Package ‘interp’

January 26, 2024
Type Package
Title Interpolation Methods
Version 1.1-6
Date 2024-01-26
Maintainer Albrecht Gebhardt <albrecht.gebhardt@aau.at>

Description Bivariate data interpolation on regular and irregular
grids, either linear or using splines are the main part of this
package. It is intended to provide FOSS replacement functions for
the ACM licensed akima::interp and tripack::tri.mesh functions.
Linear interpolation is implemented in
interp::interp(..., method="linear"), this corresponds to the call
akima::interp(..., linear=TRUE) which is the default setting and
covers most of akima::interp use cases in depending packages.
A re-implementation of Akimas irregular grid spline
interpolation (akima::interp(..., linear=FALSE)) is now also
available via interp::interp(..., method=""akima").
Estimators for partial derivatives are now also available in
interp::locpoly(), these are a prerequisite for the spline interpolation.
The basic part is a GPLed triangulation algorithm (sweep hull
algorithm by David Sinclair) providing the starting point for the
irregular grid interpolator. As side effect this algorithm is also
used to provide replacements for almost all functions of the tripack
package which also suffers from the same ACM license restrictions.
All functions are designed to be backward compatible with their
akima / tripack counterparts.

License GPL (>=2)
Imports Rcpp (>=0.12.9), deldir

Suggests sp, Deriv, Ryacas, ggplot2, gridExtra, lattice, stringi,
stringr, scatterplot3d, MASS

Enhances RcppEigen
LinkingTo Rcpp, ReppEigen
Depends R (>=3.5.0)

NeedsCompilation yes

R topics documented:

Author Albrecht Gebhardt [aut, cre, cph],
Roger Bivand [aut],
David Sinclair [aut, cph] (author of the shull library)

Repository CRAN
Date/Publication 2024-01-26 17:10:02 UTC

R topics documented:

interp-package e 3
akima e 4
akimad74 L e 5
ATCS v v e e e e e e e e e e e e e e e e e e 6
ATEA . . v v e e e e e e e e e e e e e e 7
asplineo 8
bicubic. 10
bicubic.grid e e 11
bilinear 13
bilinear.grid L. L 14
cells . . . e 16
circles e 17
CITCEESE o o o ot e e 18
CITCUM ottt e e s e e e e e 18
circumcircle 19
convex.hull 21
franke.data 22
identify.triSht 24
INETP . . o v o e e e e e e e e 25
INETP2XYZ © v v v v v e o e 30
INEETPP -« « « o o o e e e e e e e e 31
locpoly e 33
nearest.neighbours L. 37
neighbours. 38
OIL & v o e i e 39
on.convex.-hullo L 40
outerconvhull 41
plot.triSht 42
PIOLVOTONOL o e e e e e e e e e 43
plot.voronoi.polygons e 44
print.summary.triSht 0000 45
Print.summary.VOronoi v v v v v b e e e e e e e e e e e e e 46
print.triSht e 47
PriNt.VOTONOL v vt o s e e e e e e e 47
summary.triSht L e e e 48
SUMMATY.VOTONOL .« . . v v v v ettt i e e e e e e e e e e e e e e 49
trifind L e e 49
trimesh L 50

triangles L 52

interp-package 3

triSht e 53
triShE2tri e 55
IHLEST . . o . . e e e e e e e e e 55
VOTONOL .+ v v v v v o e e e e e e e e 56
VOTONOLATEA . . v v v v v v v e e e e e e e e e e e e e e 57
voronoi.findrejectsites L. e e e 58
VOIONOL.MOSAIC . .+ v v v v v e e e e e e e e e e e e e e 59
VOronoi.polygons e 60

Index 62

interp-package Interpolation of data
Description

Interpolation of z values given regular or irregular gridded data sets containing coordinates (x;, y;)
and function values z; is (will be) available through this package. As this interpolation is (for the
irregular gridded data case) based on trianglation of the data locations also triangulation functions
are implemented. Moreover the (not yet finished) spline interpolation needs estimators for partial
derivates, these are also made available to the end user for direct use.

Details
The interpolation use can be divided by the used method into piecewise linear (finished in 1_0.27)
and spline (not yet finished) interpolation and by input and output settings into gridded and point-
wise setups.

Note
This package is a FOSS replacement for the ACM licensed packages akima and tripack. The
function calls are backward compatible.

Author(s)

Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>
Maintainer: Albrecht Gebhardt <albrecht.gebhardt@aau.at>

See Also

interp, tri.mesh, voronoi.mosaic, locpoly

4 akima

akima Waveform Distortion Data for Bivariate Interpolation

Description

akima is a list with components x, y and z which represents a smooth surface of z values at selected
points irregularly distributed in the x-y plane.

The data was taken from a study of waveform distortion in electronic circuits, described in: Hi-
roshi Akima, "A Method of Bivariate Interpolation and Smooth Surface Fitting Based on Local
Procedures", CACM, Vol. 17, No. 1, January 1974, pp. 18-20.

References

Hiroshi Akima, "A Method of Bivariate Interpolation and Smooth Surface Fitting for Irregularly
Distributed Data Points", ACM Transactions on Mathematical Software, Vol. 4, No. 2, June 1978,
pp. 148-159. Copyright 1978, Association for Computing Machinery, Inc., reprinted by permission.

Examples

Not run:

library(rgl)

data(akima)

data

rgl.spheres(akima$x,akima$z , akima$y,@.5,color="red")

rgl.bbox()

bivariate linear interpolation

interp:

akima.li <- interp(akima$x, akima$y, akima$z,
xo=seq(min(akima$x), max(akima$x), length = 100),
yo=seq(min(akima$y), max(akima$y), length = 100))

interp surface:

rgl.surface(akima.li$x,akima.li$y,akima.li$z,color="green",alpha=c(0.5))

interpp:

akima.p <- interpp(akima$x, akima$y, akima$z,
runif(200,min(akima$x),max(akima$x)),
runif(200,min(akima$y),max(akimas$y)))

interpp points:

rgl.points(akima.p$x,akima.p$z , akima.p$y,size=4,color="yellow")

bivariate spline interpolation

data

rgl.spheres(akima$x,akima$z , akima$y,@.5,color="red")
rgl.bbox()

bivariate cubic spline interpolation

interp:

akima.si <- interp(akima$x, akima$y, akima$z,
xo=seq(min(akima$x), max(akima$x), length = 100),
yo=seq(min(akima$y), max(akima$y), length = 100),
linear = FALSE, extrap = TRUE)

akima474 5

interp surface:

rgl.surface(akima.si$x,akima.si$y,akima.si$z,color="green",alpha=c(0.5))

interpp:

akima.sp <- interpp(akima$x, akima$y, akima$z,
runif(200,min(akima$x),max(akima$x)),
runif(200,min(akima$y),max(akimasy)),
linear = FALSE, extrap = TRUE)

interpp points:

rgl.points(akima.sp$x,akima.sp$z , akima.sp$y,size=4,color="yellow")

End(Not run)

akima474 Sample data from Akima’s Bicubic Spline Interpolation code (TOMS
474)

Description

akima474 is a list with vector components x, y and a matrix z which represents a smooth surface of
z values at the points of a regular grid spanned by the vectors x and y.

References

Hiroshi Akima, Bivariate Interpolation and Smooth Surface Fitting Based on Local Procedures
[E2], Communications of ACM, Vol. 17, No. 1, January 1974, pp. 26-30

Examples

Not run:

library(rgl)

data(akima474)

data

rgl.spheres(akima474$x,akimad474%$z , akima474%y,0.5,color="red")

rgl.bbox()

bivariate linear interpolation

interp:

akima474.1i <- interp(akima474%$x, akima474$y, akima474%z,
xo=seq(min(akima474$x), max(akima474$x), length = 100),
yo=seq(min(akima474$y), max(akimad474%$y), length = 100))

interp surface:
rgl.surface(akima474.1i$x,akimad474.1i%y,akima474.1i$z,color="green",alpha=c(0.5))
interpp:
akima474.p <- interpp(akima474$x, akima474$y, akima474$z,
runif (200, min(akima474$x),max (akima474$x)),
runif(200,min(akima474%y),max(akima474$y)))
interpp points:
rgl.points(akima474.p$x,akimad74.p%$z , akimad74.p$y,size=4,color="yellow")

bivariate spline interpolation

6 arcs

data

rgl.spheres(akima474$x,akima474%$z , akima474%y,0.5,color="red")

rgl.bbox()

bivariate cubic spline interpolation

interp:

akima474.si <- interp(akima474$x, akima474$y, akima474$z,
xo=seq(min(akima474$x), max(akima474$x), length = 100),
yo=seq(min(akima474$y), max(akimad474%$y), length = 100),

linear = FALSE, extrap = TRUE)
interp surface:
rgl.surface(akima474.si$x,akimad74.si$y,akimad74.si$z,color="green",alpha=c(0.5))
interpp:
akima474.sp <- interpp(akima474$x, akima474%y, akimad74$z,
runif(200,min(akima474%$x),max(akima474$x)),
runif(200,min(akima4743%y),max(akima474$y)),
linear = FALSE, extrap = TRUE)
interpp points:
rgl.points(akima474.sp$x,akimad74.sp$z , akimad74.sp$y,size=4,color="yellow")

End(Not run)

arcs Extract a list of arcs from a triangulation object.

Description

This function extracts a list of arcs from a triangulation object created by tri.mesh.

Usage

arcs(tri.obj)

Arguments

tri.obj object of class triSht

Details
This function acesses the arcs component of a triangulation object returned by tri.mesh and
extracts the arcs contained in this triangulation. This is e.g. used for plotting.

Value
A matrix with two columns "from” and "to" containing the indices of points connected by the arc
with the corresponding row index.

Author(s)
Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

area 7

See Also

trisht, triangles, area

Examples

data(franke)
tr <- tri.mesh(franke$ds3)
arcs(tr)

area Extract a list of triangle areas from a triangulation object.

Description
This function returns a list containing the areas of each triangle of a triangulation object created by
tri.mesh.

Usage

area(tri.obj)

Arguments

tri.obj object of class triSht

Details
This function acesses the cclist component of a triangulation object returned by tri.mesh and
extracts the areas of the triangles contained in this triangulation.

Value

A vector containing the area values.

Author(s)

Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

See Also

trisht, triangles, arcs

Examples

data(franke)
tr <- tri.mesh(franke$ds3)
area(tr)

8 aspline

aspline Univariate Akima interpolation

Description

The function returns a list of points which smoothly interpolate given data points, similar to a curve
drawn by hand.

