Package ‘imagefluency’

February 22, 2024
Type Package

Title Image Statistics Based on Processing Fluency
Version 0.2.5

Description Get image statistics based on processing fluency theory. The
functions provide scores for several basic aesthetic principles that
facilitate fluent cognitive processing of images: contrast,
complexity / simplicity, self-similarity, symmetry, and typicality.
See Mayer & Landwehr (2018) <doi:10.1037/aca0000187> and Mayer & Landwehr
(2018) <doi:10.31219/0sf.i0/gtbhw> for the theoretical background of the methods.

License GPL-3
Encoding UTF-8

URL https://imagefluency.com, https://github.com/stm/imagefluency/,
https://doi.org/10.5281/zenodo.5614665

BugReports https://github.com/stm/imagefluency/issues/
Depends R (>=4.1.0)
Imports R.utils, readbitmap, pracma, magick, OpenlmageR

Suggests grid, ggplot2, scales, shiny, testthat, mockery, knitr,
rmarkdown, furrr, future, pbmcapply, tictoc, dplyr

RoxygenNote 7.3.1

Collate 'utils.R' 'complexity.R' ‘contrast.R' 'imagefluency-package.R'
'imagefluencyApp.R' 'self-similarity.R' 'simplicity.R’
'symmetry.R' ‘typicality.R'

VignetteBuilder knitr

NeedsCompilation no

Author Stefan Mayer [aut, cre] (<https://orcid.org/0000-0003-0034-7090>)
Maintainer Stefan Mayer <stefan@mayer-de.com>

Repository CRAN

Date/Publication 2024-02-22 14:50:02 UTC

https://doi.org/10.1037/aca0000187
https://doi.org/10.31219/osf.io/gtbhw
https://imagefluency.com
https://github.com/stm/imagefluency/
https://doi.org/10.5281/zenodo.5614665
https://github.com/stm/imagefluency/issues/
https://orcid.org/0000-0003-0034-7090

2 img_complexity

R topics documented:

img_complexity L e e e 2
IME_CONLrast o ottt e e e e 4
img_read e 5
img_self_similarity 6
img_simplicity 8
IMZ SYMMErY oottt e e e e e e 9
img_typicality e e e e e 11
rgb28rayo 12
rotate90 . ..o 13
run_imagefluency 14

Index 15

img_complexity Image complexity
Description

img_complexity returns the complexity of an image via image compression. Higher values indi-
cate higher image complexity.

Usage

img_complexity(imgfile, algorithm = "zip", rotate = FALSE)

Arguments
imgfile Either a character string containing the path to the image file (or URL) or an an
image in form of a matrix (grayscale image) or array (color image) of numeric
values representing the pre-loaded image (e.g. by using img_read()).
algorithm Character string that specifies which image compression algorithm to use. Cur-
rently implemented are zip with deflate compression (default), jpg, gif, and
png.
rotate logical. Should the compressed file size of the rotated image also be computed?
(see details)
Details

The function returns the visual complexity of an image. Visual complexity is calculated as ratio
between the compressed and uncompressed image file size. Preferably, the original image is an
uncompressed image file.

The function takes the file path of an image file (or URL) or a pre-loaded image as input argument
(imgfile) and returns the ratio of the compressed divided by the uncompressed image file size.
Values can range between almost 0 (virtually completely compressed image, thus extremely simple
image) and 1 (no compression possible, thus extremely complex image).

img_complexity 3

You can choose between different image compression algorithms. Currently implemented are zip
with deflate compression (default), jpg, gif, and png. See Mayer & Landwehr (2018) for a discus-
sion of different image compression algorithms for measuring visual complexity.

As most compression algorithms do not depict horizontal and vertical redundancies equally, the
function includes an optional rotate parameter (default: FALSE). Setting this parameter to TRUE
has the following effects: first, the image is rotated by 90 degrees. Second, a compressed version
of the rotated image is created. Finally, the overall compressed image’s file size is computed as the
minimum of the original image’s file size and the file size of the rotated image.

As R’s built-in bmp device creates (a) indexed instead of True Color images and (b) creates files with
different file sizes depending on the operating system, the function relies on the magick package to
write (and read) images.

