
Package ‘impimp’
October 13, 2022

Type Package

Title Imprecise Imputation for Statistical Matching

Version 0.3.1

Date 2019-02-03

Description Imputing blockwise missing data by imprecise imputation,
featuring a domain-based, variable-wise, and case-wise strategy.
Furthermore, the estimation of lower and upper bounds for
unconditional and conditional probabilities based on the obtained
imprecise data is implemented.
Additionally, two utility functions are supplied: one to check
whether variables in a data set contain set-valued observations;
and another to merge two already imprecisely imputed data.
The method is described in a technical report by Endres, Fink and
Augustin (2018, <doi:10.5282/ubm/epub.42423>).

License GPL-2 | GPL-3

LazyData TRUE

Encoding UTF-8

Imports stats

RoxygenNote 6.1.1

NeedsCompilation no

Author Paul Fink [aut, cre],
Eva Endres [aut],
Melissa Schmoll [ctb]

Maintainer Paul Fink <paul.fink@stat.uni-muenchen.de>

Repository CRAN

Date/Publication 2019-02-03 18:43:16 UTC

R topics documented:
checkImprecision . 2
generateTupelData . 3

1

https://doi.org/10.5282/ubm/epub.42423

2 checkImprecision

impest . 4
impestcond . 5
impimp . 7
impimp_event . 9
rbindimpimp . 10

Index 12

checkImprecision Imprecise Imputation

Description

Check whether the variables of a data frame contain imprecise observations

Usage

checkImprecision(data)

Arguments

data data.frame to test to apply the check onto.

Value

A named logical vector of length ncol(data), where TRUE indicates that "|" is present in the
values, which is used to indicate an imprecise observations.

Note

This check is only reliabe for data, inheriting class "impimp". If data does not inherit class
"impimp", the check is tried, but additionaly the user is notified with a warning.

See Also

impimp

Examples

A <- data.frame(x1 = c(1,0), x2 = c(0,0),
y1 = c(1,0), y2 = c(2,2))

B <- data.frame(x1 = c(1,1,0), x2 = c(0,0,0),
z1 = c(0,1,1), z2 = c(0,1,2))

AimpB <- impimp(A, B, method = "variable_wise")
BimpA <- impimp(B, A, method = "variable_wise")
AB <- rbindimpimp(AimpB, BimpA)
checkImprecision(AB)

data(iris)

generateTupelData 3

checkImprecision(iris) # emits a warning

generateTupelData Tuple representation

Description

Generating a tuple representation of a data.frame with imprecise observations

Usage

generateTupelData(data, constraints = NULL)

Arguments

data a data.frame object, with potentially imprecise entries; see ’Note’.

constraints a list of so-called logical constraints or fixed zeros. Each element must be an
object of class "impimp_event". See ’Details’.

Details

By specifying constraints one can exlude combinations of imputed values which are deemed
impossible, so called ‘logical constraints’ or ‘fixed zeros’.

Value

A list of length NROW(data) of data.frames for the observation within the original data.frame.

Each such data.frame contains the precise observations which are compatible with its imprecise
representation.

Note

No sanity check is performed on whether data actually contains imprecise observations or is in the
form for denoting imprecision throughoutly used in the impimp-package. A warning is triggered if
it is not of class "impimp".

See Also

impimp, impimp_event for sepcifying the constraints

4 impest

Examples

A <- data.frame(x1 = c(1,0), x2 = c(0,0),
y1 = c(1,0), y2 = c(2,2))

B <- data.frame(x1 = c(1,1,0), x2 = c(0,0,0),
z1 = c(0,1,1), z2 = c(0,1,2))

AimpB <- impimp(A, B, method = "domain")

no constraints
generateTupelData(AimpB)

(y1,z1) = (0,0) as constraint
generateTupelData(AimpB, list(impimp_event(y1 = 0, z1 = 0)))

data(iris)
generateTupelData(iris) # emits a warning

impest Imprecise Estimation

Description

Estimate the probability of some events based on data obtained by imprecise imputation

Usage

impest(data, event, constraints = NULL)

Arguments

data a data.frame obtained as result from an imprecise imputation e.g. by a call to
impimp.

event a list of objects of class "impimp_event", specifiying the event of interest. See
’Details’.

constraints a list of so-called logical constraints or fixed zeros. Each element must be an
object of class "impimp_event". See ’Details’ .

