
Package ‘ipmr’
February 16, 2023

Title Integral Projection Models

Version 0.0.7

Description Flexibly implements Integral Projection Models using a
mathematical(ish) syntax. This package will not help with the vital rate
modeling process, but will help convert those regression models into an
IPM. 'ipmr' handles density dependence and environmental stochasticity, with a
couple of options for implementing the latter. In addition, provides functions
to avoid unintentional eviction of individuals from models. Additionally,
provides model diagnostic tools, plotting functionality,
stochastic/deterministic simulations, and analysis tools.
Integral projection models are described in depth by Easterling et al. (2000)
<doi:10.1890/0012-9658(2000)081[0694:SSSAAN]2.0.CO;2>, Merow et al. (2013)
<doi:10.1111/2041-210X.12146>, Rees et al. (2014) <doi:10.1111/1365-2656.12178>,
and Metcalf et al. (2015) <doi:10.1111/2041-210X.12405>.
Williams et al. (2012) <doi:10.1890/11-2147.1> discuss the problem of
unintentional eviction.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Suggests covr, knitr, lme4, mvtnorm, rmarkdown, roxygen2, spelling,
testthat, tools

VignetteBuilder knitr

Language en-US

Imports graphics, grDevices, magrittr, methods, purrr (>= 0.3.0),
rlang (>= 0.3.0), stats, utils, Rcpp

Depends R (>= 3.4)

RoxygenNote 7.2.2

Config/testthat/parallel true

Config/testthat/edition 3

LinkingTo Rcpp

URL https://padrinoDB.github.io/ipmr/,

https://github.com/padrinoDB/ipmr

1

https://doi.org/10.1890/0012-9658(2000)081[0694:SSSAAN]2.0.CO;2
https://doi.org/10.1111/2041-210X.12146
https://doi.org/10.1111/1365-2656.12178
https://doi.org/10.1111/2041-210X.12405
https://doi.org/10.1890/11-2147.1
https://padrinoDB.github.io/ipmr/
https://github.com/padrinoDB/ipmr

2 R topics documented:

BugReports https://github.com/padrinoDB/ipmr/issues

NeedsCompilation yes

Author Sam Levin [aut, cre] (<https://orcid.org/0000-0002-3289-9925>),
Aldo Compagnoni [aut],
Dylan Childs [aut],
Sanne Evers [aut],
Roberto Salguero-Gomez [aut],
Tiffany Knight [aut],
Eric Scott [ctb]

Maintainer Sam Levin <levisc8@gmail.com>

Repository CRAN

Date/Publication 2023-02-16 15:00:02 UTC

R topics documented:

as.matrix.ipmr_matrix . 3
collapse_pop_state . 3
define_impl . 4
define_kernel . 8
domains . 9
format_mega_kernel . 13
gen_di_det_ex . 15
iceplant_ex . 15
init_ipm . 16
ipm_to_df . 17
is_conv_to_asymptotic . 18
lambda . 20
make_ipm . 21
make_ipm_report . 27
mean_kernel . 29
monocarp_proto . 30
plot.ipmr_matrix . 30
print.proto_ipm . 33
right_ev . 34
right_mult . 36
sim_di_det_ex . 37
truncated_distributions . 37
use_vr_model . 38
%^% . 39

Index 41

https://github.com/padrinoDB/ipmr/issues
https://orcid.org/0000-0002-3289-9925

as.matrix.ipmr_matrix 3

as.matrix.ipmr_matrix Convert to bare matrices

Description

Converts objects to c("matrix", "array").

Usage

S3 method for class 'ipmr_matrix'
as.matrix(x, ...)

S3 method for class 'ipmr_ipm'
as.matrix(x, ...)

Arguments

x An object of class ipmr_matrix, or the output from make_ipm.

... ignored.

Value

A matrix.

collapse_pop_state Extract threshold based population size information

Description

Given a model object, this function computes population sizes given thresholds for a state variable
of interest. For example, the number (or proportion) of individuals shorter than 60 cm tall at the
20th time step of the model.

Usage

collapse_pop_state(ipm, time_step, ...)

Arguments

ipm An object created by make_ipm

time_step the time step to pull out. Can be a single time step or a vector of multiple time
steps. In the latter case, one value is computed for each time step.

... Named expressions that provide the threshold information for the desired classes.
The expression should be logicals with a state variable name on the left side, and
a threshold value on the right side.

4 define_impl

Value

A named list of numeric vectors containing the summed population sizes at each requested time
step. Names are taken from

Examples

data(gen_di_det_ex)

Rebuild the model and return_main_env this time

gen_di_det_ex <- gen_di_det_ex$proto_ipm %>%
make_ipm(iterate = TRUE, iterations = 50, return_main_env = TRUE)

disc_sizes <- collapse_pop_state(gen_di_det_ex,
time_step = 20:25,
seedlings = ht <= 10,
NRA = ht > 10 & ht <= 200,
RA = ht > 200)

define_impl Helpers for IPM construction

Description

Helpers for IPM construction

Usage

define_impl(proto_ipm, kernel_impl_list)

make_impl_args_list(kernel_names, int_rule, state_start, state_end)

define_domains(proto_ipm, ...)

define_pop_state(proto_ipm, ..., pop_vectors = list())

define_env_state(proto_ipm, ..., data_list = list())

discretize_pop_vector(
trait_values,
n_mesh,
pad_low = NULL,
pad_high = NULL,
normalize = TRUE,
na.rm = TRUE

)

define_impl 5

Arguments

proto_ipm The name of the model.
kernel_impl_list

A named list. Names correspond to kernel names. Each kernel should have 3
slots defined - the int_rule (integration rule), the state_start (the domain
the kernel begins on), and the state_end (the domain the kernel ends on). For
more complicated models, it is usually safest to use make_impl_args_list to
generate this.

kernel_names A character vector with the names of the kernels that parameters are being de-
fined for.

int_rule The integration rule to be used for the kernel. The default is "midpoint". "b2b"
(bin to bin) and "cdf" (cumulative density functions) will be implemented as
well.

state_start The name of the state variable for the kernel that the kernel acts on at time t.

state_end The name of the state variable that the kernel produces at time t+1.

... Named expressions. See Details for more information on their usage in each
define_* function.

pop_vectors If the population vectors are already pre-defined (i.e. are not defined by a func-
tion passed to ...), then they can be passed as a named list here.

data_list A list of named values that contain data used in the expressions in ... in define_env_state().

trait_values A numeric vector of trait values.

n_mesh The number of meshpoints to use when integrating the trait distribution.

pad_low The amount to pad the smallest value by, expressed as a proportion. For exam-
ple, 0.8 would shrink the smallest value by 20%.

pad_high The amount to pad the largest value by, expressed as a proportion. For example,
1.2 would increase the largest value by 20%.

normalize A logical indicating whether to normalize the result to sum to 1.

na.rm A logical indicating whether to remove NAs from trait_distrib. If FALSE and
trait_values contains NAs, returns a NA with a warning

Details

These are helper functions to define IPMs. They are used after defining the kernels, but before
calling make_ipm() They are meant to be called in the following order:

1. define_impl()

2. define_domains()

3. define_pop_state()

4. define_env_state()

The order requirement is so that information is correctly matched to each kernel. Below are specific
details on the way each works.

define_impl

6 define_impl

This has two arguments - proto_ipm (the model object you wish to work with), and the kernel_impl_list.
The format of the kernel_impl_list is: names of the list should be kernel names, and each kernel
should have 3 entries: int_rule, state_start, and state_end. See examples.

define_domains

If the int_rule = "midpoint", the ... entries are vectors of length 3 where the name corresponds
to the state variable, the first entry is the lower bound of the domain, the second is the upper bound
of the domain, and the third entry is the number of meshpoints. Other int_rules are not yet
implemented, so for now this is the only format they can take. See examples.

define_pop_state

This takes either calls to functions in the ..., or a pre-generated list of vectors in the pop_vectors.
The names used for each entry in ... and/or for the pop_vectors should be n_<state_variable>.
See examples.

define_env_state

Takes expressions that generate values for environmental covariates at each iteration of the model in
.... The data_list should contain any parameters that the function uses, as well as the function
itself. The functions should return named lists. Names in that list can be referenced in vital rate
expressions and/or kernel formulas.

discretize_pop_vec

This takes a numeric vector of a trait distribution and computes the relative frequency of trait values.
By default, it integrates the kernel density estimate of the trait using the midpoint rule with n_mesh
mesh points. This is helpful for creating an initial population state vector that corresponds to an
observed trait distribution.

