM to all polytomous items
Fix the same items as before (1st-5th and 53rd-55th)
This time, do not estimate the empirical histogram of the latent prior
Instead, estimate the scale of the normal prior distribution
Use the MEM method
fix.loc <- c(1:5, 53:55)
(mod.fix2 <- est_irt(
X = x, data = sim.dat2, D = 1, use.gprior = TRUE,
gprior = list(dist = "beta"”, params = c(5, 16)), EmpHist = FALSE,

est_irt

est_irt

Etol = 1e-3, fipc = TRUE, fipc.method = "MEM", fix.loc = fix.loc
)

Extract group-level parameter estimates
(prior.par <- mod.fix2$group.par)

Visualize the prior distribution
(emphist <- getirt(mod.fix2, what = "weights"”))
plot(emphist$weight ~ emphist$theta, type = "h")

Fit the 3PL model to all dichotomous items and the GRM to all polytomous items
Fix only the five 3PL items (1st-5th) and estimate the empirical histogram
Use the OEM method (i.e., only one EM cycle is used)
fix.loc <- c(1:5)
(mod.fix3 <- est_irt(
X = x, data = sim.dat2, D = 1, use.gprior = TRUE,
gprior = list(dist = "beta”, params = c(5, 16)), EmpHist = TRUE,
Etol = 1e-3, fipc = TRUE, fipc.method = "OEM"”, fix.loc = fix.loc
))

Extract group-level parameter estimates
(prior.par <- mod.fix3$group.par)

Visualize the prior distribution
(emphist <- getirt(mod.fix3, what = "weights"))
plot(emphist$weight ~ emphist$theta, type = "h")

Display a summary of the estimation results
summary (mod. fix3)

Fit the 3PL model to all dichotomous items and the GRM to all polytomous items
Fix all 55 items and estimate only the latent ability distribution
Use the MEM method
fix.loc <- c(1:55)
(mod.fix4 <- est_irt(
X = X, data = sim.dat2, D = 1, EmpHist = TRUE,
Etol = 1e-3, fipc = TRUE, fipc.method = "MEM", fix.loc = fix.loc
)

Extract group-level parameter estimates
(prior.par <- mod.fix4$group.par)

Visualize the prior distribution
(emphist <- getirt(mod.fix4, what = "weights"”))
plot(emphist$weight ~ emphist$theta, type = "h")

Display a summary of the estimation results
summary (mod. fix4)

Alternatively, fix all 55 items by providing their item IDs

using the “fix.id™ argument. In this case, set “fix.loc = NULL"®
fix.id <- x$id

(mod.fix4 <- est_irt(

44 est_item

X = x, data = sim.dat2, D = 1, EmpHist = TRUE,
Etol = 1e-3, fipc = TRUE, fipc.method = "MEM", fix.loc = NULL,
fix.id = fix.id

))

Display a summary of the estimation results
summary (mod. fix4)

est_item Fixed ability parameter calibration

Description

This function performs fixed ability parameter calibration (FAPC), often called Stocking’s (1988)
Method A, which is the maximum likelihood estimation of item parameters given ability estimates
(Baker & Kim, 2004; Ban et al., 2001; Stocking, 1988). It can also be considered a special case of
joint maximum likelihood estimation in which only one cycle of item parameter estimation is con-
ducted, conditioned on the given ability estimates (Birnbaum, 1968). FAPC is a potentially useful
method for calibrating pretest (or newly developed) items in computerized adaptive testing (CAT),
as it enables placing their parameter estimates on the same scale as operational items. In addition,
it can be used to recalibrate operational items in the item bank to evaluate potential parameter drift
(Chen & Wang, 2016; Stocking, 1988).

Usage

est_item(
x = NULL,
data,
score,
D=1,
model = NULL,
cats = NULL,
item.id = NULL,
fix.a.1pl = FALSE,
fix.a.gpcm = FALSE,

fix.g = FALSE,
a.val.1pl =1,
a.val.gpcm = 1,
g.val = 0.2,
use.aprior = FALSE,
use.bprior = FALSE,

use.gprior = TRUE,

aprior = list(dist "lnorm”, params = c(0, 0.5)),
bprior = list(dist = "norm”, params = c(0, 1)),
gprior = list(dist = "beta”, params = c(5, 17)),

est_item

missing = NA,

45

use.startval = FALSE,
control = list(eval.max = 500, iter.max = 500),

verbose

Arguments

X

data

score

model

cats

item.id

fix.a.1pl

fix.a.gpcm

fix.g

TRUE

A data frame containing item metadata. This metadata is required to retrieve
essential information for each item (e.g., number of score categories, IRT model
type, etc.) necessary for calibration. You can create an empty item metadata
frame using the function shape_df ().

When use.startval = TRUE, the item parameters specified in the metadata will
be used as starting values for parameter estimation. If x = NULL, both model and
cats arguments must be specified. See est_irt() or simdat () for more details
about the item metadata. Default is NULL.

A matrix of examinees’ item responses corresponding to the items specified in
the x argument. Rows represent examinees and columns represent items.

A numeric vector of examinees’ ability estimates (theta values). The length of
this vector must match the number of rows in the response data.

A scaling constant used in IRT models to make the logistic function closely
approximate the normal ogive function. A value of 1.7 is commonly used for
this purpose. Default is 1.

A character vector specifying the IRT model to fit each item. Available values
are:

e "1PLM", "2PLM", "3PLM", "DRM" for dichotomous items
* "GRM", "GPCM" for polytomous items

Here, "GRM" denotes the graded response model and "GPCM" the (generalized)
partial credit model. Note that "DRM" serves as a general label covering all three
dichotomous IRT models. If a single model name is provided, it is recycled for
all items. This argument is only used when x = NULL. Default is NULL.

Numeric vector specifying the number of score categories per item. For di-
chotomous items, this should be 2. If a single value is supplied, it will be recy-
cled across all items. When cats = NULL and all models specified in the model
argument are dichotomous ("1PLM"”, "2PLM", "3PLM", or "DRM"), the function
defaults to 2 categories per item. This argument is used only when x = NULL.
Default is NULL.

Character vector of item identifiers. If NULL, IDs are generated automatically.
When fipc = TRUE, a provided item. id will override any IDs present in x. De-
fault is NULL.

Logical. If TRUE, the slope parameters of all IPLM items are fixed to a.val.1pl;
otherwise, they are constrained to be equal and estimated. Default is FALSE.

Logical. If TRUE, GPCM items are calibrated as PCM with slopes fixed to
a.val.gpcm; otherwise, each item’s slope is estimated. Default is FALSE.

Logical. If TRUE, all 3PLM guessing parameters are fixed to g.val; otherwise,
each guessing parameter is estimated. Default is FALSE.

46

a.val.lpl

a.val.gpcm

g.val

use.aprior

use.bprior

use.gprior

est_item

Numeric. Value to which the slope parameters of 1PLM items are fixed when
fix.a.1pl = TRUE. Default is 1.

Numeric. Value to which the slope parameters of GPCM items are fixed when
fix.a.gpcm = TRUE. Default is 1.

Numeric. Value to which the guessing parameters of 3PLM items are fixed when
fix.g = TRUE. Default is 0.2.

Logical. If TRUE, applies a prior distribution to all item discrimination (slope)
parameters during calibration. Default is FALSE.

Logical. If TRUE, applies a prior distribution to all item difficulty (or threshold)
parameters during calibration. Default is FALSE.

Logical. If TRUE, applies a prior distribution to all 3PLM guessing parameters
during calibration. Default is TRUE.

aprior, bprior, gprior

missing

use.startval

control

verbose

Details

A list specifying the prior distribution for all item discrimination (slope), dif-
ficulty (or threshold), guessing parameters. Three distributions are supported:
Beta, Log-normal, and Normal. The list must have two elements:

* dist: A character string, one of "beta”, "1norm”, or "norm”.

* params: A numeric vector of length two giving the distribution’s parame-
ters. For details on each parameterization, see stats: :dbeta(), stats: :dlnorm(),
and stats: :dnorm().

Defaults are:

e aprior =1list(dist ="lnorm"”, params =c(0.9, 0.5))

e bprior =1list(dist ="norm”, params =c(0.0, 1.0))

e gprior =1list(dist = "beta"”, params =c(5, 16))
for discrimination, difficulty, and guessing parameters, respectively.
A value indicating missing responses in the data set. Default is NA.

Logical. If TRUE, the item parameters provided in the item metadata (i.e., the x
argument) are used as starting values for item parameter estimation. Otherwise,
internally generated starting values are used. Default is FALSE.

A list of control parameters to be passed to the optimization function stats: :nlminb().
These parameters define settings for the item parameter estimation process, such

as the maximum number of iterations. See stats::nlminb() for additional
control options.

Logical. If FALSE, all progress messages are suppressed. Default is TRUE.

In most cases, the function est_item() returns successfully converged item parameter estimates
using its default internal starting values. However, if convergence issues arise during calibration,
one possible solution is to use alternative starting values. If item parameter values are already
specified in the item metadata (i.e., the x argument), they can be used as starting values for item
parameter calibration by setting use.startval = TRUE.

est_item

Value

47

This function returns an object of class est_item. The returned object contains the following

components:

estimates

par.est

se.est

pos.par

covariance
loglikelihood

data

score

scale.D
convergence
nitem
deleted.item

npar.est

n.response

TotalTime

A data frame containing both the item parameter estimates and their correspond-
ing standard errors.

A data frame of item parameter estimates, structured according to the item meta-
data format.

A data frame of standard errors for the item parameter estimates, computed
based on the observed information functions

A data frame indicating the position of each item parameter within the estima-
tion vector. Useful for interpreting the variance-covariance matrix.

A variance-covariance matrix of the item parameter estimates.

The total log-likelihood value computed across all estimated items based on the
complete response data.

A data frame of examinees’ response data.

A vector of examinees’ ability estimates used as fixed values during item pa-
rameter estimation.

The scaling factor used in the IRT model.
A message indicating whether item parameter estimation successfully converged.
The total number of items in the response data.

Items with no response data. These items are excluded from the item parameter
estimation.

The total number of parameters estimated.

An integer vector indicating the number of valid responses for each item used in
the item parameter estimation.

Total computation time in seconds.

Note that you can easily extract components from the output using the getirt () function.

Author(s)

Hwanggyu Lim <hglim83@gmail.com>

References

Baker, F. B., & Kim, S. H. (2004). Item response theory: Parameter estimation techniques. CRC

Press.

Ban, J. C., Hanson, B. A., Wang, T., Yi, Q., & Harris, D., J. (2001) A comparative study of on-line
pretest item calibration/scaling methods in computerized adaptive testing. Journal of Educational
Measurement, 38(3), 191-212.

Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s ability. In F.
M. Lord & M. R. Novick (Eds.), Statistical theories of mental test scores (pp. 397-479). Reading,
MA: Addison-Wesley.

48 est_item

Chen, P., & Wang, C. (2016). A new online calibration method for multidimensional computerized
adaptive testing. Psychometrika, 81(3), 674-701.

Stocking, M. L. (1988). Scale drift in on-line calibration (Research Rep. 88-28). Princeton, NJ:
ETS.

See Also

est_irt(), shape_df (), getirt()

Examples

Import the "-prm.txt” output file from flexMIRT
flex_sam <- system.file("extdata"”, "flexmirt_sample-prm.txt", package = "irtQ")

Extract the item metadata
x <= bring.flexmirt(file = flex_sam, "par")$Groupl$full_df

Modify the item metadata so that some items follow 1PLM, 2PLM, and GPCM
x[c(1:3, 5), 3] <- "1PLM"

x[c(1:3, 5), 4] <=1

x[c(1:3, 5), 6] <- 0

x[c(4, 8:12), 3] <- "2PLM”

x[c(4, 8:12), 61 <- ©

x[54:55, 3] <- "GPCM"

Generate examinees' abilities from N(@, 1)
set.seed(23)
score <- rnorm(500, mean = @, sd = 1)

Simulate response data based on the item metadata and ability values
data <- simdat(x = x, theta = score, D = 1)

1) Estimate item parameters: constrain the slope parameters of 1PLM items
to be equal
(mod1 <- est_item(x, data, score,
D =1, fix.a.1pl = FALSE, use.gprior = TRUE,
gprior = list(dist = "beta"”, params = c(5, 17)), use.startval = FALSE
))

summary (mod1)

Extract the item parameter estimates
getirt(modl, what = "par.est")

2) Estimate item parameters: fix the slope parameters of 1PLM items to 1
(mod2 <- est_item(x, data, score,

D =1, fix.a.1pl = TRUE, a.val.1pl = 1, use.gprior = TRUE,

gprior = list(dist = "beta"”, params = c(5, 17)), use.startval = FALSE
))

summary (mod2)

Extract the standard error estimates

est_mg 49

getirt(mod2, what = "se.est”)

3) Estimate item parameters: fix the guessing parameters of 3PLM items to 0.2
(mod3 <- est_item(x, data, score,
D =1, fix.a.1pl = TRUE, fix.g = TRUE, a.val.1pl =1, g.val = .2,
use.startval = FALSE
)

summary (mod3)

Extract both item parameter and standard error estimates

getirt(mod2, what = "estimates”)
est_mg Multiple-group item calibration using MMLE-EM algorithm
Description

This function performs multiple-group item calibration (Bock & Zimowski, 1997) using marginal
maximum likelihood estimation via the expectation-maximization (MMLE-EM) algorithm (Bock
& Aitkin, 1981). It also supports multiple-group fixed item parameter calibration (MG-FIPC; e.g.,
Kim & Kolen, 2016), which extends the single-group FIPC method (Kim, 2006) to multiple-group
settings. For dichotomous items, the function supports one-, two-, and three-parameter logistic IRT
models. For polytomous items, the graded response model (GRM) and the (generalized) partial
credit model (GPCM) are available.

Usage

est_mg(
x = NULL,
data,
group.name = NULL,
D=1,
model = NULL,
cats = NULL,
item.id = NULL,
free.group = NULL,
fix.a.1pl = FALSE,
fix.a.gpcm = FALSE,
fix.g = FALSE,
a.val.1pl =1,
a.val.gpcm = 1,
g.val = 0.2,
use.aprior = FALSE,
use.bprior = FALSE,
use.gprior = TRUE,

50 est_mg

aprior = list(dist = "lnorm”, params = c(@, 0.5)),
bprior = list(dist = "norm”, params = c(0, 1)),
gprior = list(dist = "beta”, params = c(5, 16)),
missing = NA,

Quadrature = c(49, 6),

weights = NULL,

group.mean = 0,

group.var = 1,

EmpHist = FALSE,

use.startval = FALSE,

Etol = 0.001,

MaxE = 500,

control = list(eval.max = 200, iter.max = 200),
fipc = FALSE,

fipc.method = "MEM",
fix.loc = NULL,
fix.id = NULL,

se = TRUE,

verbose = TRUE

Arguments

X A list containing item metadata for all groups to be analyzed. For example, if
five groups are analyzed, the list should contain five elements, each representing
the item metadata for one group. The order of the elements in the list must match
the order of group names specified in the group.name argument.

Each group’s item metadata includes essential information for each item (e.g.,
number of score categories, IRT model type, etc.) required for calibration. See
est_irt() or simdat () for more details about the item metadata.

When use.startval = TRUE, the item parameters specified in the metadata will
be used as starting values for parameter estimation. If x = NULL, both model and
cats arguments must be specified. Note that when fipc = TRUE to implement
MG-FIPC, the x argument must be specified and cannot be NULL. Default is
NULL.

data A list containing item response matrices for all groups to be analyzed. For ex-
ample, if five groups are analyzed, the list should include five elements, each
representing the response data matrix for one group. The elements in the list
must be ordered to match the group names specified in the group.name argu-
ment. Each matrix contains examinees’ item responses corresponding to the
item metadata for that group. In each matrix, rows represent examinees and
columns represent items.

group.name A character vector indicating the names of the groups. For example, if five
groups are analyzed, use group.name = c("G1", "G2", "G3", "G4", "G5"). Group
names can be any valid character strings.

D A scaling constant used in IRT models to make the logistic function closely

approximate the normal ogive function. A value of 1.7 is commonly used for
this purpose. Default is 1.

est_mg 51

model A list containing character vectors specifying the IRT models used to calibrate
items across all groups. For example, if five groups are analyzed, the list should
contain five elements, each being a character vector of IRT model names for
one group. The elements in the list must be ordered to match the group names
specified in the group.name argument.

Available IRT models include:

e "1PLM", "2PLM", "3PLM", "DRM" for dichotomous items
e "GRM", "GPCM" for polytomous items

Here, "GRM" denotes the graded response model and "GPCM” the (generalized)
partial credit model. Note that "DRM" serves as a general label covering all three
dichotomous IRT models.If a single model name is provided in any element of
the list, it will be recycled across all items within that group.

This argument is used only when x = NULL and fipc = FALSE. Default is NULL.

cats A list containing numeric vectors specifying the number of score categories for
items in each group. For example, if five groups are analyzed, the list should
contain five numeric vectors corresponding to the five groups. The elements
in the list must be ordered consistently with the group names specified in the
group.name argument.
If a single numeric value is specified in any element of the list, it will be recycled
across all items in the corresponding group. If cats = NULL and all models spec-
ified in the model argument are dichotomous (i.e., "1PLM", "2PLM", "3PLM",
or "DRM"), the function assumes that all items have two score categories across

all groups.
This argument is used only when x = NULL and fipc = FALSE. Default is NULL.
item.id A list containing character vectors of item IDs for each group to be analyzed.

For example, if five groups are analyzed, the list should contain five character
vectors corresponding to the five groups. The elements in the list must be or-
dered consistently with the group names specified in the group. name argument.
When fipc = TRUE and item IDs are provided via the item.id argument, the
item IDs in the x argument will be overridden. Default is NULL.

free.group A numeric or character vector indicating the groups for which the scales (i.e.,
mean and standard deviation) of the latent ability distributions are freely esti-
mated. The scales of the remaining groups (those not specified in this argument)
are fixed using the values provided in the group.mean and group.var argu-
ments, or from the weights argument.

For example, suppose that five groups are analyzed with group names "G1",
"G2", "G3", "G4", and "G5". To freely estimate the scales for groups 2 through
5,setfree.group =c(2, 3, 4, 5) or free.group =c("G2", "G3", "G4", "G5").
In this case, the first group ("G1") will have a fixed scale (e.g., a mean of 0 and
variance of 1 when group.mean = @, group.var =1, and weights = NULL).

fix.a.l1pl Logical. If TRUE, the slope parameters of all IPLM items are fixed to a.val.1pl;
otherwise, they are constrained to be equal and estimated. Default is FALSE.
fix.a.gpcm Logical. If TRUE, GPCM items are calibrated as PCM with slopes fixed to

a.val.gpcm; otherwise, each item’s slope is estimated. Default is FALSE.

fix.g Logical. If TRUE, all 3PLM guessing parameters are fixed to g.val; otherwise,
each guessing parameter is estimated. Default is FALSE.

52

a.val.lpl

a.val.gpcm

g.val

use.aprior

use.bprior

use.gprior

est_mg

Numeric. Value to which the slope parameters of 1PLM items are fixed when
fix.a.1pl = TRUE. Default is 1.

Numeric. Value to which the slope parameters of GPCM items are fixed when
fix.a.gpcm = TRUE. Default is 1.

Numeric. Value to which the guessing parameters of 3PLM items are fixed when
fix.g = TRUE. Default is 0.2.

Logical. If TRUE, applies a prior distribution to all item discrimination (slope)
parameters during calibration. Default is FALSE.

Logical. If TRUE, applies a prior distribution to all item difficulty (or threshold)
parameters during calibration. Default is FALSE.

Logical. If TRUE, applies a prior distribution to all 3PLM guessing parameters
during calibration. Default is TRUE.

aprior, bprior, gprior

missing

Quadrature

weights

group.mean

A list specifying the prior distribution for all item discrimination (slope), dif-
ficulty (or threshold), guessing parameters. Three distributions are supported:
Beta, Log-normal, and Normal. The list must have two elements:

e dist: A character string, one of "beta”, "1norm”, or "norm”.

* params: A numeric vector of length two giving the distribution’s parame-

ters. For details on each parameterization, see stats: :dbeta(), stats: :dlnorm(),

and stats: :dnorm().

Defaults are:

e aprior =1list(dist ="1lnorm", params =c(0.0, 0.5))

e bprior =1ist(dist ="norm"”, params =c(0.0, 1.0))

e gprior =1list(dist = "beta"”, params =c(5, 16))
for discrimination, difficulty, and guessing parameters, respectively.
A value indicating missing responses in the data set. Default is NA.
A numeric vector of length two:

* first element: number of quadrature points

* second element: symmetric bound (absolute value) for those points For
example, c(49, 6) specifies 49 evenly spaced points from —6 to 6. These
points are used in the E-step of the EM algorithm. Default is c(49, 6).

A two-column matrix or data frame containing the quadrature points (in the
first column) and the corresponding weights (in the second column) for the la-
tent ability prior distribution. If not NULL, the latent ability distributions for the
groups not specified in the free.group argument are fixed to match the scale
defined by the provided quadrature points and weights. The weights and points
can be conveniently generated using the function gen.weight().

If NULL, a normal prior density is used instead, based on the information pro-
vided in the Quadrature, group.mean, and group.var arguments. Default is
NULL.

A numeric value specifying the mean of the latent variable prior distribution
when weights = NULL. Default is 0. For groups not specified in the free. group
argument, their distribution means are fixed to this value in order to resolve the
indeterminacy of the item parameter scale.

est_mg 53

group.var A positive numeric value specifying the variance of the latent variable prior
distribution when weights = NULL. Default is 1. For groups not specified in
the free.group argument, their distribution variances are fixed to this value in
order to resolve the indeterminacy of the item parameter scale.

EmpHist Logical. If TRUE, the empirical histograms of the latent ability prior distributions
across all groups are estimated simultaneously with the item parameters using
the approach proposed by Woods (2007). Item calibration is then performed
relative to the estimated empirical priors.

use.startval Logical. If TRUE, the item parameters provided in the item metadata (i.e., the x
argument) are used as starting values for item parameter estimation. Otherwise,
internally generated starting values are used. Default is FALSE.

Etol A positive numeric value specifying the convergence criterion for the E-step of
the EM algorithm. Default is Te-4.
MaxE A positive integer specifying the maximum number of iterations for the E-step
in the EM algorithm. Default is 500.
control A list of control parameters to be passed to the optimization function stats: :nlminb().

These parameters control the M-step of the EM algorithm. For example, the
maximum number of iterations in each M-step can be specified using control
=list(iter.max =200). The default maximum number of iterations per M-
step is 200. See stats: :nlminb() for additional control options.

fipc Logical. If TRUE, multiple-group fixed item parameter calibration (MG-FIPC) is
applied during item parameter estimation. When fipc = TRUE, the information
on which items are fixed must be provided via either fix.loc or fix.id. See
below for details.

fipc.method A character string specifying the FIPC method. Available options are:

e "OEM": No Prior Weights Updating and One EM Cycle (NWU-OEM; Wainer
& Mislevy, 1990)

* "MEM": Multiple Prior Weights Updating and Multiple EM Cycles (MWU-
MEM; Kim, 2006) When fipc.method = "OEM", the maximum number of
E-steps is automatically set to 1, regardless of the value specified in MaxE.

fix.loc A list of positive integer vectors. Each internal vector specifies the positions of
the items to be fixed in the item metadata (i.e., x) for each group when MG-FIPC
is implemented (i.e., fipc = TRUE). The internal objects in the list must follow
the same order as the group names provided in the group.name argument.
For example, suppose three groups are analyzed. In the first group, the 1st,
3rd, and 5th items are fixed; in the second group, the 2nd, 3rd, 4th, and 7th
items are fixed; and in the third group, the Ist, 2nd, and 6th items are fixed.
Then fix.loc =1ist(c(1, 3, 5), c(2, 3, 4, 7), c(1, 2, 6)). Note that if
the fix.id argument is not NULL, the information in fix.loc will be ignored.
See below for details.

fix.id A vector of character strings specifying the IDs of items to be fixed when MG-
FIPC is implemented (i.e., fipc = TRUE).
For example, suppose that three groups are analyzed. In the first group, three
items with IDs G111, C1I1, and C1I2 are fixed. In the second group, four items
with IDs C1I1, C112, C2I1, and C2I2 are fixed. In the third group, three items
with IDs C2I1, C2I2, and G311 are fixed.

