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Abstract

In linear models and multivariate normal situations, prior information in linear in-
equality form may be encountered, or linear inequality hypotheses may be subjected to
statistical tests. R package ic.infer has been developed to support inequality-constrained
estimation and testing for such situations. This article gives an overview of the principles
underlying inequality-constrained inference that are far less well-known than methods for
unconstrained or equality-constrained models, and describes their implementation in the
package.
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1. What is this?

This is not the source but a dummy source to make the pdf available as vignette and to have
the code checked during R CMD check.

1.1. Example data

Two data examples are used in this section. The first example, taken from Table 1.3.1 in
Robertson, Wright, and Dykstra (1988), concerns first-year grade point averages from 2397
Iowa university first-years (available as data frame grades in package ic.infer) as a function
of two ordinal variables with 9 categories each, High-School-Ranking percentiles and ACT
Classification1. Suppose that an admission policy is to be developed based on these figures.
Of course, in order to appear just, an admission policy should be monotone in the sense that
admission of a particular person implies that all persons who are better on one criterion and
not worse on the other are also admitted. Thus, the predicted function must be monotone in
both variables. Using this motivation, Robertson et al. (1988) demonstrate isotonic regression
on these data. In this article, a two-way analysis of variance without interaction is fit to the
data. The unrestricted linear model (cf. below) does contain reversals w.r.t. HSR, where
applicants with HSR 41% to 50% would be assessed better than those with HSR 51% to 60%,
and similarly applicants with HSR < 20% better than those with HSR 21% to 40%. Note

1ACT is an organization that offers – among other things – college entrance exams in the US; up to 1996,

ACT stood for “American College Testing”.
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that estimates for the categories of HSR for which unrestricted estimates are reversed are
not significantly different from 0. The restricted analyses in Sections 1.3 and 1.6 will restrict
parameters for the factor HSR to be monotone. Note that this is an example of a model with
a known diagonal (but not identity) V0: assuming an unknown positive variance σ2 of the
grade points of each student, the variances of the grade means are proportional to the inverse
number of students in each class. This can be easily accomodated in function lm by using the
number of students n in the weights option (cf. the code below).

R> limo.grades <- lm(meanGPA ~ HSR + ACTC, grades, weights = n)

R> summary(limo.grades)

Call:

lm(formula = meanGPA ~ HSR + ACTC, data = grades, weights = n)

Weighted Residuals:

Min 1Q Median 3Q Max

-2.224 -0.494 -0.149 0.433 1.776

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.5009 0.2367 6.34 6.4e-08 ***

HSR21-30 -0.1251 0.2540 -0.49 0.62456

HSR31-40 -0.0272 0.2279 -0.12 0.90533

HSR41-50 0.1489 0.2131 0.70 0.48796

HSR51-60 0.0947 0.2077 0.46 0.65059

HSR61-70 0.3129 0.2055 1.52 0.13419

HSR71-80 0.4290 0.2044 2.10 0.04092 *

HSR81-90 0.5612 0.2045 2.74 0.00839 **

HSR>=91 0.9703 0.2043 4.75 1.8e-05 ***

ACTC13-15 0.2937 0.1625 1.81 0.07662 .

ACTC16-18 0.4565 0.1455 3.14 0.00286 **

ACTC19-21 0.5332 0.1402 3.80 0.00039 ***

ACTC22-24 0.6193 0.1391 4.45 4.7e-05 ***

ACTC25-27 0.6698 0.1396 4.80 1.5e-05 ***

ACTC28-30 0.8223 0.1454 5.66 7.5e-07 ***

ACTC31-33 0.9214 0.1846 4.99 7.7e-06 ***

ACTC34-36 1.0389 0.4959 2.09 0.04127 *

---

Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

Residual standard error: 0.951 on 50 degrees of freedom

Multiple R-squared: 0.908, Adjusted R-squared: 0.878

F-statistic: 30.7 on 16 and 50 DF, p-value: <2e-16

The second example uses a data set from Kutner, Nachtsheim, and Neter (2004) (online
also at http://www.ats.ucla.edu/stat/sas/examples/alsm/alsmsasch7.htm) that con-
tains observations on 20 females with body fat as the target variable and three explanatory
variables all of which can be expected to be associated with an increase in body fat:

❼ triceps skinfold thickness

❼ thigh circumference

❼ mid arm circumference.

