
Package ‘hstats’
August 17, 2024

Title Interaction Statistics

Version 1.2.1

Description Fast, model-agnostic implementation of different H-statistics
introduced by Jerome H. Friedman and Bogdan E. Popescu (2008)
<doi:10.1214/07-AOAS148>. These statistics quantify interaction
strength per feature, feature pair, and feature triple. The package
supports multi-output predictions and can account for case weights.
In addition, several variants of the original statistics are provided.
The shape of the interactions can be explored through partial
dependence plots or individual conditional expectation plots. 'DALEX'
explainers, meta learners ('mlr3', 'tidymodels', 'caret') and most
other models work out-of-the-box.

License GPL (>= 2)

Depends R (>= 3.2.0)

Encoding UTF-8

RoxygenNote 7.3.2

Imports ggplot2, stats, utils

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

URL https://github.com/ModelOriented/hstats/,

https://modeloriented.github.io/hstats/

BugReports https://github.com/ModelOriented/hstats/issues/

NeedsCompilation no

Author Michael Mayer [aut, cre] (<https://orcid.org/0009-0007-2540-9629>),
Przemyslaw Biecek [ctb] (<https://orcid.org/0000-0001-8423-1823>)

Maintainer Michael Mayer <mayermichael79@gmail.com>

Repository CRAN

Date/Publication 2024-08-17 15:50:09 UTC

1

https://doi.org/10.1214/07-AOAS148
https://github.com/ModelOriented/hstats/
https://modeloriented.github.io/hstats/
https://github.com/ModelOriented/hstats/issues/
https://orcid.org/0009-0007-2540-9629
https://orcid.org/0000-0001-8423-1823

2 average_loss

Contents
average_loss . 2
dim.hstats_matrix . 5
dimnames.hstats_matrix . 6
dimnames<-.hstats_matrix . 7
h2 . 7
h2_overall . 9
h2_pairwise . 12
h2_threeway . 14
hstats . 16
ice . 21
multivariate_grid . 24
partial_dep . 25
pd_importance . 29
perm_importance . 31
plot.hstats . 34
plot.hstats_matrix . 36
plot.ice . 37
plot.partial_dep . 38
print.hstats . 39
print.hstats_matrix . 40
print.hstats_summary . 40
print.ice . 41
print.partial_dep . 41
summary.hstats . 42
univariate_grid . 43
[.hstats_matrix . 44

Index 45

average_loss Average Loss

Description

Calculates the average loss of a model on a given dataset, optionally grouped by a variable. Use
plot() to visualize the results.

Usage

average_loss(object, ...)

Default S3 method:
average_loss(
object,
X,
y,

average_loss 3

pred_fun = stats::predict,
loss = "squared_error",
agg_cols = FALSE,
BY = NULL,
by_size = 4L,
w = NULL,
...

)

S3 method for class 'ranger'
average_loss(
object,
X,
y,
pred_fun = function(m, X, ...) stats::predict(m, X, ...)$predictions,
loss = "squared_error",
agg_cols = FALSE,
BY = NULL,
by_size = 4L,
w = NULL,
...

)

S3 method for class 'explainer'
average_loss(
object,
X = object[["data"]],
y = object[["y"]],
pred_fun = object[["predict_function"]],
loss = "squared_error",
agg_cols = FALSE,
BY = NULL,
by_size = 4L,
w = object[["weights"]],
...

)

Arguments

object Fitted model object.

... Additional arguments passed to pred_fun(object, X, ...), for instance type
= "response" in a glm() model, or reshape = TRUE in a multiclass XGBoost
model.

X A data.frame or matrix serving as background dataset.

y Vector/matrix of the response, or the corresponding column names in X.

pred_fun Prediction function of the form function(object, X, ...), providing K ≥ 1
predictions per row. Its first argument represents the model object, its sec-
ond argument a data structure like X. Additional arguments (such as type =

4 average_loss

"response" in a GLM, or reshape = TRUE in a multiclass XGBoost model) can
be passed via The default, stats::predict(), will work in most cases.

loss One of "squared_error", "logloss", "mlogloss", "poisson", "gamma", or "abso-
lute_error". Alternatively, a loss function can be provided that turns observed
and predicted values into a numeric vector or matrix of unit losses of the same
length as X. For "mlogloss", the response y can either be a dummy matrix or a
discrete vector. The latter case is handled via a fast version of model.matrix(~
as.factor(y) + 0). For "squared_error", the response can be a factor with lev-
els in column order of the predictions. In this case, squared error is evaluated
for each one-hot-encoded column.

agg_cols Should multivariate losses be summed up? Default is FALSE. In combination
with the squared error loss, agg_cols = TRUE gives the Brier score for (proba-
bilistic) classification.

BY Optional grouping vector or column name. Numeric BY variables with more than
by_size disjoint values will be binned into by_size quantile groups of similar
size.

by_size Numeric BY variables with more than by_size unique values will be binned into
quantile groups. Only relevant if BY is not NULL.

w Optional vector of case weights. Can also be a column name of X.

Value

An object of class "hstats_matrix" containing these elements:

• M: Matrix of statistics (one column per prediction dimension), or NULL.

• SE: Matrix with standard errors of M, or NULL. Multiply with sqrt(m_rep) to get standard
deviations instead. Currently, supported only for perm_importance().

• m_rep: The number of repetitions behind standard errors SE, or NULL. Currently, supported
only for perm_importance().

• statistic: Name of the function that generated the statistic.

• description: Description of the statistic.

Methods (by class)

• average_loss(default): Default method.

• average_loss(ranger): Method for "ranger" models.

• average_loss(explainer): Method for DALEX "explainer".

Losses

The default loss is the "squared_error". Other choices:

• "absolute_error": The absolute error is the loss corresponding to median regression.

• "poisson": Unit Poisson deviance, i.e., the loss function used in Poisson regression. Actual
values y and predictions must be non-negative.

dim.hstats_matrix 5

• "gamma": Unit gamma deviance, i.e., the loss function of Gamma regression. Actual values
y and predictions must be positive.

• "logloss": The Log Loss is the loss function used in logistic regression, and the top choice
in probabilistic binary classification. Responses y and predictions must be between 0 and 1.
Predictions represent probabilities of having a "1".

• "mlogloss": Multi-Log-Loss is the natural loss function in probabilistic multi-class situations.
If there are K classes and n observations, the predictions form a (n x K) matrix of probabilities
(with row-sums 1). The observed values y are either passed as (n x K) dummy matrix, or as
discrete vector with corresponding levels. The latter case is turned into a dummy matrix by a
fast version of model.matrix(~ as.factor(y) + 0).

• A function with signature f(actual, predicted), returning a numeric vector or matrix of
the same length as the input.

Examples

MODEL 1: Linear regression
fit <- lm(Sepal.Length ~ ., data = iris)
average_loss(fit, X = iris, y = "Sepal.Length")
average_loss(fit, X = iris, y = iris$Sepal.Length, BY = iris$Sepal.Width)
average_loss(fit, X = iris, y = "Sepal.Length", BY = "Sepal.Width")

MODEL 2: Multi-response linear regression
fit <- lm(as.matrix(iris[, 1:2]) ~ Petal.Length + Petal.Width + Species, data = iris)
average_loss(fit, X = iris, y = iris[, 1:2])
L <- average_loss(

fit, X = iris, y = iris[, 1:2], loss = "gamma", BY = "Species"
)
L
plot(L)

dim.hstats_matrix Dimensions of "hstats_matrix" Object

Description

Implies nrow() and ncol().

Usage

S3 method for class 'hstats_matrix'
dim(x)

Arguments

x An object of class "hstats_matrix".

6 dimnames.hstats_matrix

Value

A numeric vector of length two providing the number of rows and columns of "M" object stored in
x.

Examples

fit <- lm(Sepal.Length ~ . + Petal.Width:Species, data = iris)
s <- hstats(fit, X = iris[-1])
x <- h2_pairwise(s)
dim(x)
nrow(x)
ncol(x)

dimnames.hstats_matrix

Dimnames of "hstats_matrix" Object

Description

Extracts dimnames of the "M" matrix in x. Implies rownames() and colnames().

Usage

S3 method for class 'hstats_matrix'
dimnames(x)

Arguments

x An object of class "hstats_matrix".

Value

Dimnames of the statistics matrix.