54 est_mg

In this case, there are six unique items fixed across the groups—namely, G111,
C1I1, C112, C2I1, C212, and G311, because C1I1 and C1I2 appear in both the
first and second groups, while C2I1 and C2I2 appear in both the second and
third groups. Thus, you should specify fix.id = c("G1I1", "C1I1", "C1I2",
"C2I1", "C2I2", "G3I1"). Note that if the fix.id argument is not NULL, the
information provided in fix.loc is ignored. See below for details.

se Logical. If FALSE, standard errors of the item parameter estimates are not com-
puted. Default is TRUE.

verbose Logical. If FALSE, all progress messages, including information about the EM
algorithm process, are suppressed. Default is TRUE.

Details

Multiple-group (MG) item calibration (Bock & Zimowski, 1996) provides a unified framework
for handling testing scenarios involving multiple groups, such as nonequivalent groups equating,
vertical scaling, and the identification of differential item functioning (DIF). In such applications,
examinees from different groups typically respond to either the same test form or to different forms
that share common (anchor) items.

The goal of MG item calibration is to estimate both item parameters and latent ability distributions
for all groups simultaneously (Bock & Zimowski, 1996). The irtQ package implements MG cal-
ibration via the est_mg() function, which uses marginal maximum likelihood estimation through
the expectation-maximization (MMLE-EM) algorithm (Bock & Aitkin, 1981). In addition, the
function supports multiple-group fixed item parameter calibration (MG-FIPC; e.g., Kim & Kolen,
2016), which allows the parameters of specific items to be fixed across groups.

In MG IRT analyses, it is common for multiple groups’ test forms to share some common (anchor)
items. By default, the est_mg() function automatically constrains items with identical item IDs
across groups to share the same parameter estimates.

Most of the features of the est_mg() function are similar to those of the est_irt() function. The
main difference is that several arguments in est_mg() accept list objects containing elements for
each group to be analyzed. These arguments include x, data, model, cats, item.id, fix.loc and
fix.id.

Additionally, est_mg () introduces two new arguments: group.name and free.group. The group.name
argument is required to assign a unique identifier to each group. The order of the list elements pro-
vided in x, data, model, cats, item. id, fix.loc and fix.id must match the order of group names
specified in the group.name argument.

The free.group argument is required to indicate which groups have their latent ability distribution
scales (i.e., mean and standard deviation) freely estimated. When no item parameters are fixed (i.e.,
fipc = FALSE), at least one group must have a fixed latent ability scale (e.g., mean = 0 and variance
= 1) among the multiple groups sharing common items, in order to resolve the scale indeterminacy
inherent in IRT estimation. By specifying the groups in the free.group argument, the scales
for those groups will be freely estimated, while the scales for all other groups not included in
free.group will be fixed using the values provided in the group.mean and group.var arguments
or from the weights argument.

Situations requiring the implementation of MG-FIPC typically arise when new latent ability scales
from multiple-group (MG) test data need to be linked to an established scale (e.g., that of an existing
item bank). In a single run of the MG-FIPC procedure, the parameters of non-fixed (freed) items

est_mg 55

across multiple test forms, as well as the latent ability distributions for multiple groups, can be
estimated on the same scale as the fixed items (Kim & Kolen, 2016).

For example, suppose that three different test forms—Form 1, Form 2, and Form 3—are adminis-
tered to three nonequivalent groups: Groupl, Group2, and Group3. Form 1 and Form 2 share 12
common items (C111 to C1112), while Form 2 and Form 3 share 10 common items (C2I1 to C2I10).
There are no common items between Form 1 and Form 3. Also, assume that all unique items in
Form 1 are from an existing item bank and have already been calibrated on the item bank’s scale.

In this case, the goal of MG-FIPC is to estimate the parameters of all items across the three test
forms—except the unique items in Form 1— and the latent ability distributions of the three groups,
all on the same scale as the item bank. To achieve this, the unique items in Form 1 must be fixed
during MG-FIPC to link the current MG test data to the item bank scale.

The est_mg() function can implement MG-FIPC by setting fipc = TRUE. In this case, the informa-
tion on which items to fix must be provided through either the fix.loc or fix.id argument. When
using fix. loc, you must supply a list of item positions (locations) to be fixed in each group’s test
form. For example, suppose that the test data from the three groups above are analyzed. In the first
group, the 1st, 3rd, and 5Sth items are fixed; in the second group, the 2nd, 3rd, 4th, and 7th items are
fixed; and in the third group, the 1st, 2nd, and 6th items are fixed. In this case, you would specify:
fix.loc =1list(c(1, 3, 5), c(2, 3, 4,7), c(1, 2, 6)).

Alternatively, you can use fix. id to specify a character vector of item IDs to be fixed across groups.
In the first group, the items with IDs G111, C1I1, and C112 are fixed; in the second group, the items
with IDs C1I1, C112, C2I1, and C2I2 are fixed; and in the third group, the items with IDs C2I1,
C2I2, and G311 are fixed. In this case, there are six unique items to be fixed across all groups:
Gl1I1, C111, C112, C2I1, C2I2, and G3I1. You would then specify: fix.id=c("G1I1", "C1I1",
"C112", "C2I1", "C2I12", "G3I1").

Note that when both fix.loc and fix.id are provided, the information in fix. id takes precedence
and overrides fix.loc.

Value

This function returns an object of class est_irt. The returned object contains the following com-
ponents:

estimates A list containing two internal elements: overall and group. The overall el-
ement is a data frame with item parameter estimates and their standard errors,
computed from the combined data across all groups. This data frame includes
only the unique items across all groups. The group element is a list of group-
specific data frames, each containing item parameter estimates and standard er-
rors for that particular group.

par.est A list with the same structure as estimates, containing only the item parameter
estimates (excluding standard errors), formatted according to the item metadata
structure.

se.est A list with the same structure as estimates, but containing only the standard er-
rors of the item parameter estimates. Note that the standard errors are calculated
using the cross-product approximation method (Meilijson, 1989).

pos.par A data frame indicating the position index of each estimated item parameter.
This index is based on the combined data set across all groups (i.e., the first in-

56

covariance

loglikelihood

aic

bic

group.par

weights

posterior.dist

data

scale.D

ncase

nitem

Etol

MaxE
aprior
bprior
gprior
npar.est
niter
maxpar.diff
EMtime
SEtime
TotalTime

est_mg

ternal object of estimates). The position information is useful for interpreting
the variance-covariance matrix of item parameter estimates.

A variance-covariance matrix of the item parameter estimates, based on the com-
bined data set across all groups (i.e., the first internal object of estimates).

A list containing two internal objects (i.e., overall and group) of marginal log-
likelihood values based on the observed data. The structure of the list matches
that of estimates. Specifically, the overall component contains the total log-
likelihood summed across all unique items from all groups, while the group
component provides group-specific log-likelihood values.

A model fit statistic based on the Akaike Information Criterion (AIC), calculated
from the log-likelihood of all unique items.

A model fit statistic based on the Bayesian Information Criterion (BIC), calcu-
lated from the log-likelihood of all unique items.

A list containing summary statistics (i.e., mean, variance, and standard devia-
tion) of the latent variable prior distributions across all groups.

A list of two-column data frames, where the first column contains quadrature
points and the second column contains the corresponding weights of the (up-
dated) latent variable prior distributions for each group.

A matrix of normalized posterior densities for all response patterns at each
quadrature point. Rows and columns represent response patterns and quadra-
ture points, respectively.

A list containing two internal objects (i.e., overall and group) representing the
examinees’ response data sets. The structure of this list matches that of the
estimates component.

The scaling factor used in the IRT model.

A list containing two internal objects (i.e., overall and group) representing the
total number of response patterns. The structure of this list matches that of the
estimates component.

A list containing two internal objects (i.e., overall and group) representing the
total number of items included in the response data. The structure of this list
matches that of the estimates component.

The convergence criterion for the E-step of the EM algorithm.

The maximum number of E-steps allowed in the EM algorithm.

A list describing the prior distribution used for discrimination parameters.
A list describing the prior distribution used for difficulty parameters.

A list describing the prior distribution used for guessing parameters.

The total number of parameters estimated across all unique items.

The number of completed EM cycles.

The maximum absolute change in parameter estimates at convergence.
Time (in seconds) spent on EM cycles.

Time (in seconds) spent computing standard errors.

Total computation time (in seconds).

est_mg 57

test.1 First-order test result indicating whether the gradient sufficiently vanished for
solution stability.

test.2 Second-order test result indicating whether the information matrix is positive
definite, a necessary condition for identifying a local maximum.

var.note A note indicating whether the variance-covariance matrix was successfully ob-
tained from the information matrix.

fipc Logical. Indicates whether FIPC was used.
fipc.method The method used for FIPC.

fix.loc A list containing two internal objects (i.e., overall and group) indicating the
locations of fixed items when FIPC is applied. The structure of the list matches
that of the ’estimates’ component.

Note that you can easily extract components from the output using the getirt () function.

Author(s)

Hwanggyu Lim <hglim83@gmail.com>

References
Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters:
Application of an EM algorithm. Psychometrika, 46, 443-459.

Bock, R. D., & Zimowski, M. F. (1997). Multiple group IRT. In W. J. van der Linden & R. K.
Hambleton (Eds.), Handbook of modern item response theory (pp. 433-448). New York: Springer.

Kim, S. (2006). A comparative study of IRT fixed parameter calibration methods. Journal of
Educational Measurement, 43(4), 355-381.

Kim, S., & Kolen, M. J. (2016). Multiple group IRT fixed-parameter estimation for maintaining an
established ability scale. Center for Advanced Studies in Measurement and Assessment Report, 49.

Meilijson, I. (1989). A fast improvement to the EM algorithm on its own terms. Journal of the
Royal Statistical Society: Series B (Methodological), 51, 127-138.

Woods, C. M. (2007). Empirical histograms in item response theory with ordinal data. Educational
and Psychological Measurement, 67(1), 73-87.

See Also
est_irt(), shape_df (), shape_df_fipc(), getirt()

Examples
B —m
1. MG calibration using the simMG data
- Details:
(a) Constrain common items between groups to have
identical item parameters (i.e., items C1I1-C1I12 between
Groups 1 and 2, and items C2I1-C2I10 between Groups 2 and 3).
(b) Freely estimate the means and variances of the ability
distributions for all groups except the reference group,

58

where the mean and variance are fixed to @ and 1, respectively.

e e

1-(1). Freely estimate the means and variances of Groups 2 and 3
Import the true item metadata for the three groups
X <- simMG$item.prm

Extract model, score category, and item ID information

from the item metadata for the three groups

model <- list(x$Groupl$model, x$Group2$model, x$Group3$model)
cats <- list(x$Groupl$cats, x$Group2$cats, x$Group3$cats)
item.id <- list(x$Group1$id, x$Group2$id, x$Group3$id)

Import the simulated response data sets for the three groups
data <- simMG$res.dat

Import the group names for the three groups
group.name <- simMG$group.name

Specify Groups 2 and 3 as the free groups where the scale

of the ability distributions will be freely estimated.

Group 1 will serve as the reference group, where the scale
of the ability distribution is fixed to the values specified
via the 'group.mean' and 'group.var' arguments

free.group <- c(2, 3) # or use 'free.group <- group.name[2:3]'

% ¥ o

Estimate IRT parameters:

As long as common items across groups share the same item IDs,

their item parameters will be constrained to be equal across groups

unless FIPC is implemented.

fit.1 <-

est_mg(

data = data, group.name = group.name, model = model,
cats = cats, item.id = item.id, D = 1, free.group = free.group,
use.gprior = TRUE, gprior = list(dist = "beta", params = c(5, 16)),
group.mean = @, group.var = 1, EmpHist = TRUE, Etol = 0.001, MaxE = 500

Summary of the estimation
summary (fit.1)

Extract the item parameter estimates
getirt(fit.1, what = "par.est"”)

Extract the standard error estimates
getirt(fit.1, what = "se.est")

Extract the group-level parameter estimates (i.e., scale parameters)
getirt(fit.1, what = "group.par”)

Extract the posterior latent ability distributions for each group
getirt(fit.1, what = "weights")

1-(2). Alternatively, the same parameter estimation can be performed by

est_mg

est_mg

inserting a list of item metadata for the groups into the 'x' argument.
If the item metadata contains item parameters to be used as starting values,
set 'use.startval = TRUE'.
Also, specify the groups in which the ability distribution scales
will be freely estimated using their group names.
free.group <- group.name[2:3]
fit.2 <-
est_mg(
X = x, data = data, group.name = group.name, D = 1,
free.group = free.group, use.gprior = TRUE,
gprior = list(dist = "beta”, params = c(5, 16)),
group.mean = @, group.var = 1, EmpHist = TRUE, use.startval = TRUE,
Etol = 0.001, MaxE = 500
)

Summary of the estimation
summary(fit.2)

HH -
2. MG calibration with FIPC using simMG data

- Details:

(a) Fix the parameters of the common items between the groups

(i.e., items C1I1-C1I12 between Groups 1 and 2, and

items C2I1-C2I10 between Groups 2 and 3)

(b) Freely estimate the means and variances of the ability

distributions for all three groups

2-(1). Freely estimate the means and variances for all three groups
Set all three groups as free groups in which the scales

of the ability distributions are to be freely estimated

free.group <- 1:3 # or use 'free.group <- group.name'

Specify the locations of items to be fixed in each group's metadata
For Group 1: C1I1-C1I12 are located in rows 1-10 and 49-50
For Group 2: C1I1-C1I12 are in rows 1-12, and
C2I1-C2I10 are in rows 41-50
For Group 3: C2I1-C2I10@ are in rows 1-10
fix.loc <- list(
c(1:10, 49:50),
c(1:12, 41:50),
c(1:10)

Estimate IRT parameters using MG-FIPC:
When FIPC is implemented, item metadata for all groups
must be provided via the 'x' argument.
For fixed items, their item parameters must be specified
in the metadata. For non-fixed items, any placeholder values
can be used in the metadata.
Also set fipc = TRUE and fipc.method = "MEM"
fit.3 <-

est_mg(

X = x, data = data, group.name = group.name, D = 1,

60

free.group = free.group, use.gprior = TRUE,
gprior = list(dist = "beta"”, params = c(5, 16)),
EmpHist = TRUE, Etol = 0.001, MaxE = 500, fipc = TRUE,
fipc.method = "MEM", fix.loc = fix.loc

)

Summary of the estimation
summary (fit.3)

Extract the item parameter estimates
getirt(fit.3, what = "par.est")

Extract the standard error estimates
getirt(fit.3, what = "se.est")

Extract the group parameter estimates (i.e., scale parameters)
getirt(fit.3, what = "group.par")

Extract the posterior latent ability distributions of the groups
getirt(fit.3, what = "weights")

2-(2). Alternatively, MG-FIPC can be implemented by specifying the
IDs of the items to be fixed using the 'fix.id' argument.
Provide a character vector of fixed item IDs to 'fix.id'
fix.id <- c(paste@("C1I", 1:12), paste@("C2I", 1:10))
fit.4 <-
est_mg(
X = x, data = data, group.name = group.name, D = 1,
free.group = free.group, use.gprior = TRUE,
gprior = list(dist = "beta”, params = c(5, 16)),
EmpHist = TRUE, Etol = 0.001, MaxE = 500, fipc = TRUE,
fipc.method = "MEM", fix.id = fix.id
)

Summary of the estimation
summary (fit.4)

-
3. MG calibration with FIPC using simMG data

(Estimate group parameters only)

- Details:

(a) Fix all item parameters across all three groups

(b) Freely estimate the means and variances of the ability

distributions for all three groups

3-(1). Freely estimate the means and variances for all three groups
Set all three groups as free groups in which the scales

of the ability distributions will be freely estimated

free.group <- 1:3 # or use 'free.group <- group.name'

Specify the locations of all fixed items in each group's metadata
fix.loc <- list(1:50, 1:50, 1:38)

est_mg

est_mg 61

Estimate group parameters only using MG-FIPC
fit.5 <-
est_mg(
X = x, data = data, group.name = group.name, D = 1,
free.group = free.group, use.gprior = TRUE,
gprior = list(dist = "beta”, params = c(5, 16)),
EmpHist = TRUE, Etol = 0.001, MaxE = 500, fipc = TRUE,
fipc.method = "MEM", fix.loc = fix.loc
)

Summary of the estimation
summary(fit.5)

Extract the group parameter estimates (i.e., scale parameters)
getirt(fit.5, what = "group.par")

B —m
4. MG calibration with FIPC using simMG data

(Fix only the unique items of Group 1)

- Details:

(a) Fix item parameters of the unique items in Group 1 only

(b) Constrain the common items across groups to have

the same item parameters (i.e., C1I1-C1I12 between

Groups 1 and 2, and C2I1-C2I10 between Groups 2 and 3)

(c) Freely estimate the means and variances of the ability

distributions for all three groups

4-(1). Freely estimate the means and variances for all three groups
Set all three groups as free groups in which the scales

of the ability distributions will be freely estimated

free.group <- group.name # or use 'free.group <- 1:3'

Specify the item IDs of the unique items in Group 1 to be fixed using
the ~fix.id"™ argument.
fix.id <- paste@("G1I", 1:38)

Alternatively, use the 'fix.loc' argument as
'fix.loc = 1list(11:48, NULL, NULL)'

Estimate IRT parameters using MG-FIPC
fit.6 <-
est_mg(
X = x, data = data, group.name = group.name, D = 1,
free.group = free.group, use.gprior = TRUE,
gprior = list(dist = "beta"”, params = c(5, 16)),
EmpHist = TRUE, Etol = 0.001, MaxE = 500, fipc = TRUE,
fipc.method = "MEM", fix.loc = NULL, fix.id = fix.id
)

Summary of the estimation
summary (fit.6)

Extract the group parameter estimates (i.e., scale parameters)

62 est_score

getirt(fit.6, what = "group.par”)

est_score Estimate examinees’ ability (proficiency) parameters

Description

This function estimates examinees’ latent ability parameters. Available scoring methods include
maximum likelihood estimation (ML), maximum likelihood estimation with fences (MLF; Han,
2016), weighted likelihood estimation (WL; Warm, 1989), maximum a posteriori estimation (MAP;
Hambleton et al., 1991), expected a posteriori estimation (EAP; Bock & Mislevy, 1982), EAP
summed scoring (Thissen et al., 1995; Thissen & Orlando, 2001), and inverse test characteristic
curve (TCC) scoring (e.g., Kolen & Brennan, 2004; Kolen & Tong, 2010; Stocking, 1996).

Usage

est_score(x, ...)

Default S3 method:
est_score(

X,

data,

D=1,

method = "ML",

range = c(-5, 5),

norm.prior = c(@, 1),

nquad = 41,
weights = NULL,
fence.a = 3,
fence.b = NULL,
tol = 1e-04,
max.iter = 100,
se = TRUE,

stval.opt = 1,

intpol = TRUE,
range.tcc = c(-7, 7),
missing = NA,

ncore = 1,

)

S3 method for class 'est_irt'
est_score(

est_score

X,

method = "ML",

range = c(-5, 5),
norm.prior = c(@, 1),
nquad = 41,

weights = NULL,
fence.a = 3,

fence.b = NULL,

tol = 1e-04,
max.iter = 100,
se = TRUE,

stval.opt = 1,
intpol = TRUE,
range.tcc = c(-7, 7),
missing = NA,

63

ncore = 1,
)
Arguments
X A data frame containing item metadata (e.g., item parameters, number of cat-
egories, IRT model types, etc.); or an object of class est_irt obtained from
est_irt(), or est_itemfrom est_item().
See est_irt() or simdat() for more details about the item metadata. This data
frame can be easily created using the shape_df () function.
Additional arguments passed to parallel: :makeCluster().
data A matrix of examinees’ item responses corresponding to the items specified in
the x argument. Rows represent examinees and columns represent items.
D A scaling constant used in IRT models to make the logistic function closely
approximate the normal ogive function. A value of 1.7 is commonly used for
this purpose. Default is 1.
method A character string indicating the scoring method to use. Available options are:
e "ML": Maximum likelihood estimation
e "MLF": Maximum likelihood estimation with fences (Han, 2016)
e "WL": Weighted likelihood estimation (Warm, 1989)
e "MAP": Maximum a posteriori estimation (Hambleton et al., 1991)
* "EAP": Expected a posteriori estimation (Bock & Mislevy, 1982)
e "EAP.SUM": Expected a posteriori summed scoring (Thissen et al., 1995;
Thissen & Orlando, 2001)
e "INV.TCC": Inverse test characteristic curve scoring (e.g., Kolen & Bren-
nan, 2004; Kolen & Tong, 2010; Stocking, 1996)
Default is "ML".
range A numeric vector of length two specifying the lower and upper bounds of the

ability scale. This is used for the following scoring methods: "ML", "MLF", "WL",
and "MAP". Default is c(-5, 5).

64

norm.prior

nquad

weights

fence.a

fence.b

tol

max.iter

se

stval.opt

intpol

range. tcc

missing

ncore

est_score

A numeric vector of length two specifying the mean and standard deviation of
the normal prior distribution. These values are used to generate the Gaussian
quadrature points and weights. Ignored if method is "ML", "MLF", "WL", or
"INV.TCC". Defaultis c(0, 1).

An integer indicating the number of Gaussian quadrature points to be gener-
ated from the normal prior distribution. Used only when method is "EAP" or
"EAP.SUM". Ignored for "ML", "MLF", "WL", "MAP", and "INV.TCC". Default is
41.

A two-column matrix or data frame containing the quadrature points (in the
first column) and their corresponding weights (in the second column) for the
latent variable prior distribution. The weights and points can be conveniently
generated using the function gen.weight().

If NULL and method is either "EAP" or "EAP.SUM", default quadrature values are
generated based on the norm. prior and nquad arguments. Ignored if method is
"ML", "MLF", "WL", "MAP", or "INV.TCC".

A numeric value specifying the item slope parameter (i.e., a-parameter) for the
two imaginary items used in MLF. See Details below. Default is 3.0.

A numeric vector of length two specifying the lower and upper bounds of the
item difficulty parameters (i.e., b-parameters) for the two imaginary items in
MLEF. If fence.b =NULL, the values specified in the range argument are used
instead. Default is NULL.
A numeric value specifying the convergence tolerance for the ML, MLF, WL,
MAP, and inverse TCC scoring methods. Newton-Raphson optimization is used
for ML, MLF, WL, and MAP, while the bisection method is used for inverse
TCC. Default is 1e-4.
A positive integer specifying the maximum number of iterations allowed for the
Newton-Raphson optimization. Default is 100.
Logical. If TRUE, standard errors of ability estimates are computed. If method
is "EAP.SUM" or "INV.TCC", standard errors are always returned regardless of
this setting. Default is TRUE.
A positive integer specifying the starting value option for the ML, MLF, WL,
and MAP scoring methods. Available options are:

* 1: Brute-force search (default)

* 2: Based on observed sum scores

* 3: Fixed at 0
See Details below for more information.
Logical. If TRUE and method = "INV.TCC", linear interpolation is applied to
approximate ability estimates for sum scores that cannot be directly mapped
using the TCC (e.g., when the observed sum score is less than the total of item
guessing parameters). Default is TRUE. See Details below.
A numeric vector of length two specifying the lower and upper bounds of ability
estimates when method = "INV.TCC". Defaultis c(-7, 7).
A value indicating missing responses in the data set. Default is NA. See Details
below.
An integer specifying the number of logical CPU cores to use for parallel pro-
cessing. Default is 1. See Details below.

est_score 65

Details

For the MAP scoring method, only a normal prior distribution is supported for the population dis-
tribution.

When there are missing responses in the data set, the missing value must be explicitly specified
using the missing argument. Missing data are properly handled when using the ML, MLF, WL,
MAP, or EAP methods. However, when using the "EAP.SUM" or "INV.TCC" methods, any missing
responses are automatically treated as incorrect (i.e., recoded as 0s).

In the maximum likelihood estimation with fences (MLF; Han, 2016), two imaginary items based
on the 2PL model are introduced. The first imaginary item functions as the lower fence, and its
difficulty parameter (b) should be smaller than any of the difficulty parameters in the test form.
Similarly, the second imaginary item serves as the upper fence, and its b parameter should be
greater than any difficulty value in the test form. Both imaginary items should also have very steep
slopes (i.e., high a-parameter values). See Han (2016) for more details. If fence.b =NULL, the
function will automatically assign the lower and upper fences based on the values provided in the
range argument.

When the "INV.TCC" method is used with the 3PL model, ability estimates cannot be obtained for
observed sum scores that are less than the sum of the items’ guessing parameters. In such cases,
linear interpolation can be applied by setting intpol = TRUE.