These data are analysed as a regression model with all coefficients restricted to be non-
negative. This example is similar in spirit to the customer satisfaction applications that

http://www.ats.ucla.edu/stat/sas/examples/alsm/alsmsasch7.htm
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instigated development of ic.infer, but much smaller, publicly available and included in the
package. It also permits to demonstrate application of the simple R2 decomposition function
that is offered within ic.infer. The unrestricted linear model estimates for two of the three
variables are negative, and in spite of high R2 and rejection of the overall null hypothesis, no
individual coefficient is statistically significant:

R> limo.bodyfat <- lm(BodyFat ~ ., bodyfat)

R> summary(limo.bodyfat)

Call:

lm(formula = BodyFat ~ ., data = bodyfat)

Residuals:

Min 1Q Median 3Q Max

-3.726 -1.611 0.392 1.466 4.128

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 117.08 99.78 1.17 0.26

Triceps 4.33 3.02 1.44 0.17

Thigh -2.86 2.58 -1.11 0.28

Midarm -2.19 1.60 -1.37 0.19

Residual standard error: 2.48 on 16 degrees of freedom

Multiple R-squared: 0.801, Adjusted R-squared: 0.764

F-statistic: 21.5 on 3 and 16 DF, p-value: 7.34e-06

1.2. Utilities for monotonicity situations

One of the most important special cases of inequality-related setups is the investigation of
monotonic behavior of the expectation for a factor with ordered categories. In this subsection,
package ic.infer’s support for this situation is described.

Difference contrasts

The interpretation of coefficients for factors always depends on the factor coding. In R, default
coding for conventional factors (as opposed to ordered factors) is a reference coding with the
first factor level being the base category (called contr.treatment). For factors declared to be
ordered, the default contrasts are polynomial. Alternative contrast codings are, among others,
contr.SAS, contr.helmert and contr.sum. Among these, the polynomial and the Helmert
coding do not allow simple assessment of monotonicity based on the estimated coefficients,
while the others do.

There is one particular factor coding that is not routinely available in R but particularly suit-
able for assessing monotonicity for factors with ordered levels: each coefficient corresponds
to the difference in expectation to the next lower category, implying that monotonicity corre-
sponds to the same sign for all coefficients. The corresponding contrast function contr.diff

has been implemented in package ic.infer.

For illustration, the unconstrained linear model for the grades data is re-calculated with this
coding below. The contrast matrix shows that the expectation for the lowest level does not
contain any of the coefficients, the expectation for the second level contains the first coefficient,
the expectation for the third level the first two coefficients and so forth, until all the eight
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coefficients are contained in the expectation model for the highest level. The coefficients thus
measure the average increase from each level to the next higher one.

R> grades.diff <- grades

R> ## change contrasts to contr.diff

R> contrasts(grades.diff$HSR) <- "contr.diff"

R> contrasts(grades.diff$ACTC) <- "contr.diff"

R> ## display contrasts

R> contrasts(grades.diff$HSR)

21-30-<=20 31-40-21-30 41-50-31-40 51-60-41-50 61-70-51-60 71-80-61-70

<=20 0 0 0 0 0 0

21-30 1 0 0 0 0 0

31-40 1 1 0 0 0 0

41-50 1 1 1 0 0 0

51-60 1 1 1 1 0 0

61-70 1 1 1 1 1 0

71-80 1 1 1 1 1 1

81-90 1 1 1 1 1 1

>=91 1 1 1 1 1 1

81-90-71-80 >=91-81-90

<=20 0 0

21-30 0 0

31-40 0 0

41-50 0 0

51-60 0 0

61-70 0 0

71-80 0 0

81-90 1 0

>=91 1 1

R> limo.grades.diff <- lm(meanGPA ~ HSR + ACTC, grades.diff, weights = n)

R> summary(limo.grades.diff)

Call:

lm(formula = meanGPA ~ HSR + ACTC, data = grades.diff, weights = n)

Weighted Residuals:

Min 1Q Median 3Q Max

-2.224 -0.494 -0.149 0.433 1.776

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.5009 0.2367 6.34 6.4e-08 ***

HSR21-30-<=20 -0.1251 0.2540 -0.49 0.6246

HSR31-40-21-30 0.0978 0.1942 0.50 0.6165

HSR41-50-31-40 0.1761 0.1363 1.29 0.2021

HSR51-60-41-50 -0.0542 0.0990 -0.55 0.5860

HSR61-70-51-60 0.2182 0.0814 2.68 0.0099 **

HSR71-80-61-70 0.1161 0.0719 1.62 0.1123

HSR81-90-71-80 0.1322 0.0655 2.02 0.0489 *

HSR>=91-81-90 0.4091 0.0593 6.90 8.5e-09 ***

ACTC13-15-1-12 0.2937 0.1625 1.81 0.0766 .

ACTC16-18-13-15 0.1628 0.1114 1.46 0.1503

ACTC19-21-16-18 0.0767 0.0759 1.01 0.3168

ACTC22-24-19-21 0.0861 0.0622 1.38 0.1727

ACTC25-27-22-24 0.0505 0.0570 0.89 0.3801

ACTC28-30-25-27 0.1524 0.0653 2.34 0.0236 *
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ACTC31-33-28-30 0.0991 0.1329 0.75 0.4591

ACTC34-36-31-33 0.1174 0.4913 0.24 0.8121

---

Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

Residual standard error: 0.951 on 50 degrees of freedom

Multiple R-squared: 0.908, Adjusted R-squared: 0.878

F-statistic: 30.7 on 16 and 50 DF, p-value: <2e-16

Utility function for creating a monotonicity restriction matrix

Generally, the restriction matrix ui has to be tailored to the situation at hand. Depending
on the coding of a factor, it can be quite tedious to define the appropriate ui for hypotheses
related to the relation of expectations between factor levels.