Examples

fit <- lm(as.matrix(iris[1:2]) ~ Petal.Length + Petal.Width * Species, data = iris)
s <- hstats(fit, X = iris[3:5], verbose = FALSE)
x <- h2_pairwise(s)
dimnames(x)
rownames(x)
colnames(x)

dimnames<-.hstats_matrix 7

dimnames<-.hstats_matrix

Dimnames (Replacement Method) of "hstats_matrix"

Description

This implies colnames(x) <-

Usage

S3 replacement method for class 'hstats_matrix'
dimnames(x) <- value

Arguments

x An object of class "hstats_matrix".

value A list with rownames and column names compliant with $M (and $SE).

Value

Like x, but with replaced dimnames.

Examples

fit <- lm(as.matrix(iris[1:2]) ~ Petal.Length + Petal.Width * Species, data = iris)
s <- hstats(fit, X = iris[3:5], verbose = FALSE)
x <- h2_overall(s)
colnames(x) <- c("Sepal Length", "Sepal Width")
plot(x)

rownames(x)[2:3] <- c("Petal Width", "Petal Length")
plot(x)

h2 Total Interaction Strength

Description

Proportion of prediction variability unexplained by main effects of v, see Details. Use plot() to
get a barplot.

8 h2

Usage

h2(object, ...)

Default S3 method:
h2(object, ...)

S3 method for class 'hstats'
h2(object, normalize = TRUE, squared = TRUE, ...)

Arguments

object Object of class "hstats".

... Currently unused.

normalize Should statistics be normalized? Default is TRUE.

squared Should squared statistics be returned? Default is TRUE.

Details

If the model is additive in all features, then the (centered) prediction function F equals the sum of
the (centered) partial dependence functions Fj(xj), i.e.,

F (x) =

p∑
j

Fj(xj)

(check partial_dep() for all definitions). To measure the relative amount of variability unex-
plained by all main effects, we can therefore study the test statistic of total interaction strength

H2 =
1
n

∑n
i=1

[
F (xi)−

∑p
j=1 F̂j(xij)

]2
1
n

∑n
i=1

[
F (xi)

]2 .

A value of 0 means there are no interaction effects at all. Due to (typically undesired) extrapolation
effects, depending on the model, values above 1 may occur.

In Żółkowski et al. (2023), 1−H2 is called additivity index. A similar measure using accumulated
local effects is discussed in Molnar (2020).

Value

An object of class "hstats_matrix" containing these elements:

• M: Matrix of statistics (one column per prediction dimension), or NULL.

• SE: Matrix with standard errors of M, or NULL. Multiply with sqrt(m_rep) to get standard
deviations instead. Currently, supported only for perm_importance().

• m_rep: The number of repetitions behind standard errors SE, or NULL. Currently, supported
only for perm_importance().

• statistic: Name of the function that generated the statistic.

• description: Description of the statistic.

h2_overall 9

Methods (by class)

• h2(default): Default method of total interaction strength.

• h2(hstats): Total interaction strength from "interact" object.

References

1. Żółkowski, Artur, Mateusz Krzyziński, and Paweł Fijałkowski. Methods for extraction of
interactions from predictive models. Undergraduate thesis. Faculty of Mathematics and Infor-
mation Science, Warsaw University of Technology (2023).

2. Molnar, Christoph, Giuseppe Casalicchio, and Bernd Bischl". Quantifying Model Complexity
via Functional Decomposition for Better Post-hoc Interpretability, in Machine Learning and
Knowledge Discovery in Databases, Springer International Publishing (2020): 193-204.

See Also

hstats(), h2_overall(), h2_pairwise(), h2_threeway()

Examples

MODEL 1: Linear regression
fit <- lm(Sepal.Length ~ . + Petal.Width:Species, data = iris)
s <- hstats(fit, X = iris[, -1])
h2(s)

MODEL 2: Multi-response linear regression
fit <- lm(as.matrix(iris[, 1:2]) ~ Petal.Length + Petal.Width * Species, data = iris)
s <- hstats(fit, X = iris[, 3:5])
h2(s)

MODEL 3: No interactions
fit <- lm(Sepal.Length ~ ., data = iris)
s <- hstats(fit, X = iris[, -1], verbose = FALSE)
h2(s)

h2_overall Overall Interaction Strength

Description

Friedman and Popescu’s statistic of overall interaction strength per feature, see Details. Use plot()
to get a barplot.

10 h2_overall

Usage

h2_overall(object, ...)

Default S3 method:
h2_overall(object, ...)

S3 method for class 'hstats'
h2_overall(
object,
normalize = TRUE,
squared = TRUE,
sort = TRUE,
zero = TRUE,
...

)

Arguments

object Object of class "hstats".

... Currently unused.

normalize Should statistics be normalized? Default is TRUE.

squared Should squared statistics be returned? Default is TRUE.

sort Should results be sorted? Default is TRUE. (Multi-output is sorted by row means.)

zero Should rows with all 0 be shown? Default is TRUE.

Details

The logic of Friedman and Popescu (2008) is as follows: If there are no interactions involving
feature xj , we can decompose the (centered) prediction function F into the sum of the (centered)
partial dependence Fj on xj and the (centered) partial dependence F\j on all other features x\j ,
i.e.,

F (x) = Fj(xj) + F\j(x\j).

Correspondingly, Friedman and Popescu’s statistic of overall interaction strength of xj is given by

H2
j =

1
n

∑n
i=1

[
F (xi)− F̂j(xij)− F̂\j(xi\j)

]2
1
n

∑n
i=1

[
F (xi)

]2
(check partial_dep() for all definitions).

Remarks:

1. Partial dependence functions (and F) are all centered to (possibly weighted) mean 0.

2. Partial dependence functions (and F) are evaluated over the data distribution. This is different
to partial dependence plots, where one uses a fixed grid.

3. Weighted versions follow by replacing all arithmetic means by corresponding weighted means.

4. Multivariate predictions can be treated in a component-wise manner.

h2_overall 11

5. Due to (typically undesired) extrapolation effects of partial dependence functions, depending
on the model, values above 1 may occur.

6. H2
j = 0 means there are no interactions associated with xj . The higher the value, the more

prediction variability comes from interactions with xj .

7. Since the denominator is the same for all features, the values of the test statistics can be
compared across features.

Value

An object of class "hstats_matrix" containing these elements:

• M: Matrix of statistics (one column per prediction dimension), or NULL.

• SE: Matrix with standard errors of M, or NULL. Multiply with sqrt(m_rep) to get standard
deviations instead. Currently, supported only for perm_importance().

• m_rep: The number of repetitions behind standard errors SE, or NULL. Currently, supported
only for perm_importance().

• statistic: Name of the function that generated the statistic.

• description: Description of the statistic.

Methods (by class)

• h2_overall(default): Default method of overall interaction strength.

• h2_overall(hstats): Overall interaction strength from "hstats" object.

References

Friedman, Jerome H., and Bogdan E. Popescu. "Predictive Learning via Rule Ensembles." The
Annals of Applied Statistics 2, no. 3 (2008): 916-54.

See Also

hstats(), h2(), h2_pairwise(), h2_threeway()

Examples

MODEL 1: Linear regression
fit <- lm(Sepal.Length ~ . + Petal.Width:Species, data = iris)
s <- hstats(fit, X = iris[, -1])
h2_overall(s)
plot(h2_overall(s))

MODEL 2: Multi-response linear regression
fit <- lm(as.matrix(iris[, 1:2]) ~ Petal.Length + Petal.Width * Species, data = iris)
s <- hstats(fit, X = iris[, 3:5], verbose = FALSE)
plot(h2_overall(s, zero = FALSE))

12 h2_pairwise

h2_pairwise Pairwise Interaction Strength

Description

Friedman and Popescu’s statistic of pairwise interaction strength, see Details. Use plot() to get a
barplot.

Usage

h2_pairwise(object, ...)

Default S3 method:
h2_pairwise(object, ...)

S3 method for class 'hstats'
h2_pairwise(
object,
normalize = TRUE,
squared = TRUE,
sort = TRUE,
zero = TRUE,
...

)

Arguments

object Object of class "hstats".

... Currently unused.

normalize Should statistics be normalized? Default is TRUE.

squared Should squared statistics be returned? Default is TRUE.

sort Should results be sorted? Default is TRUE. (Multi-output is sorted by row means.)

zero Should rows with all 0 be shown? Default is TRUE.

