Package ‘hmmTMB’

June 24, 2025

Type Package

Title Fit Hidden Markov Models using Template Model Builder

Version 1.1.0

Maintainer Theo Michelot <theo.michelot@dal.ca>

Description Fitting hidden Markov models using automatic differentiation
and Laplace approximation, allowing for fast inference and flexible covariate
effects (including random effects and smoothing splines) on model parameters.
The package is described by Michelot (2022) <doi:10.48550/arXiv.2211.14139>.

URL https://github.com/TheoMichelot/hmmTMB

License GPL-3

Depends R6, mgev, TMB, ggplot2

Imports Matrix, stringr, MASS, tmbstan, methods

LinkingTo TMB, RcppEigen

Suggests rstan, testthat, knitr, rmarkdown, moveHMM, scico, MSwM,
unmarked

Encoding UTF-8
RoxygenNote 7.3.2
VignetteBuilder knitr
NeedsCompilation yes

Author Theo Michelot [aut, cre],
Richard Glennie [aut, ctb]

Repository CRAN
Date/Publication 2025-06-24 19:10:02 UTC

Contents

as_character_formula
AS_SPATSE .+ . o e e e e e e e e e e e e e e e e e e e
bdiag_check
check_contiguous L

https://doi.org/10.48550/arXiv.2211.14139
https://github.com/TheoMichelot/hmmTMB

2 as_character_formula
cov_grid e e 4
Dist . . . e e e 5
dvm . . e e e 9
dwrpcauchy L 10
find_re e e e e e e e 10
gdeterminant e e e e e e e e e e 11
HMM . . e e e 11
hmmTMB_cols 25
invmlogit L e 25
is_whole_number e 26
logLiIk HMM o e e e 26
[ogSUMEXDP o o v e e e 27
MaKE _COV . . . o o o e o e e e e e 27
make_formulas e 28
make_MmatriCes e e e e e e e 29
MarkovChain e e e e e e 29
mlogit e e e e e e 38
mvnorm_invliink e e 38
mvnorm_linK L e 39
na_fill e e 39
ODbservation e e e e e e e e e e e e e e 40
PrEC_tO_COV . o . v v i i e e e e e e e e e e e e e e e e 50
quad_pos_SOlve e 51
0074 P 52
rwrpcauchy oL 52
SIHP_COMMENLS v v vt v e e e e e e e e e e e e e e e e e e 53
update. HMM L e e 53

Index 55

as_character_formula Read formula with as.character without splitting
Description
Read formula with as.character without splitting
Usage
as_character_formula(x, ...)
Arguments

X

R formula

Unused

as_sparse 3

Details

Citation: this function was taken from the R package formula.tools: Christopher Brown (2018).
formula.tools: Programmatic Utilities for Manipulating Formulas, Expressions, Calls, Assignments
and Other R Objects. R package version 1.7.1. https://CRAN.R-project.org/package=formula.tools

as_sparse Transforms matrix to dgTMatrix

Description

Transforms matrix to dgTMatrix

Usage

as_sparse(x)

Arguments

X Matrix or vector. If this is a vector, it is formatted into a single-column matrix.

Value

Sparse matrix of class dgTMatrix

bdiag_check Create block diagonal matrix (safe version)

Description
This version of bdiag checks whether the matrices passed as arguments are NULL. This avoids
errors that would arise if using bdiag directly.

Usage
bdiag_check(...)

Arguments

Matrix or list of matrices (only the first argument is used)

Value

Block diagonal matrix

4 cov_grid

check_contiguous Check values in vector are contiguous

Description

Check values in vector are contiguous

Usage

check_contiguous(x)

Arguments

X Vector of values (can be numeric, character, factor)

Value

Logical: are values contiguous?

cov_grid Grid of covariates

Description

Grid of covariates

Usage
cov_grid(var, data = NULL, obj = NULL, covs = NULL, formulas, n_grid = 1000)

Arguments
var Name of variable
data Data frame containing the covariates. If not provided, data are extracted from
obj
obj HMM model object containing data and formulas
covs Optional named list for values of covariates (other than ’var’) that should be
used in the plot (or dataframe with single row). If this is not specified, the mean
value is used for numeric variables, and the first level for factor variables.
formulas List of formulas used in the model
n_grid Grid size (number of points). Default: 1000.
Value

Data frame of covariates, with ’var’ defined over a grid, and other covariates fixed to their mean
(numeric) or first level (factor).

Dist 5

Dist R6 class for probability distribution

Description

Contains the probability density/mass function, and the link and inverse link functions for a proba-
bility distribution.

Methods

Public methods:

* Dist$new()

e Dist$name()

e Dist$pdf ()

e Dist$cdf ()

* Dist$rng()

e Dist$link()

e Dist$invlink()

e Dist$npar()

* Dist$parnames()
* Dist$parapprox()
e Dist$fixed()

e Dist$code()

e Dist$name_long()
* Dist$set_npar()
* Dist$set_parnames()
e Dist$set_code()
e Dist$pdf_apply()
* Dist$rng_apply()
e Dist$par_alt()

* Dist$n2w()

e Dist$w2n()

e Dist$clone()

Method new(): Create a Dist object

Usage:
Dist$new(
name,
pdf,
rng,
cdf = NULL,
link,
invlink,

Dist

npar,
parnames,
parapprox = NULL,
fixed = NULL,
name_long = name,
par_alt = NULL

)

Arguments:

name Name of distribution

pdf Probability density/mass function of the distribution (e.g. dnorm for normal distribution).
rng Random generator function of the distribution (e.g. rnorm for normal distribution).

cdf Cumulative distribution function of the distribution (e.g., pnorm for normal distribution).
This is used to compute pseudo-residuals.

link Named list of link functions for distribution parameters

invlink Named list of inverse link functions for distribution parameters
npar Number of parameters of the distribution

parnames Character vector with name of each parameter

parapprox Function that takes a sample and produces approximate values for the unknown
parameters

fixed Vector with element for each parameter which is TRUE if parameter is fixed

name_long Long version of the name of the distribution, possibly more user-readable than
name.

par_alt Function that takes a vector of the distribution parameters as input and returns them
in a different format. Only relevant for some distributions (e.g., MVN, where the SDs and
correlations can be reformatted into a covariance matrix)

Returns: A new Dist object

Method name(): Return name of Dist object

Usage:
Dist$name()

Method pdf (): Return pdf of Dist object
Usage:
Dist$pdf ()

Method cdf (): Return cdf of Dist object

Usage:
Dist$cdf ()

Method rng(): Return random generator function of Dist object
Usage:
Dist$rng()

Method 1link(): Return link function of Dist object
Usage:

Dist

Dist$link()

Method invlink(): Return inverse link function of Dist object
Usage:
Dist$invlink()

Method npar(): Return number of parameters of Dist object

Usage:
Dist$npar()

Method parnames(): Return names of parameters

Usage:
Dist$parnames()

Method parapprox(): Return function that approximates parameters
Usage:
Dist$parapprox()

Method fixed(): Return which parameters are fixed

Usage:
Dist$fixed()

Method code(): Return code of Dist object
Usage:
Dist$code()

Method name_long(): Human-readable name of Dist object

Usage:
Dist$name_long()

Method set_npar(): Set number of parameters this distribution has
Usage:
Dist$set_npar(new_npar)

Arguments:

new_npar Number of parameters

Method set_parnames(): Set parameter names
Usage:
Dist$set_parnames(new_parnames)

Arguments:

new_parnames Parameter names

Method set_code(): Set distribution code

Usage:
Dist$set_code(new_code)

Dist

Arguments:

new_code Distribution code

Method pdf_apply(): Evaluate probability density/mass function
This method is used in the Dist$obs_probs() method. It is a wrapper around Dist$pdf(), which
prepares the parameters and passes them to the function.

Usage:

Dist$pdf_apply(x, par, log = FALSE)

Arguments:

x Value at which the function should be evaluated

par Vector of parameters. The entries should be named if they are not in the same order as ex-
pected by the R function. (E.g. shape/scale rather than shape/rate for gamma distribution.)

log Logical. If TRUE, the log-density is returned. Default: FALSE.

Returns: Probability density/mass function evaluated at x for parameters par

Method rng_apply(): Random number generator
This method is a wrapper around Dist$rng(), which prepares the parameters and passes them to
the function.

Usage:
Dist$rng_apply(n, par)

Arguments:

n Number of realisations to generate

par Vector of parameters. The entries should be named if they are not in the same order as ex-
pected by the R function. (E.g. shape/scale rather than shape/rate for gamma distribution.)

Returns: Vector of n realisations of this distribution

Method par_alt(): Alternative parameter formatting

Usage:
Dist$par_alt(par)

Arguments:

par Vector of distribution parameters

Returns: Formatted parameters

Method n2w(): Natural to working parameter transformation

This method transforms parameters from the natural scale (i.e., their domain of definition) to the
"working" or "linear predictor” scale (i.e., the real line). It is a wrapper for Dist$link().