Let 0,,;,, and 0,4, denote the minimum and maximum ability estimates, respectively, and let 0 x
be the ability estimate corresponding to the smallest observed sum score, X, that is greater than or
equal to the sum of the guessing parameters.When linear interpolation is applied, the first value in
the range. tcc argument is treated as 6,,,;,. A line is then constructed between the points (x =
Omin,y = 0) and (z = Ox,y = X). The second value in range. tcc is interpreted as 6,,,,,, which
corresponds to the ability estimate for the maximum observed sum score.

For the "INV.TCC" method, standard errors of ability estimates are computed using the approach
proposed by Lim et al. (2020). The implementation of inverse TCC scoring in this function is based
on a modified version of the SNSequate::irt.eq.tse() function from the SNSequate package
(Gonzélez, 2014).

For the ML, MLF, WL, and MAP scoring methods, different strategies can be used to determine the
starting value for ability estimation based on the stval.opt argument:

* When stval.opt = 1 (default), a brute-force search is performed by evaluating the log-likelihood
at discrete theta values within the range specified by range, using 0.1 increments. The theta
value yielding the highest log-likelihood is chosen as the starting value.

* When stval.opt = 2, the starting value is derived from the observed sum score using a lo-
gistic transformation. For example, if the maximum possible score (max.score) is 30 and
the examinee’s observed sum score (obs. score) is 20, the starting value is log(obs.score /
(max.score - obs.score)).

— If all responses are incorrect (i.e., obs . score = 0), the starting value is Llog(1 / max.score).
— If all responses are correct (obs. score = max. score), the starting value is Llog(max. score
/1.

* When stval.opt = 3, the starting value is fixed at 0.
To accelerate ability estimation using the ML, MLF, WL, MAP, and EAP methods, this function

supports parallel processing across multiple logical CPU cores. The number of cores can be speci-
fied via the ncore argument (default is 1).

66 est_score

Note that the standard errors of ability estimates are computed based on the Fisher expected infor-
mation for the ML, MLF, WL, and MAP methods.

For the implementation of the WL method, the function references the catR: :Pi(), catR::Ji(),
and catR: :Ii() functions from the catR package (Magis & Barrada, 2017).

Value
When method is one of "ML", "MLF", "WL", "MAP", or "EAP", a two-column data frame is returned:

e Column 1: Ability estimates

* Column 2: Standard errors of the ability estimates
When method is either "EAP.SUM" or "INV.TCC", a list with two components is returned:

* Object 1: A three-column data frame including:

— Column 1: Observed sum scores
— Column 2: Ability estimates
— Column 3: Standard errors of the ability estimates

* Object 2: A score table showing possible raw sum scores and the corresponding ability and
standard error estimates

Methods (by class)

* est_score(default): Default method to estimate examinees’ latent ability parameters using
a data frame x containing the item metadata.

* est_score(est_irt): An object created by the function est_irt().

Author(s)

Hwanggyu Lim <hglim83@gmail.com>

References
Bock, R. D., & Mislevy, R. J. (1982). Adaptive EAP estimation of ability in a microcomputer
environment. Psychometrika, 35, 179-198.

Gonzilez, J. (2014). SNSequate: Standard and nonstandard statistical models and methods for test
equating. Journal of Statistical Software, 59, 1-30.

Hambleton, R. K., Swaminathan, H., & Rogers, H. J. (1991).Fundamentals of item response theory.
Newbury Park, CA: Sage.

Han, K. T. (2016). Maximum likelihood score estimation method with fences for short-length tests
and computerized adaptive tests. Applied psychological measurement, 40(4), 289-301.

Howard, J. P. (2017). Computational methods for numerical analysis with R. New York: Chapman
and Hall/CRC.

Kolen, M. J. & Brennan, R. L. (2004). Test Equating, Scaling, and Linking (2nd ed.). New York:
Springer

Kolen, M. J. & Tong, Y. (2010). Psychometric properties of IRT proficiency estimates. Educational
Measurement: Issues and Practice, 29(3), 8-14.

est_score 67

Lim, H., Davey, T., & Wells, C. S. (2020). A recursion-based analytical approach to evaluate the
performance of MST. Journal of Educational Measurement, 58(2), 154-178.

Magis, D., & Barrada, J. R. (2017). Computerized adaptive testing with R: Recent updates of the
package catR. Journal of Statistical Software, 76, 1-19.

Stocking, M. L. (1996). An alternative method for scoring adaptive tests. Journal of Educational
and Behavioral Statistics, 21(4), 365-389.

Thissen, D. & Orlando, M. (2001). Item response theory for items scored in two categories. In D.
Thissen & H. Wainer (Eds.), Test scoring (pp.73-140). Mahwah, NJ: Lawrence Erlbaum.

Thissen, D., Pommerich, M., Billeaud, K., & Williams, V. S. (1995). Item Response Theory for
Scores on Tests Including Polytomous Items with Ordered Responses. Applied Psychological Mea-
surement, 19(1), 39-49.

Warm, T. A. (1989). Weighted likelihood estimation of ability in item response theory. Psychome-
trika, 54(3), 427-450.

See Also
est_irt(), simdat(), shape_df (), gen.weight()

Examples

Import the "-prm.txt” output file from flexMIRT
flex_prm <- system.file("extdata”, "flexmirt_sample-prm.txt"”, package = "irtQ")

Read item parameters and convert them into item metadata
x <= bring.flexmirt(file = flex_prm, "par")$Groupl$full_df

Generate examinee ability values
set.seed(12)
theta <- rnorm(10)

Simulate item response data based on the item metadata and abilities
data <- simdat(x, theta, D = 1)

Estimate abilities using maximum likelihood (ML)
est_score(x, data, D = 1, method = "ML", range = c(-4, 4), se = TRUE)

Estimate abilities using weighted likelihood (WL)
est_score(x, data, D = 1, method = "WL", range = c(-4, 4), se = TRUE)

Estimate abilities using MLF with default fences
based on the “range™ argument
est_score(x, data, D = 1, method = "MLF",

fence.a = 3.0, fence.b = NULL, se = TRUE)

Estimate abilities using MLF with user-specified fences
est_score(x, data, D = 1, method = "MLF", fence.a = 3.0,

fence.b = c(-7, 7), se = TRUE)

Estimate abilities using maximum a posteriori (MAP)

68

gen.weight

est_score(x, data, D = 1, method = "MAP", norm.prior = c(0, 1),
nquad = 30, se = TRUE)

Estimate abilities using expected a posteriori (EAP)
est_score(x, data, D = 1, method = "EAP", norm.prior = c(@, 1),
nquad = 30, se = TRUE)

Estimate abilities using EAP summed scoring
est_score(x, data, D = 1, method = "EAP.SUM", norm.prior = c(0, 1),
nquad = 30)

Estimate abilities using inverse TCC scoring
est_score(x, data, D = 1, method = "INV.TCC", intpol = TRUE,
range.tcc = c(-7, 7))

gen.weight Generate Weights

Description

This function generates a set of normalized weights based on theta (ability) values to be used in
functions such as est_score(), sx2_fit(), and covirt().

Usage

gen.weight(n = 41, dist = "norm”, mu = @, sigma =1, 1 = -4, u = 4, theta)

Arguments
n An integer specifying the number of theta (node) values for which weights are
to be generated. Default is 41.
dist A character string indicating the distribution type used to generate weights.
Available options are "norm” for a normal distribution, "unif” for a uniform
distribution, and "emp"” for an empirical distribution.
e If dist = "norm", either n or theta must be provided.
e Ifdist = "unif”, only n is applicable.
e If dist = "emp”, only theta must be specified.
mu, sigma Mean and standard deviation of the normal distribution (used when dist = "norm").
Lu Lower and upper bounds of the uniform distribution (used when dist = "unif").
theta A numeric vector of empirical theta (node) values for which weights are gener-

ated.

gen.weight 69

Details

If theta is not specified, n equally spaced quadrature points and corresponding weights are gener-
ated from either the normal or uniform distribution:

* Whendist = "norm”, Gaussian quadrature points and weights are computed using gauss.quad. prob()
from the statmod package.
* When dist = "unif", equally spaced points are drawn from the specified interval [1, u], and
weights are proportional to the uniform density.
If theta is specified:
* When dist = "norm”, the weights are proportional to the normal density evaluated at each
theta value and normalized to sum to 1.

* When dist = "emp”, equal weights are assigned to each provided theta value.

Value

A data frame with two columns:

¢ theta: The theta (node) values.

* weight: The corresponding normalized weights.

Author(s)

Hwanggyu Lim <hglim83@gmail.com>

See Also

est_score(), sx2_fit(), covirt()

Examples

Example 1:
Generate 41 Gaussian quadrature points and weights from the normal distribution
gen.weight(n = 41, dist = "norm”, mu = @, sigma = 1)

Example 2:

Generate 41 theta values and weights from the uniform distribution,
given a minimum value of -4 and a maximum value of 4

gen.weight(n = 41, dist = "unif”, 1 = -4, u = 4)

Example 3:

Generate normalized weights from the standard normal distribution,
given a user-defined set of theta values

theta <- seq(-4, 4, by = 0.1)

gen.weight(dist = "norm”, mu = @, sigma = 1, theta = theta)

Example 4:

Generate equal normalized weights for theta values

randomly sampled from the standard normal distribution
theta <- rnorm(100)

70

getirt

gen.weight(dist = "emp"”, theta = theta)

getirt Extract Components from ’est_irt’, ’est_mg’, or ’est_item’ Objects

Description

Extracts internal components from an object of class est_irt (from est_irt()), est_mg (from
est_mg()), or est_item (from est_item()).

Usage

getirt(x, ...)

S3 method for class 'est_irt'
getirt(x, what, ...)

S3 method for class 'est_mg'
getirt(x, what, ...)

S3 method for class 'est_item'

getirt(x, what, ...)
Arguments
X An object of class est_irt, est_mg, or est_item as returned by est_irt(),

est_mg(), or est_item(), respectively.
Additional arguments passed to or from other methods.

what A character string specifying the name of the internal component to extract.

Details

The following components can be extracted from an object of class est_irt created by est_irt():

estimates A data frame containing both the item parameter estimates and their corresponding stan-
dard errors.

par.est A data frame containing only the item parameter estimates.

se.est A data frame containing the standard errors of the item parameter estimates, calculated using
the cross-product approximation method (Meilijson, 1989).

pos.par A data frame indicating the position index of each estimated item parameter. This is useful
when interpreting the variance-covariance matrix.

covariance A variance-covariance matrix of the item parameter estimates.
loglikelihood The total marginal log-likelihood value summed across all items.

aic Akaike Information Criterion (AIC) based on the marginal log-likelihood.

getirt 71

bic Bayesian Information Criterion (BIC) based on the marginal log-likelihood.

group.par A data frame containing the mean, variance, and standard deviation of the latent vari-
able’s prior distribution.

weights A two-column data frame containing quadrature points (first column) and corresponding
weights (second column) of the (updated) latent trait prior.

posterior.dist A matrix of normalized posterior densities for all response patterns at each quadra-
ture point. Rows represent examinees, and columns represent quadrature points.

data A data frame of the examinee response dataset used in estimation.

scale.D The scaling constant (usually 1 or 1.7) used in the IRT model.

ncase The number of unique response patterns.

nitem The number of items included in the dataset.

Etol The convergence criterion used for the E-step in the EM algorithm.

MaxE The maximum number of E-steps allowed during EM estimation.

aprior A list describing the prior distribution for item slope parameters.

bprior A list describing the prior distribution for item difficulty (or threshold) parameters.
gprior A list describing the prior distribution for item guessing parameters.

npar.est The total number of parameters estimated.

niter The number of EM cycles completed.

maxpar.diff The maximum change in parameter estimates at convergence.

EMtime Computation time (in seconds) for the EM algorithm.

SEtime Computation time (in seconds) for estimating standard errors.

TotalTime Total computation time (in seconds) for model estimation.

test.1 Result of the first-order test indicating whether the gradients were sufficiently close to zero.

test.2 Result of the second-order test indicating whether the information matrix was positive defi-
nite (a condition for maximum likelihood).

var.note A note indicating whether the variance-covariance matrix was successfully derived from
the information matrix.

fipc Logical value indicating whether Fixed Item Parameter Calibration (FIPC) was applied.
fipc.method The specific method used for FIPC.

fix.loc An integer vector indicating the positions of fixed items used during FIPC.
Components that can be extracted from an object of class est_mg created by est_mg() include:

estimates A list with two components: overall and group.
e overall: A data frame containing item parameter estimates and their standard errors,
based on the combined data set across all groups.
e group: A list of group-specific data frames containing item parameter estimates and stan-
dard errors for each group.

par.est Same structure as estimates, but containing only the item parameter estimates (without
standard errors).

72

getirt

se.est Same structure as estimates, but containing only the standard errors of the item parameter
estimates. The standard errors are computed using the cross-product approximation method
(Meilijson, 1989).

pos.par A data frame indicating the position index of each estimated parameter. This index is
based on the combined item set across all groups and is useful when interpreting the variance-
covariance matrix.

covariance A variance-covariance matrix for the item parameter estimates based on the combined
data from all groups.

loglikelihood A list with overall and group components:

e overall: The marginal log-likelihood summed over all unique items across all groups.
e group: Group-specific marginal log-likelihood values.

aic Akaike Information Criterion (AIC) computed from the overall log-likelihood.
bic Bayesian Information Criterion (BIC) computed from the overall log-likelihood.

group.par A list of group-specific summary statistics (mean, variance, and standard deviation) of
the latent trait prior distribution.

weights A list of two-column data frames (one per group) containing the quadrature points (first
column) and the corresponding weights (second column) for the updated prior distributions.

posterior.dist A matrix of normalized posterior densities for all response patterns at each quadra-
ture point. Rows correspond to individuals, and columns to quadrature points.

data A list with overall and group components, each containing examinee response data.
scale.D The scaling constant used in the IRT model (typically 1 or 1.7).

ncase A list with overall and group components indicating the number of response patterns in
each.

nitem A list with overall and group components indicating the number of items in the respective
response sets.

Etol Convergence criterion used for the E-step in the EM algorithm.

MaxE Maximum number of E-steps allowed in the EM algorithm.

aprior A list describing the prior distribution for item slope parameters.

gprior A list describing the prior distribution for item guessing parameters.

npar.est Total number of parameters estimated across all unique items.

niter Number of EM cycles completed.

maxpar.diff Maximum change in item parameter estimates at convergence.

EMtime Computation time (in seconds) for EM estimation.

SEtime Computation time (in seconds) for estimating standard errors.

TotalTime Total computation time (in seconds) for model estimation.

test.1 First-order condition test result indicating whether gradients converged sufficiently.

test.2 Second-order condition test result indicating whether the information matrix is positive def-
nite.

var.note A note indicating whether the variance-covariance matrix was successfully derived from
the information matrix.

getirt 73

fipc Logical value indicating whether Fixed Item Parameter Calibration (FIPC) was used.
fipc.method The method used for FIPC.

fix.loc A list with overall and group components specifying the locations of fixed items when
FIPC was applied.

Components that can be extracted from an object of class est_itemcreated by est_item() include:
estimates A data frame containing both the item parameter estimates and their corresponding stan-
dard errors.

par.est A data frame containing only the item parameter estimates.

se.est A data frame containing the standard errors of the item parameter estimates, computed using
observed information functions.

pos.par A data frame indicating the position index of each estimated item parameter. This is useful
when interpreting the variance-covariance matrix.

covariance A variance-covariance matrix of the item parameter estimates.

loglikelihood The sum of log-likelihood values across all items in the complete data set.

data A data frame of examinee response data.

score A numeric vector of examinees’ ability values used as fixed effects during estimation.
scale.D The scaling constant (typically 1 or 1.7) used in the IRT model.

convergence A character string indicating the convergence status of the item parameter estimation.
nitem The total number of items included in the response data.

deleted.item Items that contained no response data and were excluded from estimation.

npar.est The total number of estimated item parameters.

n.response An integer vector indicating the number of responses used to estimate parameters for
each item.

TotalTime Total computation time (in seconds) for the estimation process.

See est_irt(), est_mg(), and est_item() for more details.

Value
The internal component extracted from an object of class est_irt, est_mg, or est_item, depend-
ing on the input to the x argument.

Methods (by class)

* getirt(est_irt): An object created by the function est_irt().
* getirt(est_mg): An object created by the function est_mg().
* getirt(est_item): An object created by the function est_item().

Author(s)

Hwanggyu Lim <hglim83@gmail.com>

74 grdif

See Also

est_irt(), est_mg(), est_item()

Examples

Fit a 2PL model to the LSAT6 data
mod.2pl <- est_irt(data = LSAT6, D = 1, model = "2PLM", cats = 2)

Extract item parameter estimates
(est.par <- getirt(mod.2pl, what = "par.est"))

Extract standard error estimates
(est.se <- getirt(mod.2pl, what = "se.est"))

Extract the variance-covariance matrix of item parameter estimates

(cov.mat <- getirt(mod.2pl, what = "covariance"))
grdif Generalized IRT residual-based DIF detection framework for multiple
groups (GRDIF)
Description

This function computes three GRDIF statistics, GRDIFr, GRDIFg, and GRDIFgg, for an-
alyzing differential item functioning (DIF) among multiple groups (Lim et al., 2024). They are
specialized to capture uniform DIF, nonuniform DIF, and mixed DIF, respectively.

Usage
grdif(x, ...)

Default S3 method:
grdif(
X,
data,
score = NULL,
group,
focal.name,
D=1,
alpha = 0.05,
missing = NA,
purify = FALSE,
purify.by = c("grdifrs”, "grdifr", "grdifs"),
max.iter = 10,
min.resp = NULL,
post.hoc = TRUE,

0
N

grdif

method = "ML",
range = c(-4, 4),
norm.prior = c(0, 1),

nquad = 41,
weights = NULL,
ncore = 1,
verbose = TRUE,
)
S3 method for class 'est_irt'
grdif(
X!
score = NULL,
group,
focal.name,
alpha = 0.05,

missing = NA,

purify = FALSE,

purify.by = c("grdifrs"”, "grdifr”, "grdifs"),
max.iter = 10,

min.resp = NULL,

post.hoc = TRUE,

method = "ML",

range = c(-4, 4),

norm.prior = c(@, 1),

nquad = 41,
weights = NULL,
ncore = 1,
verbose = TRUE,
)
S3 method for class 'est_item'
grdif(
X,
group,
focal.name,
alpha = 0.05,

missing = NA,

purify = FALSE,

purify.by = c("grdifrs"”, "grdifr"”, "grdifs"),
max.iter = 10,

min.resp = NULL,

post.hoc = TRUE,

method = "ML",

range = c(-4, 4),

norm.prior = c(@, 1),

75

76

nquad =
weights
ncore =
verbose

Arguments

X

data

score

group

focal.name

alpha
missing
purify
purify.by

max.iter

min.resp

post.hoc

= -

grdif

ULL,

A data frame containing item metadata (e.g., item parameters, number of cat-
egories, IRT model types, etc.); or an object of class est_irt obtained from
est_irt(), orest_itemfrom est_item().

See est_irt() or simdat() for more details about the item metadata. This data
frame can be easily created using the shape_df () function.

Additional arguments passed to the est_score() function.

A matrix of examinees’ item responses corresponding to the items specified in
the x argument. Rows represent examinees and columns represent items.

A numeric vector containing examinees’ ability estimates (theta values). If not
provided, grdif() will estimate ability parameters internally before comput-
ing the GRDIF statistics. See est_score() for more information on scoring
methods. Default is NULL.

A numeric or character vector indicating examinees’ group membership. The
length of the vector must match the number of rows in the response data matrix.

A numeric or character vector specifying the levels associated with the focal
groups. For example, consider group =c(@, @, 1, 2, 2, 3, 3), where ’1°,’2’,
and ’3’ indicate three distinct focal groups and 0’ represents the reference
group. In this case, set focal.name = c(1, 2, 3).

A scaling constant used in IRT models to make the logistic function closely
approximate the normal ogive function. A value of 1.7 is commonly used for
this purpose. Default is 1.

A numeric value specifying the significance level («) for hypothesis testing us-
ing the GRDIF statistics. Default is 0. 05.

A value indicating missing responses in the data set. Default is NA.
Logical. Indicates whether to apply a purification procedure. Default is FALSE.

A character string specifying which GRDIF statistic is used to perform the pu-
rification. Available options are "grdifrs" for GRDI Frg, "grdift" for GRDI Fg,
and "grdifs" for GRDIFs.

A positive integer specifying the maximum number of iterations allowed for the
purification process. Default is 10.

A positive integer specifying the minimum number of valid item responses re-
quired from an examinee in order to compute an ability estimate. Default is
NULL. See Details for more information.

A logical value indicating whether to perform post-hoc RDIF analyses for all
possible pairwise group comparisons on items flagged as statistically significant.
Default is TRUE. See details below.

grdif 77

method A character string indicating the scoring method to use. Available options are:
e "ML": Maximum likelihood estimation
e "WL": Weighted likelihood estimation (Warm, 1989)
e "MAP": Maximum a posteriori estimation (Hambleton et al., 1991)
* "EAP": Expected a posteriori estimation (Bock & Mislevy, 1982)

Default is "ML".

range A numeric vector of length two specifying the lower and upper bounds of the
ability scale. This is used for the following scoring methods: "ML", "WL", and
"MAP". Default is c(-5, 5).

norm.prior A numeric vector of length two specifying the mean and standard deviation of
the normal prior distribution. These values are used to generate the Gaussian
quadrature points and weights. Ignored if method is "ML" or "WL". Default is
c(o, 1).

nquad An integer indicating the number of Gaussian quadrature points to be generated
from the normal prior distribution. Used only when method is "EAP". Ignored
for "ML", "WL", and "MAP". Default is 41.

weights A two-column matrix or data frame containing the quadrature points (in the
first column) and their corresponding weights (in the second column) for the
latent variable prior distribution. The weights and points can be conveniently
generated using the function gen.weight().
If NULL and method = "EAP", default quadrature values are generated based on
the norm.prior and nquad arguments. Ignored if method is "ML", "WL", or
"MAP".

ncore An integer specifying the number of logical CPU cores to use for parallel pro-
cessing. Default is 1. See est_score() for details.

verbose Logical. If TRUE, progress messages from the purification procedure will be
displayed; if FALSE, the messages will be suppressed. Default is TRUE.

Details

The GRDIF framework (Lim et al., 2024) is a generalized version of the RDIF detection framework,
designed to assess DIF across multiple groups. The framework includes three statistics: GRDI Fr,
GRDIFg, and GRDIFRrg, which are tailored to detect uniform, nonuniform, and mixed DIF, re-
spectively. Under the null hypothesis that the test contains no DIF items, the statistics GRDI Fr,
GRDIFg, and GRDI FRrg asymptotically follow X2 distributions with G-1, G-1, and 2(G-1) de-
grees of freedom, respectively, where G represents the number of groups being compared. For more
information on the GRDIF framework, see Lim et al. (2024).

The grdif () function computes all three GRDIF statistics: GRDIFr, GRDIFs,and GRDIFggs.
It supports both dichotomous and polytomous item response data. To compute these statistics,
grdif () requires: (1) item parameter estimates obtained from aggregate data (regardless of group
membership); (2) examinees’ ability estimates (e.g., ML); and (3) their item response data. Note
that ability estimates must be computed using the item parameters estimated from the aggregate
data. The item parameters should be provided via the x argument, the ability estimates via the
score argument, and the response data via the data argument. If ability estimates are not supplied
(score =NULL), grdif () automatically computes them using the scoring method specified in the
method argument (e.g., method = "ML").

78

grdif

The group argument accepts a vector of numeric or character values, indicating the group mem-
bership of examinees. The vector may contain multiple distinct values, where one represents the
reference group and the others represent focal groups. Its length must match the number of rows in
the response data, with each value corresponding to an examinee’s group membership. Once group
is specified, a numeric or character vector must be supplied via the focal.name argument to define
which group(s) in group represent the focal groups. The reference group is defined as the group not
included in focal.name.

Similar to the original RDIF framework for two-group comparisons, the GRDIF framework sup-
ports an iterative purification process. When purify = TRUE, purification is conducted based on the
GRDIF statistic specified in the purify.by argument (e.g., purify.by = "grdifrs"”). During each
iteration, examinees’ latent abilities are re-estimated using only the purified items, with the scoring
method determined by the method argument. The process continues until no additional DIF items
are flagged or until the number of iterations reaches the specified max. iter limit. For details on the
purification procedure, see Lim et al. (2022).

