
Package ‘imageseg’
October 13, 2022

Type Package

Title Deep Learning Models for Image Segmentation

Version 0.5.0

Maintainer Juergen Niedballa <niedballa@izw-berlin.de>

Description A general-purpose workflow for image segmentation using TensorFlow mod-
els based on the U-Net architecture by Ronneberger et al. (2015) <arXiv:1505.04597> and the U-
Net++ architecture by Zhou et al. (2018) <arXiv:1807.10165>. We provide pre-trained mod-
els for assessing canopy density and understory vegetation density from vegetation photos. In ad-
dition, the package provides a workflow for easily creating model input and model architec-
tures for general-purpose image segmentation based on grayscale or color images, both for bi-
nary and multi-class image segmentation.

License MIT + file LICENSE

BugReports https://github.com/EcoDynIZW/imageseg/issues

Encoding UTF-8

Imports grDevices, keras, magick, magrittr, methods, purrr, stats,
tibble, foreach, parallel, doParallel, dplyr

Suggests R.rsp, testthat

VignetteBuilder R.rsp

RoxygenNote 7.1.2

NeedsCompilation no

Author Juergen Niedballa [aut, cre] (<https://orcid.org/0000-0002-9187-2116>),
Jan Axtner [aut] (<https://orcid.org/0000-0003-1269-5586>),
Leibniz Institute for Zoo and Wildlife Research [cph]

Repository CRAN

Date/Publication 2022-05-29 22:40:12 UTC

R topics documented:
imageseg-package . 2
dataAugmentation . 4

1

https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1807.10165
https://github.com/EcoDynIZW/imageseg/issues
https://orcid.org/0000-0002-9187-2116
https://orcid.org/0000-0003-1269-5586

2 imageseg-package

findValidRegion . 5
imageSegmentation . 6
imagesToKerasInput . 9
loadImages . 11
loadModel . 12
resizeImages . 13
u_net . 15
u_net_plusplus . 17

Index 19

imageseg-package Overview of the imageseg package

Description

This package provides a streamlined workflow for image segmentation using deep learning models
based on the U-Net architecture by Ronneberger (2015) and the U-Net++ architecture by Zhou et al.
(2018). Image segmentation is the labelling of each pixel in a images with class labels. Models are
convolutional neural networks implemented in keras using a TensorFlow backend. The workflow
supports grayscale and color images as input, and binary or multi-class output.

We provide pre-trained models for two forest structural metrics: canopy density and understory
vegetation density. These trained models were trained with large and diverse training data sets,
allowing for robust inferences. The package workflow is implemented in a few function, allowing
for simple predictions on your own images without specialist knowledge of convolutional neural
networks.

If you have training data available, you can also create and train your own models, or continue
model training on the pre-trained models.

The workflow implemented here can also be used for other image segmentation tasks, e.g. in the cell
biology or for medical images. We provide two examples in the package vignette (bacteria detection
in darkfield microscopy from color images, breast cancer detection in grayscale ultrasound images).

Functions for model predictions

The following functions are used to perform image segmentation on your images. They resize
images, load them into R, convert them to model input, load the model and perform predictions.
The functions are given in the order they would typically be run. See the vignette for complete
examples.

findValidRegion Subset image to valid (informative) region (optional)
resizeImages Resize and save images
loadImages Load image files with magick
imagesToKerasInput Convert magick images to array for keras
loadModel Load TensorFlow model from hdf5 file
imageSegmentation Model predictions from images based on TensorFlow model

imageseg-package 3

Functions for model training

This function assist in creating models in keras based on the U-Net architecture. See the vignette
for complete examples.

dataAugmentation Rotating and mirroring images, and modulating colors
u_net Create a U-Net architecture
u_net_plusplus Create a U-Net++ architecture

Download pre-trained models for forest structural metrics

Links to both pre-trained models (canopy and understory), example classifications and all training
data used can be found in the GitHub readme under:

https://github.com/EcoDynIZW/imageseg

Vignette

The package contains a pdf vignette demonstrating the workflow for predictions and model train-
ing using various examples. It covers installation and setup, model predictions and training the
forest structural models, and two more general applications of image segmentation (multi-class im-
age segmentation of RGB microscopy images, and single-class image segmentation of grayscale
ultrasound breast scan images). See browseVignettes(package = "imageseg").