Details

Following Friedman and Popescu (2008), if there are no interaction effects between features xj and
xk, their two-dimensional (centered) partial dependence function Fjk can be written as the sum of
the (centered) univariate partial dependencies Fj and Fk, i.e.,

Fjk(xj , xk) = Fj(xj) + Fk(xk).

Correspondingly, Friedman and Popescu’s statistic of pairwise interaction strength between xj and
xk is defined as

H2
jk =

Ajk

1
n

∑n
i=1

[
F̂jk(xij , xik)

]2 ,

h2_pairwise 13

where

Ajk =
1

n

n∑
i=1

[
F̂jk(xij , xik)− F̂j(xij)− F̂k(xik)

]2
(check partial_dep() for all definitions).

Remarks:

1. Remarks 1 to 5 of h2_overall() also apply here.

2. H2
jk = 0 means there are no interaction effects between xj and xk. The larger the value, the

more of the joint effect of the two features comes from the interaction.

3. Since the denominator differs between variable pairs, unlike Hj , this test statistic is difficult
to compare between variable pairs. If both main effects are very weak, a negligible interaction
can get a high H2

jk. Therefore, Friedman and Popescu (2008) suggests to calculate H2
jk only

for important variables (see "Modification" below).

Modification

To be better able to compare pairwise interaction strength across variable pairs, and to overcome the
problem mentioned in the last remark, we suggest as alternative the unnormalized test statistic on
the scale of the predictions, i.e.,

√
Ajk. Set normalize = FALSE and squared = FALSE to obtain this

statistic. Furthermore, instead of focusing on pairwise calculations for the most important features,
we can select features with strongest overall interactions.

Value

An object of class "hstats_matrix" containing these elements:

• M: Matrix of statistics (one column per prediction dimension), or NULL.

• SE: Matrix with standard errors of M, or NULL. Multiply with sqrt(m_rep) to get standard
deviations instead. Currently, supported only for perm_importance().

• m_rep: The number of repetitions behind standard errors SE, or NULL. Currently, supported
only for perm_importance().

• statistic: Name of the function that generated the statistic.

• description: Description of the statistic.

Methods (by class)

• h2_pairwise(default): Default pairwise interaction strength.

• h2_pairwise(hstats): Pairwise interaction strength from "hstats" object.

References

Friedman, Jerome H., and Bogdan E. Popescu. "Predictive Learning via Rule Ensembles." The
Annals of Applied Statistics 2, no. 3 (2008): 916-54.

See Also

hstats(), h2(), h2_overall(), h2_threeway()

14 h2_threeway

Examples

MODEL 1: Linear regression
fit <- lm(Sepal.Length ~ . + Petal.Width:Species, data = iris)
s <- hstats(fit, X = iris[, -1])

Proportion of joint effect coming from pairwise interaction
(for features with strongest overall interactions)
h2_pairwise(s)
h2_pairwise(s, zero = FALSE) # Drop 0

Absolute measure as alternative
abs_h <- h2_pairwise(s, normalize = FALSE, squared = FALSE, zero = FALSE)
abs_h
abs_h$M

MODEL 2: Multi-response linear regression
fit <- lm(as.matrix(iris[, 1:2]) ~ Petal.Length + Petal.Width * Species, data = iris)
s <- hstats(fit, X = iris[, 3:5], verbose = FALSE)
x <- h2_pairwise(s)
plot(x)

h2_threeway Three-way Interaction Strength

Description

Friedman and Popescu’s statistic of three-way interaction strength, see Details. Use plot() to get
a barplot. In hstats(), set threeway_m to a value above 2 to calculate this statistic for all feature
triples of the threeway_m features with strongest overall interaction.

Usage

h2_threeway(object, ...)

Default S3 method:
h2_threeway(object, ...)

S3 method for class 'hstats'
h2_threeway(
object,
normalize = TRUE,
squared = TRUE,
sort = TRUE,
zero = TRUE,
...

)

h2_threeway 15

Arguments

object Object of class "hstats".

... Currently unused.

normalize Should statistics be normalized? Default is TRUE.

squared Should squared statistics be returned? Default is TRUE.

sort Should results be sorted? Default is TRUE. (Multi-output is sorted by row means.)

zero Should rows with all 0 be shown? Default is TRUE.

Details

Friedman and Popescu (2008) describe a test statistic to measure three-way interactions: in case
there are no three-way interactions between features xj , xk and xl, their (centered) three-dimensional
partial dependence function Fjkl can be decomposed into lower order terms:

Fjkl(xj , xk, xl) = Bjkl − Cjkl

with
Bjkl = Fjk(xj , xk) + Fjl(xj , xl) + Fkl(xk, xl)

and
Cjkl = Fj(xj) + Fk(xk) + Fl(xl).

The squared and scaled difference between the two sides of the equation leads to the statistic

H2
jkl =

1
n

∑n
i=1

[
F̂jkl(xij , xik, xil)−B

(i)
jkl + C

(i)
jkl

]2
1
n

∑n
i=1 F̂jkl(xij , xik, xil)2

,

where
B

(i)
jkl = F̂jk(xij , xik) + F̂jl(xij , xil) + F̂kl(xik, xil)

and
C

(i)
jkl = F̂j(xij) + F̂k(xik) + F̂l(xil).

Similar remarks as for h2_pairwise() apply.

Value

An object of class "hstats_matrix" containing these elements:

• M: Matrix of statistics (one column per prediction dimension), or NULL.

• SE: Matrix with standard errors of M, or NULL. Multiply with sqrt(m_rep) to get standard
deviations instead. Currently, supported only for perm_importance().

• m_rep: The number of repetitions behind standard errors SE, or NULL. Currently, supported
only for perm_importance().

• statistic: Name of the function that generated the statistic.

• description: Description of the statistic.

16 hstats

Methods (by class)

• h2_threeway(default): Default pairwise interaction strength.

• h2_threeway(hstats): Pairwise interaction strength from "hstats" object.

References

Friedman, Jerome H., and Bogdan E. Popescu. "Predictive Learning via Rule Ensembles." The
Annals of Applied Statistics 2, no. 3 (2008): 916-54.

See Also

hstats(), h2(), h2_overall(), h2_pairwise()

Examples

MODEL 1: Linear regression
fit <- lm(uptake ~ Type * Treatment * conc, data = CO2)
s <- hstats(fit, X = CO2[, 2:4], threeway_m = 5)
h2_threeway(s)

#' MODEL 2: Multivariate output (taking just twice the same response as example)
fit <- lm(cbind(up = uptake, up2 = 2 * uptake) ~ Type * Treatment * conc, data = CO2)
s <- hstats(fit, X = CO2[, 2:4], threeway_m = 5)
h2_threeway(s)
h2_threeway(s, normalize = FALSE, squared = FALSE) # Unnormalized H
plot(h2_threeway(s))

hstats Calculate Interaction Statistics

Description

This is the main function of the package. It does the expensive calculations behind the following
H-statistics:

• Total interaction strength H2, a statistic measuring the proportion of prediction variability
unexplained by main effects of v, see h2() for details.

• Friedman and Popescu’s statistic H2
j of overall interaction strength per feature, see h2_overall()

for details.

• Friedman and Popescu’s statistic H2
jk of pairwise interaction strength, see h2_pairwise() for

details.

• Friedman and Popescu’s statistic H2
jkl of three-way interaction strength, see h2_threeway()

for details. To save time, this statistic is not calculated by default. Set threeway_m to a
value above 2 to get three-way statistics of the threeway_m variables with strongest overall
interaction.

hstats 17

Furthermore, it allows to calculate an experimental partial dependence based measure of feature
importance, PDI2j . It equals the proportion of prediction variability unexplained by other features,
see pd_importance() for details. This statistic is not shown by summary() or plot().

Instead of using summary(), interaction statistics can also be obtained via the more flexible func-
tions h2(), h2_overall(), h2_pairwise(), and h2_threeway().

Usage

hstats(object, ...)

Default S3 method:
hstats(
object,
X,
v = NULL,
pred_fun = stats::predict,
pairwise_m = 5L,
threeway_m = 0L,
approx = FALSE,
grid_size = 50L,
n_max = 500L,
eps = 1e-10,
w = NULL,
verbose = TRUE,
...

