Package ‘hmsr’

October 25, 2023
Title Multipopulation Evolutionary Strategy HMS
Version 1.0.1

Description The HMS (Hierarchic Memetic Strategy) is a composite global optimization
strategy consisting of a multi-population evolutionary strategy and some
auxiliary methods. The HMS makes use of a dynamically-evolving data structure
that provides an organization among the component populations. It is a tree
with a fixed maximal height and variable internal node degree. Each component
population is governed by a particular evolutionary engine. This package
provides a simple R implementation with examples of using different genetic
algorithms as the population engines. References: J. Sawicki, M. L.os,
M. Smotka, J. Alvarez-Aramberri (2022) <doi:10.1007/s11047-020-09836-w>.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.1.2

Imports GA, msm, methods, uuid, graphics

Suggests testthat (>= 3.0.0), ecr, filelock, parallel, doParallel,
grDevices, smoof

BugReports https://github.com/WojtAcht/hms/issues

URL https://wojtacht.github.io/hms/
NeedsCompilation no

Author Wojciech Achtelik [aut, cre],
Marcin Kozubek [aut],
Maciej Smotka [ths, aut] (<https://orcid.org/0000-0002-3386-0555>, Java
original),
AGH University of Krakéw [cph]

Maintainer Wojciech Achtelik <wachtelik@gmail.com>
Repository CRAN
Date/Publication 2023-10-25 07:10:02 UTC

https://doi.org/10.1007/s11047-020-09836-w
https://github.com/WojtAcht/hms/issues
https://wojtacht.github.io/hms/
https://orcid.org/0000-0002-3386-0555

2

default_run_gradient_method

R topics documented:

Index

default_run_gradient_method 2
ecr_metaepoch e e 3
euclidean_distance e e e e e e e e e e 4
ga_metaepoch 4
gsc_max_fitness_evaluations oL 5
gsc_metaepochs_countl e e 6
gsc_trivial . . . Lo 6
hms e 7
hms-class e 9
Isc_max_fitness_evaluations e 9
Isc_metaepochs_without_active_child, 10
Isc_metaepochs_without_improvement. 11
Isc_trivial e e e e e e e 11
manhattan_distance e e e e e 12
MetaepochSnapshot-class oL o 12
plothms-method 13
plotActiveDemes 13
plotActiveDemes,hms-method L oL 14
plotPopulation 14
plotPopulation,hms-method 15
printthms-method 16
printBlockedSprouts L 16
printBlockedSprouts,hms-method L oo 17
printTree L L 17
printTree,hms-method oL 18
MNOIM_MULAtION v v o e e e e e e e e e e e e e e e e 19
saveMetaepochsPopulations Lo 19
saveMetaepochsPopulations,hms-method o000, 20
SC_MAX_MELTIC . .+ v v v v e e e e e e e e e e e 21
showhms-method 21
summary,hms-method 22

23

default_run_gradient_method

Function that runs gradient method for one deme. Wrapper function
for stats::optim.

Description

Function that runs gradient method for one deme. Wrapper function for stats::optim.

Usage

default_run_gradient_method(deme, fitness, optim_args)

ecr_metaepoch

Arguments

deme e Deme

fitness * fitness function

optim_args * list of additional parameters (stats::optim parameters)
Value

list with named fields: solution, population, value. See ga_metaepoch for more details.

ecr_metaepoch Function that runs one ecr metaepoch. Wrapper function for ecr::ecr.

Description

Function that runs one ecr metaepoch. Wrapper function for ecr::ecr.

Usage

ecr_metaepoch(config_ecr)

Arguments

config_ecr * list of ecr::ecr params

Value

list with named fields: solution, population, value. See ga_metaepoch for more details.