For the frequent situation, where monotonicity of factors with several ordered levels is of
interest, package ic.infer provides the convenience function make.mon.ui for creating the
appropriate restriction matrix ui. The function can be used whenever the current coding
permits assessment of monotonicity in a simple way, i.e., for contrasts contr.treatment

(currently with first category as baseline only), contr.SAS, contr.diff and contr.sum).
The output below shows the matrix ui for two different factor codings: The matrix ui for
the treatment contrasts calculates the first coefficient (=difference of second category to the
first (=reference) category) and all differences between coefficients for next higher to next
lower level. The matrix ui for the difference contrasts simply calculates each coefficient. For
both codings, monotonicity constraints are of the form uiβ ≥ 0 (or −uiβ ≥ 0 for monotone
decrease).

R> ## originally, treatment contrasts

R> ui.treat <- make.mon.ui(grades$HSR)

R> ui.treat

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 1 0 0 0 0 0 0 0

[2,] -1 1 0 0 0 0 0 0

[3,] 0 -1 1 0 0 0 0 0

[4,] 0 0 -1 1 0 0 0 0

[5,] 0 0 0 -1 1 0 0 0

[6,] 0 0 0 0 -1 1 0 0

[7,] 0 0 0 0 0 -1 1 0

[8,] 0 0 0 0 0 0 -1 1

R> ui.diff <- make.mon.ui(grades.diff$HSR)

R> ui.diff

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 1 0 0 0 0 0 0 0

[2,] 0 1 0 0 0 0 0 0

[3,] 0 0 1 0 0 0 0 0

[4,] 0 0 0 1 0 0 0 0

[5,] 0 0 0 0 1 0 0 0

[6,] 0 0 0 0 0 1 0 0

[7,] 0 0 0 0 0 0 1 0

[8,] 0 0 0 0 0 0 0 1

Function make.mon.ui can also be used for creating the matrix ui for investigating the mono-
tonicity of a multivariate normal mean without using a linear model based on a factor. In
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this case, the first argument to make.mon.ui is the dimension of the multivariate normal
distribution, and type = "mean" must be specified. The resulting matrix ui then calculates
differences of neighbouring means:

R> ## originally, treatment contrasts

R> make.mon.ui(5, type = "mean")

[,1] [,2] [,3] [,4] [,5]

[1,] -1 1 0 0 0

[2,] 0 -1 1 0 0

[3,] 0 0 -1 1 0

[4,] 0 0 0 -1 1

1.3. Estimation

Function ic.est for inequality-constrained estimation of normal means uses the routine
solve.QP from R-package quadprog to determine the constrained estimate. It is possible
to declare the first few rows of the restrictions uiµ ≥ ci to be equality restrictions (via the
parameter meq). It has been pointed out above that estimation of β in the restricted lin-
ear model is equivalent to estimation of β based on the multivariate normal distribution of
the unrestricted estimate β̂. Thus, we can illustrate function ic.est using the estimates
from one of the linear models above. For example, one can estimate the coefficients of the
factor HSR with treatment contrasts under the restriction of non-decreasing behavior, i.e.,
β1 ≥ 0, β2 − β1 ≥ 0, . . . , β9 − β8 ≥ 0 (contrast matrix ui.treat defined in 1.2.2):

R> HSRmon <- ic.est(coef(limo.grades)[2:9],

+ ui = ui.treat,

+ Sigma = vcov(limo.grades)[2:9, 2:9])

R> HSRmon

Constrained estimate:

HSR21-30 HSR31-40 HSR41-50 HSR51-60 HSR61-70 HSR71-80 HSR81-90 HSR>=91

0.0000 0.0492 0.1918 0.1918 0.3892 0.5055 0.6377 1.0469

It is also possible to indicate that the first few restrictions (number given by option meq) are
equality restrictions. For example, the code below declares that the first three restrictions are
equality instead of inequality restrictions:

R> HSReq <- ic.est(coef(limo.grades)[2:9],

+ ui = ui.treat,

+ Sigma = vcov(limo.grades)[2:9, 2:9], meq = 3)

R> HSReq

Constrained estimate:

HSR21-30 HSR31-40 HSR41-50 HSR51-60 HSR61-70 HSR71-80 HSR81-90 HSR>=91

0.000 0.000 0.000 0.038 0.256 0.372 0.505 0.914

A summary-function on objects of class orest – as generated by function ic.est – gives
more detailed information, showing also the restrictions, which of them are active, and indi-
cating which estimates are subject to a restriction (regardless whether active or not). For the
monotonicity-restricted estimate, we get