Value

All define_* functions return a proto_ipm. make_impl_args_list returns a list, and so must be
used within a call to define_impl or before initiating the model creation procedure.

Examples

Example with kernels named "P" and "F", and a domain "z"

kernel_impl_list <- list(P = list(int_rule = "midpoint",
state_start = "z",
state_end = "z"),

F = list(int_rule = "midpoint",
state_start = "z",
state_end = "z"))

an equivalent version using make_impl_args_list

kernel_impl_list <- make_impl_args_list(
kernel_names = c("P", "F"),
int_rule = c("midpoint", "midpoint"),
state_start = c("z", "z"),
state_end = c("z", "z")

)

define_impl 7

data(sim_di_det_ex)

proto_ipm <- sim_di_det_ex$proto_ipm

define_domains

lower_bound <- 1
upper_bound <- 100
n_meshpoints <- 50

define_domains(proto_ipm, c(lower_bound, upper_bound, n_meshpoints))

define_pop_state with a state variable named "z". Note that "n_" is prefixed
to denote that it is a population state function!

define_pop_state(proto_ipm, n_z = runif(100))

alternative, we can make a list before starting to make the IPM

pop_vecs <- list(n_z = runif(100))

define_pop_state(proto_ipm, pop_vectors = pop_vecs)

define_env_state. Generates a random draw from a known distribution
of temperatures.

env_sampler <- function(env_pars) {

temp <- rnorm(1, env_pars$temp_mean, env_pars$temp_sd)

return(list(temp = temp))

}

env_pars <- list(temp_mean = 12, temp_sd = 2)

define_env_state(
proto_ipm,
env_values = env_sampler(env_pars),
data_list = list(env_sampler = env_sampler,

env_pars = env_pars)

)

data(iceplant_ex)

z <- c(iceplant_ex$log_size, iceplant_ex$log_size_next)

pop_vecs <- discretize_pop_vector(z,
n_mesh = 100,
pad_low = 1.2,

8 define_kernel

pad_high = 1.2)

define_kernel Functions to initialize and define IPM kernels

Description

Adds a new kernel to the proto_ipm structure.

Usage

define_kernel(
proto_ipm,
name,
formula,
family,
...,
data_list = list(),
states,
uses_par_sets = FALSE,
par_set_indices = list(),
age_indices = list(),
evict_cor = FALSE,
evict_fun = NULL,
integrate = TRUE

)

Arguments

proto_ipm The name of the model.

name The name of the new kernel.

formula A bare expression specifying the form of the kernel.

family The type of kernel. Options are "CC" for continuous to continuous transitions,
"DC" for discrete to continuous (e.g. emergence from a seedbank), "CD" for con-
tinuous to discrete (e.g. entering a seedbank), and "DD" for discrete to discrete
(e.g. stasis in a seedbank).

... A set of named expressions that correspond to vital rates in formula. Parameter
set index syntax is supported.

data_list A list of named values that correspond to constants in the formula and vital rate
expressions in

states A list with character vector containing the names of each state variable used in
the kernel.

domains 9

uses_par_sets A logical indicating whether or not the parameters in the kernel and/or its under-
lying vital rates are derived from sets. See the introduction vignette for this fea-
ture for more details (vignettes(ipmr-introduction', package = 'ipmr')},
and \code{vignettes(index-notation', package = 'ipmr')).

par_set_indices

A named list with vectors corresponding to the values the index variable can
take. The names should match the suffixes used in the vital rate expressions.

age_indices If init_ipm(uses_age = TRUE), a list with possibly 2 entries: 1. "age": the
range of possible ages in the model and, optionally, 2. "max_age": the maxi-
mum age individuals in the model can attain. Otherwise, not used.

evict_cor A logical indicating whether an eviction correction should be applied to the
kernel.

evict_fun If evict_cor = TRUE, then a function that corrects for it. Currently, only truncated_distributions
and discrete_extrema are possible.

integrate For simple_* models, this controls whether a "d_z" is automatically appended
to the formula argument. When TRUE, this automatically generates formula *
d_z. There may be some cases where this behavior is not desirable. Set this
to FALSE and specify the correct form if needed. The default is TRUE. This
argument is ignored for all general_* models.

Details

Different classes of IPMs may have many or only a few kernels. Each one requires its own call to
define_kernel, though there are some exceptions, namely for kernels derived for models derived
from parameter sets (e.g. vital rate models fit across plots and years).

A much more complete overview of how to generate kernels is provided in vignette("ipmr-introduction",
"ipmr").

Value

A proto_ipm.

domains Accessor functions for (proto_)ipm objects

Description

Functions that access slots of a *_ipm (including proto_ipm). default methods correspond to
*_ipm objects.

10 domains

Usage

domains(object)

S3 method for class 'proto_ipm'
domains(object)

Default S3 method:
domains(object)

vital_rate_exprs(object)

S3 method for class 'proto_ipm'
vital_rate_exprs(object)

Default S3 method:
vital_rate_exprs(object)

vital_rate_funs(ipm)

S3 method for class 'ipmr_ipm'
vital_rate_funs(ipm)

vital_rate_exprs(object, kernel, vital_rate) <- value

S3 replacement method for class 'proto_ipm'
vital_rate_exprs(object, kernel, vital_rate) <- value

new_fun_form(form)

kernel_formulae(object)

S3 method for class 'proto_ipm'
kernel_formulae(object)

Default S3 method:
kernel_formulae(object)

kernel_formulae(object, kernel) <- value

S3 replacement method for class 'proto_ipm'
kernel_formulae(object, kernel) <- value

parameters(object)

S3 method for class 'proto_ipm'
parameters(object)

Default S3 method:

domains 11

parameters(object)

parameters(object, ...) <- value

S3 replacement method for class 'proto_ipm'
parameters(object, ...) <- value

int_mesh(ipm, full_mesh = TRUE)

S3 method for class 'ipmr_ipm'
int_mesh(ipm, full_mesh = TRUE)

pop_state(object)

S3 method for class 'proto_ipm'
pop_state(object)

Default S3 method:
pop_state(object)

Arguments

object A proto_ipm or object created by make_ipm().
ipm An object created by make_ipm(). This argument only applies to int_mesh()

and vital_rate_funs() (because these quantities don’t exist until make_ipm()
is called).

kernel The name of the kernel to insert the new vital rate expression into.
vital_rate The name of the vital rate to replace. If the vital rate doesn’t already exist in the

object, a new one with this name will be created.
value For parameters<-, a named list of new parameters. The new list does not need

to contain all of the parameters, just the ones to update/append. For vital_rate_exprs<-
and kernel_formulae<-, a new functional form. The new functional form must
be wrapped in a call to new_fun_form.

form An expression representing the new vital rate or kernel formula to insert.
... Additional arguments used in RPadrino methods.
full_mesh Return the full integration mesh? Default is TRUE. FALSE returns only unique

values for each state variable.