Value

a numeric value: the ratio of the compressed divided by the uncompressed image file size

References

Donderi, D. C. (2006). Visual complexity: A Review. Psychological Bulletin, 132,73-97. doi: 10.1037/
00332909.132.1.73

Forsythe, A., Nadal, M., Sheehy, N., Cela-Conde, C. J., & Sawey, M. (2011). Predicting Beauty:
Fractal Dimension and Visual Complexity in Art. British Journal of Psychology, 102, 49-70.
doi: 10.1348/000712610X498958

Mayer, S. & Landwehr, J, R. (2018). Quantifying Visual Aesthetics Based on Processing Fluency
Theory: Four Algorithmic Measures for Antecedents of Aesthetic Preferences. Psychology of Aes-
thetics, Creativity, and the Arts, 12(4), 399-431. doi: 10.1037/aca0000187

See Also

img_read, img_contrast, img_self_similarity, img_simplicity, img_symmetry, img_typicality,
Examples

Example image with high complexity: trees

trees <- img_read(system.file("example_images"”, "trees.jpg"”, package = "imagefluency"))
#

display image

grid::grid.raster(trees)

#

get complexity

img_complexity(trees)

Example image with low complexity: sky

sky <- img_read(system.file("example_images"”, "sky.jpg"”, package = "imagefluency"))
#

display image

grid::grid.raster(sky)

https://doi.org/10.1037/0033-2909.132.1.73
https://doi.org/10.1037/0033-2909.132.1.73
https://doi.org/10.1348/000712610X498958
https://doi.org/10.1037/aca0000187

4 img_contrast

#
get complexity
img_complexity(sky)

img_contrast Image contrast

Description

img_contrast returns the RMS contrast of an image img. A higher value indicates higher contrast.

Usage

img_contrast(img)

Arguments
img An image in form of a matrix or array of numeric values. Use e.g. img_read()
to read an image file into R.
Details

The function returns the RMS contrast of an image img. The RMS contrast is defined as the standard
deviation of the normalized pixel intensity values. A higher value indicates higher contrast. The
image is automatically normalized if necessary (i.e., normalization into range [0, 1]).

For color images, the weighted average between each color channel’s values is computed.

Value

a numeric value (RMS contrast)

References
Peli, E. (1990). Contrast in complex images. Journal of the Optical Society of America A, 7,
2032-2040. doi: 10.1364/JOSAA.7.002032

See Also

img_read, img_complexity, img_self_similarity, img_simplicity, img_symmetry, img_typicality,

https://doi.org/10.1364/JOSAA.7.002032

img_read 5

Examples

Example image with relatively high contrast: berries

berries <- img_read(system.file("example_images”, "berries. jpg", package = "imagefluency"))
#

display image

grid::grid.raster(berries)

#

get contrast

img_contrast(berries)

Example image with relatively low contrast: bike

bike <- img_read(system.file("example_images"”, "bike.jpg", package = "imagefluency"))
#

display image

grid::grid.raster(bike)

#

get contrast

img_contrast(bike)

img_read Read bitmap image (bmp, jpg, png, tiff)

Description

Wrapper for readbitmap’s read. bitmap function. The function currently allows reading in images
in bmp, jpg/ jpeg, png, or tif / tiff format.

Usage
img_read(path, ...)
Arguments
path Path to the image file.
Additional parameters that are passed to read.bitmap and the underlying image
reader packages.
Details

For details, see the read.bitmap documentation.

Value

Objects returned by read.bmp, readJPEG, readPNG, or readTIFF. See their documentation for
details.

6 img_self_similarity

See Also

read.bitmap, read.bmp, readJPEG, readPNG, readTIFF

Examples

Example image with high vertical symmetry: rails
rails <- img_read(system.file("example_images”, "rails.jpg"”, package = "imagefluency"))

img_self_similarity Image self-similarity

Description

img_self_similarity returns the self-similarity of an image (i.e., the degree to which the log-
log power spectrum of the image falls with a slope of -2). Higher values indicate higher image
self-similarity.

Usage

img_self_similarity(img, full = FALSE, logplot = FALSE, raw = FALSE)

Arguments
img An image in form of a matrix or array of numeric values, preferably by square
size. If the input is not square, bilinear resizing to a square size is performed
using the OpenImageR package. Use e.g. img_read() to read an image file into
R.
full logical. Should the full frequency range be used for interpolation? (default:
FALSE)
logplot logical. Should the log-log power spectrum of the image be plotted? (default:
FALSE)
raw logical. Should the raw value of the regression slope be returned? (default:
FALSE)
Details

The function takes a (square) array or matrix of numeric or integer values representing an image
as input and returns the self-similarity of the image. Self-similarity is computed via the slope of
the log-log power spectrum using OLS. A slope near -2 indicates fractal-like properties (see Redies
et al., 2007; Simoncelli & Olshausen, 2001). Thus, value for self-similarity that is return by the
function calculated as self-similarity = abs(slope + 2) * (-1). That is, the measure reaches
its maximum value of O for a slope of -2, and any deviation from -2 results in negative values that
are more negative the higher the deviation from -2. For color images, the weighted average between
each color channel’s values is computed (cf. Mayer & Landwehr 2018).