Usage:
Dist$n2w(par)

Arguments:

par List of parameters

Returns: Vector of parameters on the working scale

dvim 9

Method w2n(): Working to natural parameter transformation
This method transforms parameters from the "working" or "linear predictor" scale (i.e., the real
line) to the natural scale (i.e., their domain of definition). It is a wrapper for Dist$invlink().
Usage:
Dist$w2n(wpar, as_matrix = FALSE)
Arguments:
wpar Vector of working parameters

as_matrix Logical. If TRUE, the natural parameters are returned as a matrix with one row
for each state and one column for each parameter. If FALSE, the natural parameters are
returned as a list (default).

Returns: List or matrix of parameters on natural scale

Method clone(): The objects of this class are cloneable with this method.

Usage:
Dist$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

dvm Density function of von Mises distribution

Description

Density function of von Mises distribution

Usage
dvm(x, mu, kappa, log = FALSE)

Arguments

X Angle

mu Mean parameter

kappa Concentration parameter

log Should log-density be returned?
Value

Von Mises density

10 find_re

dwrpcauchy Density function of wrapped Cauchy distribution

Description

Density function of wrapped Cauchy distribution

Usage

dwrpcauchy(x, mu, rho, log = FALSE)

Arguments

X Angle

mu Mean parameter

rho Concentration parameter

log Should log-density be returned?
Value

Wrapped Cauchy density

find_re Find s(, bs = "re") terms in formula

Description

nyn

This function is used to identify the variables "x" which are included as s(x, bs = "re") in the formula,
in particular to check that they are factors.

Usage
find_re(form)

Arguments

form Model formula

Value

Vector of names of variables for which a random effect term is included in the model.

gdeterminant 11

gdeterminant Generalized matrix determinant

Description
Generalized determinant = product of non-zero eigenvalues (see e.g., Wood 2017). Used for (log)determinant
of penalty matrices, required in log-likelihood function.

Usage
gdeterminant(x, eps = 1e-10, log = TRUE)

Arguments
X Numeric matrix
eps Threshold below which eigenvalues are ignored (default: 1e-10)
log Logical: should the log-determinant be returned?

Value

Generalized determinant of input matrix

HMM R6 class for hidden Markov model

Description

Encapsulates the observation and hidden state models for a hidden Markov model.

Methods

Public methods:
* HMM$new()
¢ HMM$obs ()
e HMM$hid()
¢ HMM$out ()
e HMM$tmb_obj ()
* HMM$tmb_obj_joint()
* HMM$tmb_rep()
* HMM$states()
* HMM$coeff_fe()
* HMM$coeff_re()
* HMM$coeff_list()

HMM

e HMM$fixpar()

* HMM$coeff_array()

e HMM$1lambda ()

* HMM$update_par()

* HMM$sd_re()

* HMM$par ()

e HMM$set_priors()

* HMM$priors()

* HMM$iters()

* HMM$out_stan()

e HMM$11k()

e HMM$edf ()

* HMM$suggest_initial()
* HMM$setup()

e HMM$fit_stan()

* HMM$Fit()

e HMM$mle ()

e HMM$forward_backward()
* HMM$pseudores()

e HMM$viterbi()

¢ HMM$sample_states()
* HMM$state_probs()

¢ HMM$post_coeff ()

* HMM$post_linpred()
e HMM$post_fn()

* HMM$predict()

e HMM$confint()

* HMM$simulate()

* HMM$check ()

e HMM$plot_ts()

e HMM$plot_dist()

* HMM$plot()

* HMM$AIC_marginal()
* HMM$AIC_conditional ()
¢ HMM$print_obspar ()
e HMM$print_tpm()

e HMM$formulation()

* HMM$print()

* HMM$clone()

Method new(): Create new HMM object
Usage:

HMM 13

HMM$new(obs = NULL, hid = NULL, file = NULL, init = NULL, fixpar = NULL)

Arguments:

obs Observation object, created with Observation$new(). This contains the formulation for
the observation model.

hid MarkovChain object, created with MarkovChain$new(). This contains the formulation for
the state process model.

file Path to specification file for HMM. If this argument is used, then obs and hid are unnec-
essary.

init HMM object, used to initialise the parameters for this model. If init is passed, then all
parameters that are included in init and in the present model are copied. This may be useful
when fitting increasingly complex models: start from a simple model, then pass it as init to
create a more complex model, and so on.

fixpar Named list, with optional elements: "hid’, *obs’, delta0’, ’lambda_obs’, and ’lambda_hid’.
Each element is a named vector of parameters in coeff_fe that should either be fixed (if the
corresponding element is set to NA) or estimated to a common value (using integers or
factor levels).don See examples in the vignettes, and check the TMB documentation to un-
derstand the inner workings (argument map of TMB: :MakeADFun()).

Returns: A new HMM object

Examples:

Load data set (included with R)

data(nottem)

data <- data.frame(temp = as.vector(t(nottem)))

Create hidden state and observation models
hid <- MarkovChain$new(data = data, n_states = 2)
par@ <- list(temp = list(mean = c(40, 60), sd = c(5, 5)))
obs <- Observation$new(data = data, n_states = 2,
dists = list(temp = "norm"),
par = paro)

Create HMM
hmm <- HMM$new(hid = hid, obs = obs)
Method obs(): Observation object for this model

Usage:
HMM$obs ()

Method hid(): MarkovChain object for this model
Usage:
HMM$hid ()

Method out(): Output of optimiser after model fitting
Usage:
HMM$out ()

Method tmb_obj(): Model object created by TMB. This is the output of the TMB function
MakeADFun, and it is a list including elements

14

HMM

fn Objective function

gr Gradient function of fn

par Vector of initial parameters on working scale
Usage:
HMM$tmb_obj ()

Method tmb_obj_joint(): Model object created by TMB for the joint likelihood of the fixed
and random effects. This is the output of the TMB function MakeADFun, and it is a list including
elements

fn Objective function
gr Gradient function of fn
par Vector of initial parameters on working scale

Usage:
HMM$tmb_obj_joint ()

Method tmb_rep(): Output of the TMB function sdreport, which includes estimates and
standard errors for all model parameters.

Usage:
HMM$tmb_rep ()

Method states(): Vector of estimated states, after viterbi has been run

Usage:
HMM$states()

Method coeff_fe(): Coefficients for fixed effect parameters

Usage:
HMM$coeff_fe()

Method coeff_re(): Coefficients for random effect parameters

Usage:
HMM$coeff_re()

Method coeff_list(): List of all model coefficients
These are the parameters estimated by the model, including fixed and random effect parameters
for the observation parameters and the transition probabilities, (transformed) initial probabilities,
and smoothness parameters.

Usage:

HMM$coeff_list()

Method fixpar(): Fixed parameters
Usage:
HMM$fixpar(all = FALSE)
Arguments:

all Logical. If FALSE, only user-specified fixed parameters are returned, but not parameters
that are fixed by definition (e.g., size of binomial distribution).

HMM 15

Method coeff_array(): Array of working parameters

Usage:
HMM$coeff_array()

Method lambda(): Smoothness parameters

Usage:
HMM$1ambda ()

Method update_par(): Update parameters stored inside model object

Usage:
HMM$update_par(par_list = NULL, iter = NULL)

Arguments:

par_list List with elements for coeff_fe_obs, coeff_fe_hid, coeff_re_obs, coeff_re_hid, log_delta0,
log_lambda_hid, and log_lambda_obs

iter Optional argument to update model parameters based on MCMC iterations (if using
rstan). Either the index of the iteration to use, or "mean" if the posterior mean should
be used.

Method sd_re(): Standard deviation of smooth terms (or random effects)
This function transforms the smoothness parameter of each smooth term into a standard devia-
tion, given by SD = 1/sqrt(lambda). It is particularly helpful to get the standard deviations of
independent normal random effects.

Usage:

HMM$sd_re ()

Returns: List of standard deviations for observation model and hidden state model.

Method par(): Model parameters
Usage:
HMM$par(t = 1)
Arguments:
t returns parameters at time t, defaultis t =1
Returns: A list with elements:

obspar Parameters of observation model
tpm Transition probability matrix of hidden state model

Method set_priors(): Set priors for coefficients
Usage:
HMM$set_priors(new_priors = NULL)
Arguments:
new_priors is a named list of matrices with optional elements coeff_fe_obs, coeff_fe_hid,

log_lambda_obs, andlog_lambda_hid. Each matrix has two columns (first col = mean, sec-
ond col = sd) specifying parameters for normal priors.

Method priors(): Extract stored priors

HMM

Usage:
HMM$priors()

Method iters(): Iterations from stan MCMC fit

Usage:
HMM$iters(type = "response”)

Arguments:

type Either "response" for parameters on the response (natural) scale, or "raw" for parameters
on the linear predictor scale.