Usage
aspline(x, y = NULL, xout, n = 50, ties = mean, method = "improved"”,
degree = 3)
aSpline(x, y, xout, method = "improved”, degree = 3)
Arguments
X,y vectors giving the coordinates of the points to be interpolated. Alternatively a
single plotting structure can be specified: see xy.coords.
xout an optional set of values specifying where interpolation is to take place.
n If xout is not specified, interpolation takes place at n equally spaced points
spanning the interval [min(x), max(x)].
ties Handling of tied x values. Either a function with a single vector argument re-
turning a single number result or the string "ordered”.
method either "original” method after Akima (1970) or "improved” method (default)
after Akima (1991)
degree if improved algorithm is selected: degree of the polynomials for the interpolat-
ing function
Details

The original algorithm is based on a piecewise function composed of a set of polynomials, each
of degree three, at most, and applicable to successive interval of the given points. In this method,
the slope of the curve is determined at each given point locally by fitting a third degree polynomial
to four consecutive points. Each polynomial representing a portion of the curve between a pair
of given points is determined by the coordinates of and the slopes at the points. The data set is
prolonged below and above minimum and maximum x values to enable estimation of derivatives at
the boundary. The improved algorithm uses polynomials of degree two and one at the boundary.
Additionally four overlapping sequences of points are used for the estimation via a residual based
weighting scheme.

Value

X x coordinates of the interpolated data as given by ’xout’ or 'n’.

y interpolated y values.

aspline 9

Note

“aspline’ is a wrapper call for the underlying Repp function *aSpline’ which could also be called
directly with ’x’ and "y’ arguments if *xout’ is given and no ’ties’ argument is needed.

This is a reimplementation of Akimas algorithms (original and improved version). It is only based
on the original articles. It does not involve or resemble the Fortran code associated with those arti-
cles. For this reason results may differ slightly because different expressions can result in different
numerical errors.

This code is under GPL in contrast to original Fortran code as provided in package ’akima’.

The function arguments are identical to the call in package ’akima’, only the *'method’ argument
has its default now set to "improved’.

Author(s)

Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Thomas Petzold <thomas.petzoldt@tu-dresden.de>

References

Akima, H. (1970) A new method of interpolation and smooth curve fitting based on local proce-
dures, J. ACM 17(4), 589-602

Akima, H. (1991) A Method of Univariate Interpolation that Has the Accuracy of a Third-degree
Polynomial. ACM Transactions on Mathematical Software, 17(3), 341-366.

See Also

spline

Examples

regular spaced data
x <- 1:10
y <= c(rnorm(5), c(1,1,1,1,3))

xnew <- seq(-1, 11, 0.1)

plot(x, y, ylim=c(-3, 3), xlim=range(xnew))

stats::spline() for comparison

lines(spline(x, y, xmin=min(xnew), xmax=max(xnew), n=200), col="blue")

lines(aspline(x, y, xnew, method="original"”), col="red")
lines(aspline(x, y, xnew, method="improved"), col="black"”, lty="dotted")
lines(aspline(x, y, xnew, method="improved”, degree=10), col="green"”, lty="dashed")

irregular spaced data
x <= sort(runif(10, max=10))
y <= c(rnorm(5), c(1,1,1,1,3))

xnew <- seq(-1, 11, 0.1)

plot(x, y, ylim=c(-3, 3), xlim=range(xnew))

stats::spline() for comparison

lines(spline(x, y, xmin=min(xnew), xmax=max(xnew), n=200), col="blue")

10 bicubic

lines(aspline(x, y, xnew, method="original"”), col="red")
lines(aspline(x, y, xnew, method="improved”), col="black”, lty="dotted")
lines(aspline(x, y, xnew, method="improved"”, degree=10), col="green", lty="dashed")

an example of Akima, 1991
x <= ¢c(-3, -2, -1, 0, 1, 2, 2.5, 3)
y<-c(o, o, 0,0, -1, -1,0, 2

plot(x, y, ylim=c(-3, 3))
stats::spline() for comparison
lines(spline(x, y, n=200), col="blue")

lines(aspline(x, y, n=200, method="original”), col="red")
lines(aspline(x, y, n=200, method="improved"”), col="black", lty="dotted")
lines(aspline(x, y, n=200, method="improved”, degree=10), col="green"”, lty="dashed")

bicubic Bivariate Interpolation for Data on a Rectangular grid

Description

This is a placeholder function for backward compatibility with packaga akima.

In its current state it simply calls the reimplemented Akima algorithm for irregular grids applied to
the regular gridded data given.

Later a reimplementation of the original algorithm for regular grids may follow.

Usage

bicubic(x, y, z, x0, y0)

Arguments
X a vector containing the x coordinates of the rectangular data grid.
y a vector containing the y coordinates of the rectangular data grid.
z a matrix containing the z[i, j] data values for the grid points (x[i]1,y[j]).
X0 vector of x coordinates used to interpolate at.
yo vector of y coordinates used to interpolate at.
Details

This function is a call wrapper for backward compatibility with package akima.

Currently it applies Akimas irregular grid splines to regular grids, later a FOSS reimplementation
of his regular grid splines may replace this wrapper.

bicubic.grid 11

Value

This function produces a list of interpolated points:

X vector of x coordinates.
y vector of y coordinates.
z vector of interpolated data z.

If you need an output grid, see bicubic.grid.

Note

Use interp for the general case of irregular gridded data!

References

Akima, H. (1996) Rectangular-Grid-Data Surface Fitting that Has the Accuracy of a Bicubic Poly-
nomial, J. ACM 22(3), 357-361

See Also

interp, bicubic.grid

Examples

data(akima474)

interpolate at the diagonal of the grid [0,8]x[0,10]

akima.bic <- bicubic(akima474$x,akima474%y,akimad74%$z,
seq(0,8,length=50), seq(0,10,length=50))

plot(sqrt(akima.bic$x*2+akima.bic$y”2), akima.bic$z, type="1")

bicubic.grid Bicubic Interpolation for Data on a Rectangular grid

Description

This is a placeholder function for backward compatibility with packaga akima.

In its current state it simply calls the reimplemented Akima algorithm for irregular grids applied to
the regular gridded data given.

Later a reimplementation of the original algorithm for regular grids may follow.

Usage

bicubic.grid(x,y,z,xlim=c(min(x),max(x)),ylim=c(min(y),max(y)),
nx=40,ny=40, dx=NULL, dy=NULL)

12 bicubic.grid

Arguments
X a vector containing the x coordinates of the rectangular data grid.
y a vector containing the y coordinates of the rectangular data grid.
z a matrix containing the z[i, j] data values for the grid points (x[i1,y[j]1).
x1lim vector of length 2 giving lower and upper limit for range x coordinates used for
output grid.
ylim vector of length 2 giving lower and upper limit for range of y coordinates used
for output grid.
nx output grid dimension in x direction.
ny output grid dimension in y direction.
dx output grid spacing in x direction, not used by default, overrides nx if specified.
dy output grid spacing in y direction, not used by default, overrides ny if specified..
Details

This function is a call wrapper for backward compatibility with package akima.

Currently it applies Akimas irregular grid splines to regular grids, later a FOSS reimplementation
of his regular grid splines may replace this wrapper.

Value

This function produces a grid of interpolated points, feasible to be used directly with image and

contour:

X vector of x coordinates of the output grid.

y vector of y coordinates of the output grid.

z matrix of interpolated data for the output grid.
Note

Use interp for the general case of irregular gridded data!

References
Akima, H. (1996) Rectangular-Grid-Data Surface Fitting that Has the Accuracy of a Bicubic Poly-
nomial, J. ACM 22(3), 357-361

See Also

interp, bicubic

bilinear 13

Examples

data(akima474)

interpolate at a grid [0,8]x[0,10]

akima.bic <- bicubic.grid(akima474$x,akima474$y,akimad74%$z)
zmin <- min(akima.bic$z, na.rm=TRUE)

zmax <- max(akima.bic$z, na.rm=TRUE)

breaks <- pretty(c(zmin,zmax),10)

colors <- heat.colors(length(breaks)-1)

image(akima.bic, breaks=breaks, col=colors)
contour(akima.bic, levels=breaks, add=TRUE)

bilinear Bilinear Interpolation for Data on a Rectangular grid

Description

This is an implementation of a bilinear interpolating function.

For a point (x0,y0) contained in a rectangle (x1,y1),(x2,y1), (x2,y2),(x1,y2) and x1<x2, yl<y2, the

first step is to get z() at locations (x0,y1) and (x0,y2) as convex linear combinations z(x0,y*)=a*z(x1,y*)+(1-
a)*z(x2,y*) where a=(x2-x1)/(x0-x1) for y*=yl,y2. In a second step z(x0,y0) is calculated as
convex linear combination between z(x0,y1) and z(x0,y2) as z(x0,y1)=b*z(x0,y1)+(1-b)*z(x0,y2)

where b=(y2-y1)/(y0-y1).

Finally, z(x0,y0) is a convex linear combination of the z values at the corners of the containing
rectangle with weights according to the distance from (x0,y0) to these corners.

The grid lines can be unevenly spaced.

Usage

bilinear(x, y, z, x0, y0)
BiLinear(x, y, z, x0, yo0)

Arguments
X a vector containing the x coordinates of the rectangular data grid.
a vector containing the y coordinates of the rectangular data grid.
a matrix containing the z[i, j] data values for the grid points (x[i1,y[j]).
X0 vector of x coordinates used to interpolate at.
yo vector of y coordinates used to interpolate at.
Value

This function produces a list of interpolated points:

X vector of x coordinates.
vector of y coordinates.
z vector of interpolated data z.

If you need an output grid, see bilinear.grid.

14 bilinear.grid

Note

This Fortran function was part of the akima package but not related to any of Akimas algorithms
and under GPL. So it could be transfered into the interp package without changes.

BiLinear is a C++ reimplementation, maybe it will replace the Fortran implementation later, so its
name may change in futrure versions.
Note

Use interpp for the general case of irregular gridded data!

References

Pascal Getreuer, Linear Methods for Image Interpolation, Image Processing On Line, 2011, http://www.ipol.im/pub/art/2011/,

See Also

interp, bilinear.grid

Examples

data(akima474)

interpolate at the diagonal of the grid [0,8]x[0,10]

akima.bil <- bilinear(akima474%$x,akima474$y,akima474%$z,
seq(0,8,length=50), seq(0,10,length=50))

plot(sqrt(akima.bil$x*2+akima.bil$y*2), akima.bil$z, type="1")

bilinear.grid Bilinear Interpolation for Data on a Rectangular grid

Description

This is an implementation of a bilinear interpolating function.

For a point (x0,y0) contained in a rectangle (x1,y1),(x2,y1), (x2,y2),(x1,y2) and x1<x2, yl<y2, the

first step is to get z() at locations (x0,y1) and (x0,y2) as convex linear combinations z(x0,y*)=a*z(x1,y*)+(1-
a)*z(x2,y*) where a=(x2-x1)/(x0-x1) for y*=yl,y2. In a second step z(x0,y0) is calculated as

convex linear combination between z(x0,y1) and z(x0,y2) as z(x0,y1)=b*z(x0,y1)+(1-b)*z(x0,y2)

where b=(y2-y1)/(y0-y1).

Finally, z(x0,y0) is a convex linear combination of the z values at the corners of the containing
rectangle with weights according to the distance from (x0,y0) to these corners.

The grid lines can be unevenly spaced.