Per default, only the frequency range betwen 10 and 256 cycles per image is used for interpolation.
Computation for the full range can be set via the parameter full = TRUE.

img_self_similarity 7

If logplot is set to TRUE then a log-log plot of the power spectrum is additionally shown. If the
package ggplot2 is installed the plot includes the slope of the OLS regression. Note that this option
is currently implemented for grayscale images.

It is possible to get the raw regression slope (instead of the transformed value which indicates self-
similarity) by using the option raw = TRUE.

For color images, the weighed average between each color channel’s values is computed.

Value

a numeric value (self-similarity)

Note
The function inspired by Matlab’s sfPlot (by Diederick C. Niehorster).

References

Mayer, S. & Landwehr, J, R. (2018). Quantifying Visual Aesthetics Based on Processing Fluency
Theory: Four Algorithmic Measures for Antecedents of Aesthetic Preferences. Psychology of Aes-
thetics, Creativity, and the Arts, 12(4), 399-431. doi: 10.1037/aca0000187

Redies, C., Hasenstein, J., & Denzler, J. (2007). Fractal-like image statistics in visual art: Similarity
to natural scenes. Spatial Vision, 21, 137-148. doi: 10.1163/156856807782753921

Simoncelli, E. P., & Olshausen, B. A. (2001). Natural image statistics and neural representation.
Annual Review of Neuroscience, 24, 1193-1216. doi: 10.1146/annurev.neuro.24.1.1193

See Also

img_read, img_contrast, img_complexity, img_simplicity, img_symmetry, img_typicality,

Examples

Example image with high self-similarity: romanesco

romanesco <- img_read(system.file("example_images"”, "romanesco.jpg", package = "imagefluency”))
#

display image

grid::grid.raster(romanesco)

#

get self-similarity

img_self_similarity(romanesco)

Example image with low self-similarity: office

office <- img_read(system.file("example_images”, "office.jpg", package = "imagefluency"”))
#

display image

grid::grid.raster(office)

#

get self-similarity

img_self_similarity(office)

https://doi.org/10.1037/aca0000187
https://doi.org/10.1163/156856807782753921
https://doi.org/10.1146/annurev.neuro.24.1.1193

8 img_simplicity

img_simplicity Image simplicity

Description

img_simplicity returns the simplicity of an image as 1 minus the complexity of the image. Higher
values indicated higher image simplicity.

Usage

img_simplicity(imgfile, algorithm = "zip", rotate = FALSE)

Arguments
imgfile Either a character string containing the path to the image file (or URL) or an an
image in form of a matrix (grayscale image) or array (color image) of numeric
values representing the pre-loaded image (e.g. by using img_read()).
algorithm Character string that specifies which image compression algorithm to use. Cur-
rently implemented are zip with deflate compression, jpg, gif, and png.
rotate logical. Should the compressed file size of the rotated image also be computed?
(see details)
Details

Image simplicity is calculated as 1 minus the ratio between the compressed and uncompressed file
size (i.e., the compression rate). Values can range between 0 (no compression possible, thus ex-
tremely complex image) and almost 1 (virtually completely compressed image, thus extremly sim-
ple image). Different compression algorithms are implemented. For details, see img_complexity.

Value

a numeric value: 1 minus the ratio of compressed divided by uncompressed file size (i.e., the com-
pression rate)

References

Donderi, D. C. (2006). Visual complexity: A Review. Psychological Bulletin, 132,73-97. doi: 10.1037/
00332909.132.1.73

Forsythe, A., Nadal, M., Sheehy, N., Cela-Conde, C. J., & Sawey, M. (2011). Predicting Beauty:
Fractal Dimension and Visual Complexity in Art. British Journal of Psychology, 102, 49-70.
doi: 10.1348/000712610X498958

Mayer, S. & Landwehr, J, R. (2018). Quantifying Visual Aesthetics Based on Processing Fluency
Theory: Four Algorithmic Measures for Antecedents of Aesthetic Preferences. Psychology of Aes-
thetics, Creativity, and the Arts, 12(4), 399-431. doi: 10.1037/aca0000187

https://doi.org/10.1037/0033-2909.132.1.73
https://doi.org/10.1037/0033-2909.132.1.73
https://doi.org/10.1348/000712610X498958
https://doi.org/10.1037/aca0000187

img_symmetry 9

See Also

img_read, img_complexity, img_contrast, img_self_similarity, img_symmetry, img_typicality,

