Package ‘httpcache’

October 13, 2022
Type Package
Title Query Cache for HTTP Clients

Description In order to improve performance for HTTP API clients, 'httpcache’
provides simple tools for caching and invalidating cache. It includes the
HTTP verb functions GET, PUT, PATCH, POST, and DELETE, which are drop-in
replacements for those in the 'httr' package. These functions are cache-aware
and provide default settings for cache invalidation suitable for RESTful
APIs; the package also enables custom cache-management strategies.
Finally, 'httpcache' includes a basic logging framework to facilitate the
measurement of HTTP request time and cache performance.

Version 1.2.0

URL https://enpiar.com/r/httpcache/,
https://github.com/nealrichardson/httpcache/

BugReports https://github.com/nealrichardson/httpcache/issues
License MIT + file LICENSE

Depends R (>=3.0.0)

Imports digest, httr (>= 1.0.0), utils

Suggests httptest (>= 3.0.0), knitr, rmarkdown, spelling
RoxygenNote 7.1.1

VignetteBuilder knitr

Language en-US

Encoding UTF-8

NeedsCompilation no

Author Neal Richardson [aut, cre]

Maintainer Neal Richardson <neal.p.richardson@gmail.com>
Repository CRAN

Date/Publication 2021-01-10 23:10:02 UTC

https://enpiar.com/r/httpcache/
https://github.com/nealrichardson/httpcache/
https://github.com/nealrichardson/httpcache/issues

2 buildCacheKey

R topics documented:

buildCacheKey e e e 2
cache-api e e 3
cache-management Lo oL 3
cached-http-verbs 4
cachedPOST o e 5
cacheLogSummary e e 5
dropCache e 6
halt . . . e 6
loadLogfile e 7
logMessageo e e 7
requestLogSummary e 8
saveCache e 8
startLog L 9
uncached 9

Index 11

buildCacheKey Construct a unique cache key for a request
Description

This function encapsulates the logic of making a cache key, allowing other code or libraries to
access the HTTP cache programmatically.

Usage

buildCacheKey(url, query = NULL, body = NULL, extras = c())

Arguments

url character request URL

query Optional query parameters for the request

body Optional request body

extras character Optional additional annotations to include in the cache key.
Value

Character value, starting with url and including hashed query and body values if provided, to be
used as the cache key for this request.

cache-api 3

cache-api HTTP Cache API

Description

These functions provide access to what’s stored in the cache.

Usage
hitCache(key)

getCache(key)

setCache(key, value)

Arguments

key character, typically a URL or similar

value For setCache, an R object to set in the cache for key.
Value

hitCache returns logical whether key exists in the cache. getCache returns the value stored in the
cache, or NULL if there is nothing cached. setCache is called for its side effects.

cache-management Manage the HTTP cache

Description

These functions turn the cache on and off and clear the contents of the query cache.

Usage
cacheOn()

cacheOff ()

clearCache()

Value

Nothing. Functions are run for their side effects.

4 cached-http-verbs

cached-http-verbs Cache-aware versions of httr verbs

Description

These functions set, read from, and bust the HTTP query cache. They wrap the similarly named
functions in the httr package and can be used as drop-in replacements for them.

Usage
GET(url, ...)
PUT(url, ..., drop = dropCache(url))
POST(url, ..., drop = dropOnly(url))
PATCH(url, ..., drop = dropCache(url))
DELETE(url, ..., drop = dropCache(url))
Arguments
url character URL of the request
additional arguments passed to the httr functions
drop For PUT, PATCH, POST, and DELETE, code to be executed after the request. This
is intended to be for supplying cache-invalidation logic. By default, POST drops
cache only for the specified url (i.e. dropOnly()), while the other verbs drop
cache for the request URL and for any URLSs nested below it (i.e. dropCache()).
Details

GET checks the cache before making an HTTP request, and if there is a cache miss, it sets the
response from the request into the cache for future requests. The other verbs, assuming a more or
less RESTful API, would be assumed to modify server state, and thus they should trigger cache
invalidation. They have default cache-invalidation strategies, but you can override them as desired.

Value

The corresponding httr response object, potentially read from cache

See Also

dropCache() cachedPOST()

cachedPOST 5

cachedPOST Cache the response of a POST

Description

Some APIs have resources where a POST is used to send a command that returns content and
doesn’t modify state. In this case, it’s more like a GET. This may occur where one might normally
GET but the request URI would be too long for the server to accept. cachedPOST thus behaves
more like GET, checking for a cached response before performing the request and setting cache if
the request is successful. It does no cache dropping, unlike POST ().