Usage

bilinear.grid(x,y,z,xlim=c(min(x),max(x)),ylim=c(min(y),max(y)),
nx=40,ny=40,dx=NULL,dy=NULL)

BiLinear.grid(x,y,z,xlim=c(min(x),max(x)),ylim=c(min(y),max(y)),
nx=40,ny=40,dx=NULL,dy=NULL)

bilinear.grid

Arguments

X

y
z

xlim
ylim

nx

ny
dx
dy

Value

15

a vector containing the x coordinates of the rectangular data grid.

a vector containing the y coordinates of the rectangular data grid.

a matrix containing the z[i, j] data values for the grid points (x[i]1,y[j]).
vector of length 2 giving lower and upper limit for range x coordinates used for
output grid.

vector of length 2 giving lower and upper limit for range of y coordinates used
for output grid.

output grid dimension in x direction.

output grid dimension in y direction.

output grid spacing in x direction, not used by default, overrides nx if specified.

output grid spacing in y direction, not used by default, overrides ny if specified..

This function produces a grid of interpolated points, feasible to be used directly with image and

contour:

Note

vector of x coordinates of the output grid.
vector of y coordinates of the output grid.
matrix of interpolated data for the output grid.

This Fortran function was part of the akima package but not related to any of Akimas algorithms
and under GPL. So it could be transfered into the interp package without changes.

BiLinear.grid is a C++ reimplementation, maybe this will replace the Fortran implementation
later. So its name may change in future versions, dont rely on it currently.

References

Pascal Getreuer, Linear Methods for Image Interpolation, Image Processing On Line, 2011, http://www.ipol.im/pub/art/2011/

See Also

interp

Examples

data(akima474)

interpolate at a grid [0,8]x[0,10]

akima.bil <- bilinear.grid(akima474$x,akima474%y,akima474$z)
zmin <- min(akima.bil$z, na.rm=TRUE)

zmax <- max(akima.bil$z, na.rm=TRUE)

breaks <- pretty(c(zmin,zmax),10)

colors <- heat.colors(length(breaks)-1)

image(akima.bil, breaks=breaks, col=colors)
contour(akima.bil, levels=breaks, add=TRUE)

16 cells

cells extract info about voronoi cells

Description
This function returns some info about the cells of a voronoi mosaic, including the coordinates of
the vertices and the cell area.

Usage

cells(voronoi.obj)

Arguments

voronoi.obj object of class voronoi

Details
The function calculates the neighbourhood relations between the underlying triangulation and trans-
lates it into the neighbourhood relations between the voronoi cells.

Value

retruns a list of lists, one entry for each voronoi cell which contains

cell cell index
center cell ’center’
neighbours neighbour cell indices
nodes 2 times nnb matrix with vertice coordinates
area cell area
Note

outer cells have area=NA, currently also nodes=NA which is not really useful — to be done later

Author(s)

A. Gebhardt

See Also

voronoi.mosaic, voronoi.area

circles 17

Examples

data(tritest)

tritest.vm <- voronoi.mosaic(tritest$x,tritest$y)

tritest.cells <- cells(tritest.vm)

higlight cell 12:

plot(tritest.vm)

polygon(t(tritest.cells[[12]]$nodes),col="green")

put cell area into cell center:

text(tritest.cells[[12]]1$center[1],
tritest.cells[[12]]$center[2],
tritest.cells[[12]]%$area)

circles plot circles

Description

This function plots circles at given locations with given radii.

Usage

circles(x, y, r, ...)
Arguments

X vector of x coordinates

y vector of y coordinates

r vactor of radii

additional graphic parameters will be passed through

Note

This function needs a previous plot where it adds the circles.

Author(s)
A. Gebhardt

See Also

lines, points

Examples

x<-rnorm(10)

y<-rnorm(10)

r<-runif(10,0,0.5)

plot(x,y, xlim=c(-3,3), ylim=c(-3,3), pch="+")
circles(x,y,r)

18 circum

circtest circtest / sample data

Description

Sample data for the link{circumcircle} function.

circtest2 are points sampled from a circle with some jitter added, i.e. they represent the most
complicated case for the link{circumcircle} function.

circum Determine the circumcircle (and some other characteristics) of a tri-
angle

Description

This function returns the circumcircle of a triangle and some additonal values used to determine
them.

Usage

circum(x, y)

Arguments
X Vector of three elements, giving the x coordinatres of the triangle nodes.
y Vector of three elements, giving the y coordinatres of the triangle nodes.
Details

This is an interface to the Fortran function CIRCUM found in TRIPACK.

Value
X ’x’ coordinate of center
y 'y’ coordinate of center
radius circumcircle radius
signed.area signed area of riangle (positive iff nodes are numbered counter clock wise)

aspect.ratio ratio "radius of inscribed circle"/"radius of circumcircle", varies between 0 and
0.5

0 means collinear points, 0.5 equilateral trangle.

Note

This function is mainly intended to be used by circumcircle.

circumcircle 19

Author(s)

A. Gebhardt

References

https://math.fandom.com/wiki/Circumscribed_circle#Coordinates_of_circumcenter, visited march
2022.

See Also

circumcircle

Examples
circum(c(0,1,0),c(0,0,1))

tr <- list()
tr$tl <-list(x=c(0,1,0),y=c(0,0,1))
tr$t2 <-list(x=c(0.5,0.9,0.7),y=c(0.2,0.9,1))
tr$t3 <-list(x=c(0.05,0,0.3),y=c(0.2,0.7,0.1))
plot(0,0,type="n",xlim=c(-0.5,1.5),ylim=c(-0.5,1.5))
for(i in 1:3){
x <= tr[[i]]$x
y <- tr[[i]1]s$y
points(x,y,pch=c("1","2","3"),x1im=c(-0.5,1.5),ylim=c(-0.5,1.5))
cc =circum(x,y)
lines(c(x,x[11),cCy,y[1D))
points(cc$x,ccy)
if(cc$signed. area<o)
circles(ccx,ccy,cc$radius,col="blue",1ty="dotted")
else
circles(ccx,ccy,cc$radius,col="red"”,1ty="dotted")

circumcircle Determine the circumcircle of a set of points

Description

This function returns the (smallest) circumcircle of a set of n points

Usage

circumcircle(x, y = NULL, num.touch=2, plot = FALSE, debug = FALSE)

20 circumcircle

Arguments
X vector containing x coordinates of the data. If y is missing x should contain two
elements $x and $y.
y vector containing y coordinates of the data.
num. touch How often should the resulting circle touch the convex hull of the given points?
default: 2
possible values: 2 or 3
Note: The circumcircle of a triangle is usually defined to touch at 3 points, this
function searches by default the minimum circle, which may be only touching
at 2 points. Set parameter num. touch accordingly if you dont want the default
behaviour!
plot Logical, produce a simple plot of the result.
default: FALSE
debug Logical, more plots, only needed for debugging.
default: FALSE
Details

This is a (naive implemented) algorithm which determines the smallest circumcircle of n points:
First step: Take the convex hull.

Second step: Determine two points on the convex hull with maximum distance for the diameter of
the set.

Third step: Check if the circumcircle of these two points already contains all other points (of the
convex hull and hence all other points).

If not or if 3 or more touching points are desired (num.touch=3), search a point with minimum
enclosing circumcircle among the remaining points of the convex hull.

If such a point cannot be found (e.g. for data(circtest2)), search the remaining triangle combi-
nations of points from the convex hull until an enclosing circle with minimum radius is found.

The last search uses an upper and lower bound for the desired miniumum radius:

Any enclosing rectangle and its circumcircle gives an upper bound (the axis-parallel rectangle is
used).

Half the diameter of the set from step 1 is a lower bound.

Value
X ’x” coordinate of circumcircle center
y 'y’ coordinate of circumcircle center
radius radius of circumcircle

Author(s)

Albrecht Gebhardt

convex.hull 21

See Also

convex. hull

Examples

data(circtest)
smallest circle:
circumcircle(circtest,num.touch=2,plot=TRUE)

smallest circle with maximum touching points (3):
circumcircle(circtest,num.touch=3,plot=TRUE)

some stress test for this function,
data(circtest2)

circtest2 was generated by:

100 random points almost one a circle:

alpha <- runif(100,0,2*pi)

x <- cos(alpha)

y <- sin(alpha)

circtest2<-list(x=cos(alpha)+runif(100,0,0.1),
y=sin(alpha)+runif(100,0,0.1))
#

circumcircle(circtest2,plot=TRUE)

convex.hull Return the convex hull of a triangulation object

Description

Given a triangulation tri.obj of n points in the plane, this subroutine returns two vectors contain-
ing the coordinates of the nodes on the boundary of the convex hull.

ConvexHull is an experimental C++ implementation of Grahams Scan without previous triangula-
tion, should be much faster.

Usage

convex.hull(tri.obj, plot.it=FALSE, add=FALSE,...)
ConvexHull(x,y)

Arguments
tri.obj object of class triSht
plot.it logical, if TRUE the convex hull of tri.obj will be plotted.
add logical. if TRUE (and plot.it=TRUE), add to a current plot.
additional plot arguments
X only for ConvexHull(): x coordinates for C++ call to ConvexHull

y only for ConvexHull(): see x

22 franke.data

Value
X x coordinates of boundary nodes.
y y coordinates of boundary nodes.
Note

In case that there are several collinear nodes on the convex hull convex.hull will return them all
while ConvexHull will only give edge points.

Author(s)

Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

See Also

triSht, print.triSht, plot.triSht, summary.triSht, triangles.

Examples

random points:

rand. tr<-tri.mesh(runif(10),runif(10))

plot(rand.tr)

rand.ch<-convex.hull(rand.tr, plot.it=TRUE, add=TRUE, col="red")

use a part of the quakes data set:

data(quakes)

quakes.part<-quakes[(quakes[,1]<=-17 & quakes[,1]>=-19.0 &
quakes[,2]<=182.0 & quakes[,2]1>=180.0),]

quakes. tri<-tri.mesh(quakes.part$lon, quakes.part$lat, duplicate="remove")

plot(quakes.tri)

convex.hull(quakes.tri, plot.it=TRUE, add=TRUE, col="red")

franke.data Test datasets from Franke for interpolation of scattered data

Description

franke.data generates the test datasets from Franke, 1979, see references.

Usage

franke.data(fn = 1, ds = 1, data)
franke.fn(x, y, fn = 1)

franke.data

Arguments

fn

X

y
ds

data

Details

23

function number, from 1 to 5.
’x’ value
'y’ value

data set number, from 1 to 3. Dataset 1 consists of 100 points, dataset 2 of 33
points and dataset 3 of 25 points scattered in the square [0,1] x [0,1]. (and
partially slightly outside).

A list of dataframes with ’x’ and ’y’ to choose from, dataset franke should be
used here.

These datasets are mentioned in Akima, (1996) as a testbed for the irregular scattered data interpo-

lator.

Franke used the five functions:

0.75e

_(9z—2)24 (9y—2)? (92412 9y+1 (=124 (9y—3)2 _ A2 (02
1 10+ (0.5e 1 —0.2¢ ((92—4)"=(9y—T7)")

+ 0.75e~ 49

tanh(9y — 9z) + 1
9

1.25 4 cos(5.4y)
6(1+ 3z — 1)?)

—0.5)2
81((@-0.5)2+ DB
e 3

5)2
81((m—o.5)2+%)
67 3

/64 —81((z — 0.5)2 + (y — 0.5)2)

—-0.5
9

and evaluated them on different more or less dense grids over [0, 1] x [0, 1].