Scoring based on a limited number of items can lead to large standard errors, which may compro-
mise the effectiveness of DIF detection within the GRDIF framework. The min. resp argument can
be used to exclude ability estimates with substantial standard errors, especially during the purifica-
tion process. For example, if min.resp is not NULL (e.g., min.resp = 5), examinees whose total
number of responses falls below the specified threshold will have their responses treated as missing
values (i.e., NA). Consequently, their ability estimates will also be missing and will not be used
when computing the GRDIF statistics. If min.resp = NULL, an examinee’s score will be computed
as long as at least one response is available.

The post. hoc argument enables post-hoc RDIF analyses across all possible pairwise group compar-
isons for items flagged as statistically significant. For instance, consider four groups of examinees:
A, B, C, and D. If post.hoc = TRUE, the grdif () function will perform pairwise RDIF analyses
for each flagged item across all group pairs (A-B, A-C, A-D, B-C, B-D, and C-D). This provides a
more detailed understanding of which specific group pairs exhibit DIF. Note that when purification
is enabled (i.e., purify = TRUE), post-hoc RDIF analyses are conducted for each flagged item at
each iteration of the purification process.

Value

This function returns a list containing four main components:

no_purify A list of sub-objects presenting the results of DIF analysis without a purification
procedure. These include:

dif_stat A data frame summarizing the results of the three GRDIF statistics for
all evaluated items. Columns include item ID, GRDIFr, GRDIFg, and
GRDIFrg statistics; their corresponding p-values; the sample size of the
reference group; the sample sizes of the focal groups; and the total sample
size.

moments A list of three data frames reporting the moments of mean raw residu-
als (MRRs) and mean squared residuals (MSRs) across all compared groups.
The first contains means, the second variances, and the third covariances of
MRRs and MSRs.

dif_item A list of three numeric vectors indicating the items flagged as poten-
tial DIF items by each of the GRDIF statistics (GRDIFr, GRDIFg, and
GRDIFRg).

grdif

purify
with_purify

alpha

Methods (by class)

79

score A numeric vector of ability estimates used to compute the GRDIF statis-
tics.

post.hoc A list of three data frames containing post-hoc RDIF analysis results
for all possible pairwise group comparisons. Each data frame corresponds
to the results for items flagged by GRDIFr, GRDIFg, and GRDIFRg,
respectively.

A logical value indicating whether the purification process was applied.

A list of sub-objects presenting the results of DIF analysis with a purification
procedure. These include:
purify.by A character string indicating which GRDIF statistic was used for

purification: "grdifr", "grdifs", or "grdifrs", corresponding to GRDIFF,
GRDIFg, and GRDI Frg, respectively.

dif_stat A data frame summarizing the GRDIF results across iterations. Columns
include item ID, the three GRDIF statistics and their p-values, sample size
of the reference group, sample sizes of the focal groups, total sample size,
and the iteration number at which each statistic was computed.

moments A list of three data frames showing the MRR and MSR moments
across iterations. The final column in each data frame indicates the iteration
in which the statistics were computed.

n.iter The total number of iterations executed during the purification process.

score A numeric vector of the final purified ability estimates used for computing
GRDIF statistics.

post.hoc A data frame containing the post-hoc RDIF analysis results for flagged
items across all possible pairwise group comparisons, updated at each iter-
ation.

complete A logical value indicating whether the purification process was com-
pleted. If FALSE, the process reached the maximum number of iterations
without convergence.

The significance level («) used for hypothesis testing of the GRDIF statistics.

* grdif(default): Default method to compute the three GRDIF statistics for multiple-group
data using a data frame x that contains item metadata.

* grdif(est_irt): An object created by the function est_irt().

e grdif(est_item): An object created by the function est_item().

Author(s)

Hwanggyu Lim <hglim83@gmail.com>

References

Lim, H., & Choe, E. M. (2023). Detecting differential item functioning in CAT using IRT residual
DIF approach. Journal of Educational Measurement, 60(4), 626-650. doi:10.1111/jedm.12366.

https://doi.org/10.1111/jedm.12366

80 grdif

Lim, H., Choe, E. M., & Han, K. T. (2022). A residual-based differential item functioning de-
tection framework in item response theory. Journal of Educational Measurement, 59(1), 80-104.
doi:10.1111/jedm.12313.

Lim, H., Zhu, D., Choe, E. M., & Han, K. T. (2024). Detecting differential item functioning among
multiple groups using IRT residual DIF framework. Journal of Educational Measurement, 61(4),
656-681.

See Also

rdif() est_irt(), est_item(), simdat(), shape_df (), est_score()

Examples

Load required library
library("dplyr")

Uniform DIF detection for four groups (1 reference, 3 focal)
SR R R

(1) Manipulate uniform DIF for all three focal groups
HHHEHHEBEEEE AR AR

Import the "-prm.txt"” output file from flexMIRT
flex_sam <- system.file("extdata”, "flexmirt_sample-prm.txt"”, package = "irtQ")

Select 36 non-DIF items modeled under 3PLM

par_nstd <-
bring.flexmirt(file = flex_sam, "par")$Group1$full_df %>%
dplyr::filter(.data$model == "3PLM") %>%

dplyr::filter(dplyr::row_number() %in% 1:36) %>%
dplyr::select(1:6)
par_nstd$id <- paste@("nondif”, 1:36)

Generate four new items on which uniform DIF will be imposed
difpar_ref <-
shape_df(
par.drm = list(a = c(0.8, 1.5, 0.8, 1.5), b = c(0.0, 0.0, -0.5, -0.5), g = .15),
item.id = paste@("dif"”, 1:4), cats = 2, model = "3PLM"
)

Introduce DIF by shifting b-parameters differently for each focal group
difpar_focl <-
difpar_ref %>%
dplyr::mutate_at(.vars = "par.2", .funs = function(x) x + c(0.7, 0.7, 0, 0))
difpar_foc2 <-
difpar_ref %>%
dplyr::mutate_at(.vars
difpar_foc3 <-
difpar_ref %>%
dplyr::mutate_at(.vars = "par.2", .funs = function(x) x + c(-0.4, -0.4, -0.5, -0.5))

"par.2", .funs = function(x) x + c(@, @, 0.7, 0.7))

Combine the 4 DIF and 36 non-DIF items for all four groups
Therefore, the first four items contain uniform DIF across all focal groups

https://doi.org/10.1111/jedm.12313

grdif

par_ref <- rbind(difpar_ref, par_nstd)

par_foc1l <- rbind(difpar_focl, par_nstd)
par_foc2 <- rbind(difpar_foc2, par_nstd)
par_foc3 <- rbind(difpar_foc3, par_nstd)

Generate true abilities from different distributions
set.seed(128)

theta_ref <- rnorm(500, 0.0, 1.0)

theta_focl <- rnorm(500, -1.0, 1.0)

theta_foc2 <- rnorm(500, 1.0, 1.0)

theta_foc3 <- rnorm(500, 0.5, 1.0)

Simulate response data for each group

resp_ref <- irtQ::simdat(par_ref, theta = theta_ref, D = 1)
resp_focl <- irtQ::simdat(par_foc1, theta = theta_focl, D = 1)
resp_foc2 <- irtQ::simdat(par_foc2, theta = theta_foc2, D = 1)
resp_foc3 <- irtQ::simdat(par_foc3, theta = theta_foc3, D = 1)
data <- rbind(resp_ref, resp_focl, resp_foc2, resp_foc3)

SRR A
(2) Estimate item and ability parameters

using aggregated data

HHHHEHHHHHEHAH A

Estimate item parameters
est_mod <- irtQ::est_irt(data = data, D = 1, model = "3PLM")
est_par <- est_mod$par.est

Estimate ability parameters using MLE
score <- irtQ::est_score(x = est_par, data = data, method = "ML")$est.theta

HHHHHHHHHHAEEEHHHHHEHHHAHAEEAEHEHEHHHEHARHEEH A
(3) Conduct DIF analysis
B s

Create a group membership vector:
@ = reference group; 1, 2, 3 = focal groups
group <- c(rep(@, 500), rep(1, 500), rep(2, 500), rep(3, 500))

(a) Compute GRDIF statistics without purification,
and perform post-hoc pairwise comparisons for flagged items
dif_nopuri <- grdif(
X = est_par, data = data, score = score, group = group,
focal.name = c(1, 2, 3), D =1, alpha = 0.05,
purify = FALSE, post.hoc = TRUE

)
print(dif_nopuri)

Display post-hoc pairwise comparison results
print(dif_nopurino_purifypost.hoc)

(b) Compute GRDIF statistics with purification
based on GRDIF_R, including post-hoc comparisons

81

82 info

dif_puri_r <- grdif(
X = est_par, data = data, score = score, group = group,
focal.name = c(1, 2, 3), D =1, alpha = 0.05,
purify = TRUE, purify.by = "grdifr"”, post.hoc = TRUE

)

print(dif_puri_r)

Display post-hoc results before purification
print(dif_puri_rno_purifypost.hoc)

Display post-hoc results after purification
print(dif_puri_r$with_purify$post.hoc)

info Item and Test Information Function

Description

This function computes item and test information functions (Hambleton et al., 1991) for a given set
of theta values.

Usage
info(x, ...)

Default S3 method:
info(x, theta, D = 1, tif = TRUE, ...)

S3 method for class 'est_item'
info(x, theta, tif = TRUE, ...)

S3 method for class 'est_irt'

info(x, theta, tif = TRUE, ...)
Arguments
X A data frame containing item metadata (e.g., item parameters, number of cat-

egories, IRT model types, etc.); or an object of class est_irt obtained from
est_irt(), orest_itemfrom est_item().

See est_irt() or simdat() for more details about the item metadata. This data
frame can be easily created using the shape_df () function.

Further arguments passed to or from other methods.

theta A numeric vector of theta values at which item and test information are com-
puted.

info

83

D A scaling constant used in IRT models to make the logistic function closely
approximate the normal ogive function. A value of 1.7 is commonly used for
this purpose. Default is 1.

tif Logical. If TRUE, the test information function is computed. Default is TRUE.

Details

This function calculates the amount of statistical information provided by each item (item informa-
tion function, IIF) and the total test (test information function, TIF) across a range of ability (theta)
values. Higher information values at a particular theta level indicate greater measurement precision
at that ability level.

The input x must follow a specific data frame format if not already an est_irt or est_item object.
The structure of this data frame is explained in the documentation of est_irt() and simdat().
Items of different models (e.g., 3PLM, GPCM) can be combined in a single test.

The information is computed for each item appropriately and aggregated for the TIF if tif = TRUE.
The TIF is often used to assess where the test provides the most precision, and is critical when
designing adaptive tests or evaluating test coverage across the ability continuum.

The returned object is a list of class "info"”, which contains the item information matrix and the
test information vector. The plot() method for info objects can be used to visualize the IIFs and
TIF (see plot.info()).

Value

This function returns an object of class info, which is a list containing the following components:

iif A matrix of item information values. Each row corresponds to an item, and each
column represents the information value computed at a given theta point. The
row names are the item IDs, and the column names indicate the theta points
(e.g., "theta.1”, "theta.2", ..).

tif A numeric vector containing the test information values at each theta value,
computed as the sum of item information values across all items. This compo-
nent is included only when tif = TRUE.

theta A numeric vector of theta values at which the item and test information functions
are evaluated. This matches the user-supplied theta argument.

The returned object is of class info and can be visualized using the function plot.info(). This
output structure is consistent across input types (data.frame, est_item, est_irt), and facilitates
downstream plotting, comparison, or export of information function values.

Methods (by class)

* info(default): Default method to compute item and test information functions for a data
frame x containing the item metadata.

* info(est_item): An object created by the function est_item().

* info(est_irt): An object created by the function est_irt().

84 info

Author(s)

Hwanggyu Lim <hglim83@gmail.com>

References

Hambleton, R. K., & Swaminathan, H. (1985) Item response theory: Principles and applications.
Boston, MA: Kluwer.

Hambleton, R. K., Swaminathan, H., & Rogers, H. J. (1991) Fundamentals of item response theory.
Newbury Park, CA: Sage.

See Also

plot.info(), shape_df (), est_irt(), est_item()

Examples

Example 1.
Using the function ~shape_df ()" to create a data frame of test metadata

Create a list of dichotomous item parameters
par.drm <- list(

a=c(.1, 1.2, 0.9, 1.8, 1.4),

b c(0.1, -1.6, -0.2, 1.0, 1.2),

g = rep(0.2, 5)
)

Create a list of polytomous item parameters
par.prm <- list(

a=c(1.4, 0.6),

d = list(c(-1.9, 0.0, 1.2), c(0.4, -1.1, 1.5, 0.2))
)

Create a numeric vector for the number of score categories for each item
cats <- ¢c(2, 4, 2, 2, 5, 2, 2)

Create a character vector of IRT model types for each item
model <- c("DRM", "GRM", "DRM", "DRM", "GPCM", "DRM", "DRM")

Create item metadata using ~shape_df ()"
test <- shape_df(
par.drm = par.drm, par.prm = par.prm,
cats = cats, model = model
) # create a data frame

Define a sequence of theta values
theta <- seq(-2, 2, 0.1)

Compute item and test information values based on theta
info(x = test, theta = theta, D = 1, tif = TRUE)

irtfit 85

Example 2.
Using a "-prm.txt" file exported from flexMIRT

Import a sample "-prm.txt"” output file from flexMIRT

flex_prm <- system.file("extdata”, "flexmirt_sample-prm.txt",
package = "irtQ"

)

Read item parameters and convert them into item metadata
test_flex <- bring.flexmirt(file = flex_prm, "par")$Group1$full_df

Define a sequence of theta values
theta <- seq(-2, 2, 0.1)

Compute item and test information values based on theta
info(x = test_flex, theta = theta, D = 1, tif = TRUE)

irtfit Traditional IRT Item Fit Statistics

Description

This function computes traditional IRT item fit statistics, including the x? fit statistic (e.g., Bock,
1960; Yen, 1981), the log-likelihood ratio X2 fit statistic (G?; McKinley & Mills, 1985), and the
infit and outfit statistics (Ames et al., 2015). It also returns contingency tables used to compute the
x? and G? statistics.

Usage

irtfit(x, ...)

Default S3 method:

irtfit(
X,
score,
data,
group.method = c("equal.width”, "equal.freq"),
n.width = 10,
loc.theta = "average”,
range.score = NULL,
D=1,
alpha = 0.05,
missing = NA,
overSR = 2,
min.collapse = 1,
pcm.loc = NULL,

86 irtfit
)
S3 method for class 'est_item'
irtfit(
X,
group.method = c("equal.width”, "equal.freq"),
n.width = 10,
loc.theta = "average”,
range.score = NULL,
alpha = 0.05,
missing = NA,
overSR = 2,
min.collapse = 1,
pcm.loc = NULL,
)
S3 method for class 'est_irt'
irtfit(
X)
score,
group.method = c("equal.width”, "equal.freq"),
n.width = 10,
loc.theta = "average",
range.score = NULL,
alpha = 0.05,
missing = NA,
overSR = 2,
min.collapse = 1,
pcm.loc = NULL,
)
Arguments
X A data frame containing item metadata (e.g., item parameters, number of cat-
egories, IRT model types, etc.); or an object of class est_irt obtained from
est_irt(), or est_itemfrom est_item().
See est_irt() or simdat() for more details about the item metadata. This data
frame can be easily created using the shape_df () function.
Further arguments passed to or from other methods.
score A numeric vector containing examinees’ ability estimates (theta values).
data A matrix of examinees’ item responses corresponding to the items specified in

group.method

the x argument. Rows represent examinees and columns represent items.

A character string specifying the method used to group examinees along the
ability scale when computing the x? and G? fit statistics. Available options are:

* "equal.width": Divides the ability scale into intervals of equal width.

irtfit

n.width

loc.theta

range.score

alpha

missing

overSR

min.collapse

pcm. loc

Details

87

e "equal.freq”: Divides the examinees into groups with (approximately)
equal numbers of examinees.

Note that "equal.freq” does not guarantee exactly equal group sizes due to
ties in ability estimates. Default is "equal.width”. The number of groups and
the range of the ability scale are controlled by the n.width and range.score
arguments, respectively.

An integer specifying the number of intervals (groups) into which the ability
scale is divided for computing the fit statistics. Default is 10.

A character string indicating the point on the ability scale at which the expected
category probabilities are calculated for each group. Available options are:

* "average": Uses the average ability estimate of examinees within each
group.
* "middle”: Uses the midpoint of each group’s ability interval.

Default is "average”.

A numeric vector of length two specifying the lower and upper bounds of the
ability scale. Ability estimates below the lower bound or above the upper bound
are truncated to the respective bound. If NULL, the observed minimum and maxi-
mum of the score vector are used. Note that this range restriction is independent
of the grouping method specified in group.method. Default is NULL.

A scaling constant used in IRT models to make the logistic function closely
approximate the normal ogive function. A value of 1.7 is commonly used for
this purpose. Default is 1.

A numeric value specifying the significance level («) for the hypothesis tests of
the x? and G? item fit statistics. Default is 0. 5.

A value indicating missing responses in the data set. Default is NA. See Details
below.

A numeric threshold used to identify ability groups (intervals) whose standard-
ized residuals exceed the specified value. This is used to compute the proportion
of misfitting groups per item. Default is 2.

An integer specifying the minimum expected frequency required for a cell in
the contingency table. Neighboring groups will be merged if any expected cell
frequency falls below this threshold when computing the x? and G? statistics.
Default is 1.

A vector of integers indicating the locations (indices) of partial credit model
(PCM) items for which slope parameters are fixed.

To compute the x? and G? item fit statistics, the group.method argument determines how the
ability scale is divided into groups:

* "equal.width": Examinees are grouped based on intervals of equal width a long the ability

scale.

* "equal.freq”: Examinees are grouped such that each group contains (approximately) the
same number of individuals.

88 irtfit

Note that "equal.freq” does not guarantee exactly equal frequencies across all groups, since
grouping is based on quantiles.

When dividing the ability scale into intervals to compute the x? and G? fit statistics, the intervals
should be:

* Wide enough to ensure that each group contains a sufficient number of examinees (to avoid
unstable estimates),

* Narrow enough to ensure that examinees within each group are relatively homogeneous in
ability (Hambleton et al., 1991).

If you want to divide the ability scale into a number of groups other than the default of 10, specify
the desired number using the n.width argument. For reference:

* Yen (1981) used 10 fixed-width groups,
* Bock (1960) allowed for flexibility in the number of groups.

Regarding degrees of freedom (df):

+ The x? statistic is approximately chi-square distributed with degrees of freedom equal to the
number of ability groups minus the number of item parameters (Ames et al., 2015).

» The G? statistic is approximately chi-square distributed with degrees of freedom equal to the
number of ability groups (Ames et al., 2015; Muraki & Bock, 2003).

Note that if "DRM" is specified for an item in the item metadata set, the item is treated as a
"3PLM" when computing the degrees of freedom for the x? fit statistic.

Note that infit and outfit statistics should be interpreted with caution when applied to non-Rasch
models. The returned object—particularly the contingency tables—can be passed to plot.irtfit()
to generate raw and standardized residual plots (Hambleton et al., 1991).

Value

This function returns an object of class irtfit, which includes the following components:

fit_stat A data frame containing the results of three IRT item fit statistics— y2, G, infit,
and outfit—for all evaluated items. Each row corresponds to one item, and the
columns include: the item ID; X2 statistic; G2 statistic; degrees of freedom for
X2 and G?; critical values and p-values for both statistics; outfit and infit values;
the number of examinees used to compute these statistics; and the proportion of
ability groups (prior to cell collapsing) that have standardized residuals greater
than the threshold specified in the overSR argument.

contingency.fitstat
A list of contingency tables used to compute the x? and G? fit statistics for all
items. Note that the cell-collapsing strategy is applied to these tables to ensure
sufficient expected frequencies.

contingency.plot
A list of contingency tables used to generate raw and standardized residual plots
(Hambleton et al., 1991) via the plot.irtfit(). Note that these tables are
based on the original, uncollapsed groupings.

irtfit 89

individual.info
A list of data frames containing individual residuals and corresponding variance
values. This information is used to compute infit and outfit statistics.

item_df A data frame containing the item metadata provided in the argument x.

ancillary A list of ancillary information used during the item fit analysis.

Methods (by class)
e irtfit(default): Default method for computing traditional IRT item fit statistics using a
data frame x that contains item metadata.
e irtfit(est_item): An object created by the function est_item().
e irtfit(est_irt): An object created by the function est_irt().

Author(s)

Hwanggyu Lim <hglim83@gmail.com>

References
Ames, A. J., & Penfield, R. D. (2015). An NCME Instructional Module on Item-Fit Statistics for
Item Response Theory Models. Educational Measurement: Issues and Practice, 34(3), 39-48.

Bock, R.D. (1960), Methods and applications of optimal scaling. Chapel Hill, NC: L.L. Thurstone
Psychometric Laboratory.

Hambleton, R. K., Swaminathan, H., & Rogers, H. J. (1991).Fundamentals of item response theory.
Newbury Park, CA: Sage.

McKinley, R., & Mills, C. (1985). A comparison of several goodness-of-fit statistics. Applied
Psychological Measurement, 9, 49-57.

Muraki, E. & Bock, R. D. (2003). PARSCALE 4: IRT item analysis and test scoring for rating scale
data (Computer Software). Chicago, IL: Scientific Software International. URL http://www.ssicentral.com

Wells, C. S., & Bolt, D. M. (2008). Investigation of a nonparametric procedure for assessing
goodness-of-fit in item response theory. Applied Measurement in Education, 21(1), 22-40.

Yen, W. M. (1981). Using simulation results to choose a latent trait model. Applied Psychological
Measurement, 5, 245-262.

See Also

plot.irtfit(), shape_df (), est_irt(), est_item()

Examples

Example 1

Use the simulated CAT data

Identify items with more than 10,000 responses

over10000 <- which(colSums(simCAT_MX$res.dat, na.rm = TRUE) > 10000)

Select items with more than 10,000 responses
X <- simCAT_MX$item.prm[over10000,]

90

Extract response data for the selected items
data <- simCAT_MX$res.dat[, over10000]

Extract examinees' ability estimates
score <- simCAT_MX$score

Compute item fit statistics

fitl <= irtfit(
X = X, score = score, data = data, group.method = "equal.width"”,
n.width = 10, loc.theta = "average"”, range.score = NULL, D = 1, alpha = 0.05,
missing = NA, overSR = 2

)

View the fit statistics
fit1$fit_stat

View the contingency tables used to compute fit statistics
fit1$contingency.fitstat

Example 2
Import the "-prm.txt"” output file from flexMIRT
flex_sam <- system.file("extdata”, "flexmirt_sample-prm.txt"”, package = "irtQ")

Select the first two dichotomous items and the last polytomous item
x <- bring.flexmirt(file = flex_sam, "par")$Group1$full_df[c(1:2, 55), 1]

Generate ability values from a standard normal distribution
set.seed(10)
score <- rnorm(1000, mean = @, sd = 1)

Simulate response data
data <- simdat(x = x, theta = score, D = 1)

Compute item fit statistics
fit2 <- irtfit(

X = X, score = score, data = data, group.method = "equal.freq",

n.width = 11, loc.theta = "average", range.score = c(-4, 4), D = 1, alpha = 0.05
)

View the fit statistics
fit2$fit_stat

View the contingency tables used to compute fit statistics
fit2$contingency.fitstat

Plot raw and standardized residuals for the first item (dichotomous)
plot(x = fit2, item.loc = 1, type = "both”, ci.method = "wald",
show.table = TRUE, ylim.sr.adjust = TRUE)

Plot raw and standardized residuals for the third item (polytomous)
plot(x = fit2, item.loc = 3, type = "both”, ci.method = "wald”,

irtfit

llike_score 91

show.table = FALSE, ylim.sr.adjust = TRUE)

11like_score Log-Likelihood of Ability Parameters

Description

This function computes the log-likelihood values for a set of ability parameters, given item param-
eters and response data

Usage
1like_score(
X)
data,
theta,
D=1,
method = "ML",
norm.prior = c(@, 1),
fence.a = 3,
fence.b = NULL,
missing = NA
)
Arguments
X A data frame containing item metadata (e.g., item parameters, number of cat-
egories, IRT model types, etc.). See est_irt() or simdat() for more de-
tails about the item metadata. This data frame can be easily created using the
shape_df () function.
data A matrix of examinees’ item responses corresponding to the items specified in
the x argument. Rows represent examinees and columns represent items.
theta A numeric vector of ability values at which to evaluate the log-likelihood func-
tion.
D A scaling constant used in IRT models to make the logistic function closely
approximate the normal ogive function. A value of 1.7 is commonly used for
this purpose. Default is 1.
method A character string specifying the estimation method. Available options include:
e "ML": Maximum Likelihood Estimation
e "MLF": Maximum Likelihood Estimation with Fences
e "MAP": Maximum A Posteriori Estimation Default is "ML".
norm.prior A numeric vector of length two specifying the mean and standard deviation of

the normal prior distribution (used only when method = "MAP"). Default is c(@,
1). Ignored for "ML" and "MLF".