Examples

Example image with low simplicity: trees

trees <- img_read(system.file("example_images"”, "trees.jpg", package = "imagefluency"))
#

display image

grid::grid.raster(trees)

#

get simplicity

img_simplicity(trees)

Example image with high simplicity: sky

sky <- img_read(system.file("example_images"”, "sky.jpg", package = "imagefluency"))
#

display image

grid::grid.raster(sky)

#

get simplicity

img_simplicity(sky)

img_symmetry Image symmetry

Description

img_symmetry returns the vertical and horizontal mirror symmetry of an image. Higher values
indicate higher image symmetry.

Usage
img_symmetry(img, vertical = TRUE, horizontal = TRUE, ...)
Arguments
img An image in form of a matrix or array of numeric values. Use e.g. img_read()
to read an image file into R.
vertical logical. Should the vertical symmetry be computed? (default: TRUE)
horizontal logical. Should the horizontal symmetry be computed? (default: TRUE)

Further options: shift_range to shift the mirror axis, per_channel to switch
between a maximal per channel vs. per image symmetry (see details).

10 img_symmetry

Details

The function returns the vertical and horizontal mirror symmetry of an image img. Symmetry values
can range between 0 (not symmetrical) and 1 (fully symmetrical). If vertical or horizontal is
set to FALSE then vertical or horizontal symmetry is not computed, respectively.

As the perceptual mirror axis is not necessarily exactly in the middle of a picture, the function
estimates in a first step several symmetry values with different positions for the mirror axis. To this
end, the mirror axis is automatically shifted up to 5% (default) of the image width to the left and
to the right (in the case of vertical symmetry; analogously for horizontal symmetry). In the second
step, the overall symmetry score is computed as the maximum of the symmetry scores given the
different mirror axes. See Mayer & Landwehr (2018) for details.

Advanced users can change the shift range with the optional parameter shift_range, which takes
a numeric decimal as input. The default shift_range = .05 (i.e., 5%).

For color images, the default is that first a maximal symmetry score (as explained above) is obtained
per color channel (parameter per_channel = TRUE). Subsequently, a weighted average between
each color channel’s maximal score is computed as the image’s overall symmetry. Advanced users
can reverse this order by setting per_channel = FALSE. This results in first computing the weighted
averages for each position of the mirror axis separately, and afterwards finding the maximal overall
symmetry score.

Value

a named vector of numeric values (vertical and horizontal symmetry)

References

Mayer, S. & Landwehr, J, R. (2018). Quantifying Visual Aesthetics Based on Processing Fluency
Theory: Four Algorithmic Measures for Antecedents of Aesthetic Preferences. Psychology of Aes-
thetics, Creativity, and the Arts, 12(4), 399-431. doi: 10.1037/aca0000187

See Also

img_read, img_complexity, img_contrast, img_self_similarity img_simplicity, img_typicality

Examples

Example image with high vertical symmetry: rails

rails <- img_read(system.file("example_images"”, "rails.jpg"”, package = "imagefluency"”))
#

display image

grid::grid.raster(rails)

#

get symmetry

img_symmetry(rails)

Example image with low vertical symmetry: bridge

bridge <- img_read(system.file("example_images"”, "bridge.jpg", package = "imagefluency"))
#

display image

grid::grid.raster(bridge)

https://doi.org/10.1037/aca0000187

img_typicality 11

#
get symmetry
img_symmetry(bridge)

img_typicality Typicality of images relative to each other

Description
img_typicality returns the visual typicality of a list of images relative to each other. Higher
values indicate larger typicality.

Usage

img_typicality(imglist, rescale = NULL)

Arguments
imglist A list of arrays or matrices with numeric values. Use e.g. img_read() to read
image files into R (see example).
rescale numeric. Rescales the images prior to computing the typicality scores (per
default no rescaling is performed). Rescaling is performed by OpenImageR’s
resizeImage function (bilinear rescaling)
Details

The function returns the visual typicality of a list of image arrays or matrices imglist relative
to each other. Values can range between -1 (inversely typical) over O (not typical) to 1 (perfectly
typical). That is, higher absolute values indicate a larger typicality.