Returns: see output of as.matrix in stan

Method out_stan(): fitted stan object from MCMC fit

Usage:
HMM$out_stan()

Returns: the stanfit object

Method 11k(): Log-likelihood at current parameters
Usage:
HMM$11k ()

Returns: Log-likelihood

Method edf (): Effective degrees of freedom
Usage:
HMM$edf ()

Returns: Number of effective degrees of freedom (accounting for flexibility in non-parametric
terms implied by smoothing)

Method suggest_initial(): Suggest initial parameter values
Uses K-means clustering to split the data into naive "states", and estimates observation parameters
within each of these states. This is meant to help with selecting initial parameter values before
model fitting, but users should still think about the values carefully, and try multiple set of initial
parameter values to ensure convergence to the global maximum of the likelihood function.
Usage:
HMM$suggest_initial()

Returns: List of initial parameters

Method setup(): TMB setup
This creates an attribute tmb_ob j, which can be used to evaluate the negative log-likelihood func-
tion.

Usage:

HMM$setup(silent = TRUE)

Arguments:

silent Logical. If TRUE, all tracing outputs are hidden (default).

HMM 17

Method fit_stan(): Fit model using tmbstan

Consult documentation of the tmbstan package for more information. After this method has been
called, the Stan output can be accessed using the method out_stan(). This Stan output can for
example be visualised using functions from the rstan package. The parameters stored in this HMM
object are automatically updated to the mean posterior estimate, although this can be changed
using update_par().

Usage:
HMM$fit_stan(..., silent = FALSE)

Arguments:
. Arguments passed to tmbstan
silent Logical. If FALSE, all tracing outputs are shown (default).

Method fit(): Model fitting

The negative log-likelihood of the model is minimised using the function nlminb(). TMB uses
the Laplace approximation to integrate the random effects out of the likelihood.

After the model has been fitted, the output of nlminb () can be accessed using the method out ().
The estimated parameters can be accessed using the methods par () (for the HMM parameters,
possibly dependent on covariates), predict () (for uncertainty quantification and prediction of the
HMM parameters for new covariate values), coeff_fe() (for estimated fixed effect coefficients
on the linear predictor scale), and coeff_re() (for estimated random effect coefficients on the
linear predictor scale).

Usage:
HMM$fit(silent = FALSE, ...)

Arguments:
silent Logical. If FALSE, all tracing outputs are shown (default).
. Other arguments to nlminb which is used to optimise the likelihood. This currently only

supports the additional argument control, which is a list of control parameters such as
eval.max and iter.max (see ?nlminb)

Examples:

Load data set (included with R)
data(nottem)
data <- data.frame(temp = as.vector(t(nottem)))

Create hidden state and observation models
hid <- MarkovChain$new(data = data, n_states = 2)
par@ <- list(temp = list(mean = c(40, 60), sd = c(5, 5)))
obs <- Observation$new(data = data, n_states = 2,
dists = list(temp = "norm"),
par = par@)

Create HMM
hmm <- HMM$new(hid = hid, obs = obs)

Fit HMM
hmm$fit(silent = TRUE)

18

HMM

Method mle(): Get maximum likelihood estimates once model fitted

Usage:
HMM$mle ()

Returns: list of maximum likelihood estimates as described as input for the function up-
date_par()

Method forward_backward(): Forward-backward algorithm
The forward probability for time step t and state j is the joint pdf/pmf of observations up to time t
and of being in state j at time t, p(Z[1], Z[2], ..., Z[t], S[t] = j). The backward probability for time
t and state j is the conditional pdf/pmf of observations between time t + 1 and n, given state j at
time t, p(Z[t+1], Z[t+2], ..., Z[n] | S[t] = j). This function returns their logarithm, for use in other
methods state_probs, and sample_states.

Usage:

HMM$forward_backward()

Returns: Log-forward and log-backward probabilities

Method pseudores(): Pseudo-residuals
Compute pseudo-residuals for the fitted model. If the fitted model is the "true" model, the pseudo-
residuals follow a standard normal distribution. Deviations from normality suggest lack of fit.
Usage:
HMM$pseudores ()

Returns: List (of length the number of variables), where each element is a vector of pseudo-
residuals (of length the number of data points)

Method viterbi(): Viterbi algorithm

Usage:
HMM$viterbi ()

Returns: Most likely state sequence

Method sample_states(): Sample posterior state sequences using forward-filtering backward-
sampling

The forward-filtering backward-sampling algorithm returns a sequence of states, similarly to the
Viterbi algorithm, but it generates it from the posterior distribution of state sequences, i.e., ac-
counting for uncertainty in the state classification. Multiple generated sequences will therefore
generally not be the same.

Usage:
HMM$sample_states(nsamp = 1, full = FALSE)

Arguments:

nsamp Number of samples to produce

full If TRUE and model fit by fit_stan then parameter estimates are sampled from the posterior
samples before simulating each sequence

Returns: Matrix where each column is a different sample of state sequences, and each row is a
time of observation

HMM 19

Method state_probs(): Compute posterior probability of being in each state

Usage:
HMM$state_probs()

Returns: matrix with a row for each observation and a column for each state

Method post_coeff(): Posterior sampling for model coefficients
Usage:
HMM$post_coeff (n_post)
Arguments:
n_post Number of posterior samples

Returns: Matrix with one column for each coefficient and one row for each posterior draw

Method post_linpred(): Posterior sampling for linear predictor

Usage:
HMM$post_linpred(n_post)

Arguments:
n_post Number of posterior samples

Returns: List with elements obs and hid, where each is a matrix with one column for each
predictor and one row for each posterior draw

Method post_fn(): Create posterior simulations of a function of a model component

Usage:
HMM$post_fn(fn, n_post, comp = NULL, ..., level = @, return_post = FALSE)

Arguments:

fn Function which takes a vector of linear predictors as input and produces either a scalar or
vector output

n_post Number of posterior simulations

comp Either "obs" for observation model linear predictor, or "hid" for hidden model linear pre-
dictor

. Arguments passed to fn

level Confidence interval level if required (e.g., 0.95 for 95 confidence intervals). Default is
0, i.e., confidence intervals are not returned.

return_post Logical indicating whether to return the posterior samples. If FALSE (default),
only mean estimates and confidence intervals are returned

Returns: A list with elements:

post If return_post = TRUE, this is a vector (for scalar outputs of fn) or matrix (for vector
outputs) with a column for each simulation

mean Mean over posterior samples

Icl Lower confidence interval bound (if level !=0)

ucl Upper confidence interval bound (if level !=0)

Method predict(): Predict estimates from a fitted model
By default, this returns point estimates of the HMM parameters for a new data frame of covariates.
See the argument ‘n_post* to also get confidence intervals.

20

HMM

Usage:

HMM$predict(
what,
t=1,
newdata = NULL,
n_post = 0,
level = 0.95,
return_post = FALSE,
as_list = TRUE

)

Arguments:

what Which estimates to predict? Options include transition probability matrices "tpm", sta-
tionary distributions "delta", or observation distribution parameters "obspar"

t Time points to predict at

newdata New dataframe to use for prediction

n_post If greater than zero then n_post posterior samples are produced, and used to create
confidence intervals.

level Level of the confidence intervals, e.g. CI = 0.95 will produce 95% confidence intervals
(default)

return_post Logical. If TRUE, a list of posterior samples is returned.

as_list Logical. If confidence intervals are required for the transition probabilities or obser-
vation parameters, this argument determines whether the MLE, lower confidence limit and
upper confidence limit are returned as separate elements in a list (if TRUE; default), or
whether they are combined into a single array (if FALSE). Ignored if what = "delta"” or if
n_post = 0.

. Other arguments to the respective functions for hidtpm, hiddelta, obs$par

Returns: Maximum likelihood estimates (mle) of predictions, and confidence limits (1cl and
ucl) if requested. The format of the output depends on whether confidence intervals are required
(specified through n_post), and on the argument as_list.

Examples:

Load data set (included with R)
data(nottem)
data <- data.frame(temp = as.vector(t(nottem)))

Create hidden state and observation models
hid <- MarkovChain$new(data = data, n_states = 2)
par@ <- list(temp = list(mean = c(40, 60), sd = c(5, 5)))
obs <- Observation$new(data = data, n_states = 2,
dists = list(temp = "norm"),
par = par@)

Create HMM
hmm <- HMM$new(hid = hid, obs = obs)

Fit HMM
hmm$fit(silent = TRUE)

HMM 21

Get transition probability matrix with confidence intervals
hmm$predict(what = "tpm”, n_post = 1000)

Method confint(): Confidence intervals for working parameters
This function computes standard errors for all fixed effect model parameters based on the diagonal
of the inverse of the Hessian matrix, and then derives Wald-type confidence intervals.

Usage:

HMM$confint(level = 0.95)

Arguments:

level Level of confidence intervals. Defaults to 0.95, i.e., 95% confidence intervals.