92 llike_score

fence.a A numeric value specifying the item slope parameter (i.e., a-parameter) for the
two imaginary items used in MLF. See Details below. Default is 3.0.

fence.b A numeric vector of length two specifying the lower and upper bounds of the
item difficulty parameters (i.e., b-parameters) for the two imaginary items in
MLF. If fence.b = NULL, the values specified in the range argument are used
instead. Default is NULL.

missing A value indicating missing responses in the data set. Default is NA.

Details

This function evaluates the log-likelihood of a given ability (theta) for one or more examinees,
based on item parameters (x) and item response data (data).

If method = "MLF" is selected, the function appends two virtual "fence" items to the item pool with
fixed parameters. These artificial items help avoid unstable likelihood functions near the boundaries
of the ability scale.

For example, to compute the log-likelihood curves of two examinees’ responses to the same test
items, supply a 2-row matrix to data and a vector of ability values to theta.

Value
A data frame of log-likelihood values.

* Each row corresponds to an ability value (theta).

* Each column corresponds to an examinee’s response pattern.

Examples

Import the "-prm.txt” output file from flexMIRT
flex_sam <- system.file("extdata”, "flexmirt_sample-prm.txt", package = "irtQ")

Read item parameters and convert them to item metadata
x <= bring.flexmirt(file = flex_sam, "par")$Groupl$full_df

Generate ability values from N(@, 1)
set.seed(10)
score <- rnorm(5, mean = @, sd = 1)

Simulate response data
data <- simdat(x = x, theta = score, D = 1)

Specify ability values for log-likelihood evaluation
theta <- seq(-3, 3, 0.5)

Compute log-likelihood values (using MLE)
llike_score(x = x, data = data, theta = theta, D = 1, method = "ML")

LSAT6 93

LSAT6 LSAT6 Data

Description

A well-known dichotomous response dataset from the Law School Admission Test (LSAT), Section
6, as used in Thissen (1982).

Usage

LSAT6

Format

A data frame with 1,000 rows and 5 columns, where each row represents a unique examinee’s
response pattern to five dichotomously scored items (0 = incorrect, 1 = correct).
Author(s)

Hwanggyu Lim <hglim83@gmail.com>

References

Thissen, D. (1982). Marginal maximum likelihood estimation for the one-parameter logistic model.
Psychometrika, 47, 175-186.

lwrc Lord-Wingersky Recursion Formula

Description

This function computes the conditional distributions of number-correct (or observed) scores given
either the probabilities of category responses for each item or a set of theta values, using the Lord
and Wingersky recursion formula (1984).

Usage

lwrc(x = NULL, theta, prob = NULL, cats, D = 1)

94

Arguments

X

theta

prob

cats

Details

Iwrc

A data frame containing item metadata (e.g., item parameters, number of cat-
egories, IRT model types, etc.). See est_irt() or simdat() for more de-
tails about the item metadata. This data frame can be easily created using the
shape_df () function. If prob is NULL, the item metadata in x is used in the
recursion formula. See Details below.

A vector of theta values at which the conditional distributions of observed scores
are computed. This argument is required only when item metadata is provided
via the x argument.

A matrix containing the category response probabilities for each item. Each row
corresponds to an item, and each column represents a score category. If items
have different numbers of categories, empty cells should be filled with zeros or
NA values. If x is NULL, this matrix is used in the recursion formula.

A numeric vector specifying the number of score categories for each item. For
example, a dichotomous item has two categories. This argument is required only
when a probability matrix is provided via the prob argument.

A scaling constant used in IRT models to make the logistic function closely
approximate the normal ogive function. A value of 1.7 is commonly used for
this purpose. Default is 1.

The Lord and Wingersky recursive algorithm provides an efficient method for calculating the com-
pound probabilities of all possible number-correct (i.e., observed) scores on a test, based on IRT
models. This algorithm is particularly useful for obtaining the IRT model-based distribution of

observed scores.

The conditional distributions of observed scores can be computed using either the item metadata
specified in x or the category probability matrix specified in prob.

Value

When the prob argument is provided, the function returns a vector of probabilities for all possible
observed scores on a test.

When the x argument is specified, it returns a matrix of conditional probabilities for each observed
score across all specified theta values.

Author(s)

Hwanggyu Lim <hglim83@gmail.com>

References

Kolen, M. J. & Brennan, R. L. (2004) Test Equating, Scaling, and Linking (2nd ed.). New York:

Springer.

Lord, F. & Wingersky, M. (1984). Comparison of IRT true score and equipercentile observed score
equatings. Applied Psychological Measurement, 8(4), 453-461.

pcd2

Examples

Example 1: Using a matrix of category probabilities

This example is from Kolen and Brennan (2004, p. 183)

Create a matrix of probabilities for correct and incorrect responses to three items
probs <- matrix(c(.74, .73, .82, .26, .27, .18), nrow = 3, ncol = 2, byrow = FALSE)

Create a vector specifying the number of score categories for each item
cats <- ¢c(2, 2, 2)

Compute the conditional distribution of observed scores
lwrc(prob = probs, cats = cats)

Example 2: Using a matrix of category probabilities for a mixed-format test
Category probabilities for a dichotomous item
pl <- c(0.2, 0.8, 0, 0, @)

Category probabilities for another dichotomous item
p2 <- c(0.4, 0.6, NA, NA, NA)

Category probabilities for a polytomous item with five categories
p3 <- c(0.1, 0.2, 0.2, 0.4, 0.1)

Category probabilities for a polytomous item with three categories
p4 <- c(0.5, 0.3, 0.2, NA, NA)

Combine the probability vectors into a matrix
p <- rbind(p1, p2, p3, p4)

Create a vector specifying the number of score categories for each item
cats <- c(2, 2, 5, 3)

Compute the conditional distribution of observed scores
lwrc(prob = p, cats = cats)

Example 3: Using a data frame of item metadata for a mixed-format test
Import the "-prm.txt"” output file from flexMIRT
flex_prm <- system.file("extdata”, "flexmirt_sample-prm.txt"”, package = "irtQ")

Read item parameters and convert them to item metadata
x <= bring.flexmirt(file = flex_prm, "par")$Groupl$full_df

Compute the conditional distribution of observed scores for a range of theta values
lwrc(x = x, theta = seq(-4, 4, 0.2), D =1)

pcd?2 Pseudo-count D2 method

96 ped2

Description

This function calculates the Pseudo-count D? statistic to evaluate item parameter drift, as described
by Cappaert et al. (2018) and Stone (2000). The Pseudo-count D? statistic is designed to detect
item parameter drift efficiently without requiring item recalibration, making it especially valuable in
computerized adaptive testing (CAT) environments. This method compares observed and expected
response frequencies across quadrature points, which represent latent ability levels. The expected
frequencies are computed using the posterior distribution of each examinee’s ability (Stone, 2000),
providing a robust and sensitive measure of item parameter drift, ensuring the stability and accuracy
of the test over time.

Usage

pcd2(
X,
data,
D=1,
item.skip = NULL,
missing = NA,
Quadrature = c(49, 6),
weights = NULL,
group.mean = 0,
group.var = 1,
crit.val = NULL,
min.resp = NULL,
purify = FALSE,
max.iter = 10,
verbose = TRUE

)
Arguments

X A data frame containing item metadata (e.g., item parameters, number of cat-
egories, IRT model types, etc.). See est_irt() or simdat() for more de-
tails about the item metadata. This data frame can be easily created using the
shape_df () function.

data A matrix of examinees’ item responses corresponding to the items specified in
the x argument. Rows represent examinees and columns represent items.

D A scaling constant used in IRT models to make the logistic function closely
approximate the normal ogive function. A value of 1.7 is commonly used for
this purpose. Default is 1.

item.skip A numeric vector of item indices to exclude from IPD analysis. If NULL, all
items are included. Useful for omitting specific items based on prior insights.

missing A value indicating missing responses in the data set. Default is NA.

Quadrature A numeric vector of length two:

* first element: number of quadrature points

pcd2 97

* second element: symmetric bound (absolute value) for those points For
example, c(49, 6) specifies 49 evenly spaced points from —6 to 6. These
points are used in the E-step of the EM algorithm. Default is c(49, 6).

weights A two-column matrix or data frame containing the quadrature points (in the
first column) and their corresponding weights (in the second column) for the
latent variable prior distribution. If not NULL, the scale of the latent ability
distribution is fixed to match the scale of the provided quadrature points and
weights. The weights and points can be conveniently generated using the func-
tion gen.weight().
If NULL, a normal prior density is used instead, based on the information pro-
vided in the Quadrature, group.mean, and group.var arguments. Default is
NULL.

group.mean A numeric value specifying the mean of the latent variable prior distribution
when weights = NULL. Default is 0. This value is fixed to resolve the indetermi-
nacy of the item parameter scale during calibration.

group.var A positive numeric value specifying the variance of the latent variable prior
distribution when weights = NULL. Default is 1. This value is fixed to resolve
the indeterminacy of the item parameter scale during calibration.

crit.val A critical value applied in hypothesis testing using the Pseudo-count D? statis-
tic. Default is NULL.

min.resp A positive integer specifying the minimum required number of responses for
each evaluated item. Defaults to NULL.

purify Logical. Indicates whether to apply a purification procedure. Default is FALSE.

max.iter A positive integer specifying the maximum number of iterations allowed for the

purification process. Default is 10.

verbose Logical. If TRUE, progress messages from the purification procedure will be
displayed; if FALSE, the messages will be suppressed. Default is TRUE.

Details

The Pseudo-count D? statistic quantifies item parameter drift (IPD) by computing the weighted
squared differences between the observed and expected response frequencies for each score cate-
gory across ability levels. The expected frequencies are determined using the posterior distribution
of each examinee’s ability (Stone, 2000).

The Pseudo-count D? statistic is calculated as:

Q 2
Tok + T1k T1k
Pseudo — countD? = <) < — E1k>
kZ:l N Tok + T1k

where 7oy and 1, are the pseudo-counts for the incorrect and correct responses at each ability level
k, Fny is the expected proportion of correct responses at each ability level k, calculated using item
parameters from the item bank, and NNV is the total count of examinees who received each item.

Critical Value (crit.val): The crit.val argument specifies the threshold used to flag an item
as exhibiting potential parameter drift. If an item’s Pseudo-count D? value exceeds this threshold,
it is identified as a drifted item. If crit.val = NULL, the function reports the raw statistic without

flagging.

98

pcd2

Minimum Response Count (min.resp): The min.resp argument sets a lower bound on the num-
ber of responses required for an item to be included in the analysis. Items with fewer responses
than min.resp are automatically excluded by replacing all their responses with NA. This avoids
unreliable estimates based on small sample sizes.

Purification Procedure: Although Cappaert et al. (2018) did not incorporate purification into their
method, pcd2() implements an optional iterative purification process similar to Lim et al. (2022).
When purify = TRUE and a crit.val is provided:

* The procedure begins by identifying items flagged for drift using the initial Pseudo-count D?

statistics.

+ In each subsequent iteration, the item with the highest flagged Pseudo-count D? value is
removed from the item set, and the statistics are recalculated using only the remaining items.

* The process continues until no additional items are flagged or the number of iterations reaches

max.iter.

» All flagged items and statistics are saved, and convergence status is reported.

This process ensures that drift detection is not distorted by already-flagged items, improving the
robustness of the results.

Value

This function returns a list containing four main components:

no_purify

purify

with_purify

crit.val

A list containing the results of Pseudo-count D? analysis without applying the
purification procedure. It includes:

ipd_stat A data frame summarizing the Pseudo-count D? statistics for all items.
The columns include: id (item ID), pcd2 (the computed D? value), and N
(the number of valid examinee responses per item).

ipd_item A numeric vector of item indices that were flagged as exhibiting item
parameter drift (IPD), based on the specified critical value crit.val. If no
items are flagged or crit.val = NULL, this is NULL.

A logical value indicating whether the iterative purification procedure was ap-
plied (TRUE) or not (FALSE).

A list containing the results of Pseudo-count D? analysis after applying the pu-

rification procedure. This list is populated only when both purify = TRUE and

crit.val is not NULL. It includes:

ipd_stat A data frame reporting the final Pseudo-count D? statistics after pu-
rification. Columns include: id (item ID), pcd2 (the computed D? value), N
(the number of valid responses), and n. iter (the iteration number in which
each item was evaluated).

ipd_item A numeric vector of item indices flagged as IPD items during purifi-
cation. Items are ordered by the iteration in which they were flagged.

n.iter An integer indicating the number of purification iterations completed.

complete A logical value indicating whether the purification procedure con-
verged before reaching the maximum number of iterations (max.iter). If
FALSE, the iteration limit was reached before convergence.

A numeric value indicating the critical threshold used to flag items for parameter
drift. If not specified by the user, this will be NULL.

plot.info 99

Author(s)

Hwanggyu Lim <hglim83@gmail.com>

References

Cappaert, K. J., Wen, Y., & Chang, Y. F. (2018). Evaluating CAT-adjusted approaches for suspected
item parameter drift detection. Measurement: Interdisciplinary Research and Perspectives, 16(4),
226-238.

Stone, C. A. (2000). Monte Carlo based null distribution for an alternative goodness-of-fit test
statistic in IRT models. Journal of educational measurement, 37(1), 58-75.

Examples

Example 1: No critical value specified

Compute the Pseudo-count D2 statistics for dichotomous items

Import the "-prm.txt"” output file generated by flexMIRT

flex_sam <- system.file("extdata”, "flexmirt_sample-prm.txt"”, package = "irtQ")

Extract metadata for the first 30 3PLM items
X <= bring.flexmirt(file = flex_sam, "par")$Groupl1$full_df[1:30, 1:6]

Generate abilities for 500 examinees from N(@, 1)
set.seed(25)
score <- rnorm(500, mean = @, sd = 1)

Simulate response data using the item metadata and ability values
data <- simdat(x = x, theta = score, D = 1)

Compute the Pseudo-count D2 statistics (no purification applied)
ps_d2 <- pcd2(x = x, data = data)
print(ps_d2)

Example 2: Applying a critical value with purification

Compute the Pseudo-count D2 statistics with purification enabled
ps_d2_puri <- pcd2(x = x, data = data, crit.val = 0.002, purify = TRUE)
print(ps_d2_puri)

plot.info Plot Item and Test Information Functions

Description

This method plots item or test information functions for a specified set of theta values. It can also
display the conditional standard error of estimation (CSEE) at the test level.

100

Usage

S3 method for class

plot(
X,

plot.info

"info'

item.loc = NULL,
overlap = FALSE,

csee = FALSE,

xlab. text,
ylab. text,
main.text,
lab.size =
main.size =
axis.size =
line.color,
line.size =
layout.col =
strip.size =

Arguments

X

item.loc

overlap

csee

xlab. text, ylab.

main.text
lab.size

main.size
axis.size

line.color

line.size

layout.col

15,
15,
15,

4,
12,

x An object of class info obtained from info().

A numeric vector indicating which item information functions to plot, specified
by item position (e.g., 1 for the first item). If NULL (default), the test information
function for the entire test form is plotted.

Logical. If TRUE, multiple item information functions are plotted in a single
panel. If FALSE (default), each item information function is displayed in a sepa-
rate panel.

Logical. If TRUE, plots the conditional standard error of estimation (CSEE) at
the test level. Note that the CSEE plot is only available at the test level, not
for individual items. If FALSE (default), item or test information functions are
plotted.

text
Character strings specifying the labels for the x and y axes, respectively.

Character string specifying the overall title of the plot.

Numeric value specifying the font size of axis titles. Default is 15.
Numeric value specifying the font size of the plot title. Default is 15.
Numeric value specifying the font size of axis tick labels. Default is 15.

A character string specifying the color of the plot lines. See http://www.
cookbook-r.com/Graphs/Colors_(ggplot2)/ for available color names.

Numeric value specifying the thickness of plot lines. Default is 1.

Integer. Number of columns to use when faceting multiple item information
functions. Used only when overlap = FALSE. Default is 4.

http://www.cookbook-r.com/Graphs/Colors_(ggplot2)/
http://www.cookbook-r.com/Graphs/Colors_(ggplot2)/

plot.info 101

strip.size Numeric value specifying the font size of facet labels when multiple items are
displayed.
Additional arguments passed to ggplot2: : geom_line () from the ggplot2 pack-
age.
Details
All of the plots are drawn using the ggplot2 package. The object of class info can be obtained
from the function info().
Value
This method function displays the item or test information function plot. When csee = TRUE, the
CSEE is returned at the test level.
Author(s)

Hwanggyu Lim <hglim83@gmail.com>

See Also
info()

Examples

Example using a "-prm.txt"” file exported from flexMIRT

Import the "-prm.txt"” output file from flexMIRT
flex_prm <- system.file("extdata”, "flexmirt_sample-prm.txt"”, package = "irtQ")

Read the item parameters and convert them to item metadata
test_flex <- bring.flexmirt(file = flex_prm, "par")$Group1$full_df

Define a sequence of theta values
theta <- seq(-4, 4, 0.1)

Compute item and test information values for the given theta values
x <- info(x = test_flex, theta = theta, D = 1, tif = TRUE)

Plot the test information function
plot(x)

Plot the item information function for the second item
plot(x, item.loc = 2)

Plot multiple item information functions, each in a separate panel
plot(x, item.loc = 1:8, overlap = FALSE)

Plot multiple item information functions in a single panel
plot(x, item.loc = 1:8, overlap = TRUE)

102 plot.irtfit

Plot the conditional standard error of estimation (CSEE) at the test level
plot(x, csee = TRUE)

plot.irtfit Draw Raw and Standardized Residual Plots

Description

This method provides graphical displays of the residuals between observed data and model-based
predictions (Hambleton et al., 1991). For each score category of an item, it generates two types
of residual plots: (a) the raw residual plot and (b) the standardized residual plot. Note that for
dichotomous items, residual plots are drawn only for score category 1.

Usage
S3 method for class 'irtfit'
plot(
X)
item.loc = NULL,
type = "both",
ci.method = c("wald”, "wilson"”, "wilson.cr"),

show. table = TRUE,
layout.col = 2,
xlab. text,

ylab. text,

main. text,

lab.size = 15,
main.size 15,
axis.size = 15,
line.size = 1,
point.size = 2.5,
strip.size = 12,
ylim.icc = c(0, 1),
ylim.sr.adjust = FALSE,
ylim.sr = c(-4, 4),

)
Arguments
X X An object of class irtfit obtained from irtfit().
item.loc An integer specifying the position of the item to be plotted (i.e., the nth item in
the item set). See Details below.
type A character string indicating the type of residual plot to be displayed. Available

options are:

e "icc” for the raw residual plot

plot.irtfit

ci.method

show. table

layout.col

xlab. text

ylab. text

main.text

lab.size
main.size
axis.size
line.size
point.size
strip.size

ylim.icc

ylim.sr.adjust

ylim.sr

103

e "sr" for the standardized residual plot
* "poth" for displaying both plots

Default is "both”.

A character string specifying the method used to compute confidence intervals
for the raw residual plot. Available options are:

e "wald" for the Wald method

* "wilson" for the Wilson score interval

e "wilson.cr" for the Wilson interval with continuity correction
Default is "wald"”. See Details below.

A logical value indicating whether to return the contingency table used for draw-
ing the residual plots of the specified item. If TRUE, the function returns the same
contingency table stored in the internal contingency.plot objectof the irtfit
object. Default is TRUE.

An integer specifying the number of columns in the panel layout when plotting
residuals for a polytomous item. Default is 2.

A character string specifying the title for the x-axis. If omitted, a default label
is used.

A character string specifying the title for the y-axis. If type = "both”, a char-
acter vector of length two can be provided, corresponding to the y-axis titles for
the raw residual and standardized residual plots, respectively. If omitted, default
labels are used.

A character string specifying the main title for the plot. If type = "both”, a
character vector of length two can be provided, corresponding to the main titles
for the raw residual and standardized residual plots, respectively. If omitted,
default titles are used.

Numeric value specifying the font size of axis titles. Default is 15.
Numeric value specifying the font size of the plot title. Default is 15.
Numeric value specifying the font size of axis tick labels. Default is 15.
Numeric value specifying the thickness of plot lines. Default is 1.

A numeric value specifying the size of points. Default is 2.5.

A numeric value specifying the size of facet label text. Default is 12.

A numeric vector of length two specifying the y-axis limits for the raw residual
plot. Default is c(0, 1).

Logical. If TRUE, the y-axis range for the standardized residual plot is automat-
ically adjusted based on the maximum residual value for each item. If FALSE,
the range is fixed according to the values specified in the ylim.sr argument.
Default is FALSE.

A numeric vector of length two specifying the y-axis limits for the standardized
residual plot. Default is c(-4, 4).

Additional arguments passed to ggplot2: :ggplot () from the ggplot2 package.

104 plot.irtfit

Details

All plots are generated using the ggplot2 package.

Once the IRT model fit analysis is completed using irtfit(), the resulting object of class irtfit
can be used to draw raw and standardized residual plots.These plots are primarily based on the
information stored in the internal object contingency.plot.

Because residual plots are generated for one item at a time, you must specify which item to evaluate
by providing an integer value for the item.loc argument, indicating the item’s position in the test
form. For example, to draw residual plots for the third item, set item.loc = 3.

For the raw residual plot, the ci.method argument determines the method used to estimate confi-
dence intervals. The available methods are:

* "wald": Wald interval based on the normal approximation (Laplace, 1812)

* "wilson": Wilson score interval (Wilson, 1927)

* "wilson.cr": Wilson score interval with continuity correction (Newcombe, 1998)
For more information, see https://en.wikipedia.org/wiki/Binomial_proportion_confidence_

interval. Note that the width of the confidence interval is governed by the a-level specified in the
alpha argument of the irtfit() function.

For the standardized residual plot, residuals exceeding the threshold specified in the overSR argu-
ment of the irtfit() function are displayed as circles. Residuals that do not exceed the threshold
are displayed as crosses.

Value

This method displays the IRT raw residual plot, standardized residual plot, or both for the specified
item. When show.table = TRUE, a contingency table used to generate the residual plots is also
returned. See irtfit() for more details about the contingency table.

Author(s)

Hwanggyu Lim <hglim83@gmail.com>

References

Hambleton, R. K., Swaminathan, H., & Rogers, H. J. (1991).Fundamentals of item response theory.
Newbury Park, CA: Sage.

Laplace, P. S. (1820).Theorie analytique des probabilites (in French). Courcier.

Newcombe, R. G. (1998). Two-sided confidence intervals for the single proportion: comparison of
seven methods. Statistics in medicine, 17(8), 857-872.

Wilson, E. B. (1927). Probable inference, the law of succession, and statistical inference. Journal
of the American Statistical Association, 22(158), 209-212.

See Also

irtfit()

https://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval
https://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval

plot.traceline 105

Examples

Import the "-prm.txt"” output file from flexMIRT
flex_sam <- system.file("extdata”, "flexmirt_sample-prm.txt"”, package = "irtQ")

Select the first two dichotomous items and the last polytomous item
x <- bring.flexmirt(file = flex_sam, "par")$Group1$full_df[c(1:2, 55), 1]

Generate examinees' abilities from N(@, 1)
set.seed(23)
score <- rnorm(1000, mean = @, sd = 1)

Simulate response data

data <- simdat(x = x, theta = score, D = 1)

Compute fit statistics
fit <- irtfit(

X = X, score = score, data = data, group.method = "equal.freq”,
n.width = 11, loc.theta = "average", range.score = c(-4, 4), D =1,
alpha = 0.05, overSR = 1.5

)

Residual plots for the first item (dichotomous item)
plot(x = fit, item.loc = 1, type = "both", ci.method = "wald",
show.table = TRUE, ylim.sr.adjust = TRUE)

Residual plots for the third item (polytomous item)
plot(x = fit, item.loc = 3, type = "both", ci.method = "wald",
show.table = FALSE, ylim.sr.adjust = TRUE)

Raw residual plot for the third item (polytomous item)
plot(x = fit, item.loc = 3, type = "icc”, ci.method = "wald",

show.table = TRUE, ylim.sr.adjust = TRUE)

n

Standardized residual plot for the third item (polytomous item)
plot(x = fit, item.loc = 3, type = "sr"”, ci.method = "wald",
show.table = TRUE, ylim.sr.adjust = TRUE)

plot.traceline Plot Item and Test Characteristic Curves

Description

This method visualizes item characteristic curves (ICCs), item score curves, or the test characteristic
curve (TCC) using the ggplot2 package. ICCs or item score curves can be plotted for one or more
selected items, while the TCC is plotted for the entire test form.