Value

A data frame with components

X

y

z

’x’ coordinate
'y’ coordinate

>z’ value

24 identity.triSht

Note

The datasets have to be generated via franke.data before use, the dataset franke only contains a
list of 3 dataframes of *x” and 'y’ coordinates for the above mentioned irregular grids. Do not forget
to load the franke dataset first.

The ’x’ and 'y’ values have been taken from Akima (1996).

Author(s)

Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

References

FRANKE, R., (1979). A critical comparison of some methods for interpolation of scattered data.
Tech. Rep. NPS-53-79-003, Dept. of Mathematics, Naval Postgraduate School, Monterey, Calif.

Akima, H. (1996). Algorithm 761: scattered-data surface fitting that has the accuracy of a cubic
polynomial. ACM Transactions on Mathematical Software 22, 362-371.

See Also

interp

Examples

generate Frankes data set for function 2 and dataset 3:

data(franke)
F23 <- franke.data(2, 3, franke)
str(F23)
identify.triSht Identify points in a triangulation plot
Description

Identify points in a plot of "x" with its coordinates. The plot of "x"” must be generated with
plot.tri.

Usage
S3 method for class 'triSht'
identify(x,...)

Arguments

X object of class triSht

additional paramters for identify

interp

Value

an integer vector containing the indexes of the identified points.

Author(s)

Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

See Also

trisht,

Examples

print.triSht, plot.triSht, summary.triSht

Not run:

data(franke)

tr <- tri.mesh(franke$ds3$x, franke$ds3sy)
plot(tr)

identify(tr)

End(Not run)

25

interp

Interpolation function

Description

This function implements bivariate interpolation for irregularly spaced input data. Piecewise linear
(=barycentric interpolation), bilinear or bicubic spline interpolation according to Akimas method is

applied.

Usage

interp(x, y = NULL, z, xo = seq(min(x), max(x), length = nx),

yo = seq(min(y), max(y), length = ny),

linear = (method == "linear"), extrap = FALSE,
duplicate = "error", dupfun = NULL,

nx = 40, ny = 40, input="points”, output = "grid",
method = "linear”, deltri = "shull”, h=0,
kernel="gaussian"”, solver="QR", degree=3,
baryweight=TRUE, autodegree=FALSE, adtol=0.1,
smoothpde=FALSE, akimaweight=TRUE, nweight=25,
na.rm=FALSE)

26 interp

Arguments

X vector of z-coordinates of data points or a SpatialPointsDataFrame object (a
regular gridded SpatialPixelsDataFrame is also allowed). In this case also an
sp data object will be returned. Missing values are not accepted.

y vector of y-coordinates of data points. Missing values are not accepted.

If left as NULL indicates that x should be a SpatialPointsDataFrame and z
names the variable of interest in this dataframe.

z vector of z-values at data points or a character variable naming the variable of
interest in the SpatialPointsDataFrame x.

Missing values are not accepted by default, see parameter na. rm.

X, ¥, and z must be the same length (execpt if x is a SpatialPointsDataFrame)
and may contain no fewer than four points. The points of x and y should not be
collinear if input="grid", as the underlying triangulation in these cases some-
times fails.

interp is meant for cases in which you have x, y values scattered over a plane
and a z value for each. If, instead, you are trying to evaluate a mathematical
function, or get a graphical interpretation of relationships that can be described
by a polynomial, try outer.

X0 If output="grid" (which is the default): sequence of x locations for rectangular
output grid, defaults to nx points between min(x) and max(x).

If output="points": vector of x locations for output points.

yo If output="grid" (default): sequence of y locations for rectangular output grid,
defaults to ny points between min(y) and max(y).

If output="points": vector of y locations for output points. In this case it has
to be same length as xo.

input text, possible values are "grid” (not yet implemented) and "points” (default).

This is used to distinguish between regular and irregular gridded input data.

output text, possible values are "grid"” (=default) and "points”.

If "grid"” is choosen then xo and yo are interpreted as vectors spanning a rect-

angular grid of points (zoli],yo[j]), i = 1,...,nz, j = 1,...,ny. This default

behaviour matches how akima: : interp works.

In the case of "points” xo and yo have to be of same length and are taken as

possibly irregular spaced output points (zo[i], yo[i]), i = 1, ..., no with no=length(xo).

nx and ny are ignored in this case. This case is meant as replacement for the

pointwise interpolation done by akima: : interpp. If the input x is a SpatialPointsDataFrame
and output="points” then xo has to be a SpatialPointsDataFrame, yo will

be ignored.

linear logical, only for backward compatibility with akima: : interp, indicates if piece-
wise linear interpolation or Akima splines should be used.
Please use the new method argument instead!

method text, possible methods are "linear” (piecewise linear interpolation within the

triangles of the Delaunay triangulation, also referred to as barycentric interpo-
lation based on barycentric coordinates) and "akima"” (a reimplementation for

interp 27

Akimas spline algorithms for irregular gridded data with the accuracy of a bicu-
bic polynomial).

method="bilinear"” is only applicable to regular grids (input="grid") and in
turn calls bilinear, see there for more details.

method="1inear" replaces the old linear argument of akima: :interp.

extrap logical, indicates if extrapolation outside the convex hull is intended, this will
not work for piecewise linear interpolation!

duplicate character string indicating how to handle duplicate data points. Possible values
are

"error"” produces an error message,

"strip” remove duplicate z values,

non non

"mean”,"median”,"user"” calculate mean , median or user defined function
(dupfun) of duplicate z values.

dupfun a function, applied to duplicate points if duplicate= "user”.

nx dimension of output grid in x direction

ny dimension of output grid in y direction

deltri triangulation method used, this argument may later be moved into a control

set together with others related to the spline interpolation! Possible values are
"shull” (default, sweep hull algorithm) and "deldir” (uses packagedeldir).

h bandwidth for partial derivatives estimation, compare locpoly for details

kernel kernel for partial derivatives estimation, compare locpoly for details

solver solver used in partial derivatives estimation, compare locpoly for details

degree degree of local polynomial used for partial derivatives estimation, compare locpoly
for details

baryweight calculate three partial derivatives estimators and return a barycentric weighted
average.

This increases the accuracy of Akima splines but the runtime is multplied by 3!

autodegree try to reduce degree automatically
adtol tolerance used for autodegree
smoothpde Use an averaged version of partial derivatives estimates, by default simple aver-

age of nweight estimates.
Currently disabled by default (FALSE), underlying code still a bit experimental.

akimaweight apply Akima weighting scheme on partial derivatives estimations instead of sim-
ply averaging
nweight size of search neighbourhood for weighting scheme, default: 25
na.rm remove points where z=NA, defaults to FALSE
Value

a list with 3 components:

28 interp

X,y If output="grid": vectors of x- and y-coordinates of output grid, the same as
the input argument xo, or yo, if present. Otherwise, their default, a vector 40
points evenly spaced over the range of the input x and y.
If output="points": vectors of - and y-coordinates of output points as given
by xo and yo.

z If output="grid": matrix of fitted z-values. The value z[1i, j] is computed at
the point (zo[i], yo[j]). z has dimensions length(xo) times length(yo).
If output="points": a vector with the calculated z values for the output points
as given by xo and yo.
If the input was a SpatialPointsDataFrame a SpatialPixelsDataFrame is
returned for output="grid" and a SpatialPointsDataFrame for output="points".

Note

Please note that this function tries to be a replacement for the interp() function from the akima
package. So it should be call compatible for most applications. It also offers additional tuning
parameters, usually the default settings will fit. Please be aware that these additional parameters
may change in the future as they are still under development.

Author(s)
Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

References

Moebius, A. F. (1827) Der barymetrische Calcul. Verlag v. Johann Ambrosius Barth, Leipzig,
https://books.google.at/books ?id=eFPluv_UqFEC&hl=de&pg=PR 1 #v=0onepage&q&f=false

Franke, R., (1979). A critical comparison of some methods for interpolation of scattered data. Tech.
Rep. NPS-53-79-003, Dept. of Mathematics, Naval Postgraduate School, Monterey, Calif.

Akima, H. (1978). A Method of Bivariate Interpolation and Smooth Surface Fitting for Irregularly
Distributed Data Points. ACM Transactions on Mathematical Software 4, 148-164.

Akima, H. (1996). Algorithm 761: scattered-data surface fitting that has the accuracy of a cubic
polynomial. ACM Transactions on Mathematical Software 22, 362-371.

See Also

interpp

Examples

Use all datasets from Franke, 1979:
data(franke)

x-y irregular grid points:

oldseed <- set.seed(42)

ni <- 64

xi <= runif(ni,Q,1)

yi <= runif(ni,0,1)

xyil <- cbind(xi,yi)

linear interpolation

interp

fi <- franke.fn(xi,yi,1)
IL <- interp(xi,yi,fi,nx=80,ny=80,method="1linear")
prepare breaks and colors that match for image and contour:
breaks <- pretty(seq(min(IL$z,na.rm=TRUE),max(IL$z,na.rm=TRUE), length=11))
db <- breaks[2]-breaks[1]
nb <- length(breaks)
breaks <- c(breaks[1]-db,breaks,breaks[nb]+db)
colors <- terrain.colors(length(breaks)-1)
image (IL,breaks=breaks,col=colors,main="Franke function 1",
sub=paste(”linear interpolation, ", ni,"points"))
contour(IL,add=TRUE, levels=breaks)
points(xi,yi)
spline interpolation
fi <- franke.fn(xi,yi,1)
IS <- interp(xi,yi,fi,method="akima",
kernel="gaussian",solver="QR")
prepare breaks and colors that match for image and contour:
breaks <- pretty(seq(min(IS$z,na.rm=TRUE),max(IS$z,na.rm=TRUE),length=11))
db <- breaks[2]-breaks[1]
nb <- length(breaks)
breaks <- c(breaks[1]-db,breaks,breaks[nb]+db)
colors <- terrain.colors(length(breaks)-1)
image (IS, breaks=breaks,col=colors,main="Franke function 1",
sub=paste(”spline interpolation, ", ni,"points"))
contour (IS, add=TRUE, levels=breaks)
points(xi,yi)
regular grid:
nx <- 8; ny <- 8
xg<-seq(@,1,length=nx)
yg<-seq(@,1,length=ny)
xx <= t(matrix(rep(xg,ny),nx,ny))
yy <- matrix(rep(yg,nx),ny,nx)
xyg<-expand.grid(xg,yg)
linear interpolation
fg <- outer(xg,yg,function(x,y)franke.fn(x,y,1))
IL <- interp(xg,yg,fg,input="grid", ,method="1linear")
prepare breaks and colors that match for image and contour:
breaks <- pretty(seq(min(IL$z,na.rm=TRUE),max(IL$z,na.rm=TRUE),length=11))
db <- breaks[2]-breaks[1]
nb <- length(breaks)
breaks <- c(breaks[1]-db,breaks,breaks[nb]+db)
colors <- terrain.colors(length(breaks)-1)
image (IL,breaks=breaks,col=colors,main="Franke function 1",
sub=paste(”linear interpolation, ", nx,"x",ny,"points"))
contour(IL,add=TRUE, levels=breaks)
points(xx,yy)
spline interpolation
fg <- outer(xg,yg,function(x,y)franke.fn(x,y,1))
IS <- interp(xg,yg,fg,input="grid", ,method="akima",
kernel="gaussian",solver="QR")
prepare breaks and colors that match for image and contour:
breaks <- pretty(seq(min(IS$z,na.rm=TRUE),max(IS$z,na.rm=TRUE),length=11))
db <- breaks[2]-breaks[1]