Examples

tree_height <- 3

empty_config_ecr <- lapply(1:tree_height, function(x) {
list()

»

ecr_metaepoch(empty_config_ecr)

4 ga_metaepoch

euclidean_distance Euclidean distance

Description

Euclidean distance

Usage

euclidean_distance(x, y)

Arguments
X * numeric
y * numeric
Value

numeric - euclidean distance between x and y

Examples

euclidean_distance(c(1, 1), c(1, 2))

ga_metaepoch Function that runs one GA metaepoch. Wrapper function for GA::ga.

Description

Function that runs one GA metaepoch. Wrapper function for GA::ga.

Usage

ga_metaepoch(config_ga)

Arguments

config_ga o list of GA::ga params

Value

list with named fields: solution, population, value. A solution is a value of the decision variable
giving the best fitness. A population is a matrix representing final population. Value is the value of
a fitness function for the solution.

gsc_max_fitness_evaluations 5

Examples

tree_height <- 3

empty_config_ga <- lapply(1:tree_height, function(x) {
list()

»

ga_metaepoch(empty_config_ga)

gsc_max_fitness_evaluations
Factory function for a global stopping condition that stops the compu-
tation after fitness function has been evaluated given number of times.

Description

Factory function for a global stopping condition that stops the computation after fitness function
has been evaluated given number of times.

Usage

gsc_max_fitness_evaluations(max_evaluations)

Arguments

max_evaluations
e numeric - maximum number of fitness function evaluations

Value

Function that receives a list of metaepoch snapshots and returns a Boolean value determining
whether the computation should be stopped based on how many fitness function evaluations have
been made, which can be used as a global stopping condition for the hms function.

Examples

global_stopping_condition <- gsc_max_fitness_evaluations(10000)

6 gsc_trivial

gsc_metaepochs_count Factory function for a global stopping condition that stops the compu-
tation after given number of metaepochs.

Description
Factory function for a global stopping condition that stops the computation after given number of
metaepochs.

Usage

gsc_metaepochs_count(metaepochs_count)

Arguments

metaepochs_count
* numeric - maximum number of metaepochs

Value

Function that receives a list of metaepoch snapshots and returns a Boolean value determining
whether the computation should be stopped based on how many metaepochs have passed, which
can be used as a global stopping condition for the hms function.

Examples

global_stopping_condition <- gsc_metaepochs_count(10)

gsc_trivial Factory function for a global stopping condition that never stops the
computation. It results in hms running until there are no more active
demes.
Description

Factory function for a global stopping condition that never stops the computation. It results in hms
running until there are no more active demes.
Usage

gsc_trivial()

Value

function that always returns FALSE, which can be used as a global stopping condition for the hms
function.

hms 7

Examples

global_stopping_condition <- gsc_trivial()

hms Maximization (or minimization) of a fitness function using Hierarchic
Memetic Strategy.

Description

Maximization (or minimization) of a fitness function using Hierarchic Memetic Strategy.

Usage

hms (
tree_height = 3,
minimize = FALSE,
fitness,
lower,
upper,
sigma = default_sigma(lower, upper, tree_height),
population_sizes = default_population_sizes(tree_height),
run_metaepoch = default_ga_metaepoch(tree_height),
gsc = gsc_default,
1sc = 1lsc_default,
sc = sc_max_metric(euclidean_distance, sprouting_default_euclidean_distances(sigma)),
create_population = default_create_population(sigma),
suggestions = NULL,
with_gradient_method
gradient_method_args
run_gradient_method,

FALSE,
default_gradient_method_args,

monitor_level = "basic”,
parallel = FALSE
)
Arguments
tree_height numeric - default value: 5. It determines the maximum tree height which will
usually be reached unless a very strict local stopping condition, global stopping
condition or sprouting condition is used.
minimize logical - TRUE when fitness shall be minimized.
fitness fitness function, that returns a numerical value, to be optimized by the strategy.
lower numeric - lower bound of the domain, a vector of length equal to the decision
variables.
upper numeric - upper bound of the domain, a vector of length equal to the decision

variables.