106

Usage

plot.traceline

S3 method for class 'traceline'

plot(

X,

item.loc = NULL,
score.curve = FALSE,
overlap = FALSE,
layout.col = 2,
xlab. text,

ylab. text,

main. text,
lab.size = 15,
main.size = 15,
axis.size = 15,
line.color,
line.size = 1,
strip.size = 12,

Arguments
X x An object of class traceline obtained from traceline().
item.loc A numeric vector specifying the position(s) of the item(s) to plot. If NULL (de-

score.curve

overlap

layout.col

fault), the test characteristic curve (TCC) for the entire test form is plotted.

Logical. If TRUE, plots the item score curve, defined as the weighted sum of
category probabilities across score categories, in a panel.

If FALSE, plots item characteristic curves (ICCs) for all score categories, either
in separate panels or in a single panel depending on the overlap setting.

For dichotomous items, the item score curve is equivalent to the ICC for score
category 1. Ignored when item.loc = NULL. Default is FALSE.

Logical. Determines how multiple curves are displayed when plotting ICCs or
item score curves.

If TRUE, curves are overlaid in a single panel using different colors. If FALSE,
each curve is drawn in a separate panel—either one panel per item or per score
category, depending on the setting of score. curve.

An integer value indicating the number of columns in the plot when displaying
multiple panels. Used only when overlap = FALSE. Default is 2.

xlab.text, ylab. text

Character strings specifying the labels for the x and y axes, respectively.

main.text Character string specifying the overall title of the plot.

lab.size Numeric value specifying the font size of axis titles. Default is 15.
main.size Numeric value specifying the font size of the plot title. Default is 15.
axis.size Numeric value specifying the font size of axis tick labels. Default is 15.

plot.traceline 107

line.color A character string specifying the color of the plot lines. See http://www.
cookbook-r.com/Graphs/Colors_(ggplot2)/ for available color names.

line.size Numeric value specifying the thickness of plot lines. Default is 1.

strip.size Numeric. Font size of facet labels when ICCs are plotted.

Additional arguments passed to ggplot2: :geom_line () from the ggplot2 pack-
age.
Details

All plots are generated using the ggplot2 package. If item.loc = NULL, the test characteristic curve
(TCC) for the entire test form is plotted. If item. loc is specified, it should be a vector of positive
integers indicating the position(s) of the items to be plotted. For example, if the test form includes
ten items and you wish to plot the score curves of the 1st, 2nd, and 3rd items, set item.loc =1:3.

Value
This method displays item characteristic curves (ICCs), item score curves, or the test characteristic
curve (TCC), depending on the specified arguments.

Author(s)

Hwanggyu Lim <hglim83@gmail.com>

See Also

traceline()

Examples

Example using a "-prm.txt"” file exported from flexMIRT

Import the "-prm.txt"” output file from flexMIRT
flex_prm <- system.file("extdata”, "flexmirt_sample-prm.txt"”, package = "irtQ")

Read the item parameters and convert them to item metadata
test_flex <- bring.flexmirt(file = flex_prm, "par")$Group1$full_df

Define a sequence of theta values
theta <- seq(-3, 3, 0.1)

Compute item category probabilities and item/test characteristic functions
x <- traceline(x = test_flex, theta, D = 1)

Plot the test characteristic curve (TCC) for the full test form
plot(x, item.loc = NULL)

Plot ICCs for the first item (dichotomous),
with a separate panel for each score category
plot(x, item.loc = 1, score.curve = FALSE, layout.col = 2)

http://www.cookbook-r.com/Graphs/Colors_(ggplot2)/
http://www.cookbook-r.com/Graphs/Colors_(ggplot2)/

108 prm

Plot ICCs for the first item in a single panel
(all score categories overlaid)
plot(x, item.loc = 1, score.curve = FALSE, overlap = TRUE)

Plot ICCs for multiple items (both dichotomous and polytomous),
with each item's ICCs shown in a single panel
plot(x, item.loc = c(1:3, 53:55), score.curve = FALSE, overlap = TRUE)

Plot the item score curve for the first item (dichotomous)
plot(x, item.loc = 1, score.curve = TRUE)

Plot item score curves for the first six dichotomous items
using multiple panels
plot(x, item.loc = 1:6, score.curve = TRUE, overlap = FALSE)

Plot item score curves for the first six dichotomous items
overlaid in a single panel
plot(x, item.loc = 1:6, score.curve = TRUE, overlap = TRUE)

Plot ICCs for the last item (polytomous),
with each score category in a separate panel
plot(x, item.loc = 55, score.curve = FALSE, layout.col = 2)

Plot the item score curve for the last item (polytomous)
plot(x, item.loc = 55, score.curve = TRUE)

Plot item score curves for the last three polytomous items
using multiple panels
plot(x, item.loc = 53:55, score.curve = TRUE, overlap = FALSE)

Plot item score curves for the last three polytomous items
overlaid in a single panel
plot(x, item.loc = 53:55, score.curve = TRUE, overlap = TRUE)

prm Polytomous Response Model (PRM) Probabilities (GRM and GPCM)

Description

This function computes the probability of selecting each response category for an item, given a set
of theta values, using the graded response model (GRM) or the (generalized) partial credit model
(GPCM).

Usage

prm(theta, a, d, D = 1, pr.model = c("GRM", "GPCM"))

prm 109

Arguments
theta A numeric vector of ability values (latent traits).
a A numeric vector of item discrimination (slope) parameters.
d A numeric vector of item difficulty (or threshold) parameters.
D A scaling constant used in IRT models to make the logistic function closely
approximate the normal ogive function. A value of 1.7 is commonly used for
this purpose. Default is 1.
pr.model A character string specifying the polytomous IRT model. Available options are
"GRM" for the graded response model and "GPCM" for the (generalized) partial
credit model.
Details

When computing category probabilities using the partial credit model (PCM), set a = 1.

For pr.model = "GPCM", the vector d should contain threshold parameters that define the boundaries
between adjacent score categories. In the irtQ package, these thresholds are expressed as the item
location (overall difficulty) minus the step parameters for each category. If an item has K score
categories, K - I threshold parameters must be provided; the first is assumed to be 0. For example,
for a GPCM item with five categories, provide four threshold parameters.

For more details on the parameterization of the (generalized) partial credit model, refer to the IRT
Models section in the irtQ-package documentation.

Value
A matrix of category response probabilities, where each row corresponds to a theta value and each
column represents a score category of the item.

Author(s)

Hwanggyu Lim <hglim83@gmail.com>

See Also
drm()

Examples

Category probabilities for an item with four categories
using the generalized partial credit model (GPCM)
prm(theta = ¢c(-0.2, @, 0.5), a = 1.4, d = c(-0.2, 0, 0.5), D =1, pr.model = "GPCM")

Category probabilities for an item with five categories
using the graded response model (GRM)
prm(theta = ¢(-0.2, 0, 0.5), a=1.2, d =c(-0.4, -0.2, 0.4, 1.5), D=1, pr.model = "GRM")

110

rdif

rdif

Framework

IRT Residual-Based Differential Item Functioning (RDIF) Detection

Description

This function computes three RDIF statistics for each item: RDIFr, RDIFs, and RDIFRrg
(Lim & Choe, 2023; Lim, et al., 2022). RDIFFy primarily captures differences in raw residuals
between two groups, which are typically associated with uniform DIF. RDI Fs primarily captures
differences in squared residuals, which are typically associated with nonuniform DIF. RDIFrg

jointly considers both types of differences and is capable of detecting both uniform and nonuniform
DIF.

Usage

rdif(x, ...)

Default S3 method:
rdif(

X,

data,

score = NULL,
group,
focal.name,
item.skip = NULL,
D=1,

alpha = 0.05,
missing = NA,
purify = FALSE,

purify.by = c("rdifrs”, "rdifr"”, "rdifs"),

max.iter = 10,
min.resp = NULL,
method = "ML",

range = c(-5, 5),
norm.prior = c(@, 1),

nquad = 41,

weights = NULL,

ncore = 1,

verbose = TRUE,
)
S3 method for class 'est_irt'
rdif(

X’

score = NULL,

group,

rdif

)

111

focal.name,

item.skip = NULL,

alpha = 0.05,

missing = NA,

purify = FALSE,

purify.by = c("rdifrs”, "rdifr"”, "rdifs"),
max.iter = 10,

min.resp = NULL,

method = "ML",

range = c(-5, 5),

norm.prior = c(@, 1),

nquad = 41,

weights = NULL,
ncore = 1,

verbose = TRUE,

S3 method for class 'est_item'
rdif(

X,

group,

focal.name,

item.skip = NULL,

alpha = 0.05,

missing = NA,

purify = FALSE,

purify.by = c("rdifrs”, "rdifr"”, "rdifs"),
max.iter = 10,

min.resp = NULL,

method = "ML",

range = c(-5, 5),

norm.prior = c(0@, 1),

nquad = 41,

weights = NULL,
ncore = 1,

verbose = TRUE,

Arguments

X

A data frame containing item metadata (e.g., item parameters, number of cat-
egories, IRT model types, etc.); or an object of class est_irt obtained from
est_irt(), orest_itemfrom est_item().

See est_irt() or simdat() for more details about the item metadata. This data
frame can be easily created using the shape_df () function.

Additional arguments passed to the est_score() function.

112 rdif

data A matrix of examinees’ item responses corresponding to the items specified in
the x argument. Rows represent examinees and columns represent items.

score A numeric vector containing examinees’ ability estimates (theta values). If not
provided, rdif () will estimate ability parameters internally before computing
the RDIF statistics. See est_score() for more information on scoring methods.
Default is NULL.

group A numeric or character vector indicating examinees’ group membership. The
length of the vector must match the number of rows in the response data matrix.

focal.name A single numeric or character value specifying the focal group. For instance,
given group =c(@, 1, @, 1, 1) and ’1’ indicating the focal group, set focal.name
=1.

item.skip A numeric vector of item indices to exclude from DIF analysis. If NULL, all
items are included. Useful for omitting specific items based on prior insights.

D A scaling constant used in IRT models to make the logistic function closely
approximate the normal ogive function. A value of 1.7 is commonly used for
this purpose. Default is 1.

alpha A numeric value specifying the significance level («) for hypothesis testing us-
ing the RDIF statistics. Default is 0. 05.

missing A value indicating missing responses in the data set. Default is NA.

purify Logical. Indicates whether to apply a purification procedure. Default is FALSE.

purify.by A character string specifying which RDIF statistic is used to perform the pu-

rification. Available options are "rdifrs" for RDIFrg, "rdift" for RDIFr, and
"rdifs" for RDIFs.

max.iter A positive integer specifying the maximum number of iterations allowed for the
purification process. Default is 10.

min.resp A positive integer specifying the minimum number of valid item responses re-
quired from an examinee in order to compute an ability estimate. Default is
NULL. See Details for more information.

method A character string indicating the scoring method to use. Available options are:

e "ML": Maximum likelihood estimation
e "WL": Weighted likelihood estimation (Warm, 1989)
e "MAP": Maximum a posteriori estimation (Hambleton et al., 1991)
* "EAP": Expected a posteriori estimation (Bock & Mislevy, 1982)
Default is "ML".
range A numeric vector of length two specifying the lower and upper bounds of the
ability scale. This is used for the following scoring methods: "ML", "WL", and
"MAP". Defaultis c(-5, 5).
norm.prior A numeric vector of length two specifying the mean and standard deviation of
the normal prior distribution. These values are used to generate the Gaussian
quadrature points and weights. Ignored if method is "ML" or "WL". Default is
c(o, 1).
nquad An integer indicating the number of Gaussian quadrature points to be generated

from the normal prior distribution. Used only when method is "EAP". Ignored
for "ML", "WL", and "MAP". Default is 41.

rdif

113

weights A two-column matrix or data frame containing the quadrature points (in the
first column) and their corresponding weights (in the second column) for the
latent variable prior distribution. The weights and points can be conveniently
generated using the function gen.weight().
If NULL and method = "EAP", default quadrature values are generated based on
the norm.prior and nquad arguments. Ignored if method is "ML", "WL", or
"MAP".

ncore An integer specifying the number of logical CPU cores to use for parallel pro-
cessing. Default is 1. See est_score() for details.

verbose Logical. If TRUE, progress messages from the purification procedure will be
displayed; if FALSE, the messages will be suppressed. Default is TRUE.

Details

The RDIF framework (Lim & Choe, 2023; Lim et al., 2022) consists of three IRT residual-based
statistics: RDIFr, RDIFg, and RDIFRrg. Under the null hypothesis that a test contains no
DIF items, RDIFr and RDI Fs asymptotically follow standard normal distributions. RDIFrg is
based on a bivariate normal distribution of the RDIFr and RDI Fg statistics, and under the null
hypothesis, it asymptotically follows a x? distribution with 2 degrees of freedom. See Lim et al.
(2022) for more details about the RDIF framework.

The rdif () function computes all three RDIF statistics: RDIFr, RDIFg, and RDIFRrg. The
current version of rdif () supports both dichotomous and polytomous item response data. Note
that for polytomous items, net DIF are assessed. To evaluate global DIF for polytomous items, use
crdif () function.

To compute the RDIF statistics, the rdif () function requires: (1) item parameter estimates ob-
tained from aggregate data (regardless of group membership), (2) examinees’ ability estimates (e.g.,
ML), and (3) examinees’ item response data. Note that the ability estimates must be based on the
aggregate-data item parameters. The item parameter estimates should be provided in the x argu-
ment, the ability estimates in the score argument, and the response data in the data argument.
If ability estimates are not provided (i.e., score = NULL), rdif () will estimate them automatically
using the scoring method specified via the method argument (e.g., method = "ML").

The group argument should be a vector containing exactly two distinct values (either numeric or
character), representing the reference and focal groups. Its length must match the number of rows
in the response data, where each element corresponds to an examinee. Once group is specified, a
single numeric or character value must be provided in the focal.name argument to indicate which
level in group represents the focal group.

Similar to other DIF detection approaches, the RDIF framework supports an iterative purification
process. When purify = TRUE, purification is conducted using one of the RDIF statistics specified
in the purify.by argument (e.g., purify.by = "rdifrs"). At each iteration, examinees’ ability
estimates are recalculated based on the set of purified items using the scoring method specified in
the method argument. The purification process continues until no additional DIF items are identified
or the maximum number of iterations specified in max.iter is reached. See Lim et al. (2022) for
more details on the purification procedure.

Scoring based on a small number of item responses can lead to large standard errors, potentially
reducing the accuracy of DIF detection in the RDIF framework. The min.resp argument can be
used to exclude examinees with insufficient response data from scoring, especially during the pu-
rification process. For example, if min.resp is not NULL (e.g., min.resp = 5), examinees who

114

rdif

responded to fewer than five items will have all their responses treated as missing (i.e., NA). As a
result, their ability estimates will also be missing and will not be used in the computation of RDIF
statistics. If min.resp = NULL, a score will be computed for any examinee with at least one valid

item response.

Value

This function returns a list containing four main components:

no_purify

purify
with_purify

alpha

A list of sub-objects containing the results of DIF analysis without applying a
purification procedure. The sub-objects include:

dif_stat A data frame summarizing the RDIF analysis results for all items.
The columns include: item ID, RDIFg statistic, standardized RDIFg,
RDIFg statistic, standardized RDIFs, RDIFRrg statistic, p-values for
RDIFR, RDIFg, and RDIFRg, sample sizes for the reference and focal
groups, and total sample size. Note that RDIFrg does not have a stan-
dardized value because it is a y2-based statistic.

moments A data frame reporting the first and second moments of the RDIF
statistics. The columns include: item ID, mean and standard deviation of
RDIFgr, mean and standard deviation of RDIFg, and the covariance be-
tween RDIFgr and RDIFg.

dif_item A list of three numeric vectors identifying items flagged as DIF by
each RDIF statistic: RDIFr, RDIFg, and RDIFRg.

score A numeric vector of ability estimates used to compute the RDIF statistics.
A logical value indicating whether the purification procedure was applied.

A list of sub-objects containing the results of DIF analysis with a purification
procedure. The sub-objects include:

purify.by A character string indicating the RDIF statistic used for purification.
Possible values are "rdifr", "rdifs", and "rdifrs", corresponding to RDIFg,
RDIFs, and RDIFRg, respectively.

dif_stat A data frame reporting the RDIF analysis results for all items across
the final iteration. Same structure as in no_purify, with one additional
column indicating the iteration number in which each result was obtained.

moments A data frame reporting the moments of RDIF statistics across the
final iteration. Includes the same columns as in no_purify, with an addi-
tional column for the iteration number.

dif_item A list of three numeric vectors identifying DIF items flagged by each
RDIF statistic.

n.iter An integer indicating the total number of iterations performed during the
purification process.

score A numeric vector of purified ability estimates used to compute the final
RDIF statistics.

complete A logical value indicating whether the purification process converged.
If FALSE, the maximum number of iterations was reached without conver-
gence.

A numeric value indicating the significance level («) used in hypothesis testing
for RDIF statistics.

rdif

115

Methods (by class)

e rdif(default): Default method for computing the three RDIF statistics using a data frame
x that contains item metadata

* rdif(est_irt): An object created by the function est_irt().
e rdif(est_item): An object created by the function est_item().

Author(s)

Hwanggyu Lim <hglim83@gmail.com>

References

Lim, H., & Choe, E. M. (2023). Detecting differential item functioning in CAT using IRT residual
DIF approach. Journal of Educational Measurement, 60(4), 626-650. doi:10.1111/jedm.12366.

Lim, H., Choe, E. M., & Han, K. T. (2022). A residual-based differential item functioning de-
tection framework in item response theory. Journal of Educational Measurement, 59(1), 80-104.
doi:10.1111/jedm.12313.

See Also

est_irt(), est_item(), simdat(), shape_df (), est_score()

Examples

Load required package
library("dplyr")

Uniform DIF detection

HHHHHHHA A A
(1) Generate data with known uniform DIF
HHHHHHH

Import the "-prm.txt"” output file from flexMIRT
flex_sam <- system.file("extdata”, "flexmirt_sample-prm.txt"”, package = "irtQ")

Select 36 non-DIF items using the 3PLM model

par_nstd <-
bring.flexmirt(file = flex_sam, "par")$Group1$full_df %>%
dplyr::filter(.data$model == "3PLM") %>%

dplyr::filter(dplyr::row_number() %in% 1:36) %>%
dplyr::select(1:6)
par_nstd$id <- paste@("nondif”, 1:36)

Generate 4 new DIF items for the reference group
difpar_ref <-
shape_df(
par.drm = list(a = c(0.8, 1.5, 0.8, 1.5), b = c(0.9, 0.0, -0.5, -0.5), g = 0.15),
item.id = paste@("dif"”, 1:4), cats = 2, model = "3PLM"

https://doi.org/10.1111/jedm.12366
https://doi.org/10.1111/jedm.12313

116 rdif

Add uniform DIF by shifting the b-parameters for the focal group
difpar_foc <-

difpar_ref %>%

dplyr::mutate_at(.vars = "par.2", .funs = function(x) x + rep(0.7, 4))

Combine the DIF and non-DIF items for both reference and focal groups
Therefor, the first 4 items exhibit uniform DIF

par_ref <- rbind(difpar_ref, par_nstd)

par_foc <- rbind(difpar_foc, par_nstd)

Generate true ability values
set.seed(123)

theta_ref <- rnorm(500, 0.0, 1.0)
theta_foc <- rnorm(500, 0.0, 1.0)

Simulate response data

resp_ref <- simdat(par_ref, theta = theta_ref, D
resp_foc <- simdat(par_foc, theta = theta_foc, D
data <- rbind(resp_ref, resp_foc)

D
»

AR AR R
(2) Estimate item and ability parameters

from the combined response data
SR AR R

Estimate item parameters
est_mod <- est_irt(data = data, D = 1, model = "3PLM")
est_par <- est_mod$par.est

Estimate ability parameters using ML
score <- est_score(x = est_par, data = data, method = "ML")$est.theta

HHHHHHHHHHEHEE AR AR
(3) Perform DIF analysis
HHHHHHHA A AR

Define group membership: 1 = focal group
group <- c(rep(@, 500), rep(1, 500))

(a)-1 Compute RDIF statistics with provided ability scores
(no purification)
dif_nopuri_1 <- rdif(
X = est_par, data = data, score = score,
group = group, focal.name = 1, D = 1, alpha = 0.05
)
print(dif_nopuri_1)

(a)-2 Compute RDIF statistics without providing ability scores
(no purification)
dif_nopuri_2 <- rdif(

x = est_par, data = data, score = NULL,

group = group, focal.name = 1, D = 1, alpha = 0.05,

method = "ML"

reval _mst 117

)
print(dif_nopuri_2)

(b)-1 Compute RDIF statistics with purification based on RDIF(R)
dif_puri_r <- rdif(
X = est_par, data = data, score = score,
group = group, focal.name = 1, D = 1, alpha = 0.05,
purify = TRUE, purify.by = "rdifr"”
)
print(dif_puri_r)

(b)-2 Compute RDIF statistics with purification based on RDIF(S)
dif_puri_s <- rdif(
x = est_par, data = data, score = score,
group = group, focal.name = 1, D = 1, alpha = 0.05,
purify = TRUE, purify.by = "rdifs”
)
print(dif_puri_s)

(b)-3 Compute RDIF statistics with purification based on RDIF(RS)
dif_puri_rs <- rdif(
X = est_par, data = data, score = score,
group = group, focal.name = 1, D = 1, alpha = 0.05,
purify = TRUE, purify.by = "rdifrs”
)
print(dif_puri_rs)

reval_mst Recursion-based MST evaluation method

Description

This function evaluates the measurement precision and bias in Multistage-adaptive Test (MST) pan-
els using a recursion-based evaluation method introduced by Lim et al. (2020). This function com-
putes conditional biases and standard errors of measurement (CSEMs) across a range of IRT ability
levels, facilitating efficient and accurate MST panel assessments without extensive simulations.

Usage

reval_mst(
X,
D=1,
route_map,
module,
cut_score,
theta = seq(-5, 5, 1),

118

reval _mst

intpol = TRUE,
range.tcc = c(-7, 7),

tol = 1e-04

Arguments

X

route_map

module

cut_score

theta

intpol

A data frame containing the metadata for the item bank, which includes impor-
tant information for each item such as the number of score categories and the
IRT model applied. This metadata is essential for evaluating the MST panel,
with items selected based on the specifications in the module argument. To con-
struct this item metadata efficiently, the shape_df () function is recommended.
Further details on utilizing item bank metadata along with module for MST
panel evaluation are provided below.

A scaling constant used in IRT models to make the logistic function closely
approximate the normal ogive function. A value of 1.7 is commonly used for
this purpose. Default is 1.

A binary square matrix that defines the MST structure, illustrating transitions
between modules and stages. This concept and structure are inspired by the
transMatrix argument in the randomMST() function from the mstR package
(Magis et al., 2017), which provides a framework for representing MST path-
ways. For comprehensive understanding and examples of constructing route_map,
refer to the mstR package (Magis et al., 2017) documentation. Also see below
for details.

A binary matrix that maps items from the item bank specified in x to mod-
ules within the MST framework. This parameter’s structure is analogous to the
modules argument in the randomMST () function of the mstR package, enabling
precise item-to-module assignments for MST configurations. For detailed in-
structions on creating and utilizing the module matrix effectively, consult the
documentation of the mstR package (Magis et al., 2017). Also see below for
details.

A list defining cut scores for routing test takers through MST stages. Each
list element is a vector of cut scores for advancing participants to subsequent
stage modules. In a 1-3-3 MST configuration, for example, cut_score might be
defined as cut_score =1list(c(-0.5, 0.5), c(-0.6, 0.6)), where c(-0.5,
0.5) are thresholds for routing from the first to the second stage, and c(-0.6,
0.6) for routing from the second to the third stage. This setup facilitates tailored
test progression based on performance. Further examples and explanations are
available below.