Details

The *.default method corresponds to output from make_ipm(), and the *.proto_ipm methods
correspond to outputs from define_*.

When using kernel_formulae<- and vital_rates_exprs<-, the right hand side of the expression
must be wrapped in new_fun_form. See examples.

Note that when using vital_rate_funs, unless the vital rate expression explicitly contains an
expression for integration, these functions are not yet integrated! This is useful for things like
sensitivity and elasticity analysis, but care must be taken to not use these values incorrectly.

12 domains

Value

Depending on the class of object, a list with types numeric or character.

Examples

data(gen_di_det_ex)

proto <- gen_di_det_ex$proto_ipm

Create a new, iterated IPM
new_ipm <- make_ipm(proto, iterate = TRUE,

iterations = 100, return_all_envs = TRUE)

vital_rate_exprs(new_ipm)
kernel_formulae(new_ipm)
vital_rate_funs(new_ipm)

domains(new_ipm)
parameters(new_ipm)

Usage is the same for proto_ipm's as *_ipm's

vital_rate_exprs(proto)
kernel_formulae(proto)

domains(proto)
parameters(proto)

int_mesh(new_ipm)

Setting new parameters, vital rate expressions, and kernel formulae
only works on proto_ipm's.

This replaces the "g_int" parameter and leaves the rest untouched

parameters(proto) <- list(g_int = 1.5)

This creates a new g_z parameter and leaves the rest of parameters untouched
parameters(proto) <- list(g_z = 2.2)

setting a new vital rate or kernel expression requires wrapping the
right-hand side in a call to new_fun_form(). new_fun_form uses expressions
with the same format as ... in define_kernel()

vital_rate_exprs(proto,
kernel = "P",
vital_rate = "g_mu") <- new_fun_form(g_int + g_z + g_slope * ht_1)

kernel_formulae(proto, kernel = "stay_discrete") <- new_fun_form(g_z * d_ht)

format_mega_kernel 13

format_mega_kernel Create iteration kernels from an IPM object

Description

Creates iteration kernels for IPMs. ipmr does not create these to iterate models, but they may be
useful for further analyses.

Usage

format_mega_kernel(ipm, ...)

Default S3 method:
format_mega_kernel(ipm, mega_mat, ...)

S3 method for class 'age_x_size_ipm'
format_mega_kernel(ipm, name_ps, f_forms, ...)

make_iter_kernel(ipm, ..., name_ps, f_forms)

Arguments

ipm Output from make_ipm.

... Other arguments passed to methods.

mega_mat A vector with symbols, I’s, and/or 0s representing the matrix blocks. They
should be specified in ROW MAJOR order! Can also be a character string speci-
fying the call. Parameter set index syntax is supported. When used, format_mega_kernel
will produce as many mega-matrices as there are combinations of par_set_indices
in the proto_ipm.

name_ps The prefix(es) for the kernel name that correspond to survival and growth/maturation
of existing individuals. For the model K = P_age + F_age, this would be "P".
Only applies to age X size models. The "_age" suffix is appended automati-
cally, so does not need to be supplied.

f_forms The names of the kernels that correspond to production of new individuals, and
possibly, how they are combined. For example, a model that includes sexual
(with an "F" kernel) and asexual reproduction (with a "C" kernel), this would
be "F + C". If data come from multiple sites or years, then this information is
supplied using the index syntax (i.e. f_forms = "F_yr + C_yr"). Only applies
to age X size models. The "_age" index is appended automatically, so does not
need to be supplied.

Details

ipmr does not generate complete iteration kernels, and uses sub-kernels to iterate models. How-
ever, some further analyses are just easier to code with a complete iteration kernel. This handles

14 format_mega_kernel

constructing those for simple and general models of all forms. format_mega_kernel is used inter-
nally by make_iter_kernel for general IPMs. The difference between these two functions is that
make_iter_kernel always returns a list of objects with c(ipmr_matrix, array, matrix) classes,
whereas format_mega_kernel always returns a list of objects with c(array, matrix) classes. The
former has plot() methods while the latter does not.

I and 0 represent identity matrices and 0 matrices, respectively. They can be used to fill in blocks
that represent either, without having to create those separately and append them to the model object.
The function will work out the correct dimensions for both internally, and there is no restriction on
the number that may be used in a given call.

For age_size_ipms, the correct form of mega_mat is generated internally by creating sub-diagonal
matrices for the name_ps kernels, and a top row using the f_forms. If parameter set indices are part
of the model, the indices should be attached to the name_ps, f_forms in the function arguments,
and the correct block matrices will be generated internally.

Value

A list containing a large matrix or many large matrices (when used with suffix syntax). The names
in the former case will be "mega_matrix" and in the latter case, "mega_matrix_<par_sets>" with
the levels of the grouping effects substituted in.

Examples

data(gen_di_det_ex)

big_k <- make_iter_kernel(gen_di_det_ex,
mega_mat = c(0, go_discrete,

leave_discrete, P))

char_call <- c(0, "go_discrete", "leave_discrete", "P")

big_k_c <- make_iter_kernel(gen_di_det_ex, mega_mat = char_call)

Now, with an Identity matrix instead of a 0

big_k <- make_iter_kernel(gen_di_det_ex,
mega_mat = c(I, go_discrete,

leave_discrete, P))

For simple IPMs with no grouping effects, this computes the sum of
the sub-kernels (i.e. K = P + F)

data(sim_di_det_ex)

simple_k <- make_iter_kernel(sim_di_det_ex)

gen_di_det_ex 15

gen_di_det_ex A general deterministic IPM example

Description

A general deterministic IPM example

Usage

gen_di_det_ex

Format

A general deterministic IPM with the following slots:

sub_kernels The computed sub-kernels for the model, named P, go_discrete, stay_discrete,
and leave_discrete.

env_list Empty

env_seq Contains NA. Not particularly useful for deterministic IPMs, but critical for reproducing
stochastic ones.

pop_state A list of length 2, with names n_b and n_ht.

proto_ipm The proto_ipm used to implement the model.

iceplant_ex Raw demographic data to construct an example IPM

Description

Raw demographic data to construct an example IPM

Usage

iceplant_ex

Format

288 observations of 10 variables

id Individual identification number

size Surface area in square meters of each individual at time t.

flower_n If the plant is reproductive, the number of flowers it made.

log_size Log transformed size.

repro Either 0 or 1 to indicate whether the plant is reproductive.

16 init_ipm

size_next Surface area in square meters of each individual at time t + 1.

flower_n_next If the plant is reproductive at t + 1, the number of flowers it made.

survival Either 0 or 1 to indicate whether a plant at t survives to t + 1.

log_size_next Log transformed size_next.

repro_next Either 0 or 1 to indicate whether a plant is reproductive at t + 1.

init_ipm Initialize an IPM

Description

This is always the first step in constructing an IPM with ipmr. All you need for this is to know
what type of IPM you want to construct - the rest comes later with define_kernel, make_ipm, and
associated helper functions. See Details for complete overview of each option.

Usage

init_ipm(sim_gen, di_dd, det_stoch, kern_param = NULL, uses_age = FALSE)

Arguments

sim_gen Either "simple" or "general".

di_dd Either "di" or "dd".

det_stoch Either "det" or "stoch". If this is "det", then kern_param is ignored. If
"stoch", then kern_param must be specified.

kern_param If det_stoch = "stoch", then this should be either "kern" or "param".

uses_age A logical indicating whether the model has age structure. Default is FALSE

Details

Combinations of simple or general, dd or di, and det or stoch are generated to create 1 of 12
unique IPM classes.