Details

event should be a list of objects of class "impmp_event", where the set union of impimp_events is
the actual event of interest.

By specifying constraints one can exlude combinations of imputed values which are deemed
impossible, so called ‘logical constraints’ or ‘fixed zeros’. constraints should be a list of objects
of class "impimp_event".

An object of class "impimp_event" is obtained as a result of a call to impimp_event.

For both event and constraints holds that overlapping in the resulting events generated by the in-
dividual impimp_events does not have any side effects, besides a potential decrease in performance.

impestcond 5

Value

A numeric vector of length 2, where the first component contains the lower and the second compo-
nent the upper probability of the event of interest.

References

Endres, E., Fink, P. and Augustin, T. (2018), Imprecise Imputation: A Nonparametric Micro Ap-
proach Reflecting the Natural Uncertainty of Statistical Matching with Categorical Data, Depart-
ment of Statistics (LMU Munich): Technical Reports, No. 214

See Also

impimp, impimp_event for sepcifying constraints and events; impestcond for the estimation of
conditional probabilities

Examples

A <- data.frame(x1 = c(1,0), x2 = c(0,0),
y1 = c(1,0), y2 = c(2,2))

B <- data.frame(x1 = c(1,1,0), x2 = c(0,0,0),
z1 = c(0,1,1), z2 = c(0,1,2))

AimpB <- impimp(A, B, method = "variable_wise")
BimpA <- impimp(B, A, method = "variable_wise")
AB <- rbindimpimp(AimpB, BimpA)

P(Z1=1, Z2=0)
myevent1 <- list(impimp_event(z1 = 1, z2 = 0))
impest(AB, event = myevent1)

P[(Z1,Z2) in {(1,0),(0,1),(1,1)}]
myevent2 <- list(impimp_event(z1 = 1,z2 = 0),

impimp_event(z1 = c(0,1), z2 = 1))
impest(AB, event = myevent2)

impestcond Conditional Imprecise Estimation

Description

Estimate conditional probability of some events based on data obtained by imprecise imputation

Usage

impestcond(data, event, condition, constraints = NULL)

6 impestcond

Arguments

data a data.frame obtained as result from an imprecise imputation e.g. by a call to
impimp.

event a list of objects of class "impimp_event", specifiying the event of interest. See
’Details’.

condition a list of objects of class "impimp_event", specifiying the event to condition on.
See ’Details’.

constraints a list of so-called logical constraints or fixed zeros. Each element must be an
object of class "impimp_event". See ’Details’ .

Details

event and condition should each be a list of objects of class "impmp_event", where within each
list the set union of impimp_events is the actual event of interest or conditioning event, respectively.

By specifying constraints one can exlude combinations of imputed values which are deemed
impossible, so called ‘logical constraints’ or ‘fixed zeros’. constraints should be a list of objects
of class "impimp_event".

An object of class "impimp_event" is obtained as a result of a call to impimp_event.

For event, condition and constraints holds that overlapping in the resulting events generated
by the individual impimp_events does not have any side effects, besides a potential decrease in
performance.

Value

A numeric vector of length 2, where the first component contains the lower and the second compo-
nent the upper conditional probability of the event of interest.

References

Dubois, D. and Prade, H. (1992), Evidence, knowledge, and belief functions, International Journal
of Approximate Reasoning 6(3), 295–319.