A vector of ability levels (theta) at which the MST panel’s performance is as-
sessed. This allows for the evaluation of measurement precision and bias across
a continuum of ability levels. The default range is theta = seq(-5, 5, 0.1).

A logical value to enable linear interpolation in the inverse test characteristic
curve (TCC) scoring, facilitating ability estimate approximation for observed
sum scores not directly obtainable from the TCC, such as those below the sum
of item guessing parameters. Default is TRUE, applying interpolation to bridge
gaps in the TCC. Refer to est_score() for more details and consult Lim et al.
(2020) for insights into the interpolation technique within inverse TCC scoring.

reval _mst 119

range.tcc A vector to define the range of ability estimates for inverse TCC scoring, ex-
pressed as the two numeric values for lower and upper bounds. Default is to
c(-7,7).
tol A numeric value of the convergent tolerance for the inverse TCC scoring. For
the inverse TCC scoring, the bisection method is used for optimization. Default
is le-4.
Details

The reval_mst() function evaluates an MST panel by implementing a recursion-based method
to assess measurement precision across IRT ability levels. This approach, detailed in Lim et al.
(2020), enables the computation of conditional biases and CSEMs efficiently, bypassing the need
for extensive simulations traditionally required for MST evaluation.

The module argument, used in conjunction with the item bank metadata x, systematically organizes
items into modules for MST panel evaluation. Each row of x corresponds to an item, detailing its
characteristics like score categories and IRT model. The module matrix, structured with the same
number of rows as x and columns representing modules, indicates item assignments with 1s. This
precise mapping enables the reval_mst () function to evaluate the MST panel’s performance by
analyzing how items within each module contribute to measurement precision and bias, reflecting
the tailored progression logic inherent in MST designs.

The route_map argument is essential for defining the MST’s structure by indicating possible tran-
sitions between modules. Similar to the transMatrix() in the mstR package (Magis et al., 2017),
route_map is a binary matrix that outlines which module transitions are possible within an MST
design. Each "1" in the matrix represents a feasible transition from one module (row) to another
(column), effectively mapping the flow of test takers through the MST based on their performance.
For instance, a "1" at the intersection of row i and column j indicates the possibility for test takers to
progress from the module corresponding to row i directly to the module denoted by column j. This
structure allows reval_mst() to simulate and evaluate the dynamic routing of test takers through
various stages and modules of the MST panel.

To further detail the cut_score argument with an illustration: In a 1-3-3 MST configuration, the
list cut_score = 1ist(c(-0.5, 8.5), c(-0.6, @.6)) operates as a decision guide at each stage.
Initially, all test takers start in the first module. Upon completion, their scores determine their next
stage module: scores below -0.5 route to the first module of the next stage, between -0.5 and 0.5 to
the second, and above 0.5 to the third. This pattern allows for dynamic adaptation, tailoring the test
path to individual performance levels.

Value

This function returns a list of seven internal objects. The four objects are:

panel.info A list of several sub-objects containing detailed information about the MST
panel configuration, including:

config A nested list indicating the arrangement of modules across stages, show-
ing which modules are included in each stage. For example, the first stage
includes module 1, the second stage includes modules 2 to 4, and so forth.

pathway A matrix detailing all possible pathways through the MST panel.
Each row represents a unique path a test taker might take, based on their
performance and the cut scores defined.

120

item.by.mod

item.by.path

eq. theta

cdist.by.mod

jdist.by.path

eval.tb

reval _mst

n.module A named vector indicating the number of modules available at each
stage.

n.stage A single numeric value representing the total number of stages in the
MST panel.

A list where each entry represents a module in the MST panel, detailing the
item metadata within that module. Each module’s metadata includes item IDs,
the number of categories, the IRT model used (model), and the item parameters
(e.g., par.1, par.2, par.3).

A list containing item metadata arranged according to the paths through the MST
structure. This detailed breakdown allows for an analysis of item characteristics
along specific MST paths. Each list entry corresponds to a testing stage and
path, providing item metadata. This structure facilitates the examination of how
items function within the context of each unique path through the MST.

Estimated ability levels (8) corresponding to the observed scores, derived from
the inverse TCC scoring method. This provides the estimated 6 values for each
potential pathway through the MST stages. For each stage, 6 values are calcu-
lated for each path, indicating the range of ability levels across the test takers.
For instance, in a three-stage MST, the eq. theta list may contain 6 estimates
for multiple paths within each stage, reflecting the progression of ability esti-
mates as participants move through the test. The example below illustrates the
structure of eq. theta output for a 1-3-3 MST panel with varying paths:

stage.l path.1 shows 6 estimates ranging from -7 to +7, demonstrating the
initial spread of abilities.

stage.2 Multiple paths (path.1, path.2, ...) each with their own 6 estimates,
indicating divergence in ability levels based on test performance.

stage.3 Further refinement of 6 estimates across paths, illustrating the final es-
timation of abilities after the last stage.

A list where each entry contains the conditional distributions of the observed
scores for each module given the ability levels.

Joint distributions of observed scores for different paths at each stage in a MST
panel. The example below outlines the organization of jdist.by.path data in
a hypothetical 1-3-3 MST panel:

stage.l Represents the distribution at the initial stage, indicating the broad spread
of test-taker abilities at the outset.

stage.2 Represents the conditional joint distributions of the observed scores as
test-takers move through different paths at the stage 2, based on their per-
formance in earlier stages.

stage.3 Represents a further refinement of joint distribution of observed scores
as test-takers move through different paths at the final stage 3, based on
their performance in earlier stages.

A table summarizing the measurement precision of the MST panel. It contains
the true ability levels (theta) with the mean ability estimates (mu), variance
(sigma2), bias, and conditional standard error of measurement (CSEM) given
the true ability levels. This table highlights the MST panel’s accuracy and pre-
cision across different ability levels, providing insights into its effectiveness in
estimating test-taker abilities.

reval _mst 121

Author(s)

Hwanggyu Lim <hglim83@gmail.com>

References

Magis, D., Yan, D., & Von Davier, A. A. (2017). Computerized adaptive and multistage testing
with R: Using packages catR and mstR. Springer.

Lim, H., Davey, T., & Wells, C. S. (2020). A recursion-based analytical approach to evaluate the
performance of MST. Journal of Educational Measurement, 58(2), 154-178.

See Also

shape_df (), est_score()

Examples

B~
Evaluation of a 1-3-3 MST panel using simMST data.

This simulation dataset was utilized in Lim et al.'s (2020) simulation study.

Details:

(a) Panel configuration: 1-3-3 MST panel

(b) Test length: 24 items (each module contains 8 items across all stages)

(c) IRT model: 3-parameter logistic model (3PLM)

-
Load the necessary library

library(dplyr)

library(tidyr)

library(ggplot2)

Import item bank metadata
X <- simMST$item_bank

Import module information
module <- simMST$module

Import routing map
route_map <- simMST$route_map

Import cut scores for routing to subsequent modules
cut_score <- simMST$cut_score

Import ability levels (theta) for evaluating measurement precision
theta <- simMST$theta

Evaluate MST panel using the reval_mst() function
eval <-
reval_mst(x,
D = 1.702, route_map = route_map, module = module,
cut_score = cut_score, theta = theta, range.tcc = c(-5, 5)

)

122 run_flexmirt

Review evaluation results

The evaluation result table below includes conditional biases and
standard errors of measurement (CSEMs) across ability levels
print(eval$eval.tb)

Generate plots for biases and CSEMs
p_eval <-
eval$eval.tb %>%
dplyr::select(theta, bias, csem) %>%
tidyr::pivot_longer(
cols = c(bias, csem),
names_to = "criterion”, values_to = "value"
) %%
ggplot2::ggplot(mapping = ggplot2::aes(x = theta, y = value)) +
ggplot2: :geom_point(mapping = ggplot2::aes(shape = criterion), size = 3) +
ggplot2::geom_line(
mapping = ggplot2::aes(
color = criterion,
linetype = criterion
),
linewidth = 1.5
) +
ggplot2::1labs(x = expression(theta), y = NULL) +
ggplot2::theme_classic() +
ggplot2::theme_bw() +
ggplot2::theme(legend.key.width = unit(1.5, "cm"))
print(p_eval)

run_flexmirt Run flexMIRT from Within R

Description

This function runs flexMIRT (Cai, 2017) from within R by executing a model specified in a flexMIRT
syntax file (i.e., *.flexmirt). To use this function, the flexMIRT software must be installed on your
system. This interface is especially useful for conducting simulation studies or automating batch
analyses involving flexMIRT.

Usage

run_flexmirt(file.syntax, dir.flex = NULL, show.output.on.console = FALSE, ...)
Arguments

file.syntax A single string or character vector specifying the path(s) to one or more flexMIRT

syntax files (with extension *.flexmirt) to be executed. For example: "C: /Users/Data/irtmodel. flexm:

run_flexmirt 123

dir.flex A character string specifying the directory where flexMIRT is installed. The
folder name typically includes "flexMIRT" (e.g., "flexMIRT3", "flexMIRT 3.6").
If set to NULL, the function searches for flexMIRT in "C:/Program Files"” and
uses a default path if found (e.g., "C: /Program Files/f1exMIRT3").

show.output.on.console

Logical. If TRUE, the output of the system command is printed to the R console.
Default is FALSE. See base: :system().

Additional arguments passed to base: : system().

Details

When using a version of flexMIRT earlier than 3.6, the directory specified in dir. f1ex must contain
the following six files:

* WinFlexMIRT.exe

* FlexMIRT_x64.exe

* FlexMIRT_x86.exe

e vpg.dll

e vpg.licensing.client.dll

e vpg.licensing.dll
For flexMIRT version 3.6 or later, the directory must include the following five files:

* WinFlexMIRT.exe

* vpg.dll

e vpg.licensing.client.dll
* vpg.licensing.dll

* VPGLicenseClientNet.dll

along with a subdirectory named Resources that contains the following two files:

e f1exMIRT_x64_AVX.exe
e f1exMIRT_x86_AVX.exe

Value

Output files generated by flexMIRT.

Author(s)

Hwanggyu Lim <hglim83@gmail.com>

References

Cai, L. (2017). flexMIRT 3.5 Flexible multilevel multidimensional item analysis and test scoring
(Computer Software). Chapel Hill, NC: Vector Psychometric Group.

124 shape_df

Examples

Examples below will run if the flexMIRT software is installed
in the default directory "C:/Program Files/flexMIRT3".

Otherwise, specify the directory where flexMIRT is installed
using the 'dir.flex' argument.

Not run:

(1) Run a single syntax file

Load an example flexMIRT syntax file for estimating item parameters using the 2PL model
file.syntax <- system.file("extdata”, "2PLM_example.flexmirt", package = "irtQ")

Run flexMIRT to estimate item parameters for the 2PL model
run_flexmirt(file.syntax = file.syntax, dir.flex = NULL, show.output = TRUE)

Check the output file
out.file <- system.file("extdata”, "2PLM_example-prm.txt"”, package = "irtQ")
bring.flexmirt(out.file, type = "par")

(2) Run multiple syntax files

Load two example flexMIRT syntax files

file.syntax1 <- system.file("extdata”, "2PLM_example.flexmirt”, package = "irtQ")
file.syntax2 <- system.file("extdata”, "3PLM_example.flexmirt”, package = "irtQ")

Run flexMIRT to estimate item parameters for both models
run_flexmirt(file.syntax = c(file.syntax1, file.syntax2), dir.flex = NULL, show.output = FALSE)

Check the output files

out.filel <- system.file("extdata”, "2PLM_example-prm.txt"”, package = "irtQ")
out.file2 <- system.file("extdata”, "3PLM_example-prm.txt", package = "irtQ")
bring.flexmirt(out.filel, type = "par")

bring.flexmirt(out.file2, type = "par")

End(Not run)

shape_df Create a Data Frame of Item Metadata

Description

This function creates a data frame of item metadata—including item parameters, the number of
score categories, and IRT model specifications—to be used in various IRT-related analyses within
the irtQ package.

Usage
shape_df (
par.drm = list(a = NULL, b = NULL, g = NULL),
par.prm = list(a = NULL, d = NULL),

shape_df

125

item.id = NULL,

cats,
model,

default.par = FALSE

Arguments

par.drm

par.prm

item.id

cats

model

default.par

Details

A list containing three numeric vectors for dichotomous item parameters: item
discrimination (a), item difficulty (b), and guessing parameters (g).

A list containing polytomous item parameters. The list must include a numeric
vector a for item discrimination (slope) parameters, and a list d of numeric vec-
tors specifying difficulty (or threshold) parameters for each item. See the Details
section for more information.

A character vector of item IDs. If NULL, default IDs (e.g., "V1", "V2", ...) are
assigned automatically.

A numeric vector indicating the number of score categories for each item.

A character vector specifying the IRT model for each item. Available options
are "1PLM", "2PLM", "3PLM", and "DRM" for dichotomous items, and "GRM" and
"GPCM" for polytomous items. The label "DRM" serves as a general category
that encompasses all dichotomous models ("1PLM", "2PLM", and "3PLM"), while
"GRM" and "GPCM" refer to the graded response model and (generalized) partial
credit model, respectively.

Logical. If TRUE, default item parameters are generated based on the specified
cats and model. In this case, the slope parameter is set to 1, all difficulty (or
threshold) parameters are set to 0, and the guessing parameter is set to 0.2 for
"3PLM" or "DRM" items. The default is FALSE.

For any item where "1PLM" or "2PLM" is specified in model, the guessing parameter will be set to
NA. If model is a vector of length 1, the specified model will be replicated across all items.

As in the simdat () function, when constructing a mixed-format test form, it is important to specify
the cats argument to reflect the correct number of score categories for each item, in the exact order
that the items appear. See simdat () for further guidance on how to specify cats.

When specifying item parameters using par.drm and/or par.prm, the internal structure and order-
ing of elements must be followed.

* par.drm should be a list with three components:

— a: a numeric vector of slope parameters

— b: a numeric vector of difficulty parameters

— g: anumeric vector of guessing parameters

* par.prm should be a list with two components:

— a: a numeric vector of slope parameters for polytomous items

— d: alist of numeric vectors specifying threshold (or step) parameters for each polytomous

item

126 shape_df

For items following the (generalized) partial credit model ("GPCM"), the threshold (or step) param-
eters are computed as the overall item difficulty (location) minus the category-specific thresholds.
Therefore, for an item with m score categories, m - 1 step parameters must be provided, since the
first category threshold is fixed and does not contribute to category probabilities.

Value

A data frame containing item metadata, including item IDs, number of score categories, IRT model
types, and associated item parameters. This data frame can be used as input for other functions in
the irtQ package, such as est_irt() or simdat().

Author(s)

Hwanggyu Lim <hglim83@gmail.com>

See Also
est_irt(), simdat(), shape_df_fipc()

Examples

A mixed-format test form
containing five dichotomous items and two polytomous items
Create a list of dichotomous item parameters
par.drm <- list(
a=c(1.1, 1.2, 0.9, 1.8, 1.4),
b=c(.1, -1.6, -0.2, 1.0, 1.2),
g = rep(0.2, 5)
)

Create a list of polytomous item parameters
par.prm <- list(
a=c(1.4, 0.6),
d = list(
c(0.0, -1.9, 1.2),
c(0.4, -1.1, 1.5, 0.2)
)
)

Create a numeric vector indicating the number of score categories for each item
cats <- c(2, 4, 2, 2, 5, 2, 2)

Create a character vector specifying the IRT model for each item
model <- c("DRM", "GRM"”, "DRM", "DRM", "GPCM", "DRM", "DRM")

Generate an item metadata set using the specified parameters
shape_df (par.drm = par.drm, par.prm = par.prm, cats = cats, model = model)

An empty item metadata frame with five dichotomous items and two polytomous items
Create a numeric vector indicating the number of score categories for each item
cats <- ¢c(2, 4, 3, 2, 5, 2, 2)

shape_df_fipc 127

Create a character vector specifying the IRT model for each item
model <- c("1PLM", "GRM", "GRM", "2PLM", "GPCM", "DRM", "3PLM")

Generate an item metadata frame with default parameters
shape_df (cats = cats, model = model, default.par = TRUE)

A single-format test form consisting of five dichotomous items
Generate the item metadata
shape_df (par.drm = par.drm, cats = rep(2, 5), model = "DRM")

shape_df_fipc Combine fixed and new item metadata for fixed-item parameter cali-
bration (FIPC)

Description

This function merges existing fixed-item metadata with automatically generated metadata for new
items, producing a single data frame ordered by specified test positions, to facilitate fixed item
parameter calibration using est_irt().

Usage
shape_df_fipc(x, fix.loc = NULL, item.id = NULL, cats, model)

Arguments
X A data.frame of metadata for items whose parameters remain fixed (e.g., output
from shape_df ()).
fix.loc An integer vector specifying the row positions in the final output where fixed
items should be placed.
item.id A character vector of IDs for new items whose parameters will be estimated.If
NULL, default IDs (e.g., "V1", "V2", ...) are assigned automatically.
cats An integer vector indicating the number of response categories for each new
item; order must match item.id.
model A character vector of IRT model names for each new item. Valid options for di-
chotomous items: "1PLM", "2PLM", "3PLM", "DRM"; for polytomous items:
"GRM", "GPCM".
Details

To use this function, first prepare a metadata frame x containing only fixed items—either created
by shape_df () or imported from external software (e.g., via bring.flexmirt()), which must
include columns id, cats, model, and all relevant parameter columns (par.1, par.2, etc.). The
fix.loc argument should then specify the exact row positions in the final test form where these
fixed items should remain. The length of fix.loc must match the number of rows in x, and the
order of positions in fix.loc determines where each fixed-item row is placed.

128 simCAT_DC

Next, provide information for the new items whose parameters will be estimated. Supply vectors
for item. id, cats, and model matching the number of new items (equal to total form length minus
length of fix.loc). If item.id is NULL, unique IDs are generated automatically.

Value

A data.frame containing combined metadata for all items (fixed and new), ordered by test position.

Author(s)

Hwanggyu Lim <hglim83@gmail.com>

See Also

shape_df ()

Examples

Import the flexMIRT parameter output file
prm_file <- system.file("extdata”, "flexmirt_sample-prm.txt"”, package = "irtQ")
x_fixed <- bring.flexmirt(file = prm_file, "par")$Group1$full_df

Define positions of fixed items in the test form
fixed_pos <- c(1:40, 43:57)

Specify IDs, models, and category counts for new items
new_ids <- paste@("NI", 1:6)

new_models <- c(”3PLM", "1PLM”, "2PLM”, "GRM”, "GRM”, "GPCM")
new_cats <- c(2, 2, 2, 4, 5, 6)

Generate combined metadata for FIPC
shape_df_fipc(x = x_fixed, fix.loc = fixed_pos, item.id = new_ids,
cats = new_cats, model = new_models)

simCAT_DC Simulated Single-Item Format CAT Data

Description

A simulated dataset containing an item pool, sparse response data, and examinee ability estimates,
designed for single-item computerized adaptive testing (CAT).

Usage

simCAT_DC

simCAT_MX 129

Format
A list of length three:

item_pool A data frame in item metadata format containing 100 dichotomous items.

 Items 1-90: Generated and calibrated under the IRT 2PL model.
e Items 91-100: Generated under the IRT 3PL model but calibrated using the 2PL model.

response_data A sparse matrix of item responses from 10,000 examinees.

theta_estimates A numeric vector of ability estimates for the 10,000 examinees.

Author(s)

Hwanggyu Lim <hglim83@gmail.com>

simCAT_MX Simulated Mixed-Item Format CAT Data

Description

A simulated dataset for computerized adaptive testing (CAT), containing an item pool, sparse re-
sponse data, and examinee ability estimates. The item pool includes both dichotomous and polyto-
mous items.

Usage

simCAT_MX

Format

A list of length three:
item_pool A data frame in item metadata format consisting of 200 dichotomous items and 30
polytomous items.

* Dichotomous items: Calibrated using the IRT 3PL model.

* Polytomous items: Calibrated using the Generalized Partial Credit Model (GPCM), with
three score categories (0, 1, 2).

response_data A sparse matrix of item responses from 30,000 examinees.

theta_estimates A numeric vector of ability estimates for the 30,000 examinees.

Author(s)

Hwanggyu Lim <hglim83@gmail.com>

130 simdat

simdat Simulated Response Data

Description

This function generates simulated response data for single-format or mixed-format test forms. For
dichotomous item response data, the IRT 1PL, 2PL, and 3PL models are supported. For polytomous
item response data, the graded response model (GRM), the partial credit model (PCM), and the
generalized partial credit model (GPCM) are supported.

Usage
simdat(
x = NULL,
theta,
a.drm,
b.drm,
g.drm = NULL,
a.prm,
d.prm,
cats,
pr.model,
D=1
)
Arguments
X A data frame containing item metadata. This metadata is required to retrieve
essential information for each item (e.g., number of score categories, IRT model
type, etc.) necessary for calibration. You can create an empty item metadata
frame using the function shape_df (). See below for more details. Default is
NULL.
theta A numeric vector of ability (theta) values.
a.drm A numeric vector of item discrimination (slope) parameters for dichotomous
IRT models.
b.drm A numeric vector of item difficulty parameters for dichotomous IRT models.
g.drm A numeric vector of guessing parameters for dichotomous IRT models.
a.prm A numeric vector of item discrimination (slope) parameters for polytomous IRT
models.
d.prm A list of numeric vectors, where each vector contains difficulty (threshold) pa-
rameters for a polytomous item.
cats A numeric vector indicating the number of score categories for each item.
pr.model A character vector specifying the polytomous IRT model used to simulate re-

sponses for each polytomous item. Each element should be either "GRM"
(graded response model) or "GPCM" (generalized partial credit model).

simdat 131

D A scaling constant used in IRT models to make the logistic function closely
approximate the normal ogive function. A value of 1.7 is commonly used for
this purpose. Default is 1.

Details

There are two ways to generate simulated response data. The first is by providing a data frame
of item metadata using the argument x. This data frame must follow a specific structure: the first
column should contain item IDs, the second column should contain the number of unique score
categories for each item, and the third column should specify the IRT model to be fitted to each
item. Available IRT models are:

e "1PLM", "2PLM", "3PLM", and "DRM" for dichotomous item data
* "GRM" and "GPCM" for polytomous item data

Note that "DRM"” serves as a general label covering all dichotomous IRT models (i.e., "1PLM",
"2PLM", and "3PLM"), while "GRM" and "GPCM" represent the graded response model and (gen-
eralized) partial credit model, respectively.

The subsequent columns should contain the item parameters for the specified models. For dichoto-
mous items, the fourth, fifth, and sixth columns represent item discrimination (slope), item diffi-
culty, and item guessing parameters, respectively. When "1PLM" or "2PLM" is specified in the third
column, NAs must be entered in the sixth column for the guessing parameters.

For polytomous items, the item discrimination (slope) parameter should appear in the fourth col-
umn, and the item difficulty (or threshold) parameters for category boundaries should occupy the
fifth through the last columns. When the number of unique score categories differs across items,
unused parameter cells should be filled with NAs.

In the irtQ package, the threshold parameters for GPCM items are expressed as the item location
(or overall difficulty) minus the threshold values for each score category. Note that when a GPCM
item has K unique score categories, K - I threshold parameters are required, since the threshold
for the first category boundary is always fixed at 0. For example, if a GPCM item has five score
categories, four threshold parameters must be provided.

An example of a data frame for a single-format test is shown below:

ITEM1 2 1PLM 1.000 1.461 NA
ITEM2 2 2PLM 1921 -1.049 NA
ITEM3 2 3PLM 1.736 1501 0.203
ITEM4 2 3PLM 0.835 -1.049 0.182
ITEMS 2 DRM 0926 0394 0.099

An example of a data frame for a mixed-format test is shown below:

ITEM1 2 IPLM 1.000 1.461 NA NA NA
ITEM2 2 2PLM 1921 -1.049 NA NA NA
ITEM3 2 3PLM 0926 0.394 0.099 NA NA
ITEM4 2 DRM 1.052 -0.407 0.201 NA NA
ITEMS 4 GRM 1913 -1.869 -1.238 -0.714 NA

5

ITEM6 GRM 1.278 -0.724 -0.068 0.568 1.072

132 simdat

ITEM7 4 GPCM 1.137 -0374 0215 0.848 NA
ITEM8 5 GPCM 1233 -2.078 -1.347 -0.705 -0.116

See the IRT Models section in the irtQ-package documentation for more details about the IRT
models used in the irtQ package. A convenient way to create a data frame for the argument x is by
using the function shape_df ().