29

30 interp2xyz

nb <- length(breaks)

breaks <- c(breaks[1]-db,breaks,breaks[nb]+db)

colors <- terrain.colors(length(breaks)-1)

image (IS, breaks=breaks,col=colors,main="Franke function 1",
sub=paste(”spline interpolation, ", nx,"x",6 ny,"points"))

contour (IS, add=TRUE, levels=breaks)

points(xx,yy)

apply interp to sp data:

require(sp)

convert Akima data set to a sp object

data(akima)

asp <- SpatialPointsDataFrame(list(x=akima$x,y=akima$y),
data = data.frame(z=akima$z))

spplot(asp,”z")

linear interpolation

spli <- interp(asp, z="z", method="linear")

the result is again a SpatialPointsDataFrame:

spplot(spli,"z")

now with spline interpolation, slightly higher resolution

spsi <- interp(asp, z="z", method="akima"”, nx=120, ny=120)

spplot(spsi,"z")

now sp grids: reuse stuff from above

spgr <- SpatialPixelsDataFrame(list(x=c(xx),y=c(yy)),
data=data.frame(z=c(fg)))

spplot(spgr)

linear interpolation

spli <- interp(spgr, z="z", method="linear"”, input="grid")

the result is again a SpatialPointsDataFrame:

spplot(spli,"z")

now with spline interpolation, slightly higher resolution

spsi <- interp(spgr, z="z", method="akima", nx=240, ny=240)

spplot(spsi,"z")

n

set.seed(oldseed)

interp2xyz From interp() Result, Produce 3-column Matrix

Description

From an interp() result, produce a 3-column matrix or data. frame cbind(x, vy, z).

Usage

interp2xyz(al, data.frame = FALSE)

interpp 31

Arguments

al a list as produced from interp().

data.frame logical indicating if result should be data.frame or matrix (default).
Value

nyn o n,n o n_n

a matrix (or data.frame) with three columns, called "x", "y", "z".

Author(s)
Martin Maechler, Jan.18, 2013

See Also

expand.grid() is the “essential ingredient” of interp2xyz().

interp.

Examples

data(akima)
ak.spl <- with(akima, interp(x, y, z, method = "akima"))
str(ak.spl)# list (x[il, y[jl, z = <matrix>[i,j])

Now transform to simple (x,y,z) matrix / data.frame :
str(am <- interp2xyz(ak.spl))

str(ad <- interp2xyz(ak.spl, data.frame=TRUE))

and they are the same:

stopifnot(am == ad | (is.na(am) & is.na(ad)))

interpp Pointwise interpolate irregular gridded data

Description

This function implements bivariate interpolation onto a set of points for irregularly spaced input
data.

This function is meant for backward compatibility to package akima, please use interp with its
output argument set to "points” now. Especially newer options to the underlying algorithm are
only available there.

Usage

interpp(x, y = NULL, z, xo0, yo = NULL, linear
extrap = FALSE, duplicate = "error”, dupfun
deltri = "shull")

TRUE,
NULL,

32 interpp

Arguments

X vector of x-coordinates of data points or a SpatialPointsDataFrame object.
Missing values are not accepted.

y vector of y-coordinates of data points. Missing values are not accepted.
If left as NULL indicates that x should be a SpatialPointsDataFrame and z
names the variable of interest in this dataframe.

z vector of z-coordinates of data points or a character variable naming the variable
of interest in the SpatialPointsDataFrame x.
Missing values are not accepted.
X, ¥, and z must be the same length (execpt if x is a SpatialPointsDataFrame)
and may contain no fewer than four points. The points of x and y cannot be
collinear, i.e, they cannot fall on the same line (two vectors x and y such that y
= ax + b for some a, b will not be accepted).

X0 vector of x-coordinates of points at which to evaluate the interpolating function.
If xis a SpatialPointsDataFrame this has also to be a SpatialPointsDataFrame.

yo vector of y-coordinates of points at which to evaluate the interpolating function.
If operating on SpatialPointsDataFrames this is left as NULL

linear logical — indicating wether linear or spline interpolation should be used.

extrap logical flag: should extrapolation be used outside of the convex hull determined
by the data points? Not possible for linear interpolation.

duplicate indicates how to handle duplicate data points. Possible values are "error" - pro-
duces an error message, "strip” - remove duplicate z values, "mean”,"median"”,"user"”
- calculate mean , median or user defined function of duplicate z values.

dupfun this function is applied to duplicate points if duplicate="user"

deltri triangulation method used, this argument will later be moved into a control set
together with others related to the spline interpolation!

Value

a list with 3 components:

X,y If output="grid": vectors of - and y-coordinates of output grid, the same as
the input argument xo, or yo, if present. Otherwise, their default, a vector 40
points evenly spaced over the range of the input x and y.
If output="points": vectors of - and y-coordinates of output points as given
by xo and yo.

z If output="grid": matrix of fitted z-values. The value z[1i, j] is computed at
the point (zo[i], yo[j]). z has dimensions length(xo) times length(yo).
If output="points": a vector with the calculated z values for the output points
as given by xo and yo.

If the input was a SpatialPointsDataFrame a SpatialPixelssDataFrame is
returned for output="grid"” and a SpatialPointsDataFrame for output="points".

Note

This is only a call wrapper meant for backward compatibility, see interp for more details!

locpoly 33

Author(s)

Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

References

Moebius, A. F. (1827) Der barymetrische Calcul. Verlag v. Johann Ambrosius Barth, Leipzig,
https://books.google.at/books?id=eFPluv_UqFEC&hl=de&pg=PR 1 #v=0onepage&q&f=false

Franke, R., (1979). A critical comparison of some methods for interpolation of scattered data. Tech.
Rep. NPS-53-79-003, Dept. of Mathematics, Naval Postgraduate School, Monterey, Calif.

See Also

interp

Examples

Use all datasets from Franke, 1979:
calculate z at shifted original locations.
data(franke)
for(i in 1:5)
for(j in 1:3){
FR <- franke.data(i, j,franke)
IL <- with(FR, interpp(x,y,z,x+0.1,y+0.1,1linear=TRUE))
str(IL)

locpoly Local polynomial fit.

Description

This function performs a local polynomial fit of up to order 3 to bivariate data. It returns estimated
values of the regression function as well as estimated partial derivatives up to order 3. This access
to the partial derivatives was the main intent for writing this code as there already many other local
polynomial regression implementations in R.

Usage

locpoly(x, y, z, xo = seq(min(x), max(x), length = nx), yo = seq(min(y),
max(y), length = ny), nx = 40, ny = 40, input = "points”, output = "grid",
h = 0, kernel = "gaussian”, solver = "QR", degree = 3, pd = "")

34 locpoly

Arguments

X vector of z-coordinates of data points.
Missing values are not accepted.

y vector of y-coordinates of data points.
Missing values are not accepted.

z vector of z-values at data points.
Missing values are not accepted.
X, ¥, and z must be the same length

X0 If output="grid" (default): sequence of x locations for rectangular output grid,
defaults to nx points between min(x) and max(x).
If output="points": vector of x locations for output points.

yo If output="grid" (default): sequence of y locations for rectangular output grid,
defaults to ny points between min(y) and max(y).
If output="points": vector of y locations for output points. In this case it has
to be same length as xo.

input text, possible values are "grid” (not yet implemented) and "points” (default).
This is used to distinguish between regular and irregular gridded data.

output text, possible values are "grid"” (=default) and "points”.
If "grid"” is choosen then xo and yo are interpreted as vectors spanning a rect-
angular grid of points (zoli],yo[j]), i = 1,...,nz, j = 1,...,ny. This default
behaviour matches how akima: :interp works.
In the case of "points” xo and yo have to be of same lenght and are taken as
possibly irregular spaced output points (zoli], yo[i]), i = 1, ..., no with no=1length(xo).
nx and ny are ignored in this case.

nx dimension of output grid in x direction

ny dimension of output grid in y direction

h bandwidth parameter, between 0 and 1. If a scalar is given it is interpreted as
ratio applied to the dataset size to determine a local search neighbourhood, if set
to 0 a minimum useful search neighbourhood is choosen (e.g. 10 points for a
cubic trend function to determine all 10 parameters).
If a vector of length 2 is given both components are interpreted as ratio of the x-
and y-range and taken as global bandwidth.

kernel Text value, implemented kernels are uniform, triangle, epanechnikov, biweight,
tricube, triweight, cosine and gaussian (default).

solver Text value, determines used solver in fastLM algorithm used by this code
Possible values are LLt, QR (default), SVD, Eigen and CPivQR (compare fastLm).

degree Integer value, degree of polynomial trend, maximum allowed value is 3.

pd Text value, determines which partial derivative should be returned, possible val-

nyn o ononon n o on n o on n o on n

ues are "" (default, the polynomial itself), "x", "y", "xx", "xy", "yy", "xxx",

”Xxy”, ”ny”, uyyyu or “a].].“.

locpoly 35

Value

If pd="all":
X x coordinates
y y coordinates

estimates of z
zX estimates of dz/dx
zy estimates of dz/dy
ZXX estimates of d?z/dx?
zXy estimates of d?z/dxdy
zyy estimates of d?z/dy?
ZXXX estimates of d®z/dx?
ZXXy estimates of d°z/dz%dy
ZXyy estimates of d°z/dxdy?
zyyy estimates of d°z/dy?

If pd!="all" only the elements x, y and the desired derivative will be returned, e.g. zxy for
pd:llxylﬁ'

Note

Function locpoly of package KernSmooth performs a similar task for univariate data.

Author(s)
Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

References

Douglas Bates, Dirk Eddelbuettel (2013). Fast and Elegant Numerical Linear Algebra Using the
ReppEigen Package. Journal of Statistical Software, 52(5), 1-24. URL http://www.jstatsoft.org/v52/i05/.