See Also

impimp, impimp_event for sepcifying constraints and events; impest for the estimation of uncon-
ditional probabilities

Examples

A <- data.frame(x1 = c(1,0), x2 = c(0,0),
y1 = c(1,0), y2 = c(2,2))

B <- data.frame(x1 = c(1,1,0), x2 = c(0,0,0),
z1 = c(0,1,1), z2 = c(0,1,2))

AimpB <- impimp(A, B, method = "domain")
BimpA <- impimp(B, A, method = "domain")
AB <- rbindimpimp(AimpB, BimpA)

myevent <- list(impimp_event(z1 = 1,z2 = 0),

impimp 7

impimp_event(z1 = c(0,1), z2 = 1))
cond <- list(impimp_event(x1 = 1))

impestcond(AB, event = myevent, condition = cond)

constr <- list(impimp_event(y1 = 0, z1 = 0))
impestcond(AB, event = myevent, condition = cond,

constraints = constr)

impimp Imprecise Imputation for Statistical Matching

Description

Impute a data frame imprecisely

Usage

impimp(recipient, donor, method = c("variable_wise", "case_wise",
"domain"), matchvars = NULL, vardomains = NULL)

S3 method for class 'impimp'
print(x, ...)

is.impimp(z)

Arguments

recipient a data.frame acting as recipient; see details.

donor a data.frame acting as donor; see details.

method 1-character string of the desired imputation method. The following values are
possible, see details for an explanantion: "variable_wise" (default), "case_wise"
and "domain".

matchvars a character vector containing the variable names to be used as matching vari-
ables. If NULL (default) all variables, present in both donor and recipient are
used as matching variables.

vardomains a named list containing the possible values of all variable in donor that are not
present in recipient.
If set to NULL (default) the list is generated by first coercing all those variables
to type factor and then storing their levels.

x object of class ’impimp’

... further arguments passed down to print.data.frame

z object to test for class "impimp"

8 impimp

Details

As in the context of statistical matching the data.frames recipient and donor are assumed to
contain an overlapping set of variables.

The missing values in recipient are subsituted with observed values in donor for approaches
based on donation classes and otherwise with the set of all possible values for the variable in ques-
tion.

For method = "domain" a missing value of a variable in recipient is imputed by the set of all
possible values of that variable.

The other methods are based on donation classes which are formed based on the matching variables
whose names are provided by matchvars. They need to be present in both recipient and donor:
For method = "variable_wise" a missing value of a variable in recipient is imputed by the set of
all observed values of that variable in donor. For method = "case_wise" the variables only present
in donor are represented as tuples. A missing tuple in recipient is then imputed by the set of all
observed tuples in donor.

Value

The data.frame resulting in an imprecise imputation of donor into recipient. It is also of class
"impimp" and stores the imputation method in its attribute "impmethod", the names of the variables
of the resulting object containing imputed values in the attribute "imputedvarnames", as well as
the list of (guessed) levels of each underlying variable in "varlevels".

Reserved characters

The variable names and observations in recipient and donor must not contain characters that are
reserved for internal purpose. The actual characters that are internally used are stored in the options
options("impimp.obssep") and options("impimp.varssep"). The former is used to separate
the values of a set-valued observation, while the other is used for a concise tupel representation.

Note

This method does not require that all variables in recipient and donor are factor variables,
however, the imputation methods apply coercion to factor, so purely numerical variables will be
treated as factors eventually. It does assume (and test for it) that there are no missing values present
in the matching variables.

References

Endres, E., Fink, P. and Augustin, T. (2018), Imprecise Imputation: A Nonparametric Micro Ap-
proach Reflecting the Natural Uncertainty of Statistical Matching with Categorical Data, Depart-
ment of Statistics (LMU Munich): Technical Reports, No. 214. URL https://epub.ub.uni-muenchen.
de/42423/.