Returns: List of matrices with three columns: mle (maximum likelihood estimate), Icl (lower
confidence limit), ucl (upper confidence limit), and se (standard error). One such matrix is
produced for the working parameters of the observation model, the working parameters of the
hidden state model, the smoothness parameters of the observation model, and the smoothness
parameters of the hidden state model.

Method simulate(): Simulate from hidden Markov model

Usage:
HMM$simulate(n, data = NULL, silent = FALSE)

Arguments:

n Number of time steps to simulate

data Optional data frame including covariates
silent if TRUE then no messages are printed

Returns: Data frame including columns of data (if provided), and simulated data variables

Method check(): Compute goodness-of-fit statistics using simulation
Many time series are simulated from the fitted model, and the statistic(s) of interest are calculated
for each. A histogram of those values can for example be used to compare to the observed value
of the statistic. An observation far in the tails of the distribution of simulated statistics suggests
lack of fit.

Usage:

HMM$check (check_fn, nsims = 100, full = FALSE, silent = FALSE)

Arguments:

check_fn Goodness-of-fit function which accepts "data" as input and returns a statistic (either
a vector or a single number) to be compared between observed data and simulations.

nsims Number of simulations to perform

full If model fitted with ‘fit_stan‘, then full = TRUE will sample from posterior for each
simulation

silent Logical. If FALSE, simulation progress is shown. (Default: TRUE)

Returns: List with elements:
obs_stat: Vector of values of goodness-of-fit statistics for the observed data

stats: Matrix of values of goodness-of-fit statistics for the simulated data sets (one row for
each statistic, and one column for each simulation)

22

HMM

plot: ggplot object

Method plot_ts(): Time series plot coloured by states
Creates a plot of the data coloured by the most likely state sequence, as estimated by the Viterbi
algorithm. If one variable name is passed as input, it is plotted against time. If two variables are
passed, they are plotted against each other.

Usage:

HMM$plot_ts(var, var2 = NULL, line = TRUE)

Arguments:

var Name of the variable to plot.

var2 Optional name of a second variable, for 2-d plot.

line Logical. If TRUE (default), lines are drawn between successive data points. Can be set to
FALSE if another geom is needed (e.g., geom_point).

Returns: A ggplot object

Method plot_dist(): Plot observation distributions weighted by frequency in Viterbi

This is a wrapper around Observation$plot_dist, where the distribution for each state is weighted
by the proportion of time spent in that state (according to the Viterbi state sequence).

Usage:
HMM$plot_dist(var = NULL)

Arguments:

var Name of data variable. If NULL, a list of plots are returned (one for each observation
variable)

Returns: Plot of distributions with data histogram

Method plot(): Plot a model component

Usage:
HMM$plot (
what,
var = NULL,
covs = NULL,
i = NULL,
Jj = NULL,
n_grid = 50,
n_post 1000
)

Arguments:

what Name of model component to plot: should be one of "tpm" (transition probabilities),
"delta" (stationary state probabilities), or "obspar" (state-dependent observation parameters)

var Name of covariate to plot on x-axis

covs Optional named list for values of covariates (other than ’var’) that should be used in the
plot (or dataframe with single row). If this is not specified, the mean value is used for
numeric variables, and the first level for factor variables.

HMM 23

i If plotting tpm then rows of tpm; if plotting delta then indices of states to plot; if plotting
obspar then full names of parameters to plot (e.g., obsvar.mean)

j If plotting tpm then columnss of tpm to plot; if plotting delta then this is ignored,; if plotting
obspar then indices of states to plot

n_grid Number of points in grid over x-axis (default: 50)

n_post Number of posterior simulations to use when computing confidence intervals; default:
1000. See predict function for more detail.

Returns: A ggplot object

Method AIC_marginal(): Marginal Akaike Information Criterion

The marginal AIC is for example defined by Wood (2017), as AIC = - 2L + 2k where L is the
maximum marginal log-likelihood (of fixed effects), and k is the number of degrees of freedom
of the fixed effect component of the model

Usage:
HMM$AIC_marginal()
Returns: Marginal AIC

Method AIC_conditional(): Conditional Akaike Information Criterion

The conditional AIC is for example defined by Wood (2017), as AIC = - 2L + 2k where L is
the maximum joint log-likelihood (of fixed and random effects), and k is the number of effective
degrees of freedom of the model (accounting for flexibility in non-parametric terms implied by
smoothing)

Usage:
HMM$AIC_conditional()
Returns: Conditional AIC

Method print_obspar(): Print observation parameters at t = 1
Usage:
HMM$print_obspar ()

Method print_tpm(): Print observation parameters at t = 1
Usage:
HMMS$print_tpm()

Method formulation(): Print model formulation
Usage:
HMM$formulation()

Method print(): Print HMM object

Usage:
HMM$print ()

Method clone(): The objects of this class are cloneable with this method.
Usage:
HMM$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

24 HMM

Examples

T
Method ~HMM$new™
B o

Load data set (included with R)
data(nottem)
data <- data.frame(temp = as.vector(t(nottem)))

Create hidden state and observation models
hid <- MarkovChain$new(data = data, n_states = 2)
par@ <- list(temp = list(mean = c(40, 60), sd = c(5, 5)))
obs <- Observation$new(data = data, n_states = 2,
dists = list(temp = "norm"),
par = par@)

Create HMM
hmm <- HMM$new(hid = hid, obs = obs)

Bt o
Method “HMMS$fit
B =

Load data set (included with R)
data(nottem)
data <- data.frame(temp = as.vector(t(nottem)))

Create hidden state and observation models
hid <- MarkovChain$new(data = data, n_states = 2)
par@ <- list(temp = list(mean = c(40, 60), sd = c(5, 5)))
obs <- Observation$new(data = data, n_states = 2,
dists = list(temp = "norm"),
par = paro)

Create HMM
hmm <- HMM$new(hid = hid, obs = obs)

Fit HMM
hmm$fit(silent = TRUE)

HHE m oo
Method “HMM$predict”
B —m o

Load data set (included with R)
data(nottem)
data <- data.frame(temp = as.vector(t(nottem)))

Create hidden state and observation models

hid <- MarkovChain$new(data = data, n_states = 2)

par@ <- list(temp = list(mean = c(40, 60), sd = c(5, 5)))
obs <- Observation$new(data = data, n_states = 2,

hmmTMB_ cols
dists = list(temp = "norm"),
par = paro)

Create HMM
hmm <- HMM$new(hid = hid, obs = obs)

Fit HMM
hmm$fit(silent = TRUE)

Get transition probability matrix with confidence intervals
hmm$predict(what = "tpm”, n_post = 1000)

25

hmmTMB_cols hmmTMB colour palette

Description

hmmTMB colour palette

Usage

hmmTMB_cols

Format

An object of class character of length 6.

invmlogit Multivarite inverse logit function

Description

Multivarite inverse logit function

Usage

invmlogit(x)

Arguments

X Numeric vector

26 logLik. HMM

is_whole_number Check if number of whole number

Description

Check if number of whole number

Usage

is_whole_number(x, tol = 1e-10)

Arguments
X number to check or vector of numbers
tol how far away from whole number is ok?
Value

TRUE if it is a whole number within tolerance

loglLik.HMM logLik function for SDE objects

Description

This function makes it possible to call generic R methods such as AIC and BIC on HMM objects. It
is based on the number of degrees of freedom of the *conditional* AIC (rather than marginal AIC),
i.e., including degrees of freedom from the smooth/random effect components of the model.

Usage
S3 method for class 'HMM'
logLik(object, ...)

Arguments
object HMM model object

For compatibility with S3 method

Value

Maximum log-likelihood value for the model, with attributes df (degrees of freedom) and nobs
(number of observations)

logsumexp

27

logsumexp Log of sum of exponentials

Description

Log of sum of exponentials

Usage

logsumexp(x)

Arguments

X Numeric vector

make_cov Make covariance matrix from standard deviations and correlations

Description

Make covariance matrix from standard deviations and correlations

Usage

make_cov(sds, corr)

Arguments

sds Vector of standard deviations

corr Vector of correlations (must be of length m*(m-1)/2 if sds is of length m)
Value

An m by m covariance matrix

28 make_formulas

make_formulas Process formulas and store in nested list

Description

Process formulas and store in nested list

Usage

make_formulas(input_forms, var_names, par_names, n_states)

Arguments
input_forms Nested list of formulas, with two levels: observed variable, and parameter of the
observation distribution. The formulas can contain state-specific terms, e.g. "~
statel(x1) + x2".
var_names character vector name of each observation variable
par_names list with element for each observation variable that contains character vector of
name of each parameter in its distribution
n_states Number of states
Details

Formulas for the observation parameters can be different for the different states, using special func-
tions of the form "statel", "state2", etc. This method processes the list of formulas passed by the
user to extract the state-specific formulas. Missing formulas are assumed to be intercept-only ~1.