8 hms

sigma numeric - Vector of standard deviations for each tree level used to create a pop-
ulation of a sprouted deme.

population_sizes
numeric - Sizes of deme populations on each tree level.

run_metaepoch A function that takes 5 parameters: fitness, suggestions, lower, upper, tree_level,
runs a metaepoch on the given deme population and returns list with 3 named
fields: solution, population, value.

gsc global stopping condition function taking a list of MetaepochSnapshot objects
and returning a logical value; it is evaluated after every metaepoch and deter-
mines whether whole computation should be stopped. See gsc_metaepochs_count
for more details.

1sc local stopping condition - function taking a deme and a list of MetaepochSmap-
shot objects representing previous metaepochs; it is run on every deme after it
has run a metaepoch and determines whether that deme will remain active. See
1sc_max_fitness_evaluations for more details.

sc sprouting condition - function taking 3 arguments: an individual, a tree level and
a list of Deme objects; it determines whether the given individual can sprout a
new deme on the given level. See sc_max_metric for more details.

create_population
function taking 6 parameters: mean, lower, upper, population_size, tree_level,
sigma that returns a population for a Deme object to be created on the given tree
level.

suggestions matrix of individuals for the initial population of the root

with_gradient_method
logical determining whether a gradient method should be run for all leaves at
the end of the computation to refine their best solutions.

gradient_method_args
list of parameters that are passed to the gradient method

run_gradient_method
function - returns list with named fields: solution, population, value

monitor_level string - one of: 'none’, ’basic’, *basic_tree’, 'verbose_tree’.

parallel logical - TRUE when run_metaepoch runs in parallel.

Value

Returns an object of class hms.

Examples

f <- function(x) x
result <- hms(fitness = f, lower = -5, upper = 5)

hms-class 9

hms-class A §4 class representing a result of hms.

Description

A S84 class representing a result of hms.

Slots

root_id character - UUID of a root Deme.

metaepoch_snapshots list of objects of class MetaepochSnapshot.

best_fitness numeric - best fitness value of all metaepochs.

best_solution numeric - best solution of all metaepochs.
total_time_in_seconds numeric - time of a hms execution in seconds.
total_metaepoch_time_in_seconds numeric - time of all metaepochs in seconds.
metaepochs_count numeric - total number of all metaepochs.

deme_population_sizes numeric - sizes of deme populations on each tree level. Same as population_sizes
parameter of hms function.

lower numeric - lower bound of the domain, a vector of length equal to the decision variables.
upper numeric - upper bound of the domain, a vector of length equal to the decision variables.

call language - an object of class "call" representing the matched call.

lsc_max_fitness_evaluations
Factory function for a local stopping condition that stops a deme after
given number of fitness function evaluations has been made in that
deme.

Description

Factory function for a local stopping condition that stops a deme after given number of fitness
function evaluations has been made in that deme.

Usage

1sc_max_fitness_evaluations(max_evaluations)

Arguments

max_evaluations
e numeric

10 Isc_metaepochs_without_active_child

Value

Function that can be used as a local stopping condition for hms.

Examples

local_stopping_condition <- lsc_max_fitness_evaluations(500)

1sc_metaepochs_without_active_child
Factory function for a local stopping condition that stops a deme after
given number of metaepochs have past since last metaepoch during
which this deme had an active child.

Description

Factory function for a local stopping condition that stops a deme after given number of metaepochs
have past since last metaepoch during which this deme had an active child.

Usage

1sc_metaepochs_without_active_child(metaepochs_limit)

Arguments

metaepochs_limit
* number of metaepochs that a deme can be active without any active child

Value

Function that can be used as a local stopping condition for hms.

Examples

local_stopping_condition <- lsc_metaepochs_without_active_child(3)

Isc_metaepochs_without_improvement 11

1sc_metaepochs_without_improvement
Factory function for a local stopping condition that stops a deme after
given number of consecutive metaeopochs without an improvement of
the best solution found in that deme.