See Also

for the estimation of probabilities impest and impestcond; rbindimpimp for joining two impimp
objects

https://epub.ub.uni-muenchen.de/42423/
https://epub.ub.uni-muenchen.de/42423/

impimp_event 9

Examples

A <- data.frame(x1 = c(1,0), x2 = c(0,0),
y1 = c(1,0), y2 = c(2,2))

B <- data.frame(x1 = c(1,1,0), x2 = c(0,0,0),
z1 = c(0,1,1), z2 = c(0,1,2))

impimp(A, B, method = "variable_wise")

Specifically setting the possible levels of 'z1'
impimp(A, B, method = "domain", vardomains = list(z1 = c(0:5)))

impimp_event Imprecise Events

Description

Helper function to allow the generation of a set of events as cartesian product.

Usage

impimp_event(..., isEventList = FALSE)

is.impimp_event(x)

Arguments

... these arguments are of the form varname = value. For each component the
varname should be a variable name from the underlying data.frame and value a
vector of possible outcomes; may also be of length one.

isEventList logical; if TRUE and ... contains only a list object, this list is treated as if it was
an event specification, see Since this argument follows ... its name cannot
be abbreviated.

x object to test for class "impimp_event"

Value

A object of class "impimp_event" as a list of lists, where each sublist contains one point in the
cartesian product, spanned by the input values and variables.

Note

There is no plausibility check on whether the supplied varnames are actually contained in the
data.frame for which the resulting impimp_event object is later used for.

See Also

impest, impestcond

10 rbindimpimp

Examples

underlying data set: x1: 1:6, x2: 1:10

subspace, requiring: x1 == 1 & ((x2 == 1) | (x2 == 2))
impimp_event(x1 = 1, x2 = c(1,2))

subsapce containing all points whitin the Cartesian
product of (x1 =) {1,2,3,6} x {5,8} (= x2)
via ... argument
impimp_event(x1 = c(1:3,6), x2 = c(5,8))
via EVENTLIST
impimp_event(list(x1 = c(1:3,6), x2 = c(5,8)),

isEventList = TRUE)

rbindimpimp Combine impimp Objects

Description

Combine two object of class "impimp" like rbind would do with data frames.

Usage

rbindimpimp(x, y)

Arguments

x, y objects of class "impimp". As such may contain variables in form of tuples,
they are not required to have the same number of variables as returned from
ncol. However, they are required to have the same underlying variables. If that
condition is not satisfied an error is raised.

Details

The resulting object is constructed in such a way that minimizes the creation of ’tupled’ variables.
Only those variables are joined as tuples which are actually necessary to keep the data frame like
consise representation of impimp objects.

The attributes "impmethod" and "varlevels" contain the set union of those of x and y on a global
and per underlying variable basis, respectively.

Value

An object of class "impimp", inheriting the attributes, specific to imimp objects, of x and y.

See Also

impimp

rbindimpimp 11

Examples

A <- data.frame(x1 = c(1,0), x2 = c(0,0),
y1 = c(1,0), y2 = c(2,2))

B <- data.frame(x1 = c(1,1,0), x2 = c(0,0,0),
z1 = c(0,1,1), z2 = c(0,1,2))

impA <- impimp(A, B, method = "case_wise")
impB <- impimp(B, A, method = "case_wise")
rbindimpimp(impA, impB)

Index

∗ datagen
generateTupelData, 3
impimp, 7
rbindimpimp, 10

∗ robust
impest, 4
impestcond, 5
impimp, 7
impimp_event, 9

checkImprecision, 2

factor, 7, 8

generateTupelData, 3

impest, 4, 6, 8, 9
impestcond, 5, 5, 8, 9
impimp, 2–6, 7, 10
impimp_event, 3–6, 9
is.impimp (impimp), 7
is.impimp_event (impimp_event), 9

print.data.frame, 7
print.impimp (impimp), 7

rbindimpimp, 8, 10

12

	checkImprecision
	generateTupelData
	impest
	impestcond
	impimp
	impimp_event
	rbindimpimp
	Index

