Package ‘iForecast’

June 28, 2025
Type Package

Title Machine Learning Time Series Forecasting

Version 1.1.2

Date 2025-06-28

Author Ho Tsung-wu [aut, cre]

Maintainer Ho Tsung-wu <tsungwu@ntnu.edu. tw>

Description Compute onestep and multistep time series forecasts for machine learning models.
License GPL (>=2)

LazyData TRUE

LazyLoad yes

Depends R (>=3.5)

Imports caret,zoo

Suggests forecast, h20, kernlab, lubridate, timeSeries, timeDate, xts
NeedsCompilation no

Repository CRAN

Date/Publication 2025-06-28 11:40:02 UTC

Contents
ACCUTACY . . . v v it et e e e e 2
data-sets L e e e 3
iForecast e e e e e 3
iForecast-ttsAutoML e e 5
iForecast-ttsCaret e 5
iForecast-ttsLSTM e 5
iForecast.var e e e 6
rollingWindows L. e e e 7
tts.aautoML e e e e 8
TES.CAMCL e e e e e e 10
tts.Deeplearning e e 13
EES.VAT . . o o e e e e e e e e 14

2 Accuracy

Index 17

Accuracy Accuracy measures for a forecast model

Description
Returns range of summary measures of the forecast accuracy. Except MAAPE, all measures are
defined and discussed in Hyndman and Koehler (2006).

Usage

Accuracy(f,x)

Arguments

f A time series forecasting object generated by iForecast.

X Actual values of the same length as the time series object of f.
Details

The measures calculated are:

* RMSE: Root Mean Squared Error

* MAE: Mean Absolute Error

* MAPE: Mean Absolute Percentage Error

* MAAPE: Mean Absolute Arctan Percentage Error

* ACF1: Autocorrelation of errors at lag 1.

Except MAAPE, by default, see Hyndman and Koehler (2006) and Hyndman and Athanasopoulos
(2014, Section 2.5) for further details. For MAAPE, please see Kim and Kim (2016).

Value

Matrix giving forecast accuracy measures.

Author(s)

Ho Tsung-wu <tsungwu@ntnu.edu.tw>, College of Management, National Taiwan Normal Univer-
sity.

References

Hyndman, R.J. and Koehler, A.B. (2006) "Another look at measures of forecast accuracy". Inter-

national Journal of Forecasting, 22(4), 679-688.

Hyndman, R.J. and Athanasopoulos, G. (2018) "Forecasting: principles and practice", 2nd ed.,

OTexts, Melbourne, Australia. Section 3.4 "Evaluating forecast accuracy".<https://otexts.com/fpp2/accuracy.html>

Kim Sungil and Heeyoung Kim (2016) "A new metric of absolute percentage error for intermittent

demand forecasts", International Journal of Forecasting,32(3),669-679. <https://doi.org/10.1016/j.ijforecast.2015.12.003>.

data-sets 3

Examples

tmp@=timeSeries: :as.timeSeries(ts(rnorm(800),start=c(1960,1),freq=12))
fitl <- timeSeries::as.timeSeries(forecast::rwf(tmp@[1:700,1],h=100)%mean)
Accuracy(f=fit1,x=tmp@[701:800,1])

data-sets Economic and Financial Data Sets

Description

ES_15m is 15-min realized absolute variance of e-mini S&P 500. macrodata contains monthly US
unemployment(unrate), ES_Daily is daily realized absolute variance of e-mini S&P 500. macrodata
contains monthly US unemployment(unrate) and and year-to-year changes in three regional busi-
ness cycle indices (OECD, NAFTA, and G7). bc contains monthly business cycle data, bc is binary
indicator(1=recession, 2=boom) of Taiwan’s business cycle phases, IPI_TWN is industrial produc-
tion index of Taiwan, LD_OECD, LD_G7, and LD_NAFTA are leading indicators of OECD, G7
and NAFTA regions; all four are monthly rate of changes.

Usage

data(ES_15m)
data(macrodata)
data(ES_Daily)
data(bc)

Value

an object of class "zoo".

iForecast Extract predictions and class probabilities from train objects

Description
It generates both the static and recursive time series plots of machine learning prediction object
generated by ttsCaret, ttsAutoML and ttsLSTM.