Within stoch model types, there are two additional options: "kern" or "param". These distin-
guish between models that use kernel resampling vs those that use parameter resampling (sensu
Metcalf et al. 2015). Below are quick definitions. More detailed explanations can be found in the
vignettes("ipmr-introduction", package = 'ipmr').

• sim_gen

– simple: an IPM with a single continuous state variable that does not include any discrete
stages. Simple IPMs can still be stochastic and/or density dependent.

– general: an IPM with more than one continuous state variable and/or a model that in-
cludes discrete stages.

• di_dd

– dd: used to denote a density dependent IPM.

ipm_to_df 17

– di: used to denote a density independent IPM.

• det_stoch

– det: used to denote a deterministic IPM.
– stoch: used to denote a stochastic IPM. Stochasticity can be implemented in two ways

in ipmr: "kern" resampling, and "param" resampling.

• kern_param - if using det, this should be omitted. If using stoch, then one of the following:

– kern: used to denote an IPM that uses kernel resampling. Briefly, these models build
all of the iteration kernels ahead of time and then choose one at random or in a user-
specified order as they move from iteration to iteration. The user-specified population
vector is multiplied by the chosen kernel and the result is multiplied by the next kernel
for the desired number of iterations.

– param: used to denote parameter resampling. This samples distributions for each param-
eter based on user-specified functions supplied to define_env_state(). This will be a
bit slower than "kern" resampling because kernels need to be reconstructed from new
parameters at every time step.

Value

An object with classes "proto_ipm" and a combination of sim_gen, di_dd, det_stoch, and pos-
sibly kern_param. If uses_age = TRUE, then an "age_x_size" class is also added.

References

Metcalf et al. (2015). Statistical modelling of annual variation for inference on stochastic popula-
tion dynamics using Integral Projection Models. Methods in Ecology and Evolution, 6: 1007-1017

ipm_to_df Convert ipmr matrix to long data frame

Description

Converts IPM kernels into long data frames. These are useful for creating plots using ggplot2.

Usage

ipm_to_df(ipm, ...)

S3 method for class 'array'
ipm_to_df(ipm, ...)

Default S3 method:
ipm_to_df(ipm, ..., mega_mat, name_ps = NULL, f_forms = NULL)

18 is_conv_to_asymptotic

Arguments

ipm Output from make_ipm.

... Other arguments passed to methods.

mega_mat A vector with symbols, I’s, and/or 0s representing the matrix blocks. They
should be specified in ROW MAJOR order! Can also be a character string speci-
fying the call. Parameter set index syntax is supported. When used, format_mega_kernel
will produce as many mega-matrices as there are combinations of par_set_indices
in the proto_ipm.

name_ps The prefix(es) for the kernel name that correspond to survival and growth/maturation
of existing individuals. For the model K = P_age + F_age, this would be "P".
Only applies to age X size models. The "_age" suffix is appended automati-
cally, so does not need to be supplied.

f_forms The names of the kernels that correspond to production of new individuals, and
possibly, how they are combined. For example, a model that includes sexual
(with an "F" kernel) and asexual reproduction (with a "C" kernel), this would
be "F + C". If data come from multiple sites or years, then this information is
supplied using the index syntax (i.e. f_forms = "F_yr + C_yr"). Only applies
to age X size models. The "_age" index is appended automatically, so does not
need to be supplied.

Value

A data frame with 3 columns named "t", "t_1", and "value".

Examples

data(gen_di_det_ex)

big_mat_df <- ipm_to_df(gen_di_det_ex,
mega_mat = c(stay_discrete, go_discrete,

leave_discrete, P))

is_conv_to_asymptotic Check for model convergence to asymptotic dynamics

Description

Checks for convergence to asymptotic dynamics numerically and visually. is_conv_to_asymptotic
checks whether lambda[iterations - 1] equals lambda[iterations] within the specified toler-
ance, tolerance. conv_plot plots the time series of lambda (or log(lambda)). For stochastic
models, a cumulative mean of log(lambda) is used to check for convergence.

is_conv_to_asymptotic 19

Usage

is_conv_to_asymptotic(ipm, tolerance, burn_in)

S3 method for class 'ipmr_ipm'
is_conv_to_asymptotic(ipm, tolerance = 1e-06, burn_in = 0.1)

conv_plot(ipm, iterations, log, show_stable, burn_in, ...)

S3 method for class 'ipmr_ipm'
conv_plot(
ipm,
iterations = NULL,
log = NULL,
show_stable = TRUE,
burn_in = 0.1,
...

)

Arguments

ipm An object returned by make_ipm().

tolerance The tolerance for convergence in lambda or, in the case of stochastic models,
the cumulative mean of log(lambda).

burn_in The proportion of iterations to discard. Default is 0.1 (i.e. first 10% of iterations
in the simulation). Ignored for deterministic models.

iterations The range of iterations to plot lambda for. The default is every iteration.

log A logical indicating whether to log transform lambda. This defaults to TRUE
for stochastic models and FALSE for deterministic models.

show_stable A logical indicating whether or not to draw a line indicating population stability
at lambda = 1.

... Further arguments to plot.

Details

Plotting can be controlled by passing additional graphing parameters to

Value

is_conv_to_asymptotic: Either TRUE or FALSE. conv_plot: codeipm invisibly.

Examples

data(gen_di_det_ex)

proto <- gen_di_det_ex$proto_ipm %>%
define_pop_state(n_ht = runif(200),

n_b = 200000)

20 lambda

ipm <- make_ipm(proto)

is_conv_to_asymptotic(ipm, tolerance = 1e-5)
conv_plot(ipm)

lambda Compute the per-capita growth rate for an IPM object

Description

Compute the per-capita growth rate for a given model. Can handle stochastic and deterministic
models, and has the option to discard burn in for stochastic models.

Usage

lambda(ipm, ...)

S3 method for class 'simple_di_det_ipm'
lambda(ipm, type_lambda = "last", log = FALSE, ...)

S3 method for class 'simple_di_stoch_kern_ipm'
lambda(ipm, type_lambda = "stochastic", burn_in = 0.1, log = NULL, ...)

S3 method for class 'simple_di_stoch_param_ipm'
lambda(ipm, type_lambda = "stochastic", burn_in = 0.1, log = NULL, ...)

S3 method for class 'general_di_det_ipm'
lambda(ipm, type_lambda = "last", log = FALSE, ...)

S3 method for class 'general_di_stoch_kern_ipm'
lambda(ipm, ..., type_lambda = "stochastic", burn_in = 0.1, log = NULL)

S3 method for class 'general_di_stoch_param_ipm'
lambda(ipm, ..., type_lambda = "stochastic", burn_in = 0.1, log = NULL)

S3 method for class 'simple_dd_det_ipm'
lambda(ipm, type_lambda = "all", ..., log = FALSE)

S3 method for class 'simple_dd_stoch_kern_ipm'
lambda(ipm, ..., type_lambda = "stochastic", burn_in = 0.1, log = NULL)

S3 method for class 'simple_dd_stoch_param_ipm'
lambda(ipm, ..., type_lambda = "stochastic", burn_in = 0.1, log = NULL)

S3 method for class 'general_dd_det_ipm'

make_ipm 21

lambda(ipm, type_lambda = "last", ..., log = FALSE)

S3 method for class 'general_dd_stoch_kern_ipm'
lambda(ipm, ..., type_lambda = "stochastic", burn_in = 0.1, log = NULL)

S3 method for class 'general_dd_stoch_param_ipm'
lambda(ipm, ..., type_lambda = "stochastic", burn_in = 0.1, log = NULL)

Arguments

ipm An object returned by make_ipm().