)

S3 method for class 'ranger'
hstats(
object,
X,
v = NULL,
pred_fun = NULL,
pairwise_m = 5L,
threeway_m = 0L,
approx = FALSE,
grid_size = 50L,
n_max = 500L,
eps = 1e-10,
w = NULL,
verbose = TRUE,
survival = c("chf", "prob"),
...

)

S3 method for class 'explainer'
hstats(
object,

18 hstats

X = object[["data"]],
v = NULL,
pred_fun = object[["predict_function"]],
pairwise_m = 5L,
threeway_m = 0L,
approx = FALSE,
grid_size = 50L,
n_max = 500L,
eps = 1e-10,
w = object[["weights"]],
verbose = TRUE,
...

)

Arguments

object Fitted model object.

... Additional arguments passed to pred_fun(object, X, ...), for instance type
= "response" in a glm() model, or reshape = TRUE in a multiclass XGBoost
model.

X A data.frame or matrix serving as background dataset.

v Vector of feature names. The default (NULL) will use all column names of X
except the column name of the optional case weight w (if specified as name).

pred_fun Prediction function of the form function(object, X, ...), providing K ≥ 1
predictions per row. Its first argument represents the model object, its sec-
ond argument a data structure like X. Additional arguments (such as type =
"response" in a GLM, or reshape = TRUE in a multiclass XGBoost model) can
be passed via The default, stats::predict(), will work in most cases.

pairwise_m Number of features for which pairwise statistics are to be calculated. The fea-
tures are selected based on Friedman and Popescu’s overall interaction strength
H2

j . Set to to 0 to avoid pairwise calculations. For multivariate predictions, the
union of the pairwise_m column-wise strongest variable names is taken. This
can lead to very long run-times.

threeway_m Like pairwise_m, but controls the feature count for three-way interactions.
Cannot be larger than pairwise_m. To save computation time, the default is
0.

approx Should quantile approximation be applied to dense numeric features? The de-
fault is FALSE. Setting this option to TRUE brings a massive speed-up for one-way
calculations. It can, e.g., be used when the number of features is very large.

grid_size Integer controlling the number of quantile midpoints used to approximate dense
numerics. The quantile midpoints are calculated after subampling via n_max.
Only relevant if approx = TRUE.

n_max If X has more than n_max rows, a random sample of n_max rows is selected from
X. In this case, set a random seed for reproducibility.

eps Threshold below which numerator values are set to 0. Default is 1e-10.

w Optional vector of case weights. Can also be a column name of X.

hstats 19

verbose Should a progress bar be shown? The default is TRUE.

survival Should cumulative hazards ("chf", default) or survival probabilities ("prob") per
time be predicted? Only in ranger() survival models.

Value

An object of class "hstats" containing these elements:

• X: Input X (sampled to n_max rows, after optional quantile approximation).

• w: Case weight vector w (sampled to n_max values), or NULL.

• v: Vector of column names in X for which overall H statistics have been calculated.

• f: Matrix with (centered) predictions F .

• mean_f2: (Weighted) column means of f. Used to normalize H2 and H2
j .

• F_j: List of matrices, each representing (centered) partial dependence functions Fj .

• F_not_j: List of matrices with (centered) partial dependence functions F\j of other features.

• K: Number of columns of prediction matrix.

• pred_names: Column names of prediction matrix.

• pairwise_m: Like input pairwise_m, but capped at length(v).

• threeway_m: Like input threeway_m, but capped at the smaller of length(v) and pairwise_m.

• eps: Like input eps.

• pd_importance: List with numerator and denominator of PDIj .

• h2: List with numerator and denominator of H2.

• h2_overall: List with numerator and denominator of H2
j .

• v_pairwise: Subset of v with largest H2
j used for pairwise calculations. Only if pairwise

calculations have been done.

• combs2: Named list of variable pairs for which pairwise partial dependence functions are
available. Only if pairwise calculations have been done.

• F_jk: List of matrices, each representing (centered) bivariate partial dependence functions
Fjk. Only if pairwise calculations have been done.

• h2_pairwise: List with numerator and denominator of H2
jk. Only if pairwise calculations

have been done.

• v_threeway: Subset of v with largest h2_overall() used for three-way calculations. Only if
three-way calculations have been done.

• combs3: Named list of variable triples for which three-way partial dependence functions are
available. Only if three-way calculations have been done.

• F_jkl: List of matrices, each representing (centered) three-way partial dependence functions
Fjkl. Only if three-way calculations have been done.

• h2_threeway: List with numerator and denominator of H2
jkl. Only if three-way calculations

have been done.

20 hstats

Methods (by class)

• hstats(default): Default hstats method.

• hstats(ranger): Method for "ranger" models.

• hstats(explainer): Method for DALEX "explainer".

References

Friedman, Jerome H., and Bogdan E. Popescu. "Predictive Learning via Rule Ensembles." The
Annals of Applied Statistics 2, no. 3 (2008): 916-54.

See Also

h2(), h2_overall(), h2_pairwise(), h2_threeway(), and pd_importance() for specific statis-
tics calculated from the resulting object.

Examples

MODEL 1: Linear regression
fit <- lm(Sepal.Length ~ . + Petal.Width:Species, data = iris)
s <- hstats(fit, X = iris[, -1])
s
plot(s)
plot(s, zero = FALSE) # Drop 0
summary(s)

Absolute pairwise interaction strengths
h2_pairwise(s, normalize = FALSE, squared = FALSE, zero = FALSE)

MODEL 2: Multi-response linear regression
fit <- lm(as.matrix(iris[, 1:2]) ~ Petal.Length + Petal.Width * Species, data = iris)
s <- hstats(fit, X = iris[, 3:5], verbose = FALSE)
plot(s)
summary(s)

MODEL 3: Gamma GLM with log link
fit <- glm(Sepal.Length ~ ., data = iris, family = Gamma(link = log))

No interactions for additive features, at least on link scale
s <- hstats(fit, X = iris[, -1], verbose = FALSE)
summary(s)

On original scale, we have interactions everywhere.
To see three-way interactions, we set threeway_m to a value above 2.
s <- hstats(fit, X = iris[, -1], type = "response", threeway_m = 5)
plot(s, ncol = 1) # All three types use different denominators

All statistics on same scale (of predictions)
plot(s, squared = FALSE, normalize = FALSE, facet_scale = "free_y")

ice 21

ice Individual Conditional Expectations

Description

Disaggregated partial dependencies, see reference. The plot method supports up to two grouping
variables via BY.

Usage

ice(object, ...)

Default S3 method:
ice(
object,
v,
X,
pred_fun = stats::predict,
BY = NULL,
grid = NULL,
grid_size = 49L,
trim = c(0.01, 0.99),
strategy = c("uniform", "quantile"),
na.rm = TRUE,
n_max = 100L,
...

)

S3 method for class 'ranger'
ice(
object,
v,
X,
pred_fun = NULL,
BY = NULL,
grid = NULL,
grid_size = 49L,
trim = c(0.01, 0.99),
strategy = c("uniform", "quantile"),
na.rm = TRUE,
n_max = 100L,
survival = c("chf", "prob"),
...

)

S3 method for class 'explainer'
ice(

22 ice

object,
v = v,
X = object[["data"]],
pred_fun = object[["predict_function"]],
BY = NULL,
grid = NULL,
grid_size = 49L,
trim = c(0.01, 0.99),
strategy = c("uniform", "quantile"),
na.rm = TRUE,
n_max = 100L,
...

)

Arguments

object Fitted model object.

... Additional arguments passed to pred_fun(object, X, ...), for instance type
= "response" in a glm() model, or reshape = TRUE in a multiclass XGBoost
model.

v One or more column names over which you want to calculate the ICE.

X A data.frame or matrix serving as background dataset.

pred_fun Prediction function of the form function(object, X, ...), providing K ≥ 1
predictions per row. Its first argument represents the model object, its sec-
ond argument a data structure like X. Additional arguments (such as type =
"response" in a GLM, or reshape = TRUE in a multiclass XGBoost model) can
be passed via The default, stats::predict(), will work in most cases.