R> summary(HSRmon)
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Order-restricted estimated mean with restrictions of coefficients of

HSR21-30 HSR31-40 HSR41-50 HSR51-60 HSR61-70 HSR71-80 HSR81-90 HSR>=91

Inequality restrictions:

HSR21-30 HSR31-40 HSR41-50 HSR51-60 HSR61-70 HSR71-80 HSR81-90 HSR>=91

1: A 1 0 0 0 0 0 0 0 %*%colnames >= 0

2: -1 1 0 0 0 0 0 0 %*%colnames >= 0

3: 0 -1 1 0 0 0 0 0 %*%colnames >= 0

4: A 0 0 -1 1 0 0 0 0 %*%colnames >= 0

5: 0 0 0 -1 1 0 0 0 %*%colnames >= 0

6: 0 0 0 0 -1 1 0 0 %*%colnames >= 0

7: 0 0 0 0 0 -1 1 0 %*%colnames >= 0

8: 0 0 0 0 0 0 -1 1 %*%colnames >= 0

Note: Restrictions marked with A are active.

Restricted estimate:

R HSR21-30 R HSR31-40 R HSR41-50 R HSR51-60 R HSR61-70 R HSR71-80 R HSR81-90 R HSR>=91

0.00000 0.04917 0.19181 0.19181 0.38920 0.50551 0.63772 1.04688

Note: Estimates marked with R are involved in restrictions.

While it would be possible to determine the estimate even for linearly dependent rows of
the constraint matrix R, this is not permitted in package ic.infer – if the package encounters
linearly dependent rows in ui (the package notation for R), it aborts with an error message
that suggests a subset of independent rows of ui.

1.4. Hypothesis testing

Package ic.infer implements the likelihood ratio tests for test problems ??, ??, and ?? in
function ic.test. The principal argument to function ic.test is an object of class orest
as output by function ic.est; an object of class orlm output by function orlm can also be
processed, since it inherits from class orest. Among other things, the input object contains
information on the restrictions that were used for estimation. The type of test problem
is indicated to function ic.test via option TP. TP = 1, TP = 2, and TP = 3 refer to the
test problems introduced in Section ??. Three extensions of these problems are additionally
implemented:

❼ For TP = 1 and TP = 2, the first few restrictions can be declared equality instead of
inequality restrictions – this is implemented in function ic.test through access to the
meq-element of the input object. This modification requires different calculation of the
weights for the null distributions of the test statistics: these weights depend on the
conditional covariance matrix given the equality constraints are true, cf. Shapiro (1988,
formula (5.9)) and Section 1.5. The test statistics continue to be given by (??), (??) or
their modification for unkown σ2 (??), but with µ̂∗ observing equality- and inequality
restrictions.

❼ Additional equality restrictions can be included in the null hypothesis of ??. For these,
the alternative hypothesis is not directional. This test problem is implemented in the
package as TP = 11, and the additional restrictions are handed to function ic.test

through arguments ui0.11 and ci0.11. TP = 11 is, for example, used in the summary
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function for class orlm, when testing the null hypothesis that all coefficients except the
intercept are 0 in the presence of constraints Rβ ≥ 0 that do not affect all elements of β.
Again, the test statistic for this test problem is already given as (??) or its modification
(??) above by making µ̂= observe the additional equality restrictions as well. Here, the
weights are the same as without equality restrictions, but the degrees of freedom of the
distributions in the mixture need to be adjusted.

❼ Some equality restrictions can be maintained in the alternative hypothesis of ??. This
is implemented as TP = 21 using option meq.alt, which indicates the number of the
first few equality-restrictions that are to be maintained under the alternative hypoth-
esis. meq.alt must not be larger than the meq-element of the input object of function
ic.test. Here, the test statistic (??) (or (??)) has to use the restricted estimated under
the maintained equality restrictions µ̂=,alt instead of y.

A few examples are shown below. First, the equality- and inequality-restricted estimate HSReq
of the HSR coefficients is subjected to a test of type ??. We see that equality of all restrictions
is clearly rejected; note that option brief=FALSE requests detailed information on constraints
that is not shown per default.

R> summary(ic.test(HSReq), brief = FALSE)

Order-related hypothesis test:

Type 1 Test:

H0: all restrictions active(=)

vs.