Usage

iForecast(Model,newdata, Type,n.ahead)

4 iForecast

Arguments
Model Object of trained model.
newdata The dataset for pediction, the column names must be the same as the trained
data.Not required if type="dynamic".
Type If Type="static", it computes the (static) forecasting values of insample model
fit. If Type="dynamic", it recursively computes the forecasting values ahead.
n.ahead For Type="dynamic", it is the number of forecasting periods ahead. Not required
if type="static".
Details

This function generates forecasts of tts.caret,and tts.autoML.

Value
prediction The forecasted time series target variable. For binary case, it returns both porba-
bilities and class.
Author(s)
Ho Tsung-wu <tsungwu@ntnu.edu.tw>, College of Management, National Taiwan Normal Univer-
sity.
Examples

Cross-validation takes time, example below is commented.
Machine Learning by library(caret)

#Case 1. Low frequency, regression type

data("macrodata”)

dep <- macrodatal[569:669, "unrate"”,drop=FALSE]

ind <- macrodatal[569:669,-1,drop=FALSE]

train.end <- "2018-12-01"# Choosing the end dating of train

models <- c("svm","rf","rpart”,"gbm”,"nb")[1]

type <- c("none”,"trend"”,"season”,"both")[1]

output <- tts.caret(y=dep, x=ind, arOrder=c(1), xregOrder=c(1),
method="smv", tunelLength =1,

train.end, type=type,resampling="cv", preProcess = "center")

testDatal <- window(output$dataused,start="2019-01-01",end=end(output$dataused))
#P1=iForecast (Model=output, Type="static”,newdata=testDatal)
#P2=iForecast (Model=output, Type="dynamic”,n.ahead=7)

#tail(cbind(testDatall[,1],P1))
#tail(cbind(testDatal[,1]1,P2))

#Case 2. Low frequency, binary type

data(bc) #binary dependent variable, business cycle phases
dep=bc[,1,drop=FALSE]

ind=bc[,-1]

iForecast-ttsAutoML

train.end=as.character(rownames(dep))[as.integer(nrow(dep)*0.8)]
test.start=as.character(rownames(dep))[as.integer(nrow(dep)*0.8)+1]

#output = tts.caret(y=dep, x=ind, arOrder=c(1), xregOrder=c(1), method="nb",
tunelLength =10, train.end, type=type)

#testDatal=window(output$dataused, start=test.start,end=end(output$dataused))
#head(output$dataused)
#P1=iForecast (Model=output, Type="static”,newdata=testDatal)

#P2=iForecast (Model=output, Type="dynamic"”,n.ahead=7)

#tail(cbind(testDatall[,1],P1),10)
#tail(cbind(testDatal[,1],P2),10)

iForecast-ttsAutoML Defunct functions in package ‘iForecast’

Description

These functions are defunct and no longer available.

Details

Defunct function is: ttsAutoML New function is: tts.autoML

iForecast-ttsCaret Defunct functions in package ‘iForecast’

Description

These functions are defunct and no longer available.

Details

Defunct function is: ttsCaret New function is: tts.caret

iForecast-ttsLSTM Defunct functions in package ‘iForecast’

Description

These functions are defunct and no longer available.

Details

Defunct functions are: ttsLSTM

6 iForecast.var

iForecast.var Produce multistep forecasts from machine learning VAR

Description

It generates multistep forecasts of machine learning VAR.

Usage

iForecast.var(object, n.ahead)

Arguments
object The object generated by tts.var.
n.ahead The number of out-of-sample forecasting periods. If n.ahead=1, it is one-step
forecast; if n.ahead>1, it computes multistep forecasts by recursive method.
Details

This function generates multistep forecasts of machine learning VAR.

Author(s)

Ho Tsung-wu <tsungwu@ntnu.edu.tw>, College of Management, National Taiwan Normal Univer-
sity.

Examples

data(macrodata)
y=timeSeries::as.timeSeries(macrodatal,-1])
VLD=window(y,start="2019-01-01",end=end(y))
#0UT1=tts.var(data=y,

p=3,

method="enet",

train.end="2018-12-01",

type=c("none”,"trend"”, "season”, "both")[1])

#fcst_ml=iForecast.var(OUT1, n.ahead=nrow(VLD))

rollingWindows 7

rollingWindows Rolling timeframe for time series anaysis

Description

It extracts time stamp from a timeSeries object and separates the time into in-sample training and
out-of-sample validation ranges.