Author(s)

Juergen Niedballa, Jan Axtner

Maintainer: Juergen Niedballa <niedballa@izw-berlin.de>

References

Ronneberger O., Fischer P., Brox T. (2015) U-Net: Convolutional Networks for Biomedical Image
Segmentation. In: Navab N., Hornegger J., Wells W., Frangi A. (eds) Medical Image Computing
and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. Lecture Notes in Computer
Science, vol 9351. Springer, Cham. doi: 10.1007/9783319245744_28

Zhou, Z., Rahman Siddiquee, M. M., Tajbakhsh, N., & Liang, J. (2018). Unet++: A nested u-
net architecture for medical image segmentation. In Deep learning in medical image analysis and
multimodal learning for clinical decision support (pp. 3-11). Springer, Cham. doi: 10.48550/
arXiv.1807.10165

See Also

keras tensorflow magick

https://github.com/EcoDynIZW/imageseg
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.48550/arXiv.1807.10165
https://doi.org/10.48550/arXiv.1807.10165

4 dataAugmentation

dataAugmentation Data augmentation: rotating and mirroring images, and adjusting col-
ors

Description

Rotate and/or mirror images to create augmented training data. Optionally, apply a random shift in
brightness, saturation and hue to a certain percentage of the images

Usage

dataAugmentation(
images,
subset = NULL,
rotation_angles = 0,
flip = FALSE,
flop = FALSE,
brightness_shift_lim = c(90, 110),
saturation_shift_lim = c(95, 105),
hue_shift_lim = c(80, 120),
fraction_random_BSH = 0

)

Arguments

images list. Output of loadImages. List with two items ($info: data frame with infor-
mation about images, $img: tibble containing magick images)

subset integer. Indices of images to process. Can be useful for only processing subsets
of images (e.g. training images, not test/validation images).

rotation_angles

integer. Angles in which to rotate images using image_rotate)?
flip logical. mirror along horizontal axis (turn images upside-down using image_flip)?
flop mirror along vertical axis (switch left and right) using image_flop)?
brightness_shift_lim

numeric. Lower and upper limits for argument brightness in image_modulate
saturation_shift_lim

numeric. Lower and upper limits for argument saturation in image_modulate

hue_shift_lim numeric. Lower and upper limits for argument hue in image_modulate
fraction_random_BSH

numeric. Fraction of images to apply random brightness / saturation / hue shifts
to (between 0 and 1)

Details

For creating training data for canopy, rotation and mirroring in both axes is appropriate. For under-
story vegetation density, only flop images (don’t flip), and don’t apply a hue shift since recognition
of the orange flysheet is color-critical.

findValidRegion 5

Value

A list with 2 elements: $info, a data frame with information about the images, and $img, a tibble
with magick images

Examples

Example 1: Canopy
wd_images_can <- system.file("images/canopy/resized",

package = "imageseg")

images_can <- loadImages(imageDir = wd_images_can)

images_can_aug <- dataAugmentation(images = images_can,
rotation_angles = c(0, 90, 180, 270),
flip = TRUE,
flop = TRUE)

images_can_aug

findValidRegion Subset image to valid (informative) region

Description

Load images, find and crop valid (informative) region. This function removes black borders from
images, and is suitable for restricting hemispherical (fisheye) images to the actual informative region
in the image center.

Usage

findValidRegion(image, fileName, threshold = 0.1)

Arguments

image magick image

fileName file name of image to load

threshold numeric. Minimum range (max - min) of grayscale values for rows/columns to
be included in the output image.

Details

Images are converted to grayscale according to the formula in Li et al. (2020). L = 0.30R + 0.59G
+ 0.11B We use a default threshold of 10, but it can be adjusted freely.

This function can optionally be called inside resizeImages to crop each image to the informative
region before resizing to the dimensions expected by the models. It is not recommended though
since it may return different crop masks for images and their masks.

6 imageSegmentation

Value

A list with 3 items:

* img: the magick image. * geometry_area: a geometry string that can be used as argument
geometry in image_crop. * geometry_area_df: a data frame containing the information from
geometry_area (can be useful for finding consensus are to crop from many images)

Warning

Depending on the quality of the photographic equipment used, supposedly dark regions of images
may be affected by stray light and light diffraction. This will be especially prevalend when using
fisheye adapters, e.g. for smartphones. In such cases, the function will not provide reliable output.
Adjusting ‘threshold‘ may help to a degree, but needs to be set on a case-to-case basis for individual
images. In such cases it might be easier to instead use e.g. GIMP to measure out the valid image
region.