H1: at least one restriction strictly true (>)

Test statistic p-value

215 <0.0001

Restrictions on HSR21-30 HSR31-40 HSR41-50 HSR51-60 HSR61-70 HSR71-80 HSR81-90 HSR>=91

HSR21-30 HSR31-40 HSR41-50 HSR51-60 HSR61-70 HSR71-80 HSR81-90 HSR>=91

1: A 1 0 0 0 0 0 0 0 %*%colnames == 0

2: A -1 1 0 0 0 0 0 0 %*%colnames == 0

3: A 0 -1 1 0 0 0 0 0 %*%colnames == 0

4: 0 0 -1 1 0 0 0 0 %*%colnames >= 0

5: 0 0 0 -1 1 0 0 0 %*%colnames >= 0

6: 0 0 0 0 -1 1 0 0 %*%colnames >= 0

7: 0 0 0 0 0 -1 1 0 %*%colnames >= 0

8: 0 0 0 0 0 0 -1 1 %*%colnames >= 0

Restricted estimate under H0:

HSR21-30 HSR31-40 HSR41-50 HSR51-60 HSR61-70 HSR71-80 HSR81-90 HSR>=91

0 0 0 0 0 0 0 0

Restricted estimate under union of H0 and H1 :

HSR21-30 HSR31-40 HSR41-50 HSR51-60 HSR61-70 HSR71-80 HSR81-90 HSR>=91

0.000 0.000 0.000 0.038 0.256 0.372 0.505 0.914

Now we test the null hypothesis that restrictions hold vs. the alternative that they are violated.
We see that this null hypothesis is not rejected, i.e., the data do not provide proof that these
restrictions are not all true.

R> summary(ic.test(HSReq, TP = 2))

Order-related hypothesis test:
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Type 2 Test:

H0: all restrictions true(>=)

vs.

H1: at least one restriction violated (<)

Test statistic p-value

3.36 0.7948

Restricted estimate under H0:

HSR21-30 HSR31-40 HSR41-50 HSR51-60 HSR61-70 HSR71-80 HSR81-90 HSR>=91

0.000 0.000 0.000 0.038 0.256 0.372 0.505 0.914

Unrestricted estimate:

HSR21-30 HSR31-40 HSR41-50 HSR51-60 HSR61-70 HSR71-80 HSR81-90 HSR>=91

-0.1251 -0.0272 0.1489 0.0947 0.3129 0.4290 0.5612 0.9703

The next test operates on all coefficients of the analysis of variance model from Section 1.1.
This TP = 11-type test tests the null hypothesis that all coefficients except for the intercept
are zero vs. the alternative that the HSR coefficients follow the restriction outlined above,
i.e., coefficients in positions 2 to 9 of the coefficient vector (index = 2:9) follow the indicated
restrictions, while all other coefficients are free. Here, the null hypothesis is again clearly
rejected.

R> HSReq.large <- ic.est(coef(limo.grades),

+ ui = ui.treat,

+ Sigma = vcov(limo.grades), index = 2:9, meq = 3)

R> summary(ic.test(HSReq.large, TP = 11,

+ ui0.11 = cbind(rep(0, 16), diag(1, 16))))

Order-related hypothesis test:

Type 11 Test:

H0: all original restrictions active plus additional equality restrictions

vs.

H1: original restrictions hold

Test statistic p-value

488 <0.0001

Restricted estimate under union of H0 and H1 :

(Intercept) HSR21-30 HSR31-40 HSR41-50 HSR51-60 HSR61-70 HSR71-80

1.552 0.000 0.000 0.000 0.038 0.256 0.372

HSR81-90 HSR>=91 ACTC13-15 ACTC16-18 ACTC19-21 ACTC22-24 ACTC25-27

0.505 0.914 0.300 0.467 0.535 0.624 0.676

ACTC28-30 ACTC31-33 ACTC34-36

0.827 0.927 1.044

Restricted estimate under H0:

(Intercept) HSR21-30 HSR31-40 HSR41-50 HSR51-60 HSR61-70 HSR71-80

2.63 0.00 0.00 0.00 0.00 0.00 0.00

HSR81-90 HSR>=91 ACTC13-15 ACTC16-18 ACTC19-21 ACTC22-24 ACTC25-27

0.00 0.00 0.00 0.00 0.00 0.00 0.00

ACTC28-30 ACTC31-33 ACTC34-36

0.00 0.00 0.00

The last example demonstrates TP = 21: the null hypothesis has three equality restrictions
(estimate object HSReq), and the first two of these are maintained for the alternative hypothe-
sis (meq.alt=2). Note that – as the alternative is unrestricted apart from the first two equality
restrictions – a reversal occurs in the estimate under the alternative hypothesis. Nevertheless,
like for TP = 2, the validity of the restrictions is not rejected.
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R> summary(ic.test(HSReq, TP = 21, meq.alt = 2))

Order-related hypothesis test:

Type 21 Test:

H0: all restrictions true(>= or =)

vs.