BY Optional grouping vector/matrix/data.frame (up to two columns), or up to two
column names. Unlike with partial_dep(), these variables are not binned.
The first variable is visualized on the color scale, while the second one goes into
a facet_wrap(). Thus, make sure that the second variable is discrete.

grid Evaluation grid. A vector (if length(v) == 1L), or a matrix/data.frame other-
wise. If NULL, calculated via multivariate_grid().

grid_size Controls the approximate grid size. If x has p columns, then each (non-discrete)
column will be reduced to about the p-th root of grid_size values.

trim The default c(0.01, 0.99) means that values outside the 1% and 99% quantiles
of non-discrete numeric columns are removed before calculation of grid values.
Set to 0:1 for no trimming.

strategy How to find grid values of non-discrete numeric columns? Either "uniform" or
"quantile", see description of univariate_grid().

na.rm Should missing values be dropped from the grid? Default is TRUE.

n_max If X has more than n_max rows, a random sample of n_max rows is selected from
X. In this case, set a random seed for reproducibility.

survival Should cumulative hazards ("chf", default) or survival probabilities ("prob") per
time be predicted? Only in ranger() survival models.

ice 23

Value

An object of class "ice" containing these elements:

• data: data.frame containing the ice values.

• grid: Vector, matrix or data.frame of grid values.

• v: Same as input v.

• K: Number of columns of prediction matrix.

• pred_names: Column names of prediction matrix.

• by_names: Column name(s) of grouping variable(s) (or NULL).

Methods (by class)

• ice(default): Default method.

• ice(ranger): Method for "ranger" models.

• ice(explainer): Method for DALEX "explainer".

References

Goldstein, Alex, and Adam Kapelner and Justin Bleich and Emil Pitkin. Peeking inside the black
box: Visualizing statistical learning with plots of individual conditional expectation. Journal of
Computational and Graphical Statistics, 24, no. 1 (2015): 44-65.

Examples

MODEL 1: Linear regression
fit <- lm(Sepal.Length ~ . + Species * Petal.Length, data = iris)
plot(ice(fit, v = "Sepal.Width", X = iris))

Stratified by one variable
ic <- ice(fit, v = "Petal.Length", X = iris, BY = "Species")
ic
plot(ic)
plot(ic, center = TRUE)

Not run:
Stratified by two variables (the second one goes into facets)
ic <- ice(fit, v = "Petal.Length", X = iris, BY = c("Petal.Width", "Species"))
plot(ic)
plot(ic, center = TRUE)

MODEL 2: Multi-response linear regression
fit <- lm(as.matrix(iris[, 1:2]) ~ Petal.Length + Petal.Width * Species, data = iris)
ic <- ice(fit, v = "Petal.Width", X = iris, BY = iris$Species)
plot(ic)
plot(ic, center = TRUE)
plot(ic, swap_dim = TRUE)

End(Not run)

24 multivariate_grid

MODEL 3: Gamma GLM -> pass options to predict() via ...
fit <- glm(Sepal.Length ~ ., data = iris, family = Gamma(link = log))
plot(ice(fit, v = "Petal.Length", X = iris, BY = "Species"))
plot(ice(fit, v = "Petal.Length", X = iris, type = "response", BY = "Species"))

multivariate_grid Multivariate Grid

Description

This function creates a multivariate grid. Each column of the input x is turned (independently)
into a vector of grid values via univariate_grid(). Combinations are then formed by calling
expand.grid().

Usage

multivariate_grid(
x,
grid_size = 49L,
trim = c(0.01, 0.99),
strategy = c("uniform", "quantile"),
na.rm = TRUE

)

Arguments

x A vector, matrix, or data.frame to turn into a grid of values.
grid_size Controls the approximate grid size. If x has p columns, then each (non-discrete)

column will be reduced to about the p-th root of grid_size values.
trim The default c(0.01, 0.99) means that values outside the 1% and 99% quantiles

of non-discrete numeric columns are removed before calculation of grid values.
Set to 0:1 for no trimming.

strategy How to find grid values of non-discrete numeric columns? Either "uniform" or
"quantile", see description of univariate_grid().

na.rm Should missing values be dropped from the grid? Default is TRUE.

Value

A vector, matrix, or data.frame with evaluation points.

See Also

univariate_grid()

Examples

multivariate_grid(iris[1:2], grid_size = 4)
multivariate_grid(iris$Species) # Works also in the univariate case

partial_dep 25

partial_dep Partial Dependence Plot

Description

Estimates the partial dependence function of feature(s) v over a grid of values. Both multivariate
and multivariable situations are supported. The resulting object can be plotted via plot().

Usage

partial_dep(object, ...)

Default S3 method:
partial_dep(
object,
v,
X,
pred_fun = stats::predict,
BY = NULL,
by_size = 4L,
grid = NULL,
grid_size = 49L,
trim = c(0.01, 0.99),
strategy = c("uniform", "quantile"),
na.rm = TRUE,
n_max = 1000L,
w = NULL,
...

)

S3 method for class 'ranger'
partial_dep(
object,
v,
X,
pred_fun = NULL,
BY = NULL,
by_size = 4L,
grid = NULL,
grid_size = 49L,
trim = c(0.01, 0.99),
strategy = c("uniform", "quantile"),
na.rm = TRUE,
n_max = 1000L,
w = NULL,
survival = c("chf", "prob"),
...

26 partial_dep

)

S3 method for class 'explainer'
partial_dep(
object,
v,
X = object[["data"]],
pred_fun = object[["predict_function"]],
BY = NULL,
by_size = 4L,
grid = NULL,
grid_size = 49L,
trim = c(0.01, 0.99),
strategy = c("uniform", "quantile"),
na.rm = TRUE,
n_max = 1000L,
w = object[["weights"]],
...

)

Arguments

object Fitted model object.

... Additional arguments passed to pred_fun(object, X, ...), for instance type
= "response" in a glm() model, or reshape = TRUE in a multiclass XGBoost
model.

v One or more column names over which you want to calculate the partial depen-
dence.

X A data.frame or matrix serving as background dataset.

pred_fun Prediction function of the form function(object, X, ...), providing K ≥ 1
predictions per row. Its first argument represents the model object, its sec-
ond argument a data structure like X. Additional arguments (such as type =
"response" in a GLM, or reshape = TRUE in a multiclass XGBoost model) can
be passed via The default, stats::predict(), will work in most cases.

BY Optional grouping vector or column name. The partial dependence function is
calculated per BY group. Each BY group uses the same evaluation grid to improve
assessment of (non-)additivity. Numeric BY variables with more than by_size
disjoint values will be binned into by_size quantile groups of similar size. To
improve robustness, subsampling of X is done within group. This only applies
to BY groups with more than n_max rows.

by_size Numeric BY variables with more than by_size unique values will be binned into
quantile groups. Only relevant if BY is not NULL.

grid Evaluation grid. A vector (if length(v) == 1L), or a matrix/data.frame other-
wise. If NULL, calculated via multivariate_grid().

grid_size Controls the approximate grid size. If x has p columns, then each (non-discrete)
column will be reduced to about the p-th root of grid_size values.

partial_dep 27

trim The default c(0.01, 0.99) means that values outside the 1% and 99% quantiles
of non-discrete numeric columns are removed before calculation of grid values.
Set to 0:1 for no trimming.

strategy How to find grid values of non-discrete numeric columns? Either "uniform" or
"quantile", see description of univariate_grid().

na.rm Should missing values be dropped from the grid? Default is TRUE.

n_max If X has more than n_max rows, a random sample of n_max rows is selected from
X. In this case, set a random seed for reproducibility.

w Optional vector of case weights. Can also be a column name of X.

survival Should cumulative hazards ("chf", default) or survival probabilities ("prob") per
time be predicted? Only in ranger() survival models.

Value

An object of class "partial_dep" containing these elements:

• data: data.frame containing the partial dependencies.

• v: Same as input v.

• K: Number of columns of prediction matrix.

• pred_names: Column names of prediction matrix.

• by_name: Column name of grouping variable (or NULL).

Methods (by class)

• partial_dep(default): Default method.

• partial_dep(ranger): Method for "ranger" models.

• partial_dep(explainer): Method for DALEX "explainer".

Partial Dependence Functions

Let F : Rp → R denote the prediction function that maps the p-dimensional feature vector x =
(x1, . . . , xp) to its prediction. Furthermore, let

Fs(xs) = Ex\s(F (xs,x\s))

be the partial dependence function of F on the feature subset xs, where s ⊆ {1, . . . , p}, as intro-
duced in Friedman (2001). Here, the expectation runs over the joint marginal distribution of features
x\s not in xs.

Given data, Fs(xs) can be estimated by the empirical partial dependence function

F̂s(xs) =
1

n

n∑
i=1

F (xs,xi\s),

where xi\s i = 1, . . . , n, are the observed values of x\s.