Description
Factory function for a local stopping condition that stops a deme after given number of consecutive
metaeopochs without an improvement of the best solution found in that deme.

Usage

1sc_metaepochs_without_improvement(max_metaepochs_without_improvement)

Arguments

max_metaepochs_without_improvement
e numeric

Value

Function that can be used as a local stopping condition for hms.

Examples

local_stopping_condition <- lsc_metaepochs_without_improvement(5)

lsc_trivial Factory function for a trivial local stopping condition that lets a deme
be active forever. It is usually used in the root of a hms tree.

Description
Factory function for a trivial local stopping condition that lets a deme be active forever. It is usually
used in the root of a hms tree.

Usage

lsc_trivial()

Value

Function that always returns FALSE, which can be used as a local stopping condition for hms.

Examples

local_stopping_condition <- lsc_trivial()

12 MetaepochSnapshot-class

manhattan_distance Manhattan distance

Description

Manhattan distance

Usage

manhattan_distance(x, y)

Arguments
X * numeric
y * numeric
Value

numeric - manhattan distance between x and y

Examples

manhattan_distance(c(1, 1), c(1, 2))

MetaepochSnapshot-class
A 84 class representing a snapshot of one metaepoch.

Description

A S4 class representing a snapshot of one metaepoch.

Slots

demes list of objects of class Deme.

best_fitness numeric - best fitness value of a metaepoch.
best_solution numeric - best solution of a metaepoch.
time_in_seconds numeric - time of metaepoch in seconds.
fitness_evaluations numeric - number of fitness evaluations.

blocked_sprouts list - list of sprouts that were blocked by sprouting condition. A sprout is a po-
tential origin of a new Deme, it can be blocked by sc — sprouting condition. See sc_max_metric
for more details.

is_evolutionary logical - TRUE for all metaepochs except the gradient one.

plot,hms-method

13

plot,hms-method Plot method for "hms" class.

Description

Plot method for "hms" class.

Usage
S4 method for signature 'hms'
plot(x)

Arguments

X * hms s4 object

Value

It doesn’t return anything meaningful. It plots the fitness by metaepoch count.

Examples

f <- function(x) x
result <- hms(fitness = f, lower = -5, upper = 5)
plot(result)

plotActiveDemes plotActiveDemes method for "hms" class.

Description

plotActiveDemes method for "hms" class.

Usage

plotActiveDemes(object)

Arguments

object * hms s4 object

Value

It doesn’t return anything meaningful. It plots the number of active demes per metaepoch.

14 plotPopulation

Examples

f <- function(x) x
result <- hms(fitness = f, lower = -5, upper = 5)
plotActiveDemes(result)

plotActiveDemes, hms-method
plotActiveDemes method for "hms" class.

Description

plotActiveDemes method for "hms" class.

Usage
S4 method for signature 'hms'
plotActiveDemes(object)
Arguments

object * hms s4 object

Value

It doesn’t return anything meaningful. It plots the number of active demes per metaepoch.

Examples

f <- function(x) x
result <- hms(fitness = f, lower = -5, upper = 5)
plotActiveDemes(result)

plotPopulation plotPopulation method for "hms" class.

Description

plotPopulation method for "hms" class.

Usage

plotPopulation(object, dimensions)

Arguments

object * hms s4 object

dimensions ¢ two selected dimensions

plotPopulation,hms-method

Value

It doesn’t return anything meaningful. It plots the selected two dimensions of a population.

Examples

f <- function(x) x
result <- hms(fitness = f, lower = -5, upper = 5)
plotPopulation(result, c(1, 1))

15

plotPopulation, hms-method
plotPopulation method for "hms" class.

Description

plotPopulation method for "hms" class.

Usage

S4 method for signature 'hms'
plotPopulation(object, dimensions)

Arguments
object * hms s4 object
dimensions * two selected dimensions
Value

It doesn’t return anything meaningful. It plots the selected two dimensions of a population.