... other arguments passed to methods.

type_lambda Either 'all', 'last', or 'stochastic'. 'all' returns a vector of lambda val-
ues for each time step of the simulation (equal in length to the iterations ar-
gument of make_ipm()). 'last' returns the lambda value for the final timestep.
'stochastic' returns a single value, which by default is mean(log(lambda(ipm,
type_lambda = "all"))), with the proportion of burn_in iterations removed
from the beginning of the simulation. Set log to FALSE to get lambda on the
linear scale for stochastic models (i.e. exp(mean(log(lambdas)))).

log Return lambda on the log scale? This is TRUE by default for stochastic models,
and FALSE for deterministic models.

burn_in The proportion of iterations to discard. Default is 0.1 (i.e. first 10% of iterations
in the simulation).

Value

When type_lambda = "all", an array. Rows correspond to time steps, and columns correspond to
parameter sets (if any). For other types, a numeric vector.

make_ipm Methods to implement an IPM

Description

The make_ipm.* methods convert a proto_ipm into a set of discretized kernels and population
vectors. Methods have different requirements, so be sure to read the parameter documentation.
vignette('ipmr-introduction', 'ipmr') a more complete introduction.

Usage

make_ipm(
proto_ipm,
return_main_env = TRUE,
return_all_envs = FALSE,
usr_funs = list(),
...

22 make_ipm

)

S3 method for class 'simple_di_det'
make_ipm(
proto_ipm,
return_main_env = TRUE,
return_all_envs = FALSE,
usr_funs = list(),
...,
domain_list = NULL,
iterate = TRUE,
iterations = 50,
normalize_pop_size = TRUE,
iteration_direction = "right"

)

S3 method for class 'simple_di_stoch_kern'
make_ipm(
proto_ipm,
return_main_env = TRUE,
return_all_envs = FALSE,
usr_funs = list(),
...,
domain_list = NULL,
iterate = TRUE,
iterations = 50,
kernel_seq = NULL,
normalize_pop_size = TRUE,
report_progress = FALSE,
iteration_direction = "right"

)

S3 method for class 'simple_di_stoch_param'
make_ipm(
proto_ipm,
return_main_env = TRUE,
return_all_envs = FALSE,
usr_funs = list(),
...,
domain_list = NULL,
iterate = TRUE,
iterations = 50,
kernel_seq = NULL,
normalize_pop_size = TRUE,
report_progress = FALSE,
iteration_direction = "right",
return_sub_kernels = FALSE

)

make_ipm 23

S3 method for class 'general_di_det'
make_ipm(
proto_ipm,
return_main_env = TRUE,
return_all_envs = FALSE,
usr_funs = list(),
...,
domain_list = NULL,
iterate = TRUE,
iterations = 50,
normalize_pop_size = TRUE,
iteration_direction = "right"

)

S3 method for class 'general_di_stoch_kern'
make_ipm(
proto_ipm,
return_main_env = TRUE,
return_all_envs = FALSE,
usr_funs = list(),
...,
domain_list = NULL,
iterate = TRUE,
iterations = 50,
kernel_seq = NULL,
normalize_pop_size = TRUE,
report_progress = FALSE,
iteration_direction = "right"

)

S3 method for class 'general_di_stoch_param'
make_ipm(
proto_ipm,
return_main_env = TRUE,
return_all_envs = FALSE,
usr_funs = list(),
...,
domain_list = NULL,
iterate = TRUE,
iterations = 50,
kernel_seq = NULL,
normalize_pop_size = TRUE,
report_progress = FALSE,
iteration_direction = "right",
return_sub_kernels = FALSE

)

24 make_ipm

S3 method for class 'simple_dd_det'
make_ipm(
proto_ipm,
return_main_env = TRUE,
return_all_envs = FALSE,
usr_funs = list(),
...,
domain_list = NULL,
iterate = TRUE,
iterations = 50,
normalize_pop_size = FALSE,
report_progress = FALSE,
iteration_direction = "right",
return_sub_kernels = FALSE

)

S3 method for class 'simple_dd_stoch_kern'
make_ipm(
proto_ipm,
return_main_env = TRUE,
return_all_envs = FALSE,
usr_funs = list(),
...,
domain_list = NULL,
iterate = TRUE,
iterations = 50,
kernel_seq = NA_character_,
normalize_pop_size = FALSE,
report_progress = FALSE,
iteration_direction = "right",
return_sub_kernels = FALSE

)

S3 method for class 'simple_dd_stoch_param'
make_ipm(
proto_ipm,
return_main_env = TRUE,
return_all_envs = FALSE,
usr_funs = list(),
...,
domain_list = NULL,
iterate = TRUE,
iterations = 50,
kernel_seq = NA_character_,
normalize_pop_size = FALSE,
report_progress = FALSE,
iteration_direction = "right",
return_sub_kernels = FALSE

make_ipm 25

)

S3 method for class 'general_dd_det'
make_ipm(
proto_ipm,
return_main_env = TRUE,
return_all_envs = FALSE,
usr_funs = list(),
...,
domain_list = NULL,
iterate = TRUE,
iterations = 50,
normalize_pop_size = FALSE,
report_progress = FALSE,
iteration_direction = "right",
return_sub_kernels = FALSE

)

S3 method for class 'general_dd_stoch_kern'
make_ipm(
proto_ipm,
return_main_env = TRUE,
return_all_envs = FALSE,
usr_funs = list(),
...,
domain_list = NULL,
iterate = TRUE,
iterations = 50,
kernel_seq = NA_character_,
normalize_pop_size = FALSE,
report_progress = FALSE,
iteration_direction = "right",
return_sub_kernels = FALSE

)

S3 method for class 'general_dd_stoch_param'
make_ipm(
proto_ipm,
return_main_env = TRUE,
return_all_envs = FALSE,
usr_funs = list(),
...,
domain_list = NULL,
iterate = TRUE,
iterations = 50,
kernel_seq = NA_character_,
normalize_pop_size = FALSE,
report_progress = FALSE,

26 make_ipm

iteration_direction = "right",
return_sub_kernels = FALSE

)

Arguments

proto_ipm A proto_ipm. This should be the output of define_kernel, or the define_*
functions.

return_main_env

A logical indicating whether to return the main environment for the model. This
environment contains the integration mesh, weights, and other potentially useful
variables for subsequent analyses. Default is TRUE.

return_all_envs

A logical indicating whether to return the environments that the kernel expres-
sions are evaluated in. These may be useful for some analyses, such as regression-
level sensitivity/elasticity analyses, but can also rapidly increase memory con-
sumption for models with many kernels (e.g. ones with parameter set indices
that have many levels, or any *_stoch_param model). Default is FALSE.

usr_funs An optional list of user-specified functions that are passed on to the model build-
ing process. This can help make vital rate expressions more concise and expres-
sive. Names in this list should exactly match the names of the function calls in
the ... or formula.

... Other arguments passed to methods.

domain_list An optional list of new domain information to implement the IPM with.

iterate A logical indicating whether or not iterate the model before exiting or just return
the sub-kernels. Only applies to density-independent, deterministic models and
density-independent, stochastic kernel re-sampled models.

iterations If iterate is TRUE, then the number of iterations to run the model for.
normalize_pop_size

A logical indicating whether to re-scale the population vector to sum to 1 be-
fore each iteration. Default is TRUE for *_di_* methods and FALSE for *_dd_*
methods.

iteration_direction

Either "right" (default) or "left". This controls the direction of projection.
Right iteration will generate the right eigenvector (if it exists), while left iteration
generates the left eigenvector. These correspond to the stable trait distributions,
and reproductive values, respectively. This parameter is mostly used internally
by other functions. Use with care.

kernel_seq For *_stoch_kern methods, the sequence of kernels to use during the simu-
lation process. It should have the same number of entries as the number of
iterations. This should be a vector containing values of the parameter set
indices specified in par_set_indices, or empty. Support for Markov chains
will eventually get implemented. If it is empty, make_ipm will try to generate a
sequence internally using a random selection of the par_set_indices defined
in define_kernel.

make_ipm_report 27

report_progress

A logical indicating whether or not to periodically report progress for a stochas-
tic simulation. Does not apply to deterministic methods. Default is FALSE.

return_sub_kernels

Only applies to density dependent and parameter resampled models. If TRUE,
then all sub-kernels will be returned. These are required for some analyses, but
a large number of iterations will take up lots of RAM. Default is FALSE.