Value

Nested list of formulas, with three levels: observed variable, parameter of the observation distribu-
tion, and state.

Examples
input_forms <- list(step = list(shape = ~ statel(x1) + x2,
scale = ~ x1),
count = list(lambda = ~ statel(x1) + state2(s(x2, bs = "cs"))))

make_formulas(input_forms = input_forms,
var_names = names(input_forms),
par_names = lapply(input_forms, names),
n_states = 2)

make_matrices 29

make_matrices Create model matrices

Description

Create model matrices

Usage

make_matrices(formulas, data, new_data = NULL, gam_args = NULL)

Arguments
formulas List of formulas (possibly nested, e.g. for use within Observation)
data Data frame including covariates
new_data Optional new data set, including covariates for which the design matrices should
be created. This needs to be passed in addition to the argument "data’, for cases
where smooth terms or factor covariates are included, and the original data set
is needed to determine the full range of covariate values.
gam_args Named list of additional arguments for mgcv: : gam(), such as knots.
Value
A list of

» X_fe Design matrix for fixed effects

* X_re Design matrix for random effects

* S Smoothness matrix

* log_det_S Vector of log-determinants of smoothness matrices
* ncol_fe Number of columns of X_fe for each parameter

¢ ncol_re Number of columns of X_re and S for each random effect

MarkovChain R6 class for HMM hidden process model

Description

Contains the parameters and model formulas for the hidden process model.

30

Methods

Public methods:

MarkovChain$new()
MarkovChain$formula()
MarkovChain$formulas()
MarkovChain$tpm()
MarkovChain$ref ()
MarkovChain$ref_mat ()
MarkovChain$ref_delta@()
MarkovChain$coeff_fe()
MarkovChain$delta()
MarkovChain$delta@()
MarkovChain$stationary()
MarkovChain$fixpar()
MarkovChain$coeff_re()
MarkovChain$X_fe()
MarkovChain$X_re()
MarkovChain$lambda()
MarkovChain$sd_re()
MarkovChain$nstates()
MarkovChain$terms ()
MarkovChain$unique_ID()

MarkovChain$initial_state()

MarkovChain$empty ()
MarkovChain$gam_args()
MarkovChain$update_tpm()

MarkovChain$update_coeff_fe()
MarkovChain$update_coeff_re()

MarkovChain$update_X_fe()
MarkovChain$update_X_re()

MarkovChain$update_delta@()
MarkovChain$update_lambda()
MarkovChain$update_fixpar()

MarkovChain$make_mat ()

MarkovChain$make_mat_grid()

MarkovChain$tpm2par ()
MarkovChain$par2tpm()
MarkovChain$linpred()
MarkovChain$simulate()
MarkovChain$formulation()
MarkovChain$print ()
MarkovChain$clone()

MarkovChain

MarkovChain 31

Method new(): Create new MarkovChain object
Usage:
MarkovChain$new(
data = NULL,
formula = NULL,
n_states,
tpm = NULL,
initial_state = "estimated”,
fixpar = NULL,
ref = 1:n_states,
gam_args = NULL
)

Arguments:

data Data frame, needed to create model matrices, and to identify the number of time series
(which each have a separate initial distribution)

formula Either (1) R formula, used for all transition probabilities, or (2) matrix of character
strings giving the formula for each transition probability, with "." along the diagonal (or for
reference elements; see ref argument). (Default: no covariate dependence.)

n_states Number of states. If not specified, then formula needs to be provided as a matrix,
and n_states is deduced from its dimensions.

tpm Optional transition probability matrix, to initialise the model parameters (intercepts in
model with covariates). If not provided, the default is a matrix with 0.9 on the diagonal.

initial_state Specify model for initial state distribution. There are five different options:
 "estimated": a separate initial distribution is estimated for each ID (default)
* "stationary": the initial distribution is fixed to the stationary distribution of the transition

probability matrix for the first time point of each ID
 "shared": a common initial distribution is estimated for all IDs
* integer value between 1 and n_states: used as the known initial state for all IDs
* vector of integers between 1 and n_states (of length the number of IDs): each element is
used as the known initial state for the corresponding ID

fixpar List with optional elements "hid" (fixed parameters for transition probabilities), "lambda_hid"
(fixed smoothness parameters), and "delta0" (fixed parameters for initial distribution). Each
element is a named vector of coefficients that should either be fixed (if the corresponding
element is set to NA) or estimated to a common value (using integers or factor levels).

ref Vector of indices for reference transition probabilities, of length n_states. The i-th ele-
ment is the index for the reference in the i-th row of the transition probability matrix. For
example, ref = ¢(1, 1) means that the first element of the first row Pr(1>1) and the first el-
ement of the second row Pr(2>1) are used as reference elements and are not estimated. If
this is not provided, the diagonal transition probabilities are used as references.

gam_args Named list of arguments passed to mgcv: : gam() in MarkovChain$make_mat (), e.g.,
"knots". Use at your own risk.

Returns: A new MarkovChain object

Examples:

Load data set from MSwM package
data(energy, package = "MSwM")

32 MarkovChain

Create 2-state covariate-free model and initialise transition
probability matrix
hid <- MarkovChain$new(data = energy, n_states = 2,

tpm = matrix(c(0.8, 0.3, 0.2, 0.7), 2, 2))

Create 2-state model with non-linear effect of 0il on all transition
probabilities
hid <- MarkovChain$new(data = energy, n_states = 2,

formula = ~ s(0il, k = 5, bs = "cs"))

Create 2-state model with quadratic effect of 0il on Pr(1 > 2)

structure <- matrix(c(".”, "~poly(0il, 2)",
T,
ncol = 2, byrow = TRUE)
hid <- MarkovChain$new(data = energy, n_states = 2,
formula = structure)
Method formula(): Formula of MarkovChain model

Usage:
MarkovChain$formula()

Method formulas(): List of formulas for MarkovChain model

Usage:
MarkovChain$formulas()

Method tpm(): Get transition probability matrices
Usage:
MarkovChain$tpm(t = 1, linpred = NULL)
Arguments:

t Time index or vector of time indices; default = 1. If t = "all" then all transition probability
matrices are returned.

linpred Optional custom linear predictor

Returns: Array with one slice for each transition probability matrix

Method ref(): Indices of reference elements in transition probability matrix

Usage:
MarkovChain$ref ()

Method ref_mat(): Matrix of reference elements in transition probability matrix
Usage:
MarkovChain$ref_mat ()

Method ref_delta@(): Indices of reference elements in initial distribution

Usage:
MarkovChain$ref_deltao()

MarkovChain 33

Method coeff_fe(): Current parameter estimates (fixed effects)

Usage:
MarkovChain$coeff_fe()

Method delta(): Stationary distribution
Usage:
MarkovChain$delta(t = NULL, linpred = NULL)
Arguments:

t Time point(s) for which stationary distribution should be returned. If t = "all", all deltas are
returned; else this should be a vector of time indices. If NULL (default), the stationary
distribution for the first time step is returned.

linpred Optional custom linear predictor

Returns: Matrix of stationary distributions. Each row corresponds to a row of the design
matrices, and each column corresponds to a state.

Method delta@(): Initial distribution
Usage:
MarkovChain$delta@(log = FALSE, as_matrix = TRUE)

Arguments:

log Logical indicating whether to return the log of the initial probabilities (default: FALSE). If
TRUE, then the last element is excluded, as it is not estimated.

as_matrix Logical indicating whether the output should be formatted as a matrix (default). If
as_matrix is FALSE and log is TRUE, the result is formatted as a column vector.

Returns: Matrix with one row for each time series ID, and one column for each state. For each
ID, the i-th element of the corresponding row is the probability Pr(S[1] =)
Method stationary(): Use stationary distribution as initial distribution?
Usage:
MarkovChain$stationary()
Method fixpar(): Fixed parameters

Usage:
MarkovChain$fixpar(all = FALSE)

Arguments:
all Logical. If FALSE, only user-specified fixed parameters are returned, but not parameters

that are fixed for some other reason (e.g., from ’.” in formula)
Method coeff_re(): Current parameter estimates (random effects)
Usage:
MarkovChain$coeff_re()
Method X_fe(): Fixed effect design matrix

Usage:
MarkovChain$X_fe()

34

MarkovChain

Method X_re(): Random effect design matrix

Usage:
MarkovChain$X_re()

Method lambda(): Smoothness parameters

Usage:
MarkovChain$lambda ()

Method sd_re(): Standard deviation of smooth terms

This function transforms the smoothness parameter of each smooth term into a standard devia-
tion, given by SD = 1/sqrt(lambda). It is particularly helpful to get the standard deviations of
independent normal random effects.