Usage
rollingWindows(x,estimation="18m" by = "1m")
Arguments
X The time series object with timeSeries, xts, or zoo format of "
estimation The range of insample estimation period, the default is 18 months(18m), where
the k-fold cross-section is performed. Quarter, week and day are also supported
(see example).
by The range of out-of-sample validation/testing period, the default is 6 months(6m).Quarter,
week and day are also supported (see example).
Details

This function is similar to the backtesting framework in portfolio analysis. Rolling windows fixes
the origin and the training sample grows over time, moving windows can be achieved by placing
window() on dependent variable at each iteration.

Value

window The time labels of from and to

Author(s)

Ho Tsung-wu <tsungwu @ntnu.edu.tw>, College of Management, National Taiwan Normal Univer-
sity.

Examples

data(macrodata)

y=macrodatal,1,drop=FALSE]
timeframe=rollingWindows(y,estimation="300m" 6 by="6m")
#estimation="300m", because macrodata is monthly
FROM=timeframe$from

TO=timeframe$to

data(ES_Daily)
y=ES_Daily[,1,drop=FALSE]

8 tts.autoML

timeframe=rollingWindows(y,estimation ="60w",by="1w")
#60 weeks(300+ days) as estimation window and move by 1 week(5+ days).

FROM=timeframe$from
TO=timeframe$to

y=ES_Daily[,1,drop=FALSE]
timeframe=rollingWindows(y,estimation ="250d",by="10d")
#250-day as estimation window and move by 10 days.

simulated quarterly data
tmp@=ts(rnorm(800),start=c(1900,1),freq=4)
tmpl=timeSeries::as.timeSeries(tmp@)

tmp2=z00: :as.zoo(tmpd)

tmp3=xts::as.xts(tmpd)
timeframe=rollingWindows(x=tmp3,estimation ="100q",by="12q9")
FROM=timeframe$from

TO=timeframe$to

tts.autoML Train time series by automatic machine learning of h2o provided by
H2o.ai

Description

It applies the h20.autoML of H20.ai to time series data.

Usage

tts.autoML(y,x=NULL, train.end,arOrder=2,xregOrder=0, type,max_models = 20,
sort_metric="AUTQ",stopping_metric = "AUTO",initial=TRUE)

Arguments

y The time series object of the target variable, for example, timeSeries,xts, or
zoo. Numerically,y must be real numbers for regression or integers for classifi-
cation. Date format must be "

X The time series matrix of input variables, timestamp is the same as y, maybe
null.

train.end The end date of training data, must be specificed. The default dates of train.start
and test.end are the start and the end of input data; and the test.start is the 1-
period next of train.end.

arOrder The autoregressive order of the target variable, which may be sequentially specifed

like arOrder=1:5; or discontinuous lags like arOrder=c(1,3,5); zero is not al-
lowed.

tts.autoML 9

xregOrder The distributed lag structure of the input variables, which may be sequentially
specifed like xregOrder=1:5; or discontinuous lags like xregOrder=c(0,3,5); zero
is allowed since contemporaneous correlation is allowed.

type The time dummies variables. We have four selection:
’none’=no other variables,
"trend’=inclusion of time dummy,
’season’=inclusion of seasonal dummies,
’both’=inclusion of both trend and season. No default.

max_models Number of AutoML base models, default to 20.

sort_metric Specifies the metric used to sort the Leaderboard by at the end of an AutoML
run. Defaults to "AUTO", where ’AUC’ (area under the ROC curve) for binary
classification, *mean_per_class_error’ for multinomial classification, and ’de-
viance’ for regression. Available options include:’MSE’RMSE’’MAE’,RMSLE’; AUCPR’
(area under the Precision-Recall curve)
stopping_metric
Specify the metric to use for early stopping. Defaults to "AUTO" ,where "logloss’
for classification and "deviance’ for regression. Besides, options are: '"MSE’,RMSE’MAE’RMSLE’,’ A

initial Whether to initialize h20.init (). Default to "TRUE" and, to avoid multiple ini-
tiations, users had better change it to FALSE while training via rolling windows.
See example below.