References

Li, Kexin, et al. "A New Method for Forest Canopy Hemispherical Photography Segmentation
Based on Deep Learning." Forests 11.12 (2020): 1366.

Examples

wd_images_can <- system.file("images/canopy/raw",
package = "imageseg")

lf <- list.files(wd_images_can, full.names = TRUE)
img <- findValidRegion(fileName = lf[1])
img

finding consensus among multiple images
Not run:
wd_with_many_images <- "..."
lf <- list.files(wd_with_many_images)
test <- lapply(lf, findValidRegion)
combine geometry_area_df from many images
geometry_areas_df <- do.call(rbind, lapply(test, FUN = function(x) x$geometry_area_df))
summary to decide on suitable values
summary(geometry_areas_df)

End(Not run)

imageSegmentation Model predictions from images based on TensorFlow model

Description

This function uses a pre-trained TensorFlow model to create predictions from input data. It was
mainly designed to predict canopy cover and understory vegetation density from forest habitat pho-
tographs using the pre-trained models we provide.

imageSegmentation 7

Usage

imageSegmentation(
model,
x,
dirOutput,
dirExamples,
subsetArea,
threshold = 0.5,
returnInput = FALSE

)

Arguments

model trained model to use in predictions

x array of images as model input (can be created with imagesToKerasInput)

dirOutput character. Directory to save output images to (optional)

dirExamples character. Directory to save example classification to (optional)

subsetArea If "circle", vegetation density will be calculated for a circular area in the center
of the predicted images. Can also be a number between 0 and 1 (to scale the
circle relative to the image dimensions), or a matrix of 0 and 1 in the same
dimensions as images in x.

threshold numeric value at which to split binary predictions. Can be useful to only return
high-confidence pixels in predictions. It is not relevant for multi-class predic-
tions.

returnInput logical. If dirOutput is defined, save input images alongside output?

Details

By default, vegetation density will be calculated across the entire input images. If canopy images are
hemispherical and have black areas in the corner that should be ignored, set subsetArea to "circle".
If the relevant section of the images is smaller than the image frame, give a number between 0 and 1
(indicating how big the circle is, relative to the image dimensions). Alternatively, provide a custom
matrix of 0 and 1 in the same dimensions as the input images in x. 0 indicates areas to ignore in the
vegetation calculations, 1 is included. subsetArea = "circle" only works if input images in x are
square.

The canopy density models predicts sky and the understory vegetation density model predicts the
red flysheet The percentage of these is equivalent to openness (canopy openness or understory
openness). This value is in the column "predicted".

The interpretation of openness depends on context:

• Canopy Cover images: openness = Gap Fraction and Fraction Soil

• Hemispherical canopy images: openness = Canopy openness and site openness (in flat terrain)

See e.g. Gonsamo et al. (2013) for more details.

Generally speaking, "predicted" is the percentage of the image that is 1 in the binary prediction.

8 imageSegmentation

The column "not_predicted" is the opposite (1-predicted). It is thus equivalent to vegetation density
in the two vegetation models.

Depending on the context, "not_predicted" can for example mean: canopy cover, canopy clo-
sure, understory vegetation density. In canopy cover images, the vegetation density corresponds
to canopy cover. In hemispherical images, vegetation density corresponds to canopy closure.

Value

A list. The type and number of list items depends on the classification. For binary classifications (1
prediction class), the following list items are returned:

• image (input images)

• prediction (model prediction)

• prediction_binary (binary prediction, only 0 or 1)

• examples (images with their image segmentation results)

• summary (data frame with fraction of image predicted)

• mask (an image showing the area for which summary statistics were calculated (in white, only
if subsetArea is defined)

in multi-class models:

• image (input images)

• prediction_most_likely (the class with the highest probability, coded in grayscale)

• class1 - classX: for each class, the predicted probabilities

• examples (images with their image segmentation results)

• summary (data frame with fraction of image covered by vegetation (black)).