Usage:
MarkovChain$sd_re()

Method nstates(): Number of states

Usage:
MarkovChain$nstates()

Method terms(): Terms of model formulas

Usage:
MarkovChain$terms()

Method unique_ID(): Number of time series

Usage:
MarkovChain$unique_ID()

Method initial_state(): Initial state (see constructor argument)

Usage:
MarkovChain$initial_state()

Method empty(): Empty model? (for simulation only)

Usage:
MarkovChain$empty ()

Method gam_args(): Extra arguments for mgcv::gam (passed to make_matrices)
Usage:
MarkovChain$gam_args()

Method update_tpm(): Update transition probability matrix
Usage:
MarkovChain$update_tpm(tpm)
Arguments:

tpm New transition probability matrix

MarkovChain 35

Method update_coeff_fe(): Update coefficients for fixed effect parameters

Usage:
MarkovChain$update_coeff_fe(coeff_fe)

Arguments:
coeff_fe Vector of coefficients for fixed effect parameters
Method update_coeff_re(): Update coefficients for random effect parameters

Usage:
MarkovChain$update_coeff_re(coeff_re)

Arguments:
coeff_re Vector of coefficients for random effect parameters

Method update_X_fe(): Update design matrix for fixed effects

Usage:
MarkovChain$update_X_fe(X_fe)

Arguments:
X_fe new design matrix for fixed effects
Method update_X_re(): Update design matrix for random effects

Usage:
MarkovChain$update_X_re(X_re)

Arguments:
X_re new design matrix for random effects

Method update_delta@(): Update initial distribution

Usage:
MarkovChain$update_delta@(delta®)

Arguments:
delta@ Either a matrix where the i-th row is the initial distribution for the i-th time series in the
data, or a vector which is then used for all time series. Entries of each row of delta0Q should

sum to one.
Method update_lambda(): Update smoothness parameters

Usage:
MarkovChain$update_lambda(lambda)

Arguments:
lambda New smoothness parameter vector
Method update_fixpar(): Update information about fixed parameters

Usage:
MarkovChain$update_fixpar(fixpar)

Arguments:

MarkovChain

fixpar New list of fixed parameters, in the same format expected by MarkovChain$new()

Method make_mat(): Make model matrices

Usage:

MarkovChain$make_mat(data, new_data = NULL)

Arguments:

data Data frame containing all needed covariates

new_data Optional new data set, including covariates for which the design matrices should be
created. This needs to be passed in addition to the argument data’, for cases where smooth
terms or factor covariates are included, and the original data set is needed to determine the
full range of covariate values.

Returns: A list with elements:

X _fe Design matrix for fixed effects

X_re Design matrix for random effects

S Smoothness matrix for random effects

ncol_fe Number of columns of X_fe for each parameter

ncol_re Number of columns of X_re and S for each random effect

Method make_mat_grid(): Design matrices for grid of covariates
Used in plotting functions such as HMMSplot_tpm and HMMS$plot_stat_dist
Usage:
MarkovChain$make_mat_grid(var, data, covs = NULL, n_grid = 1000)
Arguments:
var Name of variable
data Data frame containing the covariates
covs Optional named list for values of covariates (other than ’var’) that should be used in the

plot (or dataframe with single row). If this is not specified, the mean value is used for
numeric variables, and the first level for factor variables.

n_grid Grid size (number of points). Default: 1000.

Returns: A list with the same elements as the output of make_mat, plus a data frame of covari-
ates values.

Method tpm2par(): Transform transition probabilities to working scale
Apply the multinomial logit link function to get the corresponding parameters on the working
scale (i.e., linear predictor scale).

Usage:

MarkovChain$tpm2par (tpm)

Arguments:

tpm Transition probability matrix

Returns: Vector of parameters on linear predictor scale

Method par2tpm(): Transform working parameters to transition probabilities

Apply the inverse multinomial logit link function to transform the parameters on the working
scale (i.e., linear predictor scale) into the transition probabilities.

MarkovChain 37

Usage:
MarkovChain$par2tpm(par)

Arguments:
par Vector of parameters on working scale

Returns: Transition probability matrix

Method linpred(): Linear predictor for transition probabilities

Usage:
MarkovChain$linpred()

Method simulate(): Simulate from Markov chain

Usage:

MarkovChain$simulate(n, data = NULL, new_data = NULL, silent = FALSE)

Arguments:

n Number of time steps to simulate

data Optional data frame containing all needed covariates

new_data Optional new data set, including covariates for which the design matrices should be
created. This needs to be passed in addition to the argument data’, for cases where smooth
terms or factor covariates are included, and the original data set is needed to determine the
full range of covariate values.

silent if TRUE then no messages are printed

Returns: Sequence of states of simulated chain

Method formulation(): Print model formulation
Usage:
MarkovChain$formulation()

Method print(): Print MarkovChain object
Usage:
MarkovChain$print ()

Method clone(): The objects of this class are cloneable with this method.
Usage:
MarkovChain$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

Examples

Bt m oo
Method ~MarkovChain$new”
B —m oo

Load data set from MSwM package
data(energy, package = "MSwM")

38

Create 2-state covariate-free model and initialise transition
probability matrix
hid <- MarkovChain$new(data = energy, n_states = 2,

tpm = matrix(c(0.8, 0.3, 0.2, 0.7), 2, 2))

Create 2-state model with non-linear effect of 0il on all transition
probabilities
hid <- MarkovChain$new(data = energy, n_states = 2,

formula = ~ s(0il, k = 5, bs = "cs"))

Create 2-state model with quadratic effect of 0il on Pr(1 > 2)
structure <- matrix(c(".”, "~poly(0il, 2)",
e,
ncol = 2, byrow = TRUE)
hid <- MarkovChain$new(data = energy, n_states = 2,
formula = structure)

mvnorm_invlink

mlogit Multivariate logit function

Description

Multivariate logit function

Usage
mlogit(x)

Arguments

X Numeric vector

mvnorm_invlink Multivariate Normal inverse link function

Description

Multivariate Normal inverse link function

Usage

mvnorm_invlink(x)

Arguments

X Vector of parameters on linear predictor scale (in the order: means, SDs, corre-

lations)

mvnorm_link 39

mvnorm_link Multivariate Normal link function

Description

Multivariate Normal link function

Usage

mvnorm_link(x)

Arguments
X Vector of parameters on natural scale (in the order: means, SDs, correlations)
na_fill Fill in NAs
Description

Replace NA entries in a vector by the last non-NA value. If the first entry of the vector is NA, it is
replaced by the first non-NA value. If the vector passed as input doesn’t contain NAs, it is returned
as is.

Usage

na_fill(x)

Arguments

X Vector in which NAs should be removed

Value

Copy of x in which NAs have been replaced by nearest available value.

40

Observation

Observation

R6 class for HMM observation model

Description

Contains the data, distributions, parameters, and formulas for the observation model from a hidden
Markov model.

Methods

Public methods:

Observation$new()
Observation$data()
Observation$dists()
Observation$nstates()
Observation$par ()
Observation$par_alt()
Observation$inipar()
Observation$coeff_fe()
Observation$coeff_re()
Observation$X_fe()
Observation$X_re()
Observation$lambda()
Observation$sd_re()
Observation$formulas()
Observation$terms()
Observation$obs_var()
Observation$known_states()
Observation$fixpar()
Observation$empty ()
Observation$gam_args()
Observation$update_par()
Observation$update_coeff_fe()
Observation$update_coeff_re()
Observation$update_X_fe()
Observation$update_X_re()
Observation$update_lambda()
Observation$update_data()
Observation$update_fixpar()
Observation$make_mat ()
Observation$make_newdata_grid()
Observation$n2w()

Observation 41

* Observation$w2n()

* Observation$linpred()

* Observation$obs_probs()

* Observation$cdf ()

e Observation$suggest_initial()
e Observation$plot_dist()

e Observation$formulation()

e Observation$print()

¢ Observation$clone()

Method new(): Create new Observation object

Usage:
Observation$new(
data = NULL,
dists,
formulas = NULL,
n_states = NULL,
par,

fixpar = NULL,
gam_args = NULL
)

Arguments:

data Data frame containing response variables (named in dists and par) and covariates (named
in formulas)

dists Named list of distribution names for each data stream, with the following options: beta,
binom, cat, dir, exp, foldednorm, gamma, gamma2, Inorm, mvnorm, nbinom, norm, pois,
t, truncnorm, tweedie, vim, weibull, wrpcauchy, zibinom, zigamma, zigamma2, zinbinom,
zipois, zoibeta, ztnbinom, ztpois. See vignette about list of distributions for more details,
e.g., list of parameters for each distribution.

formulas List of formulas for observation parameters. This should be a nested list, where the
outer list has one element for each observed variable, and the inner lists have one element
for each parameter. Any parameter that is not included is assumed to have the formula ~1.
By default, all parameters have the formula ~1 (i.e., no covariate effects).

n_states Number of states (optional). If not provided, the number of states is derived from the
length of entries of par.

par List of initial observation parameters. This should be a nested list, where the outer list has
one element for each observed variable, and the inner lists have one element for each param-
eter. The choice of good initial values can be important, especially for complex models; the
package vignettes discuss approaches to selecting them (e.g., see Observation$suggest_initial()).

fixpar List with optional elements "obs" (fixed coefficients for observation parameters), and
"lambda_obs" (fixed smoothness parameters), Each element is a named vector of coeffi-
cients that should either be fixed (if the corresponding element is set to NA) or estimated to
a common value (using integers or factor levels).

gam_args Named list of arguments passed to mgcv: : gam() in Observation$make_mat(),e.g.,
"knots". Use at your own risk.