A partial dependence plot (PDP) plots the values of F̂s(xs) over a grid of evaluation points xs.

28 partial_dep

References

Friedman, Jerome H. "Greedy Function Approximation: A Gradient Boosting Machine." Annals of
Statistics 29, no. 5 (2001): 1189-1232.

Examples

MODEL 1: Linear regression
fit <- lm(Sepal.Length ~ . + Species * Petal.Length, data = iris)
(pd <- partial_dep(fit, v = "Species", X = iris))
plot(pd)

Not run:
Stratified by BY variable (numerics are automatically binned)
pd <- partial_dep(fit, v = "Species", X = iris, BY = "Petal.Length")
plot(pd)

Multivariable input
v <- c("Species", "Petal.Length")
pd <- partial_dep(fit, v = v, X = iris, grid_size = 100L)
plot(pd, rotate_x = TRUE)
plot(pd, d2_geom = "line") # often better to read

With grouping
pd <- partial_dep(fit, v = v, X = iris, grid_size = 100L, BY = "Petal.Width")
plot(pd, rotate_x = TRUE)
plot(pd, rotate_x = TRUE, d2_geom = "line")
plot(pd, rotate_x = TRUE, d2_geom = "line", swap_dim = TRUE)

MODEL 2: Multi-response linear regression
fit <- lm(as.matrix(iris[, 1:2]) ~ Petal.Length + Petal.Width * Species, data = iris)
pd <- partial_dep(fit, v = "Petal.Width", X = iris, BY = "Species")
plot(pd, show_points = FALSE)
pd <- partial_dep(fit, v = c("Species", "Petal.Width"), X = iris)
plot(pd, rotate_x = TRUE)
plot(pd, d2_geom = "line", rotate_x = TRUE)
plot(pd, d2_geom = "line", rotate_x = TRUE, swap_dim = TRUE)

Multivariate, multivariable, and BY (no plot available)
pd <- partial_dep(

fit, v = c("Petal.Width", "Petal.Length"), X = iris, BY = "Species"
)
pd

End(Not run)

MODEL 3: Gamma GLM -> pass options to predict() via ...
fit <- glm(Sepal.Length ~ ., data = iris, family = Gamma(link = log))
plot(partial_dep(fit, v = "Petal.Length", X = iris), show_points = FALSE)
plot(partial_dep(fit, v = "Petal.Length", X = iris, type = "response"))

pd_importance 29

pd_importance PD Bases Importance (Experimental)

Description

Experimental variable importance method based on partial dependence functions. While related to
Greenwell et al., our suggestion measures not only main effect strength but also interaction effects.
It is very closely related to H2

j , see Details. Use plot() to get a barplot.

Usage

pd_importance(object, ...)

Default S3 method:
pd_importance(object, ...)

S3 method for class 'hstats'
pd_importance(
object,
normalize = TRUE,
squared = TRUE,
sort = TRUE,
zero = TRUE,
...

)

Arguments

object Object of class "hstats".

... Currently unused.

normalize Should statistics be normalized? Default is TRUE.

squared Should squared statistics be returned? Default is TRUE.

sort Should results be sorted? Default is TRUE. (Multi-output is sorted by row means.)

zero Should rows with all 0 be shown? Default is TRUE.

Details

If xj has no effects, the (centered) prediction function F equals the (centered) partial dependence
F\j on all other features x\j , i.e.,

F (x) = F\j(x\j).

Therefore, the following measure of variable importance follows:

PDIj =
1
n

∑n
i=1

[
F (xi)− F̂\j(xi\j)

]2
1
n

∑n
i=1

[
F (xi)

]2 .

30 pd_importance

It differs from H2
j only by not subtracting the main effect of the j-th feature in the numerator.

It can be read as the proportion of prediction variability unexplained by all other features. As
such, it measures variable importance of the j-th feature, including its interaction effects (check
partial_dep() for all definitions).

Remarks 1 to 4 of h2_overall() also apply here.

Value

An object of class "hstats_matrix" containing these elements:

• M: Matrix of statistics (one column per prediction dimension), or NULL.

• SE: Matrix with standard errors of M, or NULL. Multiply with sqrt(m_rep) to get standard
deviations instead. Currently, supported only for perm_importance().

• m_rep: The number of repetitions behind standard errors SE, or NULL. Currently, supported
only for perm_importance().

• statistic: Name of the function that generated the statistic.

• description: Description of the statistic.

Methods (by class)

• pd_importance(default): Default method of PD based feature importance.

• pd_importance(hstats): PD based feature importance from "hstats" object.

References

Greenwell, Brandon M., Bradley C. Boehmke, and Andrew J. McCarthy. A Simple and Effective
Model-Based Variable Importance Measure. Arxiv (2018).

See Also

hstats(), perm_importance()

Examples

MODEL 1: Linear regression
fit <- lm(Sepal.Length ~ . , data = iris)
s <- hstats(fit, X = iris[, -1])
plot(pd_importance(s))

MODEL 2: Multi-response linear regression
fit <- lm(as.matrix(iris[, 1:2]) ~ Petal.Length + Petal.Width + Species, data = iris)
s <- hstats(fit, X = iris[, 3:5])
plot(pd_importance(s))

perm_importance 31

perm_importance Permutation Importance

Description

Calculates permutation importance for a set of features or a set of feature groups. By default,
importance is calculated for all columns in X (except column names used as response y or as case
weight w).

Usage

perm_importance(object, ...)

Default S3 method:
perm_importance(
object,
X,
y,
v = NULL,
pred_fun = stats::predict,
loss = "squared_error",
m_rep = 4L,
agg_cols = FALSE,
normalize = FALSE,
n_max = 10000L,
w = NULL,
verbose = TRUE,
...

)

S3 method for class 'ranger'
perm_importance(
object,
X,
y,
v = NULL,
pred_fun = function(m, X, ...) stats::predict(m, X, ...)$predictions,
loss = "squared_error",
m_rep = 4L,
agg_cols = FALSE,
normalize = FALSE,
n_max = 10000L,
w = NULL,
verbose = TRUE,
...

)

32 perm_importance

S3 method for class 'explainer'
perm_importance(
object,
X = object[["data"]],
y = object[["y"]],
v = NULL,
pred_fun = object[["predict_function"]],
loss = "squared_error",
m_rep = 4L,
agg_cols = FALSE,
normalize = FALSE,
n_max = 10000L,
w = object[["weights"]],
verbose = TRUE,
...

)

Arguments

object Fitted model object.

... Additional arguments passed to pred_fun(object, X, ...), for instance type
= "response" in a glm() model, or reshape = TRUE in a multiclass XGBoost
model.

X A data.frame or matrix serving as background dataset.

y Vector/matrix of the response, or the corresponding column names in X.

v Vector of feature names, or named list of feature groups. The default (NULL) will
use all column names of X with the following exception: If y or w are passed as
column names, they are dropped.

pred_fun Prediction function of the form function(object, X, ...), providing K ≥ 1
predictions per row. Its first argument represents the model object, its sec-
ond argument a data structure like X. Additional arguments (such as type =
"response" in a GLM, or reshape = TRUE in a multiclass XGBoost model) can
be passed via The default, stats::predict(), will work in most cases.

loss One of "squared_error", "logloss", "mlogloss", "poisson", "gamma", or "abso-
lute_error". Alternatively, a loss function can be provided that turns observed
and predicted values into a numeric vector or matrix of unit losses of the same
length as X. For "mlogloss", the response y can either be a dummy matrix or a
discrete vector. The latter case is handled via a fast version of model.matrix(~
as.factor(y) + 0). For "squared_error", the response can be a factor with lev-
els in column order of the predictions. In this case, squared error is evaluated
for each one-hot-encoded column.

m_rep Number of permutations (default 4).

agg_cols Should multivariate losses be summed up? Default is FALSE. In combination
with the squared error loss, agg_cols = TRUE gives the Brier score for (proba-
bilistic) classification.

perm_importance 33

normalize Should importance statistics be divided by average loss? Default is FALSE. If
TRUE, an importance of 1 means that the average loss has been doubled by shuf-
fling that feature’s column.

n_max If X has more than n_max rows, a random sample of n_max rows is selected from
X. In this case, set a random seed for reproducibility.

w Optional vector of case weights. Can also be a column name of X.

verbose Should a progress bar be shown? The default is TRUE.