H1: at least one restriction violated (<), some =-restrictions maintained

Test statistic p-value

3.03 0.6134

Restricted estimate under H0:

HSR21-30 HSR31-40 HSR41-50 HSR51-60 HSR61-70 HSR71-80 HSR81-90 HSR>=91

0.000 0.000 0.000 0.038 0.256 0.372 0.505 0.914

Restricted estimate under H1:

HSR21-30 HSR31-40 HSR41-50 HSR51-60 HSR61-70 HSR71-80 HSR81-90 HSR>=91

0.000 0.000 0.198 0.144 0.362 0.478 0.610 1.020
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1.5. Calculation of weights and p values for the test problems

Function ic.weights calculates the mixing weights for a given covariance matrix, using the
probabilities for certain faces of the cone as derived in Section ??. Since it is known that
even and odd weights sum to 0.5 each (cf. e.g., Silvapulle and Sen 2004, Proposition 3.6.1,
Number 3), the two most demanding weights (in terms of most summands in (??)) can
always be inferred as the difference of 0.5 to the sum of the other even or odd weights.
Even exploiting this possibility, calculation of weights remains computer-intensive for large
covariance matrices; for example, it takes about 9 seconds CPU time for a matrix with
dimension 10, and already 1265 seconds (about 21 minutes) for a matrix with dimension 15.

Orthant probabilities that are needed for the weights according to (??), are calculated using
package mvtnorm by Monte-Carlo methods, i.e., the weights are subject to slight variation.
Because of numerical inaccuracies, it is even possible that calculated p values become slightly
negative. Printing and summary functions of package ic.infer report all p values below 0.0001
as “<0.0001”, since more accuracy should normally not be needed.

For the test problems implemented in function ic.test, choice of the covariance matrices
for obtaining the weights follows the formulae by Shapiro (1988), based on the meq-, the
ui-, and the Sigma-element of the input object: Whenever meq=0, the covariance matrix to
use is ui%*%Sigma%*%t(ui) (assuming that ui has p columns if the data are p-dimensional,
otherwise think of ui as suitably enlarged by zero columns (uiw in package code)). If meq>0,
the conditional covariance of the last m−meq rows given the first meq rows of ui%*%y must
be used instead for calculation of mixing weights (formula (5.9) in Shapiro 1988).

Degrees of freedom corresponding to the weights depend on the test problem at hand and
are determined in function ic.test, if not provided by the user. Functions pchibar and
pbetabar calculate p values from given vectors of weights and degrees of freedom. Function
pchibar has been taken from package ibdreg by Sinnwell and Schaid (2007), and function
pbetabar has been analogously defined.

1.6. Estimation in the linear model

Function orlm uses the other functions in package ic.infer for providing a convenient overall
analysis of order-restricted linear models. Starting from an unconstrained linear model object
(class lm) or a covariance matrix of response (first position) and all regressors, the function
determines the constrained estimate, R2 for the constrained model and – if requested – boot-
straps the estimates of coefficients (the latter is valid only in the implemented case of un-
correlated errors and of course only possible if the input is a linear model with embedded
data).

Postprocessing the output object

The output object of class orlm can be processed with several S3 methods provided in package
ic.infer: A plot method provides a residual plot, a print method gives a brief printout, and a
summarymethod gives a more extensive overview on the object, involving bootstrap confidence
intervals and overall model and restriction tests, if not suppressed; tests can be suppressed
because their calculation may take up substantial time in case of many restrictions because of
calculation of weights, cf. also the previous subsection. Furthermore, a coef method extracts
the coefficients from the object. In addition to these specially-defined methods, some general
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methods for model objects do also work: functions fitted and residuals provide fitted
values and residuals. Other methods for class lm (predict, effects, vcov) do not work
on orlm objects. Note that model diagnostics cannot be simply transferred to restricted
models, as the restricted estimation modifies the distributional properties of the residuals in
not easily foreseeable ways. The plot method only provides a simple plot of raw residuals vs.
fitted values, as it is not even possible to standardize the residuals. Further research might
improve the availability of diagnostics on the restricted model. As long as this has not been
conducted, model diagnostics, e.g., for normality, can be done on the unrestricted model,
which is of course still valid even though it does not exploit the prior knowledge about a
restriction.

Linear model analysis for the two example data sets

For the grades data, with two ordinal factors, restricting only HSR (because ACTC is auto-
matically in the correct order; indicated by index=2:9 for the position of HSR-coefficients
in the overall coefficient vector) function orlm works as follows (contrast matrix ui.treat
defined in 1.2.2):

R> orlimo.grades <- orlm(limo.grades,

+ ui = ui.treat, index = 2:9)

R> summary(orlimo.grades, brief = TRUE)

Order-restricted linear model with restrictions of coefficients of

HSR21-30 HSR31-40 HSR41-50 HSR51-60 HSR61-70 HSR71-80 HSR81-90 HSR>=91

Coefficients from order-restricted model:

(Intercept) R HSR21-30 R HSR31-40 R HSR41-50 R HSR51-60 R HSR61-70 R HSR71-80

1.42444 0.00000 0.04917 0.19181 0.19181 0.38920 0.50551

R HSR81-90 R HSR>=91 ACTC13-15 ACTC16-18 ACTC19-21 ACTC22-24 ACTC25-27

0.63772 1.04688 0.29496 0.45714 0.53311 0.61918 0.66945

ACTC28-30 ACTC31-33 ACTC34-36

0.82222 0.92091 1.03868

Note: Coefficients marked with R are involved in restrictions.