See Also

locpoly, fastlm

Examples

choose a kernel
knl <- "gaussian”

choose global and local bandwidth
bwg <- 0.25 # *100% means: percentage of x- y-range used

bwl <- @.1 # *100% means: percentage of data set (nearest neighbours) used

a bivariate polynomial of degree 5:

36

f <= function(x,y) 0.1+ 0.2xx-0.3*xy+0Q.1*x*y+0.3*x"2%xy-0.5xy*2xx+y*3*x*2+0.1*%y"5

degree of model
dg=3

part 1:
regular gridded data:
ng<- 11 # x/y size of a square data grid

build and fill the grid with the theoretical values:

xg<-seq(@,1,length=ng)
yg<-seq(@,1,length=ng)

xg and yg as matrix matching fg
nx <- length(xg)

ny <- length(yg)

xx <- t(matrix(rep(xg,ny),nx,ny))
yy <- matrix(rep(yg,nx),ny,nx)

fg <- outer(xg,yg,f)

local polynomial estimate
global bw:
ttg <- system.time(pdg <- locpoly(xg,yg,fg,
input="grid"”, pd="all", h=c(bwg,bwg), solver="QR", degree=dg, kernel=knl))
time used:
ttg

local bw:
ttl <- system.time(pdl <- locpoly(xg,yg,fg,
input="grid"”, pd="all", h=bwl, solver="QR", degree=dg, kernel=knl))
time used:
ttl

image(pdl$x,pdls$y,pdl$z,main="f and its estimated first partial derivatives”,
sub="colors: f, dotted: df/dx, dashed: df/dy")

contour (pdlx,pdly,pdl$zx,add=TRUE, lty="dotted")

contour(pdlx,pdly,pdl$zy,add=TRUE, 1ty="dashed")

points(xx,yy,pch=".")

part 2:
irregular data,
results will not be as good as with the regular 21%21=231 points.

nd<- 121 # size of data set

random irregular data
oldseed <- set.seed(42)
x<-runif(ng)
y<-runif(ng)
set.seed(oldseed)

locpoly

nearest.neighbours 37

z <- f(x,y)

global bw:
ttg <- system.time(pdg <- interp::locpoly(x,y,z, xg,yg, pd="all",
h=c(bwg,bwg), solver="QR", degree=dg,kernel=knl))

ttg

local bw:
ttl <- system.time(pdl <- interp::locpoly(x,y,z, xg,yg, pd="all",
h=bwl, solver="QR", degree=dg,kernel=knl))

ttl

image (pdl$x,pdls$y,pdl$z,main="f and its estimated first partial derivatives”,
sub="colors: f, dotted: df/dx, dashed: df/dy")

contour(pdlx,pdly,pdl$zx,add=TRUE,lty="dotted")

contour (pdlx,pdly, pdl$zy,add=TRUE, 1ty="dashed")

points(x,y,pch=".")

nearest.neighbours Nearest neighbour structure for a data set

Description

This function can be used to generate nearest neighbour information for a set of 2D data points.

Usage

nearest.neighbours(x, y)

Arguments
X vector containing x ccordinates of points.
y vector containing x ccordinates of points.
Details

The C++ implementation of this function is used inside the locpoly and interp functions.

Value
A list with two components

index A matrix with one row per data point. Each row contains the indices of the
nearest neigbours to the point associated with this row, currently the point itself
is also listed in the first row, so this matrix is of dimension n times n (will change
to n times n — 1 later).

38 neighbours

dist A matrix containing the distances according to the neigbours listed in compo-
nent index.
Author(s)
Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

See Also

convex.hull

Examples

data(franke)

use only a small subset
fd <- franke$ds1[1:5,]
nearest.neighbours(fdx, fdy)

neighbours List of neighbours from a triangulation or voronoi object

Description

Extract a list of neighbours from a triangulation or voronoi object

Usage
neighbours(obj)

Arguments

obj object of class "triSht"” or "voronoi.mosaic”

Value

nested list of neighbours per point

Author(s)
A. Gebhardt

See Also

trisht, print.triSht, plot.triSht, summary.triSht, triangles

Examples

data(tritest)
tritest.tr<-tri.mesh(tritest$x,tritest$y)
tritest.nb<-neighbours(tritest.tr)

on 39

on Determines if a point is on or left of the vector described by two other
points.

Description
A simple test function to determine the position of one (or more) points relative to a vector spanned
by two points.

Usage

on(x1, y1, x2, y2, x0, yo, eps = 1le-16)
left(x1, y1, x2, y2, x0, y0, eps = le-16)

Arguments
x1 x coordinate of first point determinig the vector.
y1 y coordinate of first point determinig the vector.
X2 x coordinate of second point determinig the vector.
y2 y coordinate of second point determinig the vector.
X0 vector of x coordinates to locate relative to the vector (xo — x1,y2 — Y1)
yo vector of x coordinates to locate relative to the vector (xo — 1,y — Y1)
eps tolerance for checking if g, yo is on or left of (2 — x1,y2 — y1), defaults to
10716,
Value

logical vector with the results of the test.

Author(s)

Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

See Also

in.convex.hull, on.convex.hull.

Examples

y <= x <= c(0,1)

should be TRUE
on(x[1]1,y[11,x[2],y[2],0.5,0.5)

note the default setting of eps leading to
on(x[1]1,y[1]1,x[2],y[2],0.5,0.50000000000000001)
also be TRUE

should be TRUE

40 on.convex.hull

left(x[1]1,y[11,x[2],y[2],0.5,0.6)

note the default setting of eps leading to
left(x[11,y[1]1,x[2]1,y[2]1,0.5,0.50000000000000001)
already resulting to FALSE

on.convex.hull Determines if points are on or in the convex hull of a triangulation
object

Description

Given a triangulation object tri. obj of n points in the plane, this subroutine returns a logical vector
indicating if the points (z;, y;) lay on or in the convex hull of tri.obj.

Usage

on.convex.hull(tri.obj, x, y, eps=1E-16)
in.convex.hull(tri.obj, x, y, eps=1E-16, strict=TRUE)

Arguments
tri.obj object of class triSht
X vector of z-coordinates of points to locate
y vector of y-coordinates of points to locate
eps accuracy for checking the condition
strict logical, default TRUE. It indicates if the convex hull is treated as an open (strict=TRUE)
or closed (strict=FALSE) set. (applies only to in.convex.hull)
Value

Logical vector.

Author(s)

Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

See Also

trisSht, print.triSht, plot.triSht, summary.triSht, triangles, convex.hull.

outer.convhull 41

Examples

use a part of the quakes data set:

data(quakes)

quakes.part<-quakes[(quakes[,1]<=-10.78 & quakes[,1]>=-19.4 &
quakes[,2]<=182.29 & quakes[,2]1>=165.77),1]

g.tri<-tri.mesh(quakes.part$lon, quakes.part$lat, duplicate="remove")

on.convex.hull(qg.tri,quakes.part$lon[1:20],quakes.part$lat[1:20])

Check with part of data set:

Note that points on the hull (see above) get marked FALSE below:

in.convex.hull(q.tri,quakes.part$lon[1:20],quakes.part$lat[1:20])

If points both on the hull and in the interior of the hull are meant

disable strict mode:

in.convex.hull(q.tri,quakes.part$lon[1:20],quakes.part$lat[1:20],strict=FALSE)

something completely outside:

in.convex.hull(q.tri,c(170,180),c(-20,-10))

outer.convhull Version of outer which operates only in a convex hull

Description

This version of outer evaluates FUN only on that part of the grid cx times cy that is enclosed within
the convex hull of the points (pz, py).

This can be useful for spatial estimation if no extrapolation is wanted.

Usage
outer.convhull(cx,cy,px,py,FUN,duplicate="remove"”,...)
Arguments
cX x cordinates of grid
cy y cordinates of grid
pX vector of x coordinates of points
py vector of y coordinates of points
FUN function to be evaluated over the grid
duplicate indicates what to do with duplicate (pz;, py;) points, default "remove".
additional arguments for FUN
Value

Matrix with values of FUN (NAs if outside the convex hull).

Author(s)
Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

42 plot.triSht

See Also

in.convex.hull

Examples

x<-runif(20)

y<-runif(20)

z<-runif(20)

z. 1m<-1m(z~x+y)

f.pred<-function(x,y)
{predict(z.1lm,data.frame(x=as.vector(x),y=as.vector(y)))}

xg<-seq(0,1,0.05)

yg<-seq(0,1,0.05)

image(xg,yg,outer.convhull(xg,yg,x,y,f.pred))

points(x,y)

plot.triSht Plot a triangulation object

Description

plots the triangulation object "x"

Usage

S3 method for class 'triSht'

plot(x, add = FALSE, xlim = range(x$x),
ylim = range(x$y), do.points = TRUE, do.labels = FALSE, isometric = TRUE,
do.circumcircles = FALSE, segment.lty = "dashed”, circle.lty =

"dotted”, ...)
Arguments
X object of class "triSht”
add logical, if TRUE, add to a current plot.
do.points logical, indicates if points should be plotted. (default TRUE)
do.labels logical, indicates if points should be labelled. (default FALSE)
x1lim,ylim x/y ranges for plot
isometric generate an isometric plot (default TRUE)

do.circumcircles
logical, indicates if circumcircles should be plotted (default FALSE)

segment.lty line type for triangulation segments
circle.lty line type for circumcircles

additional plot parameters

plot.voronoi

Value

None

Author(s)
Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

See Also

triSht, print.triSht, summary.triSht

Examples

random points

plot(tri.mesh(rpois(100,lambda=20),rpois(100,lambda=20),duplicate="remove"))

use a part of the quakes data set:

data(quakes)

quakes.part<-quakes[(quakes[,1]<=-10.78 & quakes[,1]>=-19.4 &
quakes[,2]<=182.29 & quakes[,2]1>=165.77),]

quakes.tri<-tri.mesh(quakes.part$lon, quakes.part$lat, duplicate="remove")

plot(quakes.tri)

use the whole quakes data set

(will not work with standard memory settings, hence commented out)

plot(tri.mesh(quakes$lon, quakes$lat, duplicate="remove"”), do.points=F)

43

plot.voronoi Plot a voronoi object

Description

Plots the mosaic "x". Dashed lines are used for outer tiles of the mosaic.

Usage

S3 method for class 'voronoi'
plot(x,add=FALSE,
xlim=c(min(xtrix)-
0.1*xdiff (range(x$trisx)),
max (x$tris$x)+
0.1*%diff (range(x$trisx))),
ylim=c(min(xtriy)-
0.1xdiff(range(x$trisy)),
max(xtriy)+
0.1*xdiff (range(x$trisy))),
all=FALSE,
do.points=TRUE,
main="Voronoi mosaic”,
sub=deparse(substitute(x)),

44

Arguments

X
add

x1im
ylim

all
do.points
main

sub

isometric

Value

None

Author(s)

plot.voronoi.polygons

isometric=TRUE,

.2

object of class "voronoi”

logical, if TRUE, add to a current plot.

x plot ranges, by default modified to hide dummy points outside of the plot
y plot ranges, by default modified to hide dummy points outside of the plot
show all (including dummy points in the plot

logical, indicates if points should be plotted.

plot title

plot subtitle

generate an isometric plot (default TRUE)

additional plot parameters

Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

See Also

voronoi, print.voronoi, summary.voronoi, plot.voronoi.polygons

Examples

data(franke)

tr <- tri.mesh(franke$ds3)
vr <- voronoi.mosaic(tr)

plot(tr)

plot(vr,add=TRUE)

plot.voronoi.polygons plots an voronoi.polygons object

Description

plots an voronoi.polygons object

Usage

S3 method for class 'voronoi.polygons'
plot(x, which, color=TRUE, isometric=TRUE, ...)

print.summary.triSht

Arguments
X object of class voronoi.polygons
which index vector selecting which polygons to plot
color logical, determines if plot should be colored, default: TRUE
isometric generate an isometric plot (default TRUE)
additional plot arguments
Author(s)
A. Gebhardt
See Also

voronoi.polygons

Examples

data(franke)

fd3 <- franke$ds3

fd3.vm <- voronoi.mosaic(fd3$x,fd3s$y)
fd3.vp <- voronoi.polygons(fd3.vm)
plot(fd3.vp)
plot(fd3.vp,which=c(3,4,6,10))

print.summary.triSht Print a summary of a triangulation object

Description

Prints some information about tri.obj

Usage
S3 method for class 'summary.triSht'
print(x, ...)
Arguments
X object of class "summary.triSht”, generated by summary.triSht.
additional paramters for print
Value

None

46 print.summary.voronoi

Note

This function is meant as replacement for the function of same name in package tripack.