Examples

f <- function(x) x
result <- hms(fitness = f, lower = -5, upper = 5)
plotPopulation(result, c(1, 1))

16 printBlockedSprouts
print,hms-method Print method for class "hms".

Description

Print method for class "hms".
Usage

S4 method for signature 'hms'

print(x, ...)
Arguments

X * hms s4 object

e other print arguments

Value

It does not return anything. The obvious side effect is output to the terminal.
Examples

f <- function(x) x
result <- hms(fitness = f, lower = -5, upper = 5)
print(result)

printBlockedSprouts printBlockedSprouts method for "hms" class.

Description

printBlockedSprouts method for "hms" class.

Usage

printBlockedSprouts(object)

Arguments

object * hms s4 object

Value

It doesn’t return anything. It prints blocked sprouts per metaepoch.

printBlockedSprouts,hms-method 17

Examples

f <- function(x) x
result <- hms(fitness = f, lower = -5, upper = 5)
printBlockedSprouts(result)

printBlockedSprouts,hms-method
printBlockedSprouts method for "hms" class.

Description

printBlockedSprouts method for "hms" class.

Usage
S4 method for signature 'hms'
printBlockedSprouts(object)
Arguments

object * hms s4 object

Value

It doesn’t return anything. It prints blocked sprouts per metaepoch.

Examples

f <- function(x) x
result <- hms(fitness = f, lower = -5, upper = 5)
printBlockedSprouts(result)

printTree printTree method for class "hms".

Description

printTree method for class "hms".

Usage

printTree(object)

Arguments

object * hms s4 object

18 printTree,hms-method

Value

It does not return anything. It prints the hms tree.

Examples

f <- function(x) x
result <- hms(fitness = f, lower = -5, upper = 5)
printTree(result)

printTree,hms-method printTree method for class "hms".

Description

printTree method for class "hms".

Usage

S4 method for signature 'hms'
printTree(object)

Arguments

object * hms s4 object

Value

It does not return anything. It prints the hms tree.

Examples

f <- function(x) x
result <- hms(fitness = f, lower = -5, upper = 5)
printTree(result)

rtnorm_mutation 19

rtnorm_mutation Factory function that creates normal mutation function

Description
Given the domain bounds and standard deviation returns a function compatible with GA interface
that performs a mutation on the given individual using truncated normal distribution.

Usage

rtnorm_mutation(lower, upper, sd)

Arguments
lower * Lower bound of the problem’s domain
upper * Upper bound of the problem’s domain
sd Standard deviation of the truncated normal distribution used for the muta-
tion
Value

Function that takes two parameters (the GA object object and an individual to perform the mutation
on parent) and returns a new individual that is the result of normal mutation applied to the parent.

Examples

mutation <- rtnorm_mutation(
lower = rep(-500, 5),
upper = rep(500, 5),
sd = rep(50, 5)

)

saveMetaepochsPopulations
saveMetaepochsPopulations method for "hms" class.

Description

saveMetaepochsPopulations method for "hms" class.

Usage

saveMetaepochsPopulations(object, path, dimensions)

20 saveMetaepochsPopulations,hms-method

Arguments

object hms s4 object

path path

dimensions vector of two selected dimensions e.g. c(1,2)
Value

It doesn’t return anything. It creates plots and saves them to a specified directory.

Examples

fitness <- function(x) x[1] + x[2]

lower <- c(-5, -5)

upper <- c(5, 5)

result <- hms(fitness = fitness, lower = lower, upper = upper)
selected_dimensions <- c(1, 2)

saveMetaepochsPopulations(result, tempdir(), selected_dimensions)

saveMetaepochsPopulations, hms-method
saveMetaepochsPopulations

Description

saveMetaepochsPopulations

Usage

S4 method for signature 'hms'
saveMetaepochsPopulations(object, path, dimensions)

Arguments

object hms s4 object

path path

dimensions vector of two selected dimensions e.g. c(1,2)
Value

It doesn’t return anything. It creates plots and saves them to a specified directory.