42

Observation

Returns: A new Observation object

Examples:

Load data set from MSwM package
data(energy, package = "MSwM")

Initial observation parameters
par@ <- list(Price = list(mean = c(3, 6), sd = c(2, 2)))

Model "energy” with normal distributions

obs <- Observation$new(data = energy,
dists = list(Price = "norm"),
par = paro)

Model "energy" with gamma distributions

obs <- Observation$new(data = energy,
dists = list(Price = "gamma2"),
par = paro)

Model with non-linear effect of EurDol on mean price

f <- list(Price = list(mean = ~ s(EurDol, k = 5, bs = "cs")))
obs <- Observation$new(data = energy,

dists = list(Price = "norm"),

par = par@,

formula = f)

Method data(): Data frame

Usage:
Observation$data()

Method dists(): List of distributions

Usage:
Observation$dists()

Method nstates(): Number of states

Usage:
Observation$nstates()

Method par(): Parameters on natural scale

Usage:
Observation$par(t = 1, full_names = TRUE, linpred = NULL, as_list = FALSE)

Arguments:

t Time index or vector of time indices; default t = 1. If t = "all", then return observation
parameters for all time points.

full_names Logical. If TRUE, the rows of the output are named in the format "variable.parameter”
(default). If FALSE, the rows are names in the format "parameter". The latter is used in
various internal functions, when the parameters need to be passed on to an R function.

Observation 43

linpred Optional custom linear predictor.

as_list Logical. If TRUE, the output is a nested list with three levels: (1) time step, (2)
observed variable, (3) observation parameter. If FALSE (default), the output is an array
with one row for each observation parameter, one column for each state, and one slice for
each time step.

Returns: Array of parameters with one row for each observation parameter, one column for
each state, and one slice for each time step. (See as_list argument for alternative output format.)
Examples:

Load data set from MSwM package
data(energy, package = "MSwM")

Initial observation parameters
par@ <- list(Price = list(mean = c(3, 6), sd = c(2, 2)))

Model with linear effect of EurDol on mean price
f <- list(Price = list(mean = ~ EurDol))
obs <- Observation$new(data = energy,
dists = list(Price = "norm"),
par = par@,
n_states = 2,
formula = f)

Set slope coefficients
obs$update_coeff_fe(coeff_fe = c(3, 2, 6, -2, log(2), log(2)))

Observation parameter values for given data rows
obs$par(t = c(1, 10, 20))

Method par_alt(): Alternative parameter output

This function is only useful for the categorical and multivariate normal distributions, and it formats
the parameters in a slightly nicer way.

Usage:
Observation$par_alt(var = NULL, t = 1)
Arguments:

var Name of observation variable for which parameters are required. By default, the first vari-
able in “dists’ is used.

t Time index for covariate values. Only one value should be provided.

Returns: List of distribution parameters, with one element for each state

Method inipar(): Return initial parameter values supplied
Usage:
Observation$inipar()

Method coeff_fe(): Fixed effect parameters on working scale

Usage:

44

Observation

Observation$coeff_fe()

Method coeff_re(): Random effect parameters

Usage:
Observation$coeff_re()

Method X_fe(): Fixed effect design matrix

Usage:
Observation$X_fe()

Method X_re(): Random effect design matrix
Usage:
Observation$X_re()

Method lambda(): Smoothness parameters

Usage:
Observation$lambda()

Method sd_re(): Standard deviation of smooth terms

This function transforms the smoothness parameter of each smooth term into a standard devia-
tion, given by SD = 1/sqrt(lambda). It is particularly helpful to get the standard deviations of
independent normal random effects.

Usage:
Observation$sd_re()

Method formulas(): List of model formulas for observation model

Usage:
Observation$formulas(raw = FALSE)

Arguments:
raw Logical. If FALSE, returns the nested list created by make_formulas (default). If TRUE,

returns formulas passed as input.
Method terms(): Terms of model formulas
Usage:
Observation$terms()

Method obs_var(): Data frame of response variables

Usage:
Observation$obs_var(expand = FALSE)

Arguments:

expand If TRUE, then multivariate variables in observations are expanded to be univariate,
creating extra columns.

Returns: Data frame of observation variables

Method known_states(): Vector of known states

Observation 45

Usage:
Observation$known_states(mat = TRUE)

Arguments:

mat Logical.

Method fixpar(): Fixed parameters

Usage:
Observation$fixpar(all = FALSE)

Arguments:
all Logical. If FALSE, only user-specified fixed parameters are returned, but not parameters

that are fixed for some other reason (e.g., size of binomial distribution)
Method empty(): Empty model? (for simulation only)
Usage:
Observation$empty ()
Method gam_args(): Extra arguments for mgcv::gam (passed to make_matrices)

Usage:
Observation$gam_args()

Method update_par(): Update parameters
Updates the ’par’ attribute to the list passed as input, and updates the intercept elements of ’co-
eff_fe’ using the list passed as input

Usage:
Observation$update_par(par)

Arguments:

par New list of parameters

Method update_coeff_fe(): Update coefficients for fixed effect parameters

Usage:
Observation$update_coeff_fe(coeff_fe)

Arguments:

coeff_fe New vector of coefficients for fixed effect parameters

Method update_coeff_re(): Update random effect parameters

Usage:
Observation$update_coeff_re(coeff_re)

Arguments:

coeff_re New vector of coefficients for random effect parameters

Method update_X_fe(): Update fixed effect design matrix

Usage:
Observation$update_X_fe(X_fe)

46

Observation

Arguments:
X_fe New fixed effect design matrix

Method update_X_re(): Update random effect design matrix
Usage:
Observation$update_X_re(X_re)
Arguments:
X_re New random effect design matrix

Method update_lambda(): Update smoothness parameters
Usage:
Observation$update_lambda(lambda)
Arguments:

lambda New smoothness parameter vector

Method update_data(): Update data
Usage:
Observation$update_data(data)
Arguments:
data New data frame

Method update_fixpar(): Update information about fixed parameters

Usage:
Observation$update_fixpar(fixpar)

Arguments:
fixpar New list of fixed parameters, in the same format expected by Observation$new()

Method make_mat (): Make model matrices

Usage:
Observation$make_mat (new_data = NULL)

Arguments:
new_data Optional new data set, including covariates for which the design matrices should be
created. If this argument is not specified, the design matrices are based on the original data

frame.
Returns: A list with elements:
X _fe Design matrix for fixed effects
X_re Design matrix for random effects
S Smoothness matrix for random effects
ncol_fe Number of columns of X_fe for each parameter
ncol_re Number of columns of X _re and S for each random effect

Method make_newdata_grid(): Design matrices for grid of covariates

Usage:

Observation 47

Observation$make_newdata_grid(var, covs = NULL, n_grid = 1000)

Arguments:

var Name of variable

covs Optional named list for values of covariates (other than ’var’) that should be used in the
plot (or dataframe with single row). If this is not specified, the mean value is used for
numeric variables, and the first level for factor variables.

n_grid Grid size (number of points). Default: 1000.
Returns: A list with the same elements as the output of make_mat, plus a data frame of covari-

ates values.

Method n2w(): Natural to working parameter transformation
This function applies the link functions of the distribution parameters, to transform parameters
from their natural scale to the working scale (i.e., linear predictor scale)

Usage:
Observation$n2w(par)

Arguments:
par List of parameters on natural scale

Returns: Vector of parameters on working scale

Method w2n(): Working to natural parameter transformation
This function applies the inverse link functions of the distribution parameters, to transform pa-
rameters from the working scale (i.e., linear predictor scale) to their natural scale.

Usage:
Observation$w2n(wpar)

Arguments:

wpar Vector of parameters on working scale

Returns: List of parameters on natural scale

Method linpred(): Compute linear predictor
Usage:
Observation$linpred()

Method obs_probs(): Observation likelihoods

Usage:
Observation$obs_probs(data = NULL)

Arguments:
data Optional dataframe to include in form of obs_var() output

Returns: Matrix of likelihoods of observations, with one row for each time step, and one
column for each state.
Method cdf (): Cumulative probabilities of observations

Usage:
Observation$cdf ()

48

Observation

Returns: List of cumulative probabilities, with one element for each observed variable. Matrix
rows correspond to time steps, and columns correspond to states.