• mask (an image showing the area for which summary statistics were calculated (in white, only
if subsetArea is defined)

Examples

Not run:

Example 1: Canopy
wd_images <- system.file("images/canopy/resized",

package = "imageseg")
images <- loadImages(imageDir = wd_images)
x <- imagesToKerasInput(images)

wd_model_can <- "C:/Path/To/Model" # change this
filename_model_can <- "imageseg_canopy_model.hdf5"
model_can <- loadModel(file.path(wd_model_can, filename_model_can))

results_can <- imageSegmentation(model = model_can,
x = x)

imagesToKerasInput 9

results_can$image
results_can$prediction
results_can$prediction_binary
results_can$vegetation

Example 2: Understory
wd_images_us <- system.file("images/understory/resized",

package = "imageseg")
images_us <- loadImages(imageDir = wd_images_us)
x <- imagesToKerasInput(images_us)

note, here we just specify the complete path, not separate by directory and file name as above
model_file_us <- "C:/Path/To/Model/imageseg_understory_model.hdf5"
model_us <- loadModel(model_file_us)

results_us <- imageSegmentation(model = model_us,
x = x)

results_us$image
results_us$prediction
results_us$prediction_binary
results_us$vegetation

End(Not run)

imagesToKerasInput Convert magick images in tibble to array for keras

Description

This function converts a tibble of images into input for TensorFlow models in keras. Specifically,
images are converted to 4D arrays (image, height, width, channels). It can process color images and
masks (for model training).

Usage

imagesToKerasInput(
images,
subset = NULL,
type = NULL,
grayscale = NULL,
n_class = 1,
max = 1

)

10 imagesToKerasInput

Arguments

images list. Output of loadImages or dataAugmentation. List with two items ($info:
data frame with information about images, $img: tibble containing magick im-
ages)

subset integer. Indices of images to process. Can be useful for only processing subsets
of images (e.g. training images, not test/validation images).

type character. Can be "image" or "mask" and will set color channels of array ac-
cordingly (optional).

grayscale logical. Defines color channels of images: 1 if codeTRUE, 3 if FALSE.

n_class For mask images, how many classes do they contain? (note that binary classifi-
cations like the canopy model have one class only)

max integer. Maximum value of output color values range. Can be 1 or 255.

Details

The function will try to infer the colorspace from images, but if the colorspaces are inconsistent one
has to define ’colorspace’. type = "image" can have either colorspace "sRGB" or "Gray", masks
are always "Gray". color images have three color channels in the arrays, grayscale images have
one color channel. n_class is only relevant for masks. It determines the dimensions of the output.
The default 1 is the (binary case). Higher values are for multi-class cases. If n_class is 2 or larger,
keras::to_categorical() will be applied, and the u_net model will use softmax instead of sigmoid
activation in the final layer.

By default, color value range will be 0-1. Alternatively, set max to 255 to create color value range
0-255 (e.g. to create input for Habitat-Net models).

Value

An array with the following dimensions: image, height, width, channels

Examples

Example 1: Canopy

images
wd_images_can <- system.file("images/canopy/resized",

package = "imageseg")
images_can <- loadImages(imageDir = wd_images_can)
x <- imagesToKerasInput(images_can)
str(x) # a 4D array with an attribute data frame

masks

wd_mask_can <- system.file("images/canopy/masks",
package = "imageseg")

masks_can <- loadImages(imageDir = wd_mask_can)
y <- imagesToKerasInput(masks_can, type = "mask", grayscale = TRUE)
str(y) # a 4D array with an attribute data frame

loadImages 11

Example 2: Understory
wd_images_us <- system.file("images/understory/resized",

package = "imageseg")
images_us <- loadImages(imageDir = wd_images_us)
x <- imagesToKerasInput(images_us)
str(x) # a 4D array, with an attribute data frame

loadImages Load image files with magick

Description

This function loads images from disk to R, where one can inspect them and then pass them on to
imagesToKerasInput, which converts them to input for keras (TensorFlow) models.

Usage

loadImages(
imageDir,
fileNames,
pattern,
patternInclude = TRUE,
imageFormats = c("JPG|TIF|PNG|JPEG|TIFF")

)

Arguments

imageDir character. Directory containing the images to load

fileNames character. File names to load (they will still be filtered by pattern, if defined)

pattern character. Pattern to search in file names

patternInclude logical. Include images with pattern in file names (TRUE) or exclude (FALSE)

imageFormats character. Image file formats to read.

Value

A list with 2 slots: "img" contains images as a tibble, "info" contains basic information about the
images.

Examples

Example 1: Canopy
wd_images_can <- system.file("images/canopy/resized",

package = "imageseg")

images_can <- loadImages(imageDir = wd_images_can)
images_can

12 loadModel

Example 2: Understory
wd_images_us <- system.file("images/understory/resized",

package = "imageseg")
images_us <- loadImages(imageDir = wd_images_us)
images_us

loadModel Load TensorFlow model from hdf5 file

Description

Load TensorFlow model from hdf5 file

Usage

loadModel(modelFile, restoreCustomObjects = TRUE)

Arguments

modelFile character. File name of the .hdf5 model file to load
restoreCustomObjects

logical. Restore custom objects (loss function & dice coefficient) used in train-
ing of habitat models

Details

Loads a trained TensorFlow model from a hdf5 file, and (optionally) restores custom objects.