The only difference is that no constraints are possible with triSht objects of package interp.

Author(s)

Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

See Also

triSht,tri.mesh, print.triSht, plot.triSht, summary.triSht.

print.summary.voronoi Print a summary of a voronoi object

Description

Prints some information about object x

Usage
S3 method for class 'summary.voronoi'
print(x, ...)

Arguments

X object of class "summary.voronoi”, generated by summary.voronoi.

additional paramters for print

Value

None

Note

This function is meant as replacement for the function of same name in package tripack and should
be fully backward compatible.

Author(s)

Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

See Also

voronoi,voronoi.mosaic, print.voronoi, plot.voronoi, summary.voronoi.

print.triSht

47

print.triSht Print a triangulation object

Description

prints a adjacency list of "x"

Usage
S3 method for class 'triSht'
print(x,...)

Arguments

X object of class "triSht”

additional paramters for print

Value

None

Author(s)

Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

See Also

triSht, plot.triSht, summary.triSht

print.voronoi Print a voronoi object

Description

rints a summary of "x"
p ry

Usage
S3 method for class 'voronoi'
print(x,...)

Arguments
X object of class "voronoi”

additional paramters for print

48 summary.triSht

Value

None

Author(s)

Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

See Also

voronoi, plot.voronoi, summary.voronoi

summary.triSht Return a summary of a triangulation object

Description

Returns some information (number of nodes, triangles, arcs) about object.

Usage
S3 method for class 'triSht'
summary (object,...)

Arguments
object object of class "triSht”

additional paramters for summary

Value

An object of class "summary.triSht", to be printed by print.summary.triSht.

It contains the number of nodes (n), of arcs (na), of boundary nodes (nb) and triangles (nt).

Note

This function is meant as replacement for the function of same name in package tripack.

The only difference is that no constraints are possible with triSht objects of package interp.

Author(s)

Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

See Also

triSht, print.triSht, plot.triSht, print.summary.triSht.

summary.voronoi 49

summary.voronoi Return a summary of a voronoi object

Description

Returns some information about object

Usage
S3 method for class 'voronoi'
summary(object,...)

Arguments
object object of class "voronoi”

additional parameters for summary

Value

Object of class "summary.voronoi”.

It contains the number of nodes (nn) and dummy nodes (nd).

Note

This function is meant as replacement for the function of same name in package tripack and should
be fully backward compatible.

Author(s)

Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

See Also

voronoi,voronoi.mosaic, print.voronoi, plot.voronoi, print.summary.voronoi.

tri.find Locate a point in a triangulation

Description

This subroutine locates a point P = (z, y) relative to a triangulation created by tri.mesh. If P is
contained in a triangle, the three vertex indexes are returned. Otherwise, the indexes of the rightmost
and leftmost visible boundary nodes are returned.

50 tri.mesh

Usage

tri.find(tri.obj,x,y)

Arguments
tri.obj an triangulation object of class triSht
X x-coordinate of the point
y y-coordinate of the point

Value

A list with elements i11,12,13 containing nodal indexes, in counterclockwise order, of the vertices
of a triangle containing P = (x, y). tr contains the triangle index and bc contains the barycentric
coordinates of P w.r.t. the found triangle.

If P is not contained in the convex hull of the nodes this indices are O (bc is meaningless then).

Author(s)

Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

See Also

trisSht, print.triSht, plot.triSht, summary.triSht, triangles, convex.hull

Examples

data(franke)

tr<-tri.mesh(franke$ds3$x, franke$ds3sy)

plot(tr)

pnt<-list(x=0.3,y=0.4)

triangle.with.pnt<-tri.find(tr,pnt$x,pntsy)

attach(triangle.with.pnt)

lines(franke$ds3$x[c(i1,i2,13,i1)], franke$ds3$y[c(il1,i2,i3,i1)],col="red")
points(pnt$x,pntsy)

tri.mesh Delaunay triangulation

Description

This function generates a Delaunay triangulation of arbitrarily distributed points in the plane. The
resulting object can be printed or plotted, some additional functions can extract details from it like
the list of triangles, arcs or the convex hull.

Usage

tri.mesh(x, y = NULL, duplicate = "error", jitter = FALSE)

tri.mesh 51

Arguments
X vector containing x coordinates of the data. If y is missing x should be a list or
dataframe with two components x and y.
y vector containing y coordinates of the data. Can be omitted if x is a list with two
components x and y.
duplicate flag indicating how to handle duplicate elements. Possible values are:
e "error” — default,
e "strip” —remove all duplicate points,
* "remove"” — leave one point of the duplicate points.
jitter logical, adds some jitter to both coordinates as this can help in situations with
too much colinearity. Default is FALSE. Some error conditions within C++ code
can also lead to enabling this internally (a warning will be displayed).
Details

This function creates a Delaunay triangulation of a set of arbitrarily distributed points in the plane
referred to as nodes.

The Delaunay triangulation is defined as a set of triangles with the following five properties:

1. The triangle vertices are nodes.

2. No triangle contains a node other than its vertices.
3. The interiors of the triangles are pairwise disjoint.
4

. The union of triangles is the convex hull of the set of nodes (the smallest convex set which
contains the nodes).

5. The interior of the circumcircle of each triangle contains no node.
The first four properties define a triangulation, and the last property results in a triangulation which
is as close as possible to equiangular in a certain sense and which is uniquely defined unless four or

more nodes lie on a common circle. This property makes the triangulation well-suited for solving
closest point problems and for triangle-based interpolation.

This triangulation is based on the s-hull algorithm by David Sinclair. It consist of two steps:
1. Create an initial non-overlapping triangulation from the radially sorted nodes (w.r.t to an arbi-
trary first node). Starting from a first triangle built from the first node and its nearest neigbours

this is done by adding triangles from the next node (in the sense of distance to the first node)
to the hull of the actual triangulation visible from this node (sweep hull step).

2. Apply triange flipping to each pair of triangles sharing a border until condition 5 holds (Cline-
Renka test).

This algorithm has complexicity O(n * log(n)).

Value

an object of class "triSht", see triSht.

52 triangles

Note

This function is meant as a replacement for function tri.mesh from package tripack. Please note
that the underlying algorithm changed from Renka’s method to Sinclair’s sweep hull method. De-
launay triangulations are unique if no four or more points exist which share the same circumcircle.
Otherwise several solutions are available and different algorithms will give different results. This
especially holds for regular grids, where in the case of rectangular gridded points each grid cell can
be triangulated in two different ways.

The arguments are backward compatible, but the returned object is not compatible with package
tripack (it provides a tri object type)! But you can apply methods with same names to the object
returned in package interp which is of type triSht, so you can reuse your old code but you cannot
reuse your old saved workspace.

Author(s)

Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

References

B. Delaunay, Sur la sphere vide. A la memoire de Georges Voronoi, Bulletin de 1’ Academie des
Sciences de ’URSS. Classe des sciences mathematiques et na, 1934, no. 6, p. 793-800

D. A. Sinclair, S-Hull: A Fast Radial Sweep-Hull Routine for Delaunay Triangulation. https://arxiv.org/pdf/1604.01428.pdf,
2016.

See Also

trisht, print.triSht, plot.triSht, summary.triSht, triangles, convex.hull, arcs.

Examples

use Frankes datasets:

data(franke)

tr1 <- tri.mesh(franke$ds3$x, franke$ds3s$y)
tri

tr2 <- tri.mesh(franke$ds2)

summary (tr2)

triangles Extract a list of triangles from a triangulation object

Description

This function extracts a list of triangles from an triangulation object created by tri.mesh.

Usage

triangles(tri.obj)

triSht 53

Arguments

tri.obj object of class triSht

Details

The vertices in the returned matrix (let’s denote it with retval) are ordered counterclockwise. The
columns trzx and arcx, x = 1,2, 3 index the triangle and arc, respectively, which are opposite (not
shared by) node nodez, with triz = 0 if arcz indexes a boundary arc. Vertex indexes range from 1
to n, the number of nodes, triangle indexes from O to nt, and arc indexes from 1 to na = nt+n—1.

Value

A matrix with columns node1, node2, node3, representing the vertex nodal indexes, tr1, tr2, tr3,
representing neighboring triangle indexes and arc1, arc2, arc3 reresenting arc indexes.

Each row represents one triangle.

Author(s)
Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

See Also

trisht, print.triSht, plot.triSht, summary.triSht, triangles

Examples

use the smallest Franke data set
data(franke)

fr3.tr<-tri.mesh(franke$ds3$x, franke$ds3sy)
triangles(fr3.tr)

trisSht A triangulation object

Description

R object that represents the triangulation of a set of 2D points, generated by tri.mesh.

Arguments
n Number of nodes
X x coordinates of the triangulation nodes
y y coordinates of the triangulation nodes

nt number of triangles

54

trlist

cclist

nchull
chull

narcs

arcs

call

Note

triSht

Matrix of indices which defines the triangulation, each row corresponds to a
triangle.

Columns i1, 12, i3 of the row 7 contain the node indices defining the ¢th triangle.

Columns j1, j2, j3 of the row ¢ contain the indices of neighbour triangles (or 0
if no neighbour available along the convex hull).

Columns k1, k2, k3 of the row 7 contain the indices of the arcs of the ith triangle
as returned by the arcs function.
Matrix describing the circumcircles and triangles.

Columns x and y contain coordinates of the circumcircle centers, r is the cir-
cumcircle radius.

area is the triangle area and ratio is the ratio of the radius of the inscribed
circle to the circumcircle radius. It takes it maximum value 0.5 for an equilateral
triangle.

The radius of the inscribed circle can be get via r; = —7—.
number of points on the convex hull

A vector containing the indices of nodes forming the convec hull (in counter-
clockwise ordering).

number of arcs forming the triangulation

A matrix with node indices describing the arcs, contains two columns from and
to.

call, which generated this object

This object is not backward compatible with tri objects generated from package tripack but the
functions and methods are! So you have to regenerate these objects and then you can continue to
use the same calls as before.

The only difference is that no constraints to the triangulation are possible in package interp.

Function triSht2tri provides an option to convert this object into the older form from pack-
age tripack, but it will not generate exact copies as if the object would have been created with
tripack::tri.mesh! The old data structure consists of three lists describing adjacency lists of
triangulation nodes in counterclockwise order, the translation function only genrates such a valid
(but not unique) description.