Details

This function calls the h20.automl function from package h2o to execute automatic machine learn-
ing estimation.

Value
output Output object generated by h2o0.automl function of h2o.
modelsUsed AutoML Leaderboard object, which is a table returns the argument of 'max_models’.
arOrder The autoregressive order of the target variable used.
dataused The data used by arOrder, xregOrder
data The complete data structure
0 Time dummies used, inherited from "type’ in tts.autoML
train.end The same as the argument in tts.caret
Author(s)
Ho Tsung-wu <tsungwu@ntnu.edu.tw>, College of Management, National Taiwan Normal Univer-
sity.
Examples

Computation takes time, example below is commented.
data("macrodata”)
dep<-macrodatal, "unrate”,drop=FALSE]

10 tts.caret

ind<-macrodatal,-1,drop=FALSE]

Choosing the dates of training and testing data
train.end<-"2008-12-01"

#autoML of H20.ai must execute the commands below
#h20::h20.init() # Initialize h2o
#invisible(h20::h20.no_progress()) # Turn off progress bars

autoML <- tts.autoML(y=dep, x=ind, train.end,arOrder=c(2,4),
xregOrder=c(0,1,3),type="both"”,initial=FALSE)
print(autoML$modelsUsed,n=22) #View the AutoML Leaderboard

#testData2 <- window(autoML$dataused,start="2009-01-01",end=end(autoML$dataused))
#P1<-iForecast(Model=autoML, Type="static",newdata=testData2)
#P2<-iForecast(Model=autoML, Type="dynamic"”,n.ahead=nrow(testData2))

#tail(cbind(testData2[,1],P1))
#tail(cbind(testData2[,1],P2))

#h20: :h20. shutdown(promp=FALSE) # Remember to shutdown h2o when all works are finished.

tts.caret Train time series by caret and produce two types of time series fore-
casts: static and dynamic

Description

It generates both the static and dynamic time series plots of machine learning prediction object
generated by package caret.

Usage

tts.caret(
Y,
x=NULL,
method,
train.end,
arOrder=2,
xregOrder=0,
type,
tuneLength =10,
preProcess = NULL,
resampling="boot",
Number=NULL,
Repeat=NULL)

tts.caret

Arguments

y

method

train.end

arOrder

xregOrder

type

tunelLength

preProcess

resampling

Number

Repeat

Details

11

The time series object of the target variable, for example, timeSeries,xts, or
z0o0. y can be either binary or continuous. Date format must be "

The time series matrix of input variables, timestamp is the same as y, maybe
null.

The train_model_list of caret. While using this, make sure that the method al-
lows regression. Methods in c("svm","rf","rpart","gamboost","BstLm","bstSm","blackboost")
are feasible.

The end date of training data, must be specificed. The default dates of train.start
and test.end are the start and the end of input data; and the test.start is the 1-
period next of train.end.

The autoregressive order of the target variable, which may be sequentially specifed
like arOrder=1:5; or discontinuous lags like arOrder=c(1,3,5); zero is not al-
lowed.

The distributed lag structure of the input variables, which may be sequentially
specifed like xregOrder=0:5; or discontinuous lags like xregOrder=c(0,3,5); zero
is allowed since contemporaneous correlation is allowed.

The time dummies variables. We have four selection:
"none"=no other variables,

"trend"=inclusion of time dummy,

"season"=inclusion of seasonal dummies,
"both"=inclusion of both trend and season. No default.

The same as the length specified in train function of package caret.

Whether to pre-process the data, current possibilities are "BoxCox", "YeoJohn-
son", "expoTrans", "center", "scale", "range", "knnlmpute", "baglmpute", "me-

dianlmpute", "pca", "ica" and "spatialSign".The default is no pre-processing.

non non non

The method for resampling, as trainControl function list in package caret. The
default is "boot" for bootstrapping with 25 replications. Current choices are
c("ev","boot","repeatedcv","LOOCV") where "cv" is K-fold CV with a default
K=10 or specified by the "Number" below, "LOOCV" denotes the leave-one-out
Cv

The number of K for K-Fold CV, default (NULL) is 10; for "boot" option, the
default number of replications is 25

The number for the repeatition for "repeatedcv".

This function calls the train function of package caret to execute estimation. When execution
finished, we compute two types of time series forecasts: static and recursive.