The second approach is to simulate response data by directly specifying item parameters, instead
of providing a metadata data frame via the x argument (see examples below). In this case, the
following arguments must also be specified: theta, cats, pr.model, and D.

The g.drm argument is only required when simulating dichotomous item responses under the 3PL
model. It can be omitted entirely if all dichotomous items follow the 1PL or 2PL model. However,
if the test includes a mixture of 1PL, 2PL, and 3PL items, the g.drm vector must be specified for
all items, using NA for non-3PL items. For example, if a test consists of four dichotomous items
where the first two follow the 3PL model and the third and fourth follow the 1PL and 2PL models
respectively, then g.drm=c(@.2, 0.1, NA, NA) should be used.

For dichotomous items, each element in cats should be set to 2. For polytomous items, the number
of unique score categories should be specified in cats. When simulating data for a mixed-format
test, it is important to specify cats in the correct item order. For example, suppose responses are
simulated for 10 examinees across 5 items, including 3 dichotomous items and 2 polytomous items
(each with 3 categories), where the second and fourth items are polytomous. In this case, cats =
c(2, 3, 2, 3, 2) should be used.

Furthermore, if the two polytomous items are modeled using the graded response model and the
generalized partial credit model, respectively, then pr.model = c("GRM", "GPCM").

Value

A matrix or vector of simulated item responses. If a matrix is returned, rows correspond to exami-
nees (theta values) and columns to items.

Author(s)

Hwanggyu Lim <hglim83@gmail.com>

See Also

drm(), prm()

Examples

Example 1:

Simulate response data for a mixed-format test.

The first two polytomous items use the generalized partial credit model (GPCM),
and the last polytomous item uses the graded response model (GRM).

Generate theta values for 100 examinees

theta <- rnorm(100)

Set item parameters for three dichotomous items under the 3PL model
a.drm <- c(1, 1.2, 1.3)
b.drm <- c(-1, 0, 1)

simMG 133

g.drm <- rep(0.2, 3)

Set item parameters for three polytomous items

These items have 4, 4, and 5 response categories, respectively

prm <= ¢(1.3, 1.2, 1.7)

.prm <- list(c(-1.2, -0.3, 0.4), c(-9.2, 0.5, 1.6), c(-1.7, 0.2, 1.1, 2.9))

o o H HF

Specify the number of score categories for all items
This vector also determines the location of polytomous items
cats <- c(2, 2, 4, 4, 5, 2)

Specify the IRT models for the polytomous items
pr.model <- c("GPCM", "GPCM", "GRM")

Simulate the response data
simdat(
theta = theta, a.drm = a.drm, b.drm = b.drm, g.drm = NULL,
a.prm = a.prm, d.prm = d.prm, cats = cats, pr.model = pr.model, D =1

)

Example 2:

Simulate response data for a single-format test using the 2PL model
Specify score categories (2 for each dichotomous item)

cats <- rep(2, 3)

Simulate the response data
simdat(theta = theta, a.drm = a.drm, b.drm = b.drm, cats = cats, D = 1)

Example 3:

Simulate response data using a
Load the flexMIRT parameter file
flex_prm <- system.file("extdata”, "flexmirt_sample-prm.txt", package = "irtQ")

[l

'-prm.txt"” file exported from flexMIRT

Convert the flexMIRT parameters to item metadata
test_flex <- bring.flexmirt(file = flex_prm, "par")$Group1$full_df

Simulate the response data using the item metadata
simdat(x = test_flex, theta = theta, D = 1)

simMG Simulated multiple-group data

Description
This data set has a list consisting of item metadata, item response data, and group names of three
simulated groups.

Usage

simMG

134 simMST

Format

This data set includes a list of three internal objects: (1) a list of item metadata (item.prm) for three
groups, (2) a list of item response data (res.dat) for the three groups, and (3) a vector of group names
(group.name) for the three groups.

The first internal object (item.prm) contains a list of item metadata of three test forms for the three
groups. In terms of test forms, the test forms for the first and second groups have fifty items
consisting of forty seven 3PLM items and three GRM items. The test form for the third group
has thirty eight items consisting of thirty seven 3PLM items and one GRM item. Among the three
forms, the first and second test forms share twelve common items (C1I1 through C1112) and the
second and third test forms share ten common items (C2I1 through c2110). There is no common
item between the first and third forms. The item parameters in the item metadata were used to
simulate the item response data sets for the three groups (see the second object of the list).

Regrading the second internal object, all three response data sets were simulated with 2,000 latent
abilities randomly sampled from N (0, 1) (Group 1), N(0.5,0.82) (Group 2), and N(—0.3,1.32)
(Group 3), respectively, using the true item parameters provided in the item metadata.

The third internal object is a vector of three group names which are "Groupl", "Group2", and
"Group3".

Author(s)

Hwanggyu Lim <hglim83@gmail.com>

simMST Simulated 1-3-3 MST Panel Data

Description

A simulated multistage testing (MST) dataset based on a 1-3-3 panel structure, used in the simula-
tion study by Lim et al. (2020).

Usage

simMST

Format

A list containing five internal objects:

item_bank A data frame of item metadata including item parameters and related information.

module A binary matrix that maps items in the item bank to MST modules. This structure specifies
the item-to-module assignment, similar to the modules argument in the randomMST () function
from the mstR package (Magis et al., 2017).

route_map A binary square matrix that defines the MST transition structure, showing module
pathways across stages. This corresponds to the transMatrix argument in the randomMST ()
function in the mstR package.

summary 135

cut_score A list of numeric vectors specifying the routing cut scores between MST stages. Each
vector represents the cut scores used to determine module transitions for a particular stage.

theta A numeric vector of ability (theta) values used to evaluate the panel’s measurement precision
across the latent trait continuum.

This 1-3-3 MST panel includes 7 modules across 3 stages. Each module contains 8 dichotomously
scored items calibrated under the IRT 3-parameter logistic (3PL) model.

Author(s)

Hwanggyu Lim <hglim83@gmail.com>

References

Magis, D., Yan, D., & von Davier, A. A. (2017). Computerized adaptive and multistage testing with
R: Using packages catR and mstR. Springer.

Lim, H., Davey, T., & Wells, C. S. (2020). A recursion-based analytical approach to evaluate the
performance of MST. Journal of Educational Measurement, 58(2), 154-178.

summary Summary of Item Calibration Results

Description

This S3 method summarizes the IRT calibration results from an object of class est_irt, est_mg,
or est_item, which are returned by the functions est_irt (), est_mg(), and est_item(), respec-
tively.

Usage
summary (object, ...)

S3 method for class 'est_irt'
summary (object, ...)

S3 method for class 'est_mg'
summary (object, ...)

S3 method for class 'est_item'

summary (object, ...)
Arguments
object An object of class est_irt, est_mg, or est_item.

Additional arguments passed to or from other methods (currently not used).

136 sx2_fit

Value

A list of internal components extracted from the given object. In addition, the summary method
prints an overview of the IRT calibration results to the console.

Methods (by class)

* summary(est_irt): An object created by the function est_irt().
* summary(est_mg): An object created by the function est_mg().

* summary(est_item): An object created by the function est_item().

Author(s)
Hwanggyu Lim <hglim83@gmail.com>

See Also

est_irt(), est_mg(), est_item()

Examples
Fit the 1PL model to LSAT6 data and constrain the slope parameters to be equal
fit.1pl <- est_irt(data = LSAT6, D = 1, model = "1PLM", cats = 2, fix.a.1pl = FALSE)

Display the calibration summary
summary (fit.1pl)

sx2_fit S-X2 Fit Statistic

Description

Computes the S-X? item fit statistic proposed by Orlando and Thissen (2000, 2003). This statistic
evaluates the fit of IRT models by comparing observed and expected item response frequencies
across summed score groups.

Usage

sx2_fit(x, ...)

Default S3 method:
sx2_fit(

X,

data,

D=1,

alpha = 0.05,

sx2_fit 137

min.collapse = 1,
norm.prior = c(@, 1),
nquad = 30,

weights,

pcm.loc = NULL,

)
S3 method for class 'est_item'
sx2_fit(

X,

alpha = 0.05,

min.collapse = 1,
norm.prior = c(0@, 1),
nquad = 30,

weights,

pcm.loc = NULL,

)
S3 method for class 'est_irt'
sx2_fit(

X’

alpha = 0.05,

min.collapse = 1,
norm.prior = c(@, 1),
nquad = 30,

weights,

pcm.loc = NULL,

)
Arguments

X A data frame containing item metadata (e.g., item parameters, number of cat-
egories, IRT model types, etc.); or an object of class est_irt obtained from
est_irt(), orest_itemfrom est_item().
See est_irt() or simdat() for more details about the item metadata. This data
frame can be easily created using the shape_df () function.
Additional arguments passed to or from other methods.

data A matrix of examinees’ item responses corresponding to the items specified in
the x argument. Rows represent examinees and columns represent items.

D A scaling constant used in IRT models to make the logistic function closely
approximate the normal ogive function. A value of 1.7 is commonly used for
this purpose. Default is 1.

alpha A numeric value specifying the significance level («) for the hypothesis test

associated with the S-X?2 statistic. Default is 0.05.

138 sx2_fit

min.collapse An integer specifying the minimum expected frequency required per cell before
adjacent cells are collapsed. Default is 1. See Details.

norm.prior A numeric vector of length two specifying the mean and standard deviation of
the normal prior distribution. These values are used to generate the Gaussian
quadrature points and weights. Ignored if method is "ML", "MLF", "WL", or
"INV.TCC". Defaultis c(0, 1).

nquad An integer specifying the number of Gaussian quadrature points used to approx-
imate the normal prior distribution. Default is 30.

weights A two-column matrix or data frame containing the quadrature points (first col-
umn) and their corresponding weights (second column) for the latent ability
distribution. If omitted, default values are generated using gen.weight() ac-
cording to the norm. prior and nquad arguments.

pcm. loc An optional integer vector indicating the row indices of items that follow the
partial credit model (PCM), where slope parameters are fixed. Default is NULL.

Details

The accuracy of the x? approximation in item fit statistics can be compromised when expected
cell frequencies in contingency tables are too small (Orlando & Thissen, 2000). To address this
issue, Orlando and Thissen (2000) proposed collapsing adjacent summed score groups to ensure a
minimum expected frequency of at least 1.

However, applying this collapsing approach directly to polytomous item data can result in excessive
information loss (Kang & Chen, 2008). To mitigate this, Kang and Chen (2008) instead collapsed
adjacent response categories within each summed score group, maintaining a minimum expected
frequency of 1 per category. The same collapsing strategies are implemented in sx2_fit(). If a
different minimum expected frequency is desired, it can be specified via the min.collapse argu-
ment.

When an item is labeled as "DRM" in the item metadata, it is treated as a 3PLM item when com-
puting the degrees of freedom for the S-X? statistic.

Additionally, any missing responses in the data are automatically replaced with incorrect responses
(i.e., 0s).
Value

A list containing the following components:

fit_stat A data frame summarizing the S-X?2 fit statistics for all items, including the
chi-square value, degrees of freedom, critical value, and p-value.

item_df A data frame containing the item metadata as specified in the input argument x.
exp_freq A list of collapsed expected frequency tables for all items.

obs_freq A list of collapsed observed frequency tables for all items.

exp_prob A list of collapsed expected probability tables for all items.

obs_prop A list of collapsed observed proportion tables for all items.

sx2_fit 139

Methods (by class)
» sx2_fit(default): Default method for computing S-X? fit statistics from a data frame x
containing item metadata.
* sx2_fit(est_item): An object created by the function est_item().

* sx2_fit(est_irt): An object created by the function est_irt().

Author(s)

Hwanggyu Lim <hglim83@gmail.com>

References
Kang, T., & Chen, T. T. (2008). Performance of the generalized S-X2 item fit index for polytomous
IRT models. Journal of Educational Measurement, 45(4), 391-406.

Orlando, M., & Thissen, D. (2000). Likelihood-based item-fit indices for dichotomous item re-
sponse theory models. Applied Psychological Measurement, 24(1), 50-64.

Orlando, M., & Thissen, D. (2003). Further investigation of the performance of S-X2: An item fit
index for use with dichotomous item response theory models. Applied Psychological Measurement,
27(4), 289-298.

See Also

irtfit(), simdat(), shape_df (), est_irt(), est_item()

Examples

Example 1: All five polytomous IRT items follow the GRM
Import the "-prm.txt” output file from flexMIRT
flex_sam <- system.file("extdata”, "flexmirt_sample-prm.txt", package = "irtQ")

Select the item metadata
x <= bring.flexmirt(file = flex_sam, "par")$Groupl$full_df

Generate examinees' abilities from N(@, 1)
set.seed(23)
score <- rnorm(500, mean = @, sd = 1)

Simulate response data

data <- simdat(x = x, theta = score, D = 1)

Compute fit statistics

fitl <- sx2_fit(x = x, data = data, nquad = 30)
Display fit statistics

fit1$fit_stat

Example 2: Items 39 and 40 follow the GRM, and items 53, 54, and 55
#it follow the PCM (with slope parameters fixed to 1)

140 traceline

Replace the model names with "GPCM" and

set the slope parameters of items 53-55 to 1
x[53:55, 3] <- "GPCM"

x[53:55, 4] <- 1

Generate examinees' abilities from N(@, 1)
set.seed(25)
score <- rnorm(1000, mean = @, sd = 1)

Simulate response data

data <- simdat(x = x, theta = score, D = 1)

Compute fit statistics

fit2 <- sx2_fit(x = x, data = data, nquad = 30, pcm.loc = 53:55)

Display fit statistics
fit2$fit_stat

traceline Compute Item/Test Characteristic Functions

Description

This function computes item category probabilities, item characteristic curves (ICCs), and the test
characteristic curve (TCC) for a given set of theta values. The returned object can be used to
visualize these functions using plot.traceline().

Usage

traceline(x, ...)

Default S3 method:
traceline(x, theta, D =1, ...)

S3 method for class 'est_item'
traceline(x, theta, ...)

S3 method for class 'est_irt'

traceline(x, theta, ...)
Arguments
X A data frame containing item metadata (e.g., item parameters, number of cat-

egories, IRT model types, etc.); or an object of class est_irt obtained from
est_irt(), orest_itemfrom est_item().

See est_irt() or simdat() for more details about the item metadata. This data
frame can be easily created using the shape_df () function.

traceline 141

Further arguments passed to or from other methods.

theta A numeric vector of theta values at which item and test characteristic curves are
computed.
D A scaling constant used in IRT models to make the logistic function closely

approximate the normal ogive function. A value of 1.7 is commonly used for
this purpose. Default is 1.

Details

This function computes the item and test characteristic functions commonly used in IRT. For each
item, the function computes the category response probabilities across a specified set of theta values.
These probabilities are used to derive:

* The item characteristic curve (ICC), which represents the expected score of each item as a
function of theta.
» The test characteristic curve (TCC), which is the sum of expected item scores at each theta
value.
The output object can be visualized using the plot.traceline to inspect the relationship between
ability levels (theta) and expected item/test scores.
If the input x is an object of class est_item or est_irt, the function automatically extracts item
parameter estimates and the scaling constant D from the object. Otherwise, a properly formatted
item metadata data frame must be provided.

Value

This function returns an object of class traceline, which is a list containing the following compo-

nents:

prob.cats A list of data frames containing the category response probabilities for each item
across the specified theta values. Each data frame corresponds to an item, with
rows representing theta values and columns representing response categories
(e.g., "resp.0", "resp.1", ...).

icc A numeric matrix representing ICCs. Each column corresponds to an item, and
each row represents the expected item score at a given theta value. The column
names are the item IDs.

tcc A numeric vector representing the TCC, computed as the sum of expected item
scores across all items at each theta value.

theta A numeric vector of theta values at which the item and test information functions

are evaluated. This matches the user-supplied theta argument.

Methods (by class)

* traceline(default): Default method to compute the item category probabilities, item char-
acteristic function, and test characteristic function for a data frame x containing the item meta-
data.

* traceline(est_item): An object created by the function est_item().

e traceline(est_irt): An object created by the function est_irt().

142 write.flexmirt

Author(s)

Hwanggyu Lim <hglim83@gmail.com>

See Also

plot.traceline(), est_irt(), est_item()

Examples

Example using a "-prm.txt"” file exported from flexMIRT
Import the "-prm.txt"” output file from flexMIRT
flex_prm <- system.file("extdata”, "flexmirt_sample-prm.txt"”, package = "irtQ")

Read the item parameters and convert them into item metadata
test_flex <- bring.flexmirt(file = flex_prm, "par”)$Group1$full_df

Define a sequence of theta values
theta <- seq(-3, 3, 0.5)

Compute item category probabilities, ICCs,
and the TCC for the given theta values
traceline(x = test_flex, theta, D = 1)

write.flexmirt Write a "-prm.txt" File for flexMIRT

Description

This function writes a flexMIRT-compatible "-prm.txt" file (Cai, 2017). It currently supports only
unidimensional IRT models. This function was developed by modifying read.flexmirt() from
Pritikin & Falk (2020).

Usage

write.flexmirt(
X,
file = NULL,
norm.pop = c(@, 1),
rePar = TRUE,
mgroup = FALSE,
group.name = NULL

write.flexmirt

Arguments

X

file

norm.pop

rePar

mgroup

group.name

Value

143

A data frame of item metadata (e.g., item parameters, number of categories,
model types) for a single group, or a list of such data frames for multiple groups.
See est_irt() or simdat() for item metadata format. You can also create
metadata using shape_df ().

A character string specifying the destination file path (with a ".txt" extension).

A numeric vector of length two specifying the mean and standard deviation
of the normal population ability distribution for a single group, or a list of
such vectors for multiple groups. When a list is provided, each internal vector
must contain the mean and standard deviation for a group’s ability distribution
(e.g., norm.pop = list(c(@, 1), c(@, 0.8), c(0.5, 1.2)) for three groups).
If mgroup = TRUE and a single vector is provided (e.g., norm.pop = c(@, 1)), it
will be recycled across all groups. The default is c(0, 1).

A logical value indicating whether the item parameters are reparameterized. If

TRUE, item intercepts and logits of guessing parameters are assumed. If FALSE,
item difficulty and guessing parameters are assumed.

A logical value indicating whether the file includes multiple groups. Default is
FALSE.

A character vector of group names. If NULL, group names are automatically
generated (e.g., "Groupl", "Group2", ...).

This function creates a flexMIRT-style "-prm.txt" file at the specified path.

Author(s)

Hwanggyu Lim <hglim83@gmail.com>

References

Cai, L. (2017). flexMIRT 3.5 Flexible multilevel multidimensional item analysis and test scoring
(Computer Software). Chapel Hill, NC: Vector Psychometric Group.

Pritikin, J. N., & Falk, C. F. (2020). OpenMx: A modular research environment for item response
theory method development. Applied Psychological Measurement, 44(7-8), 561-562.

Examples

1. Create a

"-prm.txt" file for a single group

#it using the simulated CAT data
1-(1) Extract the item metadata
X <- simCAT_MX$item.prm

1-(2) Set the name of the "-prm.txt" file
temp_prm <- file.path(tempdir(), "single_group_temp-prm.txt")

1-(3) Write the "-prm.txt” file
write.flexmirt(x, file = temp_prm, norm.pop = c(@, 1), rePar = FALSE)

144 write.flexmirt

2. Create a "-prm.txt" file for multiple groups
#it using simulated multi-group data

2-(1) Extract the item metadata

X <- simMG$item.prm

Set the name of the "-prm.txt"” file
temp_prm <- file.path(tempdir(), "mg_group_temp-prml.txt")

Write the "-prm.txt" file

write.flexmirt(x,
file = temp_prm, norm.pop = list(c(@, 1), c(0.5, 0.8), c(-0.3, 1.3)),
rePar = FALSE, mgroup = TRUE, group.name = c("GR1", "GR2", "GR3")

)

Or write the "-prm.txt"” file so that
all groups share the same ability distribution
and group names are generated automatically
temp_prm <- file.path(tempdir(), "mg_group_temp-prm2.txt")
write.flexmirt(x,
file = temp_prm, norm.pop = c(@, 1),
rePar = FALSE, mgroup = TRUE, group.name = NULL

Index

+ datasets
LSATS6, 93
simCAT_DC, 128
simCAT_MX, 129
simMG, 133
simMST, 134

base: :system(), 123
bind.fill, 3

bisection, 4

bring.bilog (bring.flexmirt), 5
bring.bilog(), 6
bring.flexmirt, 5
bring.flexmirt(), 6, 127
bring.mirt (bring.flexmirt), 5
bring.mirt(), 6

bring.parscale (bring.flexmirt), 5
bring.parscale(), 6

cac_lee, 8
cac_lee(), 12
cac_rud, 11
cac_rud(), 9
catsib, 13
catsib(), 14, 16
covirt, 19
covirt(), 68, 69
crdif, 22
crdif (), 24-26, 113

drm, 29
drm(), 109, 132

est_irt, 18, 30

est_irt(), 8, 14, 20, 21, 24, 27, 36, 45, 48,
50, 54, 57,63, 66, 67,70, 73, 74, 76,
79, 80, 82-84, 86, 89, 91, 94, 96,
111,115,126, 127, 135-137,
139-143

est_item, 44

145

est_item(), 18, 24, 27, 46, 63, 70, 73, 74, 76,
79, 80, 82-84, 86, 89, 111, 115,
135-137, 139-142

est_mg, 49

est_mg(), 54, 55,70, 71,73, 74, 135, 136

est_score, 62

est_score(), 4,9, 12,14, 16, 18, 24, 25, 27,
68, 69,76,77,80,111-113,115,
118,121

gen.weight, 68

gen.weight(), 9, 12, 16, 21, 25, 33, 52, 64,
67,77,97,113, 138

getirt, 70

getirt(), 37, 38,47, 48, 57

ggplot2::geom_line(), 101, 107

ggplot2: :ggplot(), 103

grdif, 74

grdif (), 76-78

info, 82

info(), 6, 100, 101
irtfit, 85
irtfit(), 102, 104, 139
irtQ-package, 7, 35, 109, 132

1llike_score, 91
LSAT6, 93
lwrc, 93

mirt::mirt(), 6

parallel::makeCluster(), 63
pcd2, 95

pcd2(), 98

plot.info, 99
plot.info(), 83, 84
plot.irtfit, 102
plot.irtfit(), 88, 89
plot.traceline, 105, 141
plot.traceline(), 140, 142

146

prm, 108
prm(), 30, 132

rdif, 110

rdif(), 18, 25-27,80, 112, 113
reval_mst, 117
reval_mst(), 119
run_flexmirt, 122

shape_df, 124

shape_df (), 8, 14, 18, 20, 21, 24, 31, 35, 38,
45,48, 57,63, 67, 76, 80, 82, 84, 86,
89,91,94,96, 111,115,118, 121,
127, 128, 130, 132, 137, 139, 140,
143

shape_df_fipc, 127

shape_df_fipc(), 36, 38, 57, 126

simCAT_DC, 128

simCAT_MX, 129

simdat, 130

simdat(), 6, 8, 14, 18, 20, 21, 24, 45, 50, 63,
67,76, 80,82, 83,86, 91, 94, 96,
111,115,125, 126, 137, 139, 140,
143

simMG, 133

simMST, 134

stats: :dbeta(), 33, 46, 52

stats::dlnorm(), 33, 46, 52

stats: :dnorm(), 33, 46, 52

stats::nlminb(), 34, 46, 53

summary, 135

sx2_fit, 136

sx2_fit(), 68, 69, 138

traceline, 140
traceline(), 106, 107

write.flexmirt, 142

INDEX

	bind.fill
	bisection
	bring.flexmirt
	cac_lee
	cac_rud
	catsib
	covirt
	crdif
	drm
	est_irt
	est_item
	est_mg
	est_score
	gen.weight
	getirt
	grdif
	info
	irtfit
	llike_score
	LSAT6
	lwrc
	pcd2
	plot.info
	plot.irtfit
	plot.traceline
	prm
	rdif
	reval_mst
	run_flexmirt
	shape_df
	shape_df_fipc
	simCAT_DC
	simCAT_MX
	simdat
	simMG
	simMST
	summary
	sx2_fit
	traceline
	write.flexmirt
	Index