Details

The permutation importance of a feature is defined as the increase in the average loss when shuffling
the corresponding feature values before calculating predictions. By default, the process is repeated
m_rep = 4 times, and the results are averaged. In most of the cases, importance values should be
derived from an independent test data set. Set normalize = TRUE to get relative increases in average
loss.

Value

An object of class "hstats_matrix" containing these elements:

• M: Matrix of statistics (one column per prediction dimension), or NULL.

• SE: Matrix with standard errors of M, or NULL. Multiply with sqrt(m_rep) to get standard
deviations instead. Currently, supported only for perm_importance().

• m_rep: The number of repetitions behind standard errors SE, or NULL. Currently, supported
only for perm_importance().

• statistic: Name of the function that generated the statistic.

• description: Description of the statistic.

Methods (by class)

• perm_importance(default): Default method.

• perm_importance(ranger): Method for "ranger" models.

• perm_importance(explainer): Method for DALEX "explainer".

Losses

The default loss is the "squared_error". Other choices:

• "absolute_error": The absolute error is the loss corresponding to median regression.

• "poisson": Unit Poisson deviance, i.e., the loss function used in Poisson regression. Actual
values y and predictions must be non-negative.

• "gamma": Unit gamma deviance, i.e., the loss function of Gamma regression. Actual values
y and predictions must be positive.

• "logloss": The Log Loss is the loss function used in logistic regression, and the top choice
in probabilistic binary classification. Responses y and predictions must be between 0 and 1.
Predictions represent probabilities of having a "1".

34 plot.hstats

• "mlogloss": Multi-Log-Loss is the natural loss function in probabilistic multi-class situations.
If there are K classes and n observations, the predictions form a (n x K) matrix of probabilities
(with row-sums 1). The observed values y are either passed as (n x K) dummy matrix, or as
discrete vector with corresponding levels. The latter case is turned into a dummy matrix by a
fast version of model.matrix(~ as.factor(y) + 0).

• A function with signature f(actual, predicted), returning a numeric vector or matrix of
the same length as the input.

References

Fisher A., Rudin C., Dominici F. (2018). All Models are Wrong but many are Useful: Variable
Importance for Black-Box, Proprietary, or Misspecified Prediction Models, using Model Class Re-
liance. Arxiv.

Examples

MODEL 1: Linear regression
fit <- lm(Sepal.Length ~ ., data = iris)
s <- perm_importance(fit, X = iris, y = "Sepal.Length")

s
s$M
s$SE # Standard errors are available thanks to repeated shuffling
plot(s)
plot(s, err_type = "SD") # Standard deviations instead of standard errors

Groups of features can be passed as named list
v <- list(petal = c("Petal.Length", "Petal.Width"), species = "Species")
s <- perm_importance(fit, X = iris, y = "Sepal.Length", v = v, verbose = FALSE)
s
plot(s)

MODEL 2: Multi-response linear regression
fit <- lm(as.matrix(iris[, 1:2]) ~ Petal.Length + Petal.Width + Species, data = iris)
s <- perm_importance(fit, X = iris[, 3:5], y = iris[, 1:2], normalize = TRUE)
s
plot(s)
plot(s, swap_dim = TRUE, top_m = 2)

plot.hstats Plot Method for "hstats" Object

Description

Plot method for object of class "hstats".

plot.hstats 35

Usage

S3 method for class 'hstats'
plot(
x,
which = 1:3,
normalize = TRUE,
squared = TRUE,
sort = TRUE,
top_m = 15L,
zero = TRUE,
fill = getOption("hstats.fill"),
viridis_args = getOption("hstats.viridis_args"),
facet_scales = "free",
ncol = 2L,
rotate_x = FALSE,
...

)

Arguments

x Object of class "hstats".

which Which statistic(s) to be shown? Default is 1:3, i.e., show H2
j (1), H2

jk (2), and
H2

jkl (3).

normalize Should statistics be normalized? Default is TRUE.

squared Should squared statistics be returned? Default is TRUE.

sort Should results be sorted? Default is TRUE. (Multi-output is sorted by row means.)

top_m How many rows should be plotted? Inf for all.

zero Should rows with all 0 be shown? Default is TRUE.

fill Fill color of ungrouped bars. The default equals the global option hstats.fill
= "#fca50a". To change the global option, use options(stats.fill = new value).

viridis_args List of viridis color scale arguments, see [ggplot2::scale_color_viridis_d()].
The default points to the global option hstats.viridis_args, which corre-
sponds to list(begin = 0.2, end = 0.8, option = "B"). E.g., to switch to a
standard viridis scale, you can change the default via options(hstats.viridis_args
= list()), or set viridis_args = list().

facet_scales Value passed as scales argument to [ggplot2::facet_wrap()].

ncol Passed to [ggplot2::facet_wrap()].

rotate_x Should x axis labels be rotated by 45 degrees?

... Passed to ggplot2::geom_bar().

Value

An object of class "ggplot".

36 plot.hstats_matrix

See Also

See hstats() for examples.

plot.hstats_matrix Plots "hstats_matrix" Object

Description

Plot method for objects of class "hstats_matrix".

Usage

S3 method for class 'hstats_matrix'
plot(
x,
top_m = 15L,
fill = getOption("hstats.fill"),
swap_dim = FALSE,
viridis_args = getOption("hstats.viridis_args"),
facet_scales = "fixed",
ncol = 2L,
rotate_x = FALSE,
err_type = c("SE", "SD", "No"),
...

)

Arguments

x An object of class "hstats_matrix".

top_m How many rows should be plotted? Inf for all.

fill Fill color of ungrouped bars. The default equals the global option hstats.fill
= "#fca50a". To change the global option, use options(stats.fill = new value).

swap_dim Switches the role of grouping and facetting (default is FALSE).

viridis_args List of viridis color scale arguments, see [ggplot2::scale_color_viridis_d()].
The default points to the global option hstats.viridis_args, which corre-
sponds to list(begin = 0.2, end = 0.8, option = "B"). E.g., to switch to a
standard viridis scale, you can change the default via options(hstats.viridis_args
= list()), or set viridis_args = list().

facet_scales Value passed as scales argument to [ggplot2::facet_wrap()].

ncol Passed to [ggplot2::facet_wrap()].

rotate_x Should x axis labels be rotated by 45 degrees?

err_type The error type to show, by default "SE" (standard errors). Set to "SD" for stan-
dard deviations (SE * sqrt(m_rep)), or "No" for no bars. Currently, supported
only for perm_importance().

... Passed to ggplot2::geom_bar().

plot.ice 37

Value

An object of class "ggplot".

plot.ice Plots "ice" Object

Description

Plot method for objects of class "ice".

Usage

S3 method for class 'ice'
plot(
x,
center = FALSE,
alpha = 0.2,
color = getOption("hstats.color"),
swap_dim = FALSE,
viridis_args = getOption("hstats.viridis_args"),
facet_scales = "fixed",
rotate_x = FALSE,
...

)

Arguments

x An object of class "ice".

center Should curves be centered? Default is FALSE.

alpha Transparency passed to ggplot2::geom_line().

color Color of lines and points (in case there is no color/fill aesthetic). The default
equals the global option hstats.color = "#3b528b". To change the global op-
tion, use options(stats.color = new value).

swap_dim Swaps between color groups and facets. Default is FALSE.

viridis_args List of viridis color scale arguments, see [ggplot2::scale_color_viridis_d()].
The default points to the global option hstats.viridis_args, which corre-
sponds to list(begin = 0.2, end = 0.8, option = "B"). E.g., to switch to a
standard viridis scale, you can change the default via options(hstats.viridis_args
= list()), or set viridis_args = list().

facet_scales Value passed as scales argument to [ggplot2::facet_wrap()].

rotate_x Should x axis labels be rotated by 45 degrees?

... Passed to ggplot2::geom_bar().

38 plot.partial_dep

Value

An object of class "ggplot".

See Also

See ice() for examples.

plot.partial_dep Plots "partial_dep" Object

Description

Plot method for objects of class "partial_dep". Can do (grouped) line plots or heatmaps.

Usage

S3 method for class 'partial_dep'
plot(
x,
color = getOption("hstats.color"),
swap_dim = FALSE,
viridis_args = getOption("hstats.viridis_args"),
facet_scales = "fixed",
rotate_x = FALSE,
show_points = TRUE,
d2_geom = c("tile", "point", "line"),
...