Examples

fitness <- function(x) x[1] + x[2]

lower <- c(-5, -5)

upper <- c(5, 5)

result <- hms(fitness = fitness, lower = lower, upper = upper)
selected_dimensions <- c(1, 2)

saveMetaepochsPopulations(result, tempdir(), selected_dimensions)

sC_max_metric 21

sc_max_metric Default sprouting condition based on given metric.

Description
It allows an individual to sprout only if there are no other demes on the target level that have centroid
within the given distance.

Usage

sc_max_metric(metric, max_distances)

Arguments
metric * Metric used for deme distance comparison (e.g. euclidean_distance, man-
hattan_distance)
max_distances * numeric - maximum distance to a centroid of a deme on the target level that
would allow the individual to sprout
Value

Function that can be used as a sprouting condition of hms.

Examples

sprouting_condition <- sc_max_metric(euclidean_distance, c(20, 10))

show, hms-method Show method for class "hms".

Description

Show method for class "hms".

Usage
S4 method for signature 'hms'
show(object)

Arguments

object * hms s4 object

Value

It returns the names of the slots and the classes associated with the slots in the "hms" class. It prints
call details.

22 summary,hms-method

Examples

f <- function(x) x

result <- hms(fitness = f, lower = -5, upper = 5)
show(result)
summary, hms-method Summary method for class "hms".
Description

Summary method for class "hms".

Usage
S4 method for signature 'hms'
summary (object, ...)

Arguments
object * hms s4 object

* other summary arguments

Value

Returns a list with fields: fitness, solution, metaepochs, deme_population_sizes, lower_bound, up-
per_bound, computation_time. These fields should match fields of class "hms".

Examples

f <- function(x) x
result <- hms(fitness = f, lower = -5, upper = 5)
summary (result)

Index

default_run_gradient_method, 2

ecr_metaepoch, 3
euclidean_distance, 4

ga_metaepoch, 3, 4
gsc_max_fitness_evaluations, 5
gsc_metaepochs_count, 6, 8§
gsc_trivial, 6

hms, 7
hms-class, 9

1sc_max_fitness_evaluations, 8,9
1sc_metaepochs_without_active_child,

10
1sc_metaepochs_without_improvement, 11
Isc_trivial, 11

manhattan_distance, 12
MetaepochSnapshot-class, 12

plot,hms-method, 13
plotActiveDemes, 13
plotActiveDemes, hms-method, 14
plotPopulation, 14

plotPopulation, hms-method, 15
print,hms-method, 16
printBlockedSprouts, 16
printBlockedSprouts, hms-method, 17
printTree, 17

printTree, hms-method, 18

rtnorm_mutation, 19

saveMetaepochsPopulations, 19

saveMetaepochsPopulations,hms-method,
20

sc_max_metric, 8, 12,21

show, hms-method, 21

summary , hms-method, 22

23

	default_run_gradient_method
	ecr_metaepoch
	euclidean_distance
	ga_metaepoch
	gsc_max_fitness_evaluations
	gsc_metaepochs_count
	gsc_trivial
	hms
	hms-class
	lsc_max_fitness_evaluations
	lsc_metaepochs_without_active_child
	lsc_metaepochs_without_improvement
	lsc_trivial
	manhattan_distance
	MetaepochSnapshot-class
	plot,hms-method
	plotActiveDemes
	plotActiveDemes,hms-method
	plotPopulation
	plotPopulation,hms-method
	print,hms-method
	printBlockedSprouts
	printBlockedSprouts,hms-method
	printTree
	printTree,hms-method
	rtnorm_mutation
	saveMetaepochsPopulations
	saveMetaepochsPopulations,hms-method
	sc_max_metric
	show,hms-method
	summary,hms-method
	Index