Method suggest_initial(): Suggest initial observation parameters
The K-means algorithm is used to define clusters of observations (supposed to approximate the
HMM states). Then, for each cluster, the parapprox function of the relevant Dist object is used
to obtain parameter values.

Usage:

Observation$suggest_initial()

Returns: List of initial parameters for each observation variable

Examples:

Load data set from MSwM package
data(energy, package = "MSwM")

Initial observation parameters
par@ <- list(Price = list(mean = c(3, 6), sd = c(2, 2)))

Model "energy"” with normal distributions

obs <- Observation$new(data = energy,
dists = list(Price = "norm"),
par = par@,
n_states = 2)

Print observation parameters
obs$par()

Suggest initial parameters
par@_new <- obs$suggest_initial()
pard_new

Update model parameters to suggested
obs$update_par(par = par@_new)
obs$par()

Method plot_dist(): Plot histogram of data and pdfs
Plot histogram of observations for the variable specified by the argument name, overlaid with the
pdf of the specified distribution for that data stream. Helpful to select initial parameter values for
model fitting, or to visualise fitted state-dependent distributions.

Usage:

Observation$plot_dist(var = NULL, weights = NULL, t = 1)

Arguments:

var Name of response variable for which the histogram and pdfs should be plotted.

weights Optional vector of length the number of pdfs that are plotted. Useful to visualise a
mixture of distributions weighted by the proportion of time spent in the different states.

t Index of time step to use for covariates (default: 1).

Returns: A ggplot object

Observation

Method formulation(): Print model formulation

Usage:
Observation$formulation()

Method print(): Print Observation object Check constructor arguments

Usage:
Observation$print ()

Method clone(): The objects of this class are cloneable with this method.

Usage:
Observation$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

B m oo
Method ~Observation$new”
Y m o m

Load data set from MSwM package
data(energy, package = "MSwM")

Initial observation parameters
par@ <- list(Price = list(mean = c(3, 6), sd = c(2, 2)))

Model "energy” with normal distributions

obs <- Observation$new(data = energy,
dists = list(Price = "norm”),
par = pard)

Model "energy"” with gamma distributions

obs <- Observation$new(data = energy,
dists = list(Price = "gamma2"),
par = pard)

Model with non-linear effect of EurDol on mean price
f <- list(Price = list(mean = ~ s(EurDol, k = 5, bs = "cs")))
obs <- Observation$new(data = energy,

dists = list(Price = "norm"),
par = paro,
formula = f)
B oo
Method ~Observation$par”
B o

Load data set from MSwM package
data(energy, package = "MSwM")

50

Initial observation parameters
par@ <- list(Price = list(mean = c(3, 6), sd = c(2, 2)))

Model with linear effect of EurDol on mean price
f <- list(Price = list(mean = ~ EurDol))
obs <- Observation$new(data = energy,
dists = list(Price = "norm"),
par = par@,
n_states = 2,
formula = f)

Set slope coefficients
obs$update_coeff_fe(coeff_fe = c(3, 2, 6, -2, log(2), log(2)))

Observation parameter values for given data rows
obs$par(t = c(1, 10, 20))

oo
Method ~Observation$suggest_initial~
e L P e

Load data set from MSwM package
data(energy, package = "MSwM")

Initial observation parameters
par@ <- list(Price = list(mean = c(3, 6), sd = c(2, 2)))

Model "energy" with normal distributions

obs <- Observation$new(data = energy,
dists = list(Price = "norm"),
par = paro,
n_states = 2)

Print observation parameters
obs$par()

Suggest initial parameters
par@_new <- obs$suggest_initial()
paro_new

Update model parameters to suggested
obs$update_par(par = par@_new)
obs$par()

prec_to_cov

prec_to_cov

Get covariance matrix from precision matrix

Description

The covariance matrix is the inverse of the precision matrix. By default, the function solve is used
for inversion. If it fails (e.g., singular system), then MASS: :ginv is used instead, and returns the

quad_pos_solve 51

Moore-Penrose generalised inverse of the precision matrix.

Usage

prec_to_cov(prec_mat)

Arguments
prec_mat Precision matrix (either of *matrix’ type or sparse matrix on which as.matrix can
be used)
Value
Precision matrix
quad_pos_solve Solve for positive root of quadratic ax™2 + bx + ¢ = 0 when it exists

Description

Solve for positive root of quadratic ax"2 + bx + ¢ = 0 when it exists

Usage

quad_pos_solve(a, b, c)

Arguments
a coefficient of x"2
b coefficient of x
C scalar coefficient
Value

real positive root if it exists

52

rwrpcauchy

rvm Sample from von Mises distribution

Description

Sample from von Mises distribution

Usage

rvm(n, mu, kappa)

Arguments

n Number of samples

mu Mean parameter

kappa Concentration parameter
Details

Uses basic rejection sampling, based on dvm(), which might be inefficient for large kappa. Could
be improved following Best & Fisher (1979), Efficient simulation of the von Mises distribution,

JRSSC, 28(2), 152-157.

Value

Vector of n samples from vm(mu, kappa)

rwrpcauchy Sample from wrapped Cauchy distribution

Description

Sample from wrapped Cauchy distribution

Usage

rwrpcauchy(n, mu, rho)

Arguments
n Number of samples
mu Mean parameter

rho Concentration parameter

strip_comments 53
Details

Uses basic rejection sampling, based on dwrpcauchy(), which might be inefficient for large rho.

Value

Vector of n samples from wrpcauchy(mu, rho)

strip_comments Strip comments marked with a hash from a character vector

Description

Strip comments marked with a hash from a character vector

Usage

strip_comments(str)

Arguments

str the character vector

Value

character vector with comments removed (and lines with only comments completely removed)

update.HMM Update a model to a new model by changing one formula

Description

Update a model to a new model by changing one formula

Usage

S3 method for class 'HMM'
update(object, type, i, j, change, fit = TRUE, silent = FALSE, ...)

54 update. HMM

Arguments
object HMM model object
type Character string for the part of the model that is updated (either "hid" or "obs")
i If type = "hid" then i is the row of the formula containing the change. If type =
"obs" then i is the observation variable name.
j If type = "hid" then j is the column of the formula containing the change. If type
= "obs" then j is the parameter whose formula is to be changed.
change The change to make to the formula, see ?update.formula for details.
fit If FALSE then change is made but model is not re-fit.
silent If TRUE then no model fitting output is given
Additional arguments are ignored (for compatibility with generic S3 method)
Examples

Load data set from MSwM package
data(energy, package = "MSwM")

Create hidden state and observation models
hid <- MarkovChain$new(data = energy, n_states = 2)
par@ <- list(Price = list(mean = c(3, 6), sd = c(2, 3)))
obs <- Observation$new(data = energy, n_states = 2,
dists = list(Price = "norm”),
par = pard)

Create HMM (no covariate effects)
hmm <- HMM$new(hid = hid, obs = obs)
hmm$hid()$formula()
hmm$obs () $formulas()

Update transition probability formulas (one at a time)
hmm <- update(hmm, type = "hid"”, i =1, j = 2,

change = ~ . + 0il, fit = FALSE)
hmm <- update(hmm, type = "hid", i =2, j =1,
change = ~ . + Gas + Coal, fit = FALSE)
hmm$hid()$formula()

Update observation parameter formulas (one at a time)
hmm <- update(hmm, type = "obs"”, i = "Price”, j = "mean”,

change = ~ . + EurDol, fit = FALSE)
hmm$obs () $formulas()

Index

x datasets
hmmTMB_cols, 25

as_character_formula, 2
as_sparse, 3

bdiag_check, 3

check_contiguous, 4
cov_grid, 4

Dist, 5
dvm, 9
dwrpcauchy, 10

find_re, 10
gdeterminant, 11

HMM, 11
hmmTMB_cols, 25

invmlogit, 25
is_whole_number, 26

loglik.HMM, 26
logsumexp, 27

make_cov, 27
make_formulas, 28
make_matrices, 29
MarkovChain, 29
mlogit, 38
mvnorm_invlink, 38
mvnorm_link, 39

na_fill, 39
Observation, 40
prec_to_cov, 50

quad_pos_solve, 51

55

rvm, 52
rwrpcauchy, 52

strip_comments, 53

update.HMM, 53

	as_character_formula
	as_sparse
	bdiag_check
	check_contiguous
	cov_grid
	Dist
	dvm
	dwrpcauchy
	find_re
	gdeterminant
	HMM
	hmmTMB_cols
	invmlogit
	is_whole_number
	logLik.HMM
	logsumexp
	make_cov
	make_formulas
	make_matrices
	MarkovChain
	mlogit
	mvnorm_invlink
	mvnorm_link
	na_fill
	Observation
	prec_to_cov
	quad_pos_solve
	rvm
	rwrpcauchy
	strip_comments
	update.HMM
	Index