Value

output

arOrder

Output object generated by train function of caret.

The autoregressive order of the target variable used.

12 tts.caret

training.Pred All tuned prediction values of training data, using besTunes to extract the best

prediction.
dataused The data used by arOrder, xregOrder, and type.
data The complete data structure
D Time dummies used, inherited from type
train.end The same as argument in tts.caret
Author(s)
Ho Tsung-wu <tsungwu@ntnu.edu.tw>, College of Management, National Taiwan Normal Univer-
sity.
Examples

Cross-validation takes time, example below is commented.

Machine Learning by library(caret)

library(zoo)

#Case 1. Low frequency

data("macrodata”)

dep <- macrodatal[569:669,"unrate”,drop=FALSE]

ind <- macrodatal[569:669,-1,drop=FALSE]

train.end <- "2018-12-01"# Choosing the end dating of train
models <- c("glm","knn”,"nnet"”,"rpart”,"rf"”,"svm","enet”, "gbm", "lasso”, "bridge”, "nb")[2]
type <- c("none”,"trend”,"season”, "both")[1]

output <- tts.caret(y=dep,x=NULL, arOrder=c(1), xregOrder=c(1),
method=models, tuneLength =1, train.end, type=type,

non

resampling=c("boot"”,"cv","repeatedcv”)[1],preProcess = "center")

testDatal <- window(output$dataused,start="2019-01-01",end=end(output$dataused))
P1 <- iForecast(Model=output,Type="static"”, newdata=testDatal)
P2 <- iForecast(Model=output,Type="dynamic",n.ahead=nrow(testDatal))

tail(cbind(testDatal[,1],P1,P2))

#Case 2. High frequency

#head (ES_15m)

#head(ES_Daily)

#dep <- ES_15m #SP500 15-minute realized absolute variance

#ind <- NULL

#train.end <- as.character(rownames(dep))[as.integer(nrow(dep)*0.9)]

#models<-c("svm","rf","rpart"”, "gamboost”,"BstLm","bstSm", "blackboost”)[1]
#type<-c("none”,"trend”,"season”,"both")[1]

output <- tts.caret(y=dep, x=ind, arOrder=c(3,5), xregOrder=c(90,2,4),

method=models, tunelLength =10, train.end, type=type,

resampling=c("boot"”,"cv","repeatedcv”)[2],preProcess = "center")
#testDatal<-window(output$dataused, start="2009-01-01",end=end(output$dataused))
#P1<-iForecast(Model=output,Type="static”,newdata=testDatal)

#P2<-iForecast(Model=output, Type="dynamic"”,n.ahead=nrow(testDatal))

tts.DeepLearning

13

tts.DeeplLearning

It applies the h2o0.deeplearning of h2o to time series data

Description

It applies the deep learning rountine, specifically the Multilayer Perceptron(MLP), of H20.ai to time

series data.

Usage

tts.DeepLearning(y,x=NULL, train.end,arOrder=2,xregOrder=0,type,initial=TRUE)

Arguments

y

train.end

arOrder

xregOrder

type

initial

Details

The time series object of the target variable, for example, timeSeries,xts, or
zoo. Numerically,y must be real numbers for regression or integers for classifi-
cation. Date format must be "

The time series matrix of input variables, timestamp is the same as y, maybe
null.

The end date of training data, must be specificed. The default dates of train.start
and test.end are the start and the end of input data; and the test.start is the 1-
period next of train.end.

The autoregressive order of the target variable, which may be sequentially specifed
like arOrder=1:5; or discontinuous lags like arOrder=c(1,3,5); zero is not al-
lowed.

The distributed lag structure of the input variables, which may be sequentially
specifed like xregOrder=1:5; or discontinuous lags like xregOrder=c(0,3,5); zero
is allowed since contemporaneous correlation is allowed.

The time dummies variables. We have four selection:
’none’=no other variables,

"trend’=inclusion of time dummy,

’season’=inclusion of seasonal dummies,
’both’=inclusion of both trend and season. No default.

Whether to initialize h20. init (). Default to "TRUE" and, to avoid multiple ini-
tiations, users had better change it to FALSE while training via rolling windows.
See example below.

This function calls the h2o0.deeplearning function from package h2o to execute multilayer per-

centron learning.