Value

The make_ipm.* methods will always return a list of length 5 containing the following components:

• sub_kernels: a list of arrays specified in define_kernel.

• env_list: a list containing the evaluation environments of kernel. This will contain the main_env
object if return_main_env = TRUE. It will also contain the sub-kernels evaluation environ-
ments if return_all_envs = TRUE.

• env_seq: a character vector with length iterations of kernel indices indicating the order
in which kernels are to be/were resampled OR a matrix with as many columns as stochastic
parameters and n_iterations rows.

• pop_state: population vectors stored as a list of arrays. The first dimension of each array
corresponds to the state variable distribution, and the second dimension corresponds to time
steps.

• proto_ipm: the proto_ipm object used to implement the model.

In addition to the list class, each object will have a class comprised of the arguments from init_ipm
plus 'ipm' pasted together with underscores. This is to facilitate print, plot, and lambda methods.
For example, a init_ipm("general", "di", "det") model will have the class 'general_di_det_ipm'
once it has been implemented using make_ipm.

make_ipm_report Generate an RMarkdown file with IPM metadata

Description

Generates a .rmd file containing a mathematical description of the proto_ipm object.

Usage

make_ipm_report(
object,
rmd_dest = getwd(),
title = "",
output_format = "html",
render_output = FALSE,
block_eqs = TRUE,
long_eq_length = 65

28 make_ipm_report

)

Default S3 method:
make_ipm_report(
object,
rmd_dest = getwd(),
title = "",
output_format = "html",
render_output = FALSE,
block_eqs = TRUE,
long_eq_length = 65

)

S3 method for class 'ipmr_ipm'
make_ipm_report(
object,
rmd_dest = getwd(),
title = "",
output_format = "html",
render_output = FALSE,
block_eqs = TRUE,
long_eq_length = 65

)

make_ipm_report_body(proto_ipm, block_eqs, rmd_dest, long_eq_length)

Arguments

object A proto_ipm or output from make_ipm().

rmd_dest The folder to save the Rmd file at. The default is getwd(). Alternatively, can be
a complete file path that specifies the location and title of the document with the
extension ".rmd". in this case, the current date will be appended to the title.

title The title to include in the document. This is not necessarily the same as rmd_dest,
as this appears at the top of the generated report, and is not included in the file
path!

output_format The format to include in the YAML header for the created .rmd document.

render_output A logical indicating whether to call rmarkdown::render on the generated .rmd
file. Often times, the .rmd file will need further editing before it’s useful, so the
default is FALSE.

block_eqs A logical. If TRUE, all equations will be inserted with blocks and numbered using
tag{}. If FALSE, equations will be rendered as inline equations on a single
line, and numbered as 1.1, 1.2, 1.3 (iteration expressions), 2.1, 2.2 (vital rate
expressions), etc.

long_eq_length For longer equations, make_ipm_report tries to wrap these into multiple lines
using \\. This parameter controls the number of characters per line. Default is
65. Ignored when block_eqs = FALSE.

proto_ipm A proto_ipm object. Only used for make_ipm_report_body.

mean_kernel 29

Details

make_ipm_report_body only translates the iteration expressions and vital rate expressions into
Markdown with LaTeX, and does not produce any headers needed to knit the file. This function is
exported mostly for re-usage in pdb_report, and isn’t really intended for use by ipmr users.

Value

For make_ipm_report, the filepath to the .rmd file. The default name is "ipmr_report_<current_date>.rmd".
For make_ipm_report_body, a character vector with Markdown and LaTeX suitable for rendering,
but without a header.

Translations

For iteration expressions, vital rate expressions, and parameter names, make_ipm_report first trans-
lates all values in the data_list to beta_X. For example, s = surv_int + surv_slope * z_1 is
translated into beta_0 + beta_1 * z_1, and then is translated into LaTeX equations. Since every-
thing is call beta_X, a glossary is provided at the end of each report that matches betas to their
names in the data_list.

mean_kernel Mean kernels for stochastic models

Description

This function computes mean sub-kernels for stochastic parameter re-sampled and stochastic kernel
re-sampled models.

Usage

mean_kernel(ipm)

Arguments

ipm A stochastic model created by make_ipm().

Details

For *_stoch_kern models, this computes the element-wise mean for each sub-kernel across all the
different levels of par_set_indices. For models where not all sub-kernels contain parameter set
indices, sub-kernels that do not have varying parameters are included in the output and are identical
to their input.

For *_stoch_param models, this computes the element-wise mean for each sub-kernel created by
the iteration procedure.

Value

A list of mean sub-kernels for the model.

30 plot.ipmr_matrix

monocarp_proto A proto_ipm for a monocarpic perennial

Description

A proto_ipm for a monocarpic perennial

Usage

monocarp_proto

Format

A proto_ipm for a simple IPM of Oenothera glazioviana. The parameters are from Ellner, Childs,
& Rees (2016), Chapter 2, and the data are from Kachi & Hirose (1985). Parameter values can be ac-
cessed with parameters(monocarp_proto), vital rate expressions can be accessed with vital_rate_exprs(monocarp_proto),
etc.

References

Kachi, H., & Hirose, T. (1985). Population dynamics of _Oenothera glazioviana_ in a sand-dune
system with special reference to the adaptive significance of size-dependent reproduction. Journal
of Ecology 73: 887-901. https://doi.org/10.2307/2260155

Ellner, S.P., Childs, D.Z., Rees, M. (2016) Data-driven modelling of structured populations: a prac-
tical guide to the integral projection model. Basel, Switzerland: Springer International Publishing
AG

plot.ipmr_matrix Plot a matrix or an *_ipm object

Description

Plot a matrix or an *_ipm object

Usage

S3 method for class 'ipmr_matrix'
plot(
x = NULL,
y = NULL,
A,
col = grDevices::rainbow(100, start = 0.67, end = 0),
bw = FALSE,
do_contour = FALSE,
do_legend = FALSE,

plot.ipmr_matrix 31

contour_cex = 1,
...

)

S3 method for class 'simple_di_det_ipm'
plot(
x = NULL,
y = NULL,
ipm = NULL,
col = rainbow(100, start = 0.67, end = 0),
bw = FALSE,
do_contour = FALSE,
do_legend = FALSE,
exponent = 1,
n_row = 1,
n_col = 1,
...

)

S3 method for class 'simple_di_stoch_param_ipm'
plot(
x = NULL,
y = NULL,
ipm = NULL,
col = rainbow(100, start = 0.67, end = 0),
bw = FALSE,
do_contour = FALSE,
do_legend = FALSE,
exponent = 1,
n_row = 1,
n_col = 1,
...

)

S3 method for class 'simple_di_stoch_kern_ipm'
plot(
x = NULL,
y = NULL,
ipm = NULL,
col = rainbow(100, start = 0.67, end = 0),
bw = FALSE,
do_contour = FALSE,
do_legend = FALSE,
exponent = 1,
n_row = 1,
n_col = 1,
...

)

32 plot.ipmr_matrix

S3 method for class 'general_di_det_ipm'
plot(
x = NULL,
y = NULL,
ipm = NULL,
mega_mat = NA_character_,
col = rainbow(100, start = 0.67, end = 0),
bw = FALSE,
do_contour = FALSE,
do_legend = FALSE,
exponent = 1,
n_row = 1,
n_col = 1,
...