Value

keras model

Examples

Not run:
Canopy model
wd_model_can <- "C:/Path/To/Model" # change this
filename_model_can <- "imageseg_canopy_model.hdf5"
model_can <- loadModel(file.path(wd_model_can, filename_model_can))

Understory model
note, here we just specify the complete path, not separate by directory and file name as above
model_file_us <- "C:/Path/To/Model/imageseg_understory_model.hdf5"
model_us <- loadModel(model_file_us)

End(Not run)

resizeImages 13

resizeImages Resize and save images

Description

Resize and save images

Usage

resizeImages(
imageDir,
fileNames,
pattern,
patternInclude = TRUE,
type,
dimensions,
validRegion,
preserveAspect = TRUE,
filter = NULL,
colorspace,
binary,
gravity = "Center",
imageFormats = c("JPG|TIF|PNG|JPEG|TIFF"),
outDir,
cores = 1,
compression = "Lossless"

)

Arguments

imageDir Character. Directory containing raw images
fileNames character. File names to load (they will still be filtered by pattern, if defined)
pattern character. Pattern to search in file names
patternInclude logical. Include images with pattern in file names (TRUE) or exclude (FALSE)
type character. "canopy" or "understory". Will set image dimensions accordingly to

predefined c(256, 256) or c(160, 256), respectively (optional). Alternatively, use
dimensions.

dimensions integer. image dimensions provides as c(width, height) in pixels. If specified,
overrides type

validRegion character. If defined, use string as argument geometry in image_crop (output of
geometry_area), which will crop all images to the same region before resizing
(optional). If undefined, don’t crop.

preserveAspect logical. If TRUE, images will be cropped to aspect ratio of output before re-
sizing (thus preserving original aspect ratio, but losing parts of the image). If
FALSE, images will be simply resized from their input size to the desired output
(not preserving aspect ratio).

14 resizeImages

filter character. Resampling filter. Passed to argument filter in image_resize. See
magick::filter_types() for available options. Default is LanczosFilter.

colorspace character. If defined, image will be converted to the requested colorspace. If
undefined, colorspace will remain unchanged. Must be a valid argument to
magick::colorspace_types(). In practice, only "sRGB" and "Gray" will be
relevant.

binary logical. If colorspace is "Gray", make the output binary?

gravity if preserveAspect = TRUE and images need to be cropped, the gravity argu-
ment to use in image_crop.

imageFormats character. Image file formats to read.

outDir character. Directory to save resized images in.

cores integer. Number of cores to use for parallel processing

compression character. Compression type to use in image_write. See compress_types. By
default, "Lossless" for grayscale images, "Undefined" for color images.

Details

Resizing is done by image_resize and will ensure that the resized images have exactly the desired
dimensions.

If preserveAspect = TRUE, input images will first be cropped to the maximum area with the aspect
ratio of the desired output (1:1 (square) for type = "canopy", 5:8 for type = "understory"), by
default in the center of the input image (argument gravity). This will usually lead to the loss of
parts of the image, but the remaining part of the image is not deformed compared to the original.
Alternatively, if preserveAspect = FALSE, input images will be resized to the requested dimensions
without cropping (thus no loss of part of the image), but the aspect ratio changes. If aspect ratio
changes too strongly it may negatively affect model performance.

Resizing is done using "!" in the geometry syntax. See geometry for details.

compression = "Lossless" is used to ensure no compression artefacts in saved images (which would
for example introduce grayscale values in black/white images). If small file sizes are important, you
can change it to save compressed images.

Value

No R output, only resized images are saved on disk

Examples

Example 1: Canopy
wd_can <- system.file("images/canopy/raw",

package = "imageseg")

wd_out_can <- file.path(tempdir(), "canopy", "resized")
resizeImages(imageDir = wd_can,

type = "canopy",
outDir = wd_out_can)

filename_resized <- list.files(wd_out_can, full.names = TRUE)

u_net 15

check output
img_can <- magick::image_read(filename_resized)
img_can

Example 2: Understory
wd_us <- system.file("images/understory/raw",

package = "imageseg")
wd_out_us <- file.path(tempdir(), "understory", "resized")

note, these are png images
resizeImages(imageDir = wd_us,

type = "understory",
outDir = wd_out_us)

filename_resized <- list.files(wd_out_us, full.names = TRUE)

check output
img_us <- magick::image_read(filename_resized)
img_us

u_net Create a U-Net architecture

Description

Create a U-Net architecture

Usage

u_net(
net_h,
net_w,
grayscale = FALSE,
layers_per_block = 2,
blocks = 4,
n_class = 1,
filters = 16,
dropout = 0,
batch_normalization = TRUE,
kernel_initializer = "he_normal"

)

Arguments

net_h Input layer height.

net_w Input layer width.