14 tts.var

Value
output Output object generated by h20.automl function of h2o.
arOrder The autoregressive order of the target variable used.
dataused The data used by arOrder, xregOrder
data The complete data structure
D Time dummies used, inherited from ’type’ in tts.DeepLearning
train.end The same as the argument in tts.caret

Author(s)
Ho Tsung-wu <tsungwu@ntnu.edu.tw>, College of Management, National Taiwan Normal Univer-
sity.

Examples

Computation takes time, example below is commented.
data("macrodata”)

dep<-macrodatal, "unrate”,drop=FALSE]
ind<-macrodatal,-1,drop=FALSE]

Choosing the dates of training and testing data
train.end<-"2008-12-01"

#Must execute the commands below
#h20::h20.init() # Initialize h2o
#invisible(h20::h20.no_progress()) # Turn off progress bars

out <- tts.DeeplLearning(y=dep, x=ind, train.end,arOrder=c(2,4),
xregOrder=c(0,1,3),type="both”,initial=FALSE)

#testData2 <- window(out$dataused,start="2009-01-01",end=end(out$dataused))
#P1<-iForecast(Model=out,Type="static"”,newdata=testData2)
#P2<-iForecast(Model=out, Type="dynamic"”,n.ahead=nrow(testData2))

#tail(cbind(testData2[,1]1,P1))
#tail(cbind(testData2[,1],P2))

#h20: :h20.shutdown(promp=FALSE) # Remember to shutdown h2o when all works are finished.

tts.var Estimate Vector AutoregRessive model by tts.caret

Description

It estimate VAR model by tts.caret, and generates an object list for multistep forecasts.

tts.var 15

Usage

tts.var(
data,
P,
method,
train.end,
type,
trace=TRUE)

Arguments
data The time series object of the VAR dataset, for example, timeSeries,xts, or
zoo. y can be either binary or continuous. Date format must be "
p The lag order as in VAR(p).
method The train_model_list of caret. While using this, make sure that the method al-
lows regression. Methods in c("svm","rf","rpart","gamboost","BstLm","bstSm","blackboost")
are feasible.
train.end The end date of training data, must be specificed.The default dates of train.start
and test.end are the start and the end of input data; and the test.start is the 1-
period next of train.end.
type The time dummies variables. We have four selection:
"none"=no other variables,
"trend"=inclusion of time dummy,
"season"=inclusion of seasonal dummies,
"both"=inclusion of both trend and season. No default.
trace Whether to print the looping information. The defaut is TRUE.
Details

This function calls tts. caret of package to execute VAR estimation.

Value
output Output list object generated.
method The method used.
type Type of time dummies used, inherited from type of tts.var
data The complete data structure
Author(s)

Ho Tsung-wu <tsungwu@ntnu.edu.tw>, College of Management, National Taiwan Normal Univer-
sity.

16 tts.var

Examples

data(macrodata)
y=timeSeries::as.timeSeries(macrodatal,-1])
VLD=window(y,start="2019-01-01",end=end(y))
#0UT1=tts.var(data=y,

p=3,

method="enet",

train.end="2018-12-01",

type=c("none”,"trend”, "season”,"both")[1])

#fcst_ml=iForecast.var(OUT1, n.ahead=nrow(VLD))

Index

x datasets
data-sets, 3

Accuracy, 2
bc (data-sets), 3
data-sets, 3

ES_15m (data-sets), 3
ES_Daily (data-sets), 3

iForecast, 3
iForecast-ttsAutoML, 5
iForecast-ttsCaret, 5
iForecast-ttsLSTM, 5
iForecast.var, 6

macrodata (data-sets), 3
rollingWindows, 7

tts.autoML, 8

tts.caret, 10
tts.DeeplLearning, 13

tts.var, 14

ttsAutoML (iForecast-ttsAutoML), 5
ttsCaret (iForecast-ttsCaret), 5
ttsLSTM (iForecast-ttsLSTM), 5

17

	Accuracy
	data-sets
	iForecast
	iForecast-ttsAutoML
	iForecast-ttsCaret
	iForecast-ttsLSTM
	iForecast.var
	rollingWindows
	tts.autoML
	tts.caret
	tts.DeepLearning
	tts.var
	Index