)

Arguments

x, y Either the values of the meshpoints or NULL. If NULL, then a sequence is gener-
ated so that meshpoints are given sequential bin numbers.

A, ipm A matrix or a result from make_ipm, or NULL if x is specified as the matrix or
IPM object.

col A vector of colors to use for plotting
bw A logical indicating whether to use a greyscale palette for plotting
do_contour A logical indicating whether or not draw contour lines on the plot
do_legend A logical indicating whether to draw a legend for the plot
contour_cex A numeric specifying how large to make labels for the contour lines.
... further arguments passed to legend
exponent The exponent to raise each kernel to. Setting this to a low number can help

visualize kernels that are overwhelmed by a few very large numbers.
n_row, n_col If plotting multiple (sub-)kernels, how many rows and columns to arrange them

in.
mega_mat A vector with symbols, I’s, and/or 0s representing the matrix blocks. They

should be specified in ROW MAJOR order! Can also be a character string speci-
fying the call. Parameter set index syntax is supported. When used, format_mega_kernel
will produce as many mega-matrices as there are combinations of par_set_indices
in the proto_ipm.

Details

If an IPM kernel is overwhelmed by information in say, a fecundity sub-kernel, use the exponent
argument in plot.*_ipm to make it more visually appealing.

Value

A or ipm invisibly

print.proto_ipm 33

print.proto_ipm Print proto_ipms or *_ipm objects

Description

Print proto_ipms or *_ipm objects

Generics for IPM classes

Usage

S3 method for class 'proto_ipm'
print(x, ...)

S3 method for class 'simple_di_det_ipm'
print(
x,
comp_lambda = TRUE,
type_lambda = "last",
sig_digits = 3,
check_conv = TRUE,
...

)

S3 method for class 'simple_dd_det_ipm'
print(x, comp_lambda = TRUE, type_lambda = "last", sig_digits = 3, ...)

S3 method for class 'simple_di_stoch_kern_ipm'
print(x, comp_lambda = TRUE, type_lambda = "stochastic", sig_digits = 3, ...)

S3 method for class 'simple_dd_stoch_kern_ipm'
print(x, comp_lambda = TRUE, type_lambda = "stochastic", sig_digits = 3, ...)

S3 method for class 'simple_di_stoch_param_ipm'
print(x, comp_lambda = TRUE, type_lambda = "stochastic", sig_digits = 3, ...)

S3 method for class 'simple_dd_stoch_param_ipm'
print(x, comp_lambda = TRUE, type_lambda = "stochastic", sig_digits = 3, ...)

S3 method for class 'general_di_det_ipm'
print(
x,
comp_lambda = TRUE,
type_lambda = "last",
sig_digits = 3,
check_conv = TRUE,
...

34 right_ev

)

S3 method for class 'general_dd_det_ipm'
print(x, comp_lambda = TRUE, type_lambda = "last", sig_digits = 3, ...)

S3 method for class 'general_di_stoch_kern_ipm'
print(x, comp_lambda = TRUE, type_lambda = "stochastic", sig_digits = 3, ...)

S3 method for class 'general_dd_stoch_kern_ipm'
print(x, comp_lambda = TRUE, type_lambda = "stochastic", sig_digits = 3, ...)

S3 method for class 'general_di_stoch_param_ipm'
print(x, comp_lambda = TRUE, type_lambda = "stochastic", sig_digits = 3, ...)

S3 method for class 'general_dd_stoch_param_ipm'
print(x, comp_lambda = TRUE, type_lambda = "stochastic", sig_digits = 3, ...)

Arguments

x An object of class proto_ipm or produced by make_ipm().

... Ignored

comp_lambda A logical indicating whether or not to calculate lambdas for the iteration kernels
and display them.

type_lambda Either 'all' or 'stochastic'. See lambda for more details.

sig_digits The number of significant digits to round to if comp_lambda = TRUE.

check_conv A logical: for deterministic models, check if population state has converged to
asymptotic dynamics? If TRUE and the model has not converged, a message will
be printed.

Details

For printing proto_ipm objects, indices are wrapped in <index> to assist with debugging. These
are not carried into the model, just a visual aid.

Value

x invisibly.

right_ev Compute the standardized left and right eigenvectors via iteration

Description

Compute the standardized left and right eigenvectors via iteration

right_ev 35

Usage

right_ev(ipm, ...)

S3 method for class 'simple_di_det_ipm'
right_ev(ipm, iterations = 100, tolerance = 1e-10, ...)

S3 method for class 'simple_di_stoch_kern_ipm'
right_ev(ipm, burn_in = 0.25, ...)

S3 method for class 'simple_di_stoch_param_ipm'
right_ev(ipm, burn_in = 0.25, ...)

S3 method for class 'general_di_det_ipm'
right_ev(ipm, iterations = 100, tolerance = 1e-10, ...)

S3 method for class 'general_di_stoch_kern_ipm'
right_ev(ipm, burn_in = 0.25, ...)

S3 method for class 'general_di_stoch_param_ipm'
right_ev(ipm, burn_in = 0.25, ...)

left_ev(ipm, ...)

S3 method for class 'simple_di_det_ipm'
left_ev(ipm, iterations = 100, tolerance = 1e-10, ...)

S3 method for class 'simple_di_stoch_kern_ipm'
left_ev(ipm, iterations = 10000, burn_in = 0.25, kernel_seq = NULL, ...)

S3 method for class 'general_di_det_ipm'
left_ev(ipm, iterations = 100, tolerance = 1e-10, ...)

S3 method for class 'general_di_stoch_kern_ipm'
left_ev(ipm, iterations = 10000, burn_in = 0.25, kernel_seq = NULL, ...)

S3 method for class 'general_di_stoch_param_ipm'
left_ev(ipm, iterations = 10000, burn_in = 0.25, kernel_seq = NULL, ...)

S3 method for class 'simple_di_stoch_param_ipm'
left_ev(ipm, iterations = 10000, burn_in = 0.25, kernel_seq = NULL, ...)

Arguments

ipm Output from make_ipm().

... Other arguments passed to methods

iterations The number of times to iterate the model to reach convergence. Default is 100.

tolerance Tolerance to evaluate convergence to asymptotic dynamics.

36 right_mult

burn_in The proportion of early iterations to discard from the stochastic simulation
kernel_seq The sequece of parameter set indices used to select kernels during the iteration

procedure. If NULL, will use the sequence stored in the ipm object. Should
usually be left as NULL.

Value

A list of named numeric vector(s) corresponding to the stable trait distribution function (right_ev)
or the reproductive values for each trait (left_ev).

Deterministic eigenvectors

For right_ev, if the model has already been iterated and has converged to asymptotic dynamics,
then it will just extract the final population state and return that in a named list. Each element of
the list is a vector with length >= 1 and corresponds each state variable’s portion of the eigenvector.
If the model has been iterated, but has not yet converged to asymptotic dynamics, right_ev will
try to iterate it further using the final population state as the starting point. The default number of
iterations is 100, and can be adjusted using the iterations argument. If the model hasn’t been
iterated, then right_ev will try iterating it for iterations number of time steps and check for
convergence. In the latter two cases, if the model still has not converged to asymptotic dynamics, it
will return NA with a warning.

For left_ev, the transpose iteration (sensu Ellner & Rees 2006, Appendix A) is worked out based
on the state_start and state_end in the model’s proto_ipm object. The model is then iterated
for iterations times to produce a standardized left eigenvector.