Usage
cachedPOST (url, ...)
Arguments
url character URL of the request
additional arguments passed to the httr functions
Value

The corresponding httr response object, potentially read from cache

cacheLogSummary Summarize cache performance from a log

Description

Summarize cache performance from a log

Usage

cacheLogSummary (logdf)

Arguments

logdf A logging data.frame, as loaded by loadLogfile().

Value

A list containing counts of cache hit/set/drop events, plus a cache hit rate.

6 halt

dropCache Invalidate cache

Description

These functions let you control cache invalidation. dropOnly invalidates cache only for the spec-
ified URL. dropPattern uses regular expression matching to invalidate cache. dropCache is a
convenience wrapper around dropPattern that invalidates cache for any resources that start with
the given URL.

Usage
dropCache(x)

dropOnly(x)

dropPattern(x)

Arguments

X character URL or regular expression

Value

Nothing. Functions are run for their side effects.

halt Stop, log, and no call

Description

Wrapper around base: :stop() that logs the error message and then stops with call.=FALSE by
default.

Usage

halt(..., call. = FALSE)
Arguments

e arguments passed to stop

call. logical: print the call? Default is FALSE, unlike stop
Value

Nothing. Raises an error.

loadLogfile 7

loadLogfile Read in a httpcache log file

Description

Read in a httpcache log file

Usage

loadLogfile(filename, scope = c("CACHE"”, "HTTP"))

Arguments
filename character name of the log file, passed to utils: :read.delim()
scope character optional means of selecting only certain log messages. By default,
only "CACHE" and "HTTP" log messages are kept. Other logged messages,
such as "ERROR" messages from halt(), will be dropped from the resulting
data.frame.
Value

A data.frame of log results.

logMessage Log a message

Description

Log a message

Usage

logMessage(...)

Arguments

Strings to pass to base: :cat()

Value

Nothing

8 saveCache

requestLogSummary Summarize HTTP requests from a log

Description

Summarize HTTP requests from a log

Usage

requestLogSummary (logdf)

Arguments

logdf A logging data.frame, as loaded by loadLogfile().

Value

A list containing counts of HTTP requests by verb, as well as summaries of time spent waiting on
HTTP requests.

saveCache Save and load cache state

Description

Warm your query cache from a previous session by saving out the cache and loading it back in.

Usage

saveCache(file)

loadCache(file)

Arguments

file character file path to write the cache data to, in . rds format

Value

Nothing; called for side effects.

startLog 9

startLog Enable logging

Description

Enable logging

Usage
startLog(filename = "", append = FALSE)

Arguments

filename character: a filename/path where the log can be written out. If """, messages will
print to stdout (the screen). See base: :cat().

append logical: if the file already exists, append to it? Default is FALSE, and if not in
append mode, if the filename exists, it will be deleted.

Value

Nothing.

uncached Context manager to temporarily turn cache off if it is on

Description
If you don’t want to store the response of a GET request in the cache, wrap it in uncached(). It
will neither read from nor write to cache.

Usage

uncached(...)

Arguments

Things to evaluate with caching off

Details

uncached will not invalidate cache records, if present. It only ignores them.

Value

Whatever ... returns.

10 uncached

Examples

uncached(GET("http://httpbin.org/get"))

Index

base::cat(), 7,9
base: :stop(), 6
buildCacheKey, 2

cache-api, 3
cache-management, 3
cached-http-verbs, 4
cachedPOST, 5

cachedPOST(), 4
cachelLogSummary, 5

cacheOff (cache-management), 3
cacheOn (cache-management), 3
clearCache (cache-management), 3

DELETE (cached-http-verbs), 4
dropCache, 6

dropCache(), 4

dropOnly (dropCache), 6
dropOnly(), 4

dropPattern (dropCache), 6

GET (cached-http-verbs), 4
getCache (cache-api), 3

halt, 6
halt(), 7
hitCache (cache-api), 3

loadCache (saveCache), 8
loadLogfile, 7
loadLogfile(), 5, 8
logMessage, 7

PATCH (cached-http-verbs), 4
POST (cached-http-verbs), 4
POST(), 5

PUT (cached-http-verbs), 4

requestlLogSummary, 8

saveCache, 8

11

setCache (cache-api), 3
startlLog, 9

uncached, 9
utils::read.delim(), 7

	buildCacheKey
	cache-api
	cache-management
	cached-http-verbs
	cachedPOST
	cacheLogSummary
	dropCache
	halt
	loadLogfile
	logMessage
	requestLogSummary
	saveCache
	startLog
	uncached
	Index