)

Arguments

x An object of class "partial_dep".

color Color of lines and points (in case there is no color/fill aesthetic). The default
equals the global option hstats.color = "#3b528b". To change the global op-
tion, use options(stats.color = new value).

swap_dim Switches the role of grouping and facetting (default is FALSE). Exception: For
the 2D PDP with d2_geom = "line", it swaps the role of the two variables in v.

viridis_args List of viridis color scale arguments, see [ggplot2::scale_color_viridis_d()].
The default points to the global option hstats.viridis_args, which corre-
sponds to list(begin = 0.2, end = 0.8, option = "B"). E.g., to switch to a
standard viridis scale, you can change the default via options(hstats.viridis_args
= list()), or set viridis_args = list().

facet_scales Value passed as scales argument to [ggplot2::facet_wrap()].

rotate_x Should x axis labels be rotated by 45 degrees?

print.hstats 39

show_points Logical flag indicating whether to show points (default) or not. No effect for 2D
PDPs.

d2_geom The geometry used for 2D PDPs, by default "tile". Option "point" is useful, e.g.,
when the grid represents spatial points. Option "line" produces lines grouped by
the second variable.

... Arguments passed to geometries.

Value

An object of class "ggplot".

See Also

See partial_dep() for examples.

print.hstats Print Method

Description

Print method for object of class "hstats". Shows H2.

Usage

S3 method for class 'hstats'
print(x, ...)

Arguments

x An object of class "hstats".

... Further arguments passed from other methods.

Value

Invisibly, the input is returned.

See Also

See hstats() for examples.

40 print.hstats_summary

print.hstats_matrix Prints "hstats_matrix" Object

Description

Print method for object of class "hstats_matrix".

Usage

S3 method for class 'hstats_matrix'
print(x, top_m = Inf, ...)

Arguments

x An object of class "hstats_matrix".
top_m Number of rows to print.
... Currently not used.

Value

Invisibly, the input is returned.

print.hstats_summary Print Method

Description

Print method for object of class "hstats_summary".

Usage

S3 method for class 'hstats_summary'
print(x, ...)

Arguments

x An object of class "hstats_summary".
... Further arguments passed from other methods.

Value

Invisibly, the input is returned.

See Also

See hstats() for examples.

print.ice 41

print.ice Prints "ice" Object

Description

Print method for object of class "ice".

Usage

S3 method for class 'ice'
print(x, n = 3L, ...)

Arguments

x An object of class "ice".

n Number of rows to print.

... Further arguments passed from other methods.

Value

Invisibly, the input is returned.

See Also

See ice() for examples.

print.partial_dep Prints "partial_dep" Object

Description

Print method for object of class "partial_dep".

Usage

S3 method for class 'partial_dep'
print(x, n = 3L, ...)

Arguments

x An object of class "partial_dep".

n Number of rows to print.

... Further arguments passed from other methods.

42 summary.hstats

Value

Invisibly, the input is returned.

See Also

See partial_dep() for examples.

summary.hstats Summary Method

Description

Summary method for "hstats" object. Note that only the top 4 overall, the top 3 pairwise and the
top 1 three-way statistics are shown.

Usage

S3 method for class 'hstats'
summary(
object,
normalize = TRUE,
squared = TRUE,
sort = TRUE,
zero = TRUE,
...

)

Arguments

object Object of class "hstats".

normalize Should statistics be normalized? Default is TRUE.

squared Should squared statistics be returned? Default is TRUE.

sort Should results be sorted? Default is TRUE. (Multi-output is sorted by row means.)

zero Should rows with all 0 be shown? Default is TRUE.

... Currently not used.

Value

An object of class "summary_hstats" representing a named list with statistics "h2", "h2_overall",
"h2_pairwise", "h2_threeway", all of class "hstats_matrix".

See Also

See hstats() for examples.

univariate_grid 43

univariate_grid Univariate Grid

Description

Creates evaluation grid for any numeric or non-numeric vector z.

For discrete z (non-numeric, or numeric with at most grid_size unique values), this is simply
sort(unique(z)).

Otherwise, if strategy = "uniform" (default), the evaluation points form a regular grid over the
trimmed range of z. By trimmed range we mean the range of z after removing values outside
trim[1] and trim[2] quantiles. Set trim = 0:1 for no trimming.

If strategy = "quantile", the evaluation points are quantiles over a regular grid of probabilities
from trim[1] to trim[2].

Quantiles are calculated via the inverse of the ECDF, i.e., via stats::quantile(..., type = 1).

Usage

univariate_grid(
z,
grid_size = 49L,
trim = c(0.01, 0.99),
strategy = c("uniform", "quantile"),
na.rm = TRUE

)

Arguments

z A vector or factor.

grid_size Approximate grid size.

trim The default c(0.01, 0.99) means that values outside the 1% and 99% quantiles
of non-discrete numeric columns are removed before calculation of grid values.
Set to 0:1 for no trimming.

strategy How to find grid values of non-discrete numeric columns? Either "uniform" or
"quantile", see description of univariate_grid().

na.rm Should missing values be dropped from the grid? Default is TRUE.

Value

A vector or factor of evaluation points.

See Also

multivariate_grid()

44 [.hstats_matrix

Examples

univariate_grid(iris$Species)
univariate_grid(rev(iris$Species)) # Same

x <- iris$Sepal.Width
univariate_grid(x, grid_size = 5) # Uniform binning
univariate_grid(x, grid_size = 5, strategy = "quantile") # Quantile

[.hstats_matrix Subsets "hstats_matrix" Object

Description

Use standard square bracket subsetting to select rows and/or columns of statistics "M" (and "SE" in
case of permutation importance statistics). Implies head() and tail().

Usage

S3 method for class 'hstats_matrix'
x[i, j, ...]

Arguments

x An object of class "hstats_matrix".

i Row subsetting.

j Column subsetting.

... Currently unused.

Value

A new object of class "hstats_matrix".

Examples

fit <- lm(as.matrix(iris[1:2]) ~ Petal.Length + Petal.Width * Species, data = iris)
imp <- perm_importance(fit, X = iris, y = c("Sepal.Length", "Sepal.Width"))
head(imp, 1)
tail(imp, 2)
imp[1, "Sepal.Length"]
imp[1]
imp[, "Sepal.Width"]$SE
plot(imp[, "Sepal.Width"])

Index

[.hstats_matrix, 44

average_loss, 2

dim.hstats_matrix, 5
dimnames.hstats_matrix, 6
dimnames<-.hstats_matrix, 7

expand.grid(), 24

ggplot2::geom_bar(), 35–37
glm(), 3, 18, 22, 26, 32

h2, 7
h2(), 11, 13, 16, 17, 20
h2_overall, 9
h2_overall(), 9, 13, 16, 17, 20, 30
h2_pairwise, 12
h2_pairwise(), 9, 11, 15–17, 20
h2_threeway, 14
h2_threeway(), 9, 11, 13, 16, 17, 20
hstats, 16
hstats(), 9, 11, 13, 16, 30, 36, 39, 40, 42

ice, 21
ice(), 38, 41

multivariate_grid, 24
multivariate_grid(), 22, 26, 43

partial_dep, 25
partial_dep(), 8, 10, 13, 22, 30, 39, 42
pd_importance, 29
pd_importance(), 17, 20
perm_importance, 31
perm_importance(), 4, 8, 11, 13, 15, 30, 33,

36
plot.hstats, 34
plot.hstats_matrix, 36
plot.ice, 37
plot.partial_dep, 38

print.hstats, 39
print.hstats_matrix, 40
print.hstats_summary, 40
print.ice, 41
print.partial_dep, 41

stats::predict(), 4, 18, 22, 26, 32
summary.hstats, 42

univariate_grid, 43
univariate_grid(), 22, 24, 27, 43

45

	average_loss
	dim.hstats_matrix
	dimnames.hstats_matrix
	dimnames<-.hstats_matrix
	h2
	h2_overall
	h2_pairwise
	h2_threeway
	hstats
	ice
	multivariate_grid
	partial_dep
	pd_importance
	perm_importance
	plot.hstats
	plot.hstats_matrix
	plot.ice
	plot.partial_dep
	print.hstats
	print.hstats_matrix
	print.hstats_summary
	print.ice
	print.partial_dep
	summary.hstats
	univariate_grid
	[.hstats_matrix
	Index