Stochastic eigenvectors

left_ev and right_ev return different things for stochastic models. right_ev returns the trait
distribution through time from the stochastic simulation (i.e. ipm$pop_state), and normalizes it
such that the distribution at each time step integrates to 1 (if it is not already). It then discards
the first burn_in * iterations time steps of the simulation to eliminate transient dynamics. See
Ellner, Childs, & Rees 2016, Chapter 7.5 for more details.

left_ev returns a similar result as right_ev, except the trait distributions are the result of left
multiplying the kernel and trait distribution. See Ellner, Childs, & Rees 2016, Chapter 7.5 for more
details.

right_mult Right/left multiplication

Description

Performs right and left multiplication.

Usage

right_mult(kernel, vectr, family = NULL, start_end = NULL)

left_mult(kernel, vectr)

sim_di_det_ex 37

Arguments

kernel, vectr kernel should be a bivariate kernel, vectr should be a univariate trait distribu-
tion.

family, start_end

Used internally, do not touch.

Value

left_mult returns t(kernel) %*% vectr. right_mult returns kernel %*% vectr.

sim_di_det_ex Simple deterministic IPM example

Description

Simple deterministic IPM example

Usage

sim_di_det_ex

Format

A simple deterministic IPM with the following slots:

sub_kernels The computed sub-kernels, named P and F.

env_list Empty

env_seq Empty.

pop_state Empty.

proto_ipm The proto_ipm object used to implement the model.

truncated_distributions

Eviction correction

Description

Various helpers to correct for unintentional eviction (Williams et al. 2012).

Usage

truncated_distributions(fun, target, ...)

discrete_extrema(target, state, ncol = NULL, nrow = NULL)

38 use_vr_model

Arguments

fun The density function to use. For example, could be "norm" to correct a Gaussian
density function, or "lnorm" to correct a log-normal density function.

target The parameter/vital rate being modified. If this is a vector, the distribution spec-
ified in fun will be recycled.

... Used internally, do not touch!

state The state variable used in the kernel that is being discretized.

ncol, nrow The number of rows or column that the final form of the iteration matrix should
have. This is only necessary for rectangular kernels with class "CC". make_ipm
works out the correct dimensions for "DC" and "CD" kernels internally.

Value

For truncated_distributions, a modified function call with that truncates the probability density
function based on the cumulative density function.

For discrete_extrema, a numeric vector with modified entries based on the discretization process.

Note

Neither of these functions are intended for use outside of define_kernel, as they rely on internally
generated variables to work inside of make_ipm.

References

Williams JL, Miller TEX & Ellner SP, (2012). Avoiding unintentional eviction from integral pro-
jection models.Ecology 93(9): 2008-2014.

use_vr_model Predict methods in ipmr

Description

This function is used when a predict method is incorporated into the vital rate expressions of a
kernel. Generally, ipmr can handle this without any additional user effort, but some model classes
will fail (often with an obscure error message). When this happens, use_vr_model can ensure that
model object is correctly represented in the data_list.

Usage

use_vr_model(model)

Arguments

model A fitted model object representing a vital rate. Primarily used to avoid writing
the mathematical expression for a vital rate, and using a predict() method
instead.

%^% 39

Details

ipmr usually recognizes model objects passed into the data_list argument automatically. Unfor-
tunately, sometimes it’ll miss one, and the user will need to manually protect it from the standard
build process. This function provides a wrapper around that process. Additionally, please file a bug
report here: https://github.com/padrinoDB/ipmr/issues describing what type of model you
are trying to use so it can be added to later versions of the package.

Wrap a model object in use_vr_model when building the data_list to pass to define_kernel.

Value

A model object with a "flat_protect" attribute.

Examples

data(iceplant_ex)

grow_mod <- lm(log_size_next ~ log_size, data = iceplant_ex)
surv_mod <- glm(survival ~ log_size, data = iceplant_ex, family = binomial())

data_list <- list(
grow_mod = use_vr_model(grow_mod),
surv_mod = use_vr_model(surv_mod),
recruit_mean = 20,
recruit_sd = 5

)

%^% Raise a matrix to a power

Description

Raises a matrix x to the y-th power. x ^ y computes element wise powers, whereas this computes y
- 1 matrix multiplications. mat_power(x, y) is identical to x %^% y.

Usage

x %^% y

mat_power(x, y)

Arguments

x A numeric or integer matrix.

y An integer.

https://github.com/padrinoDB/ipmr/issues

40 %^%

Value

A matrix.

Index

∗ datasets
gen_di_det_ex, 15
iceplant_ex, 15
monocarp_proto, 30
sim_di_det_ex, 37

%^%, 39

as.matrix.ipmr_ipm
(as.matrix.ipmr_matrix), 3

as.matrix.ipmr_matrix, 3

collapse_pop_state, 3
conv_plot (is_conv_to_asymptotic), 18

define_domains (define_impl), 4
define_env_state (define_impl), 4
define_impl, 4
define_kernel, 8
define_pop_state (define_impl), 4
discrete_extrema

(truncated_distributions), 37
discretize_pop_vector (define_impl), 4
domains, 9

format_mega_kernel, 13

gen_di_det_ex, 15

iceplant_ex, 15
init_ipm, 16
int_mesh (domains), 9
ipm_to_df, 17
is_conv_to_asymptotic, 18

kernel_formulae (domains), 9
kernel_formulae<- (domains), 9

lambda, 20, 34
left_ev (right_ev), 34
left_mult (right_mult), 36

make_impl_args_list (define_impl), 4

make_ipm, 21
make_ipm_report, 27
make_ipm_report_body (make_ipm_report),

27
make_iter_kernel (format_mega_kernel),

13
mat_power (%^%), 39
mean_kernel, 29
monocarp_proto, 30

new_fun_form (domains), 9

parameters (domains), 9
parameters<- (domains), 9
pdb_report, 29
plot.general_di_det_ipm

(plot.ipmr_matrix), 30
plot.ipmr_matrix, 30
plot.simple_di_det_ipm

(plot.ipmr_matrix), 30
plot.simple_di_stoch_kern_ipm

(plot.ipmr_matrix), 30
plot.simple_di_stoch_param_ipm

(plot.ipmr_matrix), 30
pop_state (domains), 9
print.general_dd_det_ipm

(print.proto_ipm), 33
print.general_dd_stoch_kern_ipm

(print.proto_ipm), 33
print.general_dd_stoch_param_ipm

(print.proto_ipm), 33
print.general_di_det_ipm

(print.proto_ipm), 33
print.general_di_stoch_kern_ipm

(print.proto_ipm), 33
print.general_di_stoch_param_ipm

(print.proto_ipm), 33
print.proto_ipm, 33
print.simple_dd_det_ipm

(print.proto_ipm), 33

41

42 INDEX

print.simple_dd_stoch_kern_ipm
(print.proto_ipm), 33

print.simple_dd_stoch_param_ipm
(print.proto_ipm), 33

print.simple_di_det_ipm
(print.proto_ipm), 33

print.simple_di_stoch_kern_ipm
(print.proto_ipm), 33

print.simple_di_stoch_param_ipm
(print.proto_ipm), 33

right_ev, 34
right_mult, 36

sim_di_det_ex, 37

truncated_distributions, 37

use_vr_model, 38

vital_rate_exprs (domains), 9
vital_rate_exprs<- (domains), 9
vital_rate_funs (domains), 9

	as.matrix.ipmr_matrix
	collapse_pop_state
	define_impl
	define_kernel
	domains
	format_mega_kernel
	gen_di_det_ex
	iceplant_ex
	init_ipm
	ipm_to_df
	is_conv_to_asymptotic
	lambda
	make_ipm
	make_ipm_report
	mean_kernel
	monocarp_proto
	plot.ipmr_matrix
	print.proto_ipm
	right_ev
	right_mult
	sim_di_det_ex
	truncated_distributions
	use_vr_model
	%^%
	Index