Hypothesis tests ( 50 error degrees of freedom ):

Overall model test under the order restrictions:

Test statistic: 0.9075, p-value: <0.0001

Type 1 test: H0: all restrictions active(=)

vs. H1: at least one restriction strictly true (>)

Test statistic: 0.8132, p-value: <0.0001

Type 2 test: H0: all restrictions true

vs. H1: at least one restriction false

Test statistic: 0.01074, p-value: 0.9887

Type 3 test: H0: at least one restriction false or active (=)

vs. H1: all restrictions strictly true (>)

Test statistic: -0.5481, p-value: 0.7070

Type 3 test based on t-distribution (one-sided),

all other tests based on mixture of beta distributions

Option brief suppresses information on restrictions (that has been shown in Section 1.3).
For this example, R2 is only slightly reduced by introducing the restriction, and the estimates
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(not surprisingly) coincide with those from Section 1.3. The overall model test and the test of
?? clearly reject their respective null hypothesis, while the data are compatible with validity
of the restriction according to the test for ?? but do not prove strict validity of the inequality
restriction (??).

The grades example has been about analysis of variance and has worked with aggregated
data, which makes bootstrapping useless. The rest of this section uses the body fat data
for illustrating functionality for order-restricted regression, including bootstrap confidence
intervals:

R> orlimo.bodyfat <- orlm(limo.bodyfat,

+ ui = diag(1,3), boot = TRUE)

R> summary(orlimo.bodyfat)

Order-restricted linear model with restrictions of coefficients of

Triceps Thigh Midarm

Inequality restrictions:

Triceps Thigh Midarm

1: 1 0 0 %*%colnames >= 0

2: 0 1 0 %*%colnames >= 0

3: A 0 0 1 %*%colnames >= 0

Note: Restrictions marked with A are active.

Restricted model: R2 reduced from 0.8014 to 0.7781

Coefficients from order-restricted model

with 95 pct bootstrap confidence intervals( perc ):

Coeff. Lower Upper

(Intercept) -19.1742 -33.0032 -3.4302

R Triceps 0.2224 0.0000 1.0215

R Thigh 0.6594 0.0000 0.9577

R Midarm 0.0000 0.0000 0.3269

Note: Coefficients marked with R are involved in restrictions.

Hypothesis tests ( 16 error degrees of freedom ):

Overall model test under the order restrictions:

Test statistic: 0.7966, p-value: <0.0001

Type 1 test: H0: all restrictions active(=)

vs. H1: at least one restriction strictly true (>)

Test statistic: 0.7966, p-value: <0.0001

Type 2 test: H0: all restrictions true

vs. H1: at least one restriction false

Test statistic: 0.105, p-value: 0.4100

Type 3 test: H0: at least one restriction false or active (=)

vs. H1: all restrictions strictly true (>)

Test statistic: -1.37, p-value: 0.9052

Type 3 test based on t-distribution (one-sided),

all other tests based on mixture of beta distributions
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Again, R2 is not dramatically reduced, the overall test – in this case identical to the test for
?? – is clearly significant, while the other two tests do not reject their null hypothesis. While
the unrestricted model had two negative estimated coefficients, the restricted model has one
active restriction. The other previously negative coefficient has now been estimated to be
positive. Note that still none of the individual coefficients is significantly different from 0,
since all bootstrap confidence intervals include this boundary value.

Bootstrapping regression models

Confidence intervals in ic.infer are obtained via the bootstrap. The implemented bootstrap is
valid for uncorrelated observations only, since observations are independently sampled. When
bootstrapping regression models, there are two principally different reasonable approaches (cf.
e.g. Davison and Hinkley 1997; Fox 2002): The regressors can be considered fixed in some
situations, e.g., for experimental data. In this case, only the error terms are random. Contrary,
in observational studies, like e.g., customer satisfaction surveys, it makes far more sense to
consider also the regressors as random, since the observations are a random sample from a
larger population. These two scenarii prompt two different approaches for bootstrapping:
For fixed regressors, bootstrapping is based on repeated sampling from the residuals of the
regression model, while for random regressors, the complete observation rows – consisting
of regressors and response – are resampled. ic.infer offers both possibilities, defaulting to
random regressors (fixed = FALSE). Bootstrapping in ic.infer is implemented in function
orlm based on the function boot from R package boot. Bootstrap confidence intervals are
then calculated by the summary method for the output object from function orlm, relying
on function boot.ci of package boot. Percentile intervals, BCa intervals, normal intervals
and basic intervals are supported (default: percentile intervals). For further information on
bootstrapping in general, cf. e.g., Davison and Hinkley (1997).

Overall tests

As mentioned above and shown in the example output, the summary method for objects of
class orlm calculates an overall model test, similar to the overall F test in the unconstrained
linear model, and several tests for or against the restrictions. These can be suppressed,
because their calculation can be very time-consuming in case of large sets of restrictions.