16 u_net

grayscale Defines input layer color channels - 1 if ‘TRUE‘, 3 if ‘FALSE‘.
layers_per_block

Number of convolutional layers per block (can be 2 or 3)

blocks Number of blocks in the model.

n_class Number of classes.

filters Integer, the dimensionality of the output space (i.e. the number of output filters
in the convolution).

dropout Dropout rate (between 0 and 1).
batch_normalization

Should batch normalization be used in the block?
kernel_initializer

Initializer for the kernel weights matrix.

Details

This function creates a U-Net model architecture according to user input. It allows flexibility re-
garding input, output and the hidden layers. See the package vignette for examples.

The function was adapted and slightly modified from the u_net() function in the platypus package
(https://github.com/maju116/platypus/blob/master/R/u_net.R).

Differences compared to platypus implementation:

• added argument: layers_per_block (can be 2 or 3)

• kernel size in layer_conv_2d_transpose is 2, not 3.

• dropout layers are only included if user specifies dropout > 0

• n_class = 1 by default (sufficient for binary classification used for vegetation model, e.g. sky
or not sky)

• automatic choice of activation of output layer: "sigmoid" if n_class = 1, otherwise "softmax"

• allows non-square input images (e.g. 160x256 used in understory vegetation density model)

Value

U-Net model.

A keras model as returned by keras_model

Examples

Not run:
U-Net model for 256x256 pixel RGB input images with a single output class
this model was used for canopy density

model <- u_net(net_h = 256,
net_w = 256,
grayscale = FALSE,
filters = 32,
blocks = 4,
layers_per_block = 2

https://github.com/maju116/platypus/blob/master/R/u_net.R

u_net_plusplus 17

)

several arguments above were not necessary because they were kept at their default.
Below is the same model, but shorter:

model <- u_net(net_h = 256,
net_w = 256,
filters = 32
)

model

End(Not run)

u_net_plusplus Create a U-Net++ architecture

Description

Create a U-Net++ architecture.

Usage

u_net_plusplus(
net_h,
net_w,
grayscale = FALSE,
blocks = 4,
n_class = 1,
filters = 16,
kernel_initializer = "he_normal"

)

Arguments

net_h Input layer height.

net_w Input layer width.

grayscale Defines input layer color channels - 1 if ‘TRUE‘, 3 if ‘FALSE‘.

blocks Number of blocks in the model.

n_class Number of classes.

filters Integer, the dimensionality of the output space (i.e. the number of output filters
in the convolution).

kernel_initializer

Initializer for the kernel weights matrix.

18 u_net_plusplus

Details

The function was ported to R from Python code in https://github.com/albertsokol/pneumothorax-
detection-unet/blob/master/models.py. For more details, see https://github.com/MrGiovanni/UNetPlusPlus.

Value

U-Net++ model.

Examples

Not run:
U-Net++ model for 256x256 pixel RGB input images with a single output class

model <- u_net_plusplus(net_h = 256,
net_w = 256,
filters = 32,
blocks = 3
)

model

End(Not run)

Index

∗ package
imageseg-package, 2

compress_types, 14

dataAugmentation, 3, 4

findValidRegion, 2, 5

geometry, 14
geometry_area, 13

image_crop, 6, 13, 14
image_flip, 4
image_flop, 4
image_modulate, 4
image_resize, 14
image_rotate, 4
image_write, 14
imageseg (imageseg-package), 2
imageseg-package, 2
imageSegmentation, 2, 6
imagesToKerasInput, 2, 7, 9, 11

keras_model, 16

loadImages, 2, 11
loadModel, 2, 12

resizeImages, 2, 5, 13

u_net, 3, 10, 15
u_net_plusplus, 3, 17

19

	imageseg-package
	dataAugmentation
	findValidRegion
	imageSegmentation
	imagesToKerasInput
	loadImages
	loadModel
	resizeImages
	u_net
	u_net_plusplus
	Index