Author(s)

Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

See Also

tri.mesh, print.triSht,triSht2tri, plot.triSht, summary.triSht

triSht2tri 55

trisht2tri Converter to tripack objects

Description

This function converts triSht objects (from this package) to tri objects (from tripack package).

Usage
triSht2tri(t.triSht)

Arguments

t.trisSht a class triSht object as returned by tri.mesh

Value

A class tri object, see tripack package.

Note

The converted objects are not fully compatible with tripack functions. Basic stuff (printing, plot-
ting) works, tripack::triangles e.g. does not work. Voronoi functions from package tripack
are working correctly with translated objects.

Author(s)
A. Gebhardt

See Also

tri.mesh, triSht

tritest tritest / sample data

Description

A very simply set set of points to test the tripack functions, taken from the FORTRAN original.
tritest2 is a slight modification by adding runif(,-0.1,0.1) random numbers to the coordi-
nates.

References

R. J. Renka (1996). Algorithm 751: TRIPACK: a constrained two-dimensional Delaunay triangu-
lation package. ACM Transactions on Mathematical Software. 22, 1-8.

56 voronoi

voronoi Voronoi object

Description

A voronoi object is created with voronoi.mosaic

Arguments

X,y x and y coordinates of nodes of the voronoi mosaic. Each node is a circumcircle
center of some triangle from the Delaunay triangulation.

node logical vector, indicating real nodes of the voronoi mosaic. These nodes are the
centers of circumcircles of triangles with positive area of the delaunay triangu-
lation.
If node[i]=FALSE, (c[i],x[i]) belongs to a triangle with area 0.

n1,n2,n3 indices of neighbour nodes. Negative indices indicate dummy points as neigh-
bours.

tri triangulation object, see triSht.

area area of triangle i.

ratio aspect ratio (inscribed radius/circumradius) of triangle i.

radius circumradius of triangle i.

dummy . x, dummy .y
x and y coordinates of dummy points. They are used for plotting of unbounded
tiles.

Note

This version of voronoi object is generated from the tri.mesh function from package interp.
That’s the only difference to voronoi objects generated with package tripack.

Author(s)

Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

See Also

voronoi.mosaic,plot.voronoi

voronoi.area 57

voronoi.area Calculate area of Voronoi polygons

Description

Computes the area of each Voronoi polygon. For some sites at the edge of the region, the Voronoi
polygon is not bounded, and so the area of those sites cannot be calculated, and hence will be NA.

Usage

voronoi.area(voronoi.obj)

Arguments

voronoi.obj object of class "voronoi”

Value

A vector of polygon areas.

Author(s)

S.J. Eglen

See Also

voronoi.mosaic,voronoi.polygons,

Examples

data(franke)

fd3 <- franke$ds3

fd3.vm <- voronoi.mosaic(fd3$x,fd3$y)
fd3.vm.areas <- voronoi.area(fd3.vm)
plot(fd3.vm)

text(fd3$x, fd3$y, round(fd3.vm.areas,5))

58 voronoi.findrejectsites

voronoi.findrejectsites
Find the Voronoi sites at the border of the region (to be rejected).

Description
Find the sites in the Voronoi tesselation that lie at the edge of the region. A site is at the edge if

any of the vertices of its Voronoi polygon lie outside the rectangle with corners (xmin,ymin) and
(Xmax,ymax).

Usage

voronoi.findrejectsites(voronoi.obj, xmin, xmax, ymin, ymax)

Arguments
voronoi.obj object of class "voronoi”
xmin minimum x-coordinate of sites in the region
Xmax maximum x-coordinate of sites in the region
ymin minimum y-coordinate of sites in the region
ymax maximum y-coordinate of sites in the region
Value

A logical vector of the same length as the number of sites. If the site is a reject, the corresponding
element of the vector is set to TRUE.

Author(s)

S. J. Eglen

See Also

voronoi.polygons

voronoi.mosaic 59

voronoi.mosaic Voronoi mosaic

Description

This function creates a Voronoi mosaic out of a given set of arbitraryly located points in the plane.
Each cell of a voronoi mosaic is associated with a data point and contains all points (z,y) closest
to this data point.

Usage
voronoi.mosaic(x, y = NULL, duplicate = "error")
Arguments
X vector containing x coordinates of the data. If y is missing x should be a list or
dataframe with two components x and y.
x can also be an object of class triSht generated by tri.mesh. In this case the
internal triangulation step can be skipped.
y vector containing y coordinates of the data. Can be omitted if x is a list with two
components x and y.
duplicate flag indicating how to handle duplicate elements. Possible values are:
e "error" — default,
e "strip” —remove all duplicate points,
* "remove"” —leave one point of the duplicate points.
Details

The function creates first a Delaunay triangulation (if not already given), extracts the circumcircle
centers of these triangles, and then connects these points according to the neighbourhood relations
between the triangles.

Value

An object of class voronoi.

Note

This function is meant as a replacement for function voronoi.mosaic from package tripack.
Please note that the underlying triangulation uses a different algorithm, see tri.mesh. Contrary to
tri.mesh this should not affect the result for non unique triangulations e.g. on regular grids as the
voronoi mosaic in this case will still be unique.

The arguments are backward compatible, even the returned object should be compatible with func-
tions from package tripack.

60 voronoi.polygons

Author(s)

Albrecht Gebhardt <albrecht.gebhardt@aau.at>, Roger Bivand <roger.bivand @nhh.no>

References

G. Voronoi, Nouvelles applications des parametres continus a la theorie des formes quadratiques.
Deuxieme memoire. Recherches sur les parallelloedres primitifs, Journal fuer die reine und ange-
wandte Mathematik, 1908, vol 134, p. 198-287

See Also

voronoi,voronoi.mosaic, print.voronoi, plot.voronoi

Examples

data(franke)

fd <- franke$ds3

vr <- voronoi.mosaic(fdx, fdy)
summary (vr)

voronoi.polygons extract polygons from a voronoi mosaic

Description

This functions extracts polygons from a voronoi.mosaic object.

Usage

voronoi.polygons(voronoi.obj)

Arguments

voronoi.obj object of class voronoi.mosaic

Value

Returns an object of class voronoi.polygons with unamed list elements for each polygon. These
list elements are matrices with columns x and y. Unbounded polygons along the border are repre-
sented by NULL instead of a matrix.

Author(s)
Denis White

See Also

plot.voronoi.polygons,voronoi.mosaic

voronoi.polygons

Examples

data(franke)

fd3 <- franke$ds3

fd3.vm <- voronoi.mosaic(fd3$x,fd3s$y)
fd3.vp <- voronoi.polygons(fd3.vm)
fd3.vp

61

Index

* aplot on.convex.hull, 40
circles, 17 outer.convhull, 41

x arith plot.triSht, 42
aspline, 8 plot.voronoi, 43

x datagen plot.voronoi.polygons, 44
franke.data, 22 print.summary.triSht, 45

x datasets print.summary.voronoi, 46
akima, 4 print.trisSht, 47
akima474, 5 print.voronoi, 47
circtest, 18 summary. triSht, 48
tritest, 55 summary.voronoi, 49

* dplot tri.find, 49
arcs, 6 tri.mesh, 50
aspline, 8 triangles, 52
bicubic, 10 trisht, 53
bicubic.grid, 11 voronoi, 56

voronoi.area, 57
voronoi.findrejectsites, 58
voronoi.mosaic, 59

bilinear, 13
bilinear.grid, 14

interp, 25 .
+ manip voronoi.polygons, 60
interp2xyz, 30 + utilities ;
* math area, .
interp, 25 neaggst.ne1ghbours,37
* models on
locpoly, 33 akima. 4
*pagkage akima474, 5
interp-package, 3 arcs. 6. 7. 52. 54
* regression area, 7’ 7’ ’
l?cpoly,33 aSpline (aspline), 8
* spatial aspline, 8
arcs, 6
area, 7 bicubic, 10, 12
cells, 16 bicubic.grid, 11, 11
circum, 18 BilLinear (bilinear), 13
circumcircle, 19 bilinear, 13, 27
convex.hull, 21 BiLinear.grid (bilinear.grid), 14
identify.trisSht, 24 bilinear.grid, 13, 14,14
interpp, 31
neighbours, 38 cells, 16

62

INDEX 63

circles, 17 summary.triSht, 22, 25, 38, 40, 43, 4547,
circtest, 18 48, 50, 52-54
circtest2 (circtest), 18 summary.voronoi, 44, 46, 48, 49
circum, 18
circumcircle, I8, 19, 19 tri.find, 49
contour, 12, 15 tri.mesh, 3,6, 7, 46, 50, 53-56, 59
convex.hull, 21, 21, 38, 40, 50, 52 triangles, 7, 22, 38, 40, 50, 52, 52, 53
ConvexHull (convex.hull), 21 triSht, 6, 7, 21, 22, 24, 25, 38, 40, 43, 4648,
50-53, 53, 55, 56, 59

data.frame, 30, 31 trisht2tri, 54, 55

tritest, 55
expand.grid, 3/ tritest2 (tritest), 55

fastlm, 34, 35 voronoi, 44, 46, 48, 49, 56, 59, 60

franke (franke.data), 22 voronoi .area. 16. 57
franke.data, 22 voronoi.findrejectsites, 58
identify.trisht, 24 voronoi.mosaic, 3, 16, 46, 49, 56, 57, 59, 60

image, 12, 15 voronoi.polygons, 45, 57, 58, 60

in.convex.hull, 39, 42

in.convex.hull (on.convex.hull), 40
interp, 3,11, 12, 14, 15, 24, 25, 30-33, 37
interp-package, 3

interp2xyz, 30

interpp, 14, 28, 31

Xy.coords, 8

left (on), 39

lines, 17

list, 31
locpoly, 3, 27, 33, 35, 37

nearest.neighbours, 37
neighbours, 38

on, 39
on.convex.hull, 39, 40
outer, 26
outer.convhull, 41

plot.triSht, 22, 25, 38, 40, 42, 4648, 50,
52-54
plot.voronoi, 43, 46, 48, 49, 56, 60
plot.voronoi.polygons, 44, 44, 60
points, 17
print.summary.triSht, 45, 48
print.summary.voronoi, 46, 49
print.triSht, 22, 25, 38, 40, 43, 46, 47, 48,
50, 52-54
print.voronoi, 44, 46, 47, 49, 60

spline, 9

	interp-package
	akima
	akima474
	arcs
	area
	aspline
	bicubic
	bicubic.grid
	bilinear
	bilinear.grid
	cells
	circles
	circtest
	circum
	circumcircle
	convex.hull
	franke.data
	identify.triSht
	interp
	interp2xyz
	interpp
	locpoly
	nearest.neighbours
	neighbours
	on
	on.convex.hull
	outer.convhull
	plot.triSht
	plot.voronoi
	plot.voronoi.polygons
	print.summary.triSht
	print.summary.voronoi
	print.triSht
	print.voronoi
	summary.triSht
	summary.voronoi
	tri.find
	tri.mesh
	triangles
	triSht
	triSht2tri
	tritest
	voronoi
	voronoi.area
	voronoi.findrejectsites
	voronoi.mosaic
	voronoi.polygons
	Index