If they are not suppressed, function summary.orlm calculates an overall test that all param-
eters except the intercept are 0 (H0) vs. the restriction set (this is a test of type TP = 11

or TP = 1, depending on whether or not the original restrictions refer to all parameters in
the model). In addition, all tests for the three test problems ?? to ?? are calculated. (Test
problem ?? is only applicable if there are no equality restrictions (i.e., meq=0).) Note that
the time-consuming aspect is calculation of weights for the null distributions of test statistics.
These are calculated only once and are then handed to function ic.test for the further tests.
Nevertheless, calculation of weights for large problems takes a long time or is even impossible
because of storage space restrictions.

It would be desirable to have a function for sequential testing of sources, analogous to anova,
for order-restricted linear models. However, this would require the possibility to test a cone-
shaped null hypothesis vs. a larger cone-shaped alternative hypothesis, which is far from
trivial. So far, it has not been figured out how to implement such a test.
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1.7. R2 decomposition

It has been mentioned earlier that function or.relimp decomposes R2 into contributions of
individual regressors. The method is implemented by handing the 2p-vector of R2 values for
all sub-models to function Shapley.value from R package kappalab (Grabisch, Kojadinovic,
and Meyer 2009). The result is illustrated for the body fat example:

R> or.relimp(limo.bodyfat, ui = diag(1, 3))

Triceps Thigh Midarm

0.354115 0.416395 0.007542

Note that – in this example – although the coefficients are quite different from those of the
unrestricted model, the R2 decomposition is very similar (relaimpo must be loaded for the
following calculation):

R> calc.relimp(limo.bodyfat)$lmg

Triceps Thigh Midarm

0.37439 0.39914 0.02782

So far, such similarity has been observed for all examples for which the restrictions employed
were plausible and adequate.

It has been mentioned in Section 1.3 that automatic generation of restrictions for sub models
is naturally done by deleting the respective columns from the restriction matrix (R or ui,
respectively). It is emphasized here once more that this is not adequate for all conceivable
situations. It is in the responsibility of the user to ensure that restrictions for sub models are

sensible and meaningful.

Decomposition of R2 requires calculation of 2p constrained estimates. This involves signif-
icantly higher computational burden than for the unconstrained case: For example, calcu-
lations on a 2.4GHz Dual Core Windows XP machine in calc.relimp took 0.5 seconds for
10 regressors, about 17 seconds for 15 regressors and about 580 seconds for 20 regressors. For
the same scenarios, calculations in or.relimp with all non-intercept coefficients restricted to
be non-negative took 2.5 seconds for 10 regressors, about 109 seconds for 15 regressors, and
about 14800 seconds for 20 regressors. In case of fewer restrictions than regressors, comput-
ing time is somewhat reduced; for example, when restricting only 10 of the 15 coefficients
in the 15 regressor situation, or.relimp computing time was about 90 seconds. Given that
unconstrained models gave very similar R2 decompositions in all reasonable applications that
have so far been examined, decompositions from unconstrained models may very well be used
at least as first checks.

2. Final remarks

Inequality-constrained inference and its implementation in R package ic.infer have been ex-
plained and illustrated in this article. While ic.infer offers the most important possibilities for
normal means and linear models, some wishes remain to be fulfilled with future developments.
These will be discussed below.

Within the linear model context, it would be desirable to implement some factor-related
functionality for function orlm, supporting e.g., an overall test of significance for a factor as
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a whole or hypothesis tests corresponding to sequential analysis of variance (analogously to
function anova). It has been mentioned before that these topics may prove difficult because
they will often require testing a cone-shaped null hypothesis within a larger cone-shaped
alternative. Their feasibility will be investigated, and even if not all situations can be covered,
some may prove feasible (e.g., no restrictions on the factor, inequality restrictions on the factor
but on nothing else, ...).

For non-linear models with asymptotically normal parameter estimates, users can apply
inequality-restricted inference on the coefficients through functions ic.est or ic.test. A
more direct approach would be desirable. It is intended to extend coverage of the package to
(selected) non-normal situations with linear equality and inequality restrictions, for which it
is known that the asymptotic distribution of the likelihood ratio test statistic is also a mixture
of χ2 distributions (cf. section 4 of Silvapulle and Sen 2004). Of course, inference is local and
less robust, if we leave the linear model.

Calculation of weights is a computational road block in case of many restrictions. It will be
explored if direct calculation of weights using Monte-Carlo methods is more efficient than
using Equation (??) together with package mvtnorm.

Function or.relimp is currently restricted to linear models without factors. It would be pos-
sible to include factors by grouping their dummies, like in relaimpo. Also, it might be possible
to enable usage of or.relimp for larger problems than currently possible by a different pro-
gramming approach – however, as long as no reasonable examples have been encountered
for which constrained and unconstrained decompositions make a relevant difference, improve-
ments on or.relimp have low priority.
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