The typicality score is computed as the correlation of a particular image with the average representa-
tion of all images, i.e. the mean of all images. For color images, the weighted average between each
color channel’s values is computed. If the images have different dimensions they are automatically
resized to the smallest height and width.

Rescaling of the images prior to computing the typicality scores can be specified with the optional
rescaling parameter (must be a numeric value). Most users won’t need any rescaling and can use
the default (rescale = NULL). See Mayer & Landwehr (2018) for more details.

Value

a named matrix of numeric values (typicality scores)

References

Mayer, S. & Landwehr, J. R. (2018). Objective measures of design typicality. Design Studies, 54,
146-161. doi: 10.1016/j.destud.2017.09.004

https://doi.org/10.1016/j.destud.2017.09.004

12 rgb2gray

See Also

img_read, img_contrast, img_complexity, img_self_similarity img_simplicity, img_symmetry

Examples

Example images depicting valleys: valley_green, valley_white
Example image depicting fireworks: fireworks
valley_green <- img_read(

system.file("example_images”, "valley_green.jpg"”, package = "imagefluency")
)
valley_white <- img_read(
system.file("example_images"”, "valley_white.jpg", package = "imagefluency")
)
fireworks <- img_read(
system.file("example_images"”, "fireworks.jpg", package = "imagefluency")
)

#

display images
grid::grid.raster(valley_green)
grid::grid.raster(valley_white)
grid::grid.raster(fireworks)

create image set as list
imglist <- list(fireworks, valley_green, valley_white)

get typicality
img_typicality(imglist)

rgb2gray RGB to Gray Conversion

Description

rgb2gray transforms colors from RGB space (red/green/blue) into an matrix of grayscale values.

Usage

rgb2gray(img)

Arguments

img 3-dimensional array of numeric or integer values

Details

The function takes a 3-dimensional array of numeric or integer values as input (img) and returns a
matrix of grayscale values as output. The grayscale values are computed as GRAY = @.2989 * RED
+0.5870 * GREEN + @.1140 * BLUE. If the array has a fourth dimension (i.e., alpha channel), the
fourth dimension is ignored.

rotate90 13

Value

A matrix of grayscale values.

Examples

construct a sample RGB image as array of random integers

imgRed <- matrix(runif(100, min = @, max = 255), 10, 10)

imgGreen <- matrix(runif(100, min = @, max = 255), 10, 10)

imgBlue <- matrix(runif (100, min = @, max = 255), 10, 10)

imgColor <- array(c(imgRed, imgGreen, imgBlue), dim = c(10, 10, 3))

convert to gray
img <- rgb2gray(imgColor)

rotate9o Matrix or Array Rotation by 90 Degrees

Description

Matrix or Array Rotation by 90 Degrees

Usage
rotate90(img, direction = "positive")
Arguments
img an array or a matrix
direction The direction of rotation by 90 degrees. The value can be "positive” (default)
or "negative”. Aliases are "counterclockwise” and "clockwise”, respec-
tively.
Details

The function takes an array or matrix as input object (img) and returns the object rotated by 90
degrees. Per default, the rotation is done in the mathematically positive direction (i.e., counter-
clockwise). Clockwise rotation (i.e., mathematically negative) can be specified by passing the value
"negative” to the direction argument.

Value

an array or a matrix (rotated by 90 degrees)

14 run_imagefluency

Examples

sample matrix
img <- matrix(1:6, ncol = 2)
img

rotate90(img) # counterclockwise

rotate90(img, direction = "negative") # clockwise
run_imagefluency Run imagefluency app
Description

Launches a Shiny app that shows a demo of what can be done with the imagefluency package.

Usage

run_imagefluency()

Examples

Only run this example in interactive R sessions
if (interactive()) {
run_imagefluency()

}

Index

img_complexity, 2, 4, 7-10,
img_contrast, 3,4, 7,9, 10,
img_read, 24, 5, 612
img_self_similarity, 3,4,6,9, 10, 12
img_simplicity, 3,4,7,8, 10, 12
img_symmetry, 3,4,7,9,9, 12
img_typicality, 3,4,7,9, 10, 11

12
12

OpenlImageR, 6

read.bitmap, 5, 6
read.bmp, 5, 6
readJPEG, 5, 6
readPNG, 5, 6
readTIFF, 5, 6
resizelmage, 11
rgb2gray, 12
rotate9o, 13
run_imagefluency, 14

15

	img_complexity
	img_contrast
	img_read
	img_self_similarity
	img_simplicity
	img_symmetry
	img_typicality
	rgb2gray
	rotate90
	run_imagefluency
	Index

