
Package ‘hmm.discnp’
October 13, 2022

Version 3.0-9

Date 2022-09-26

Title Hidden Markov Models with Discrete Non-Parametric Observation
Distributions

Author Rolf Turner

Maintainer Rolf Turner <r.turner@auckland.ac.nz>

Depends R (>= 2.10)

Imports nnet (>= 7.3.12)

Description Fits hidden Markov models with discrete non-parametric
observation distributions to data sets. The observations may
be univariate or bivariate. Simulates data from such models.
Finds most probable underlying hidden states, the most
probable sequences of such states, and the log likelihood
of a collection of observations given the parameters of
the model. Auxiliary predictors are accommodated in the
univariate setting.

LazyData true

ByteCompile true

License GPL (>= 2)

NeedsCompilation yes

Repository CRAN

Date/Publication 2022-09-26 09:10:06 UTC

R topics documented:
anova.hmm.discnp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
ccprSim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
cnvrtRho . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
fitted.hmm.discnp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
hmm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
hydroDat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1



2 anova.hmm.discnp

lesionCount . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
logLikHmm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
misstify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
mps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
nafracCalc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
pr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
predict.hmm.discnp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
rhmm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
scovmat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
sp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
squantCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
SydColDisc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
update.hmm.discnp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
viterbi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
weissData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Index 47

anova.hmm.discnp Anova for hmm.discnp models

Description

Performs a likelihood ratio test to compare two discrete non-parametric hidden Markov models.

Usage

## S3 method for class 'hmm.discnp'
anova(object, ...)

Arguments

object An object of class “hmm.discnp” as returned by the function hmm().

... A second object of class “hmm.discnp”. There must be only one such object.

Value

A list with entries

stat The likelihood ratio statistic.

df The degrees of freedom.

pvalue The p-value of the test.

This list has an attribute “details” which is a vector consisting of the first and second log likelihoods
and the associated numbers of parameters, in order of these numbers of parameters. (See Warning.)



ccprSim 3

Warning

Hidden Markov models can be numerically delicate and the fitting algorithm can converge to a local
maximum of the likelihood surface which is not the global maximum. Thus it is entirely possible
for the log likelihood of the model with the greater number of parameters to be smaller than that of
the model with the lesser number of parameters.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

hmm()

Examples

xxx <- with(SydColDisc,split(y,f=list(locn,depth)))
fit1 <- hmm(xxx,K=1,itmax=10)
fit2 <- hmm(xxx,K=2,itmax=10)
anova(fit1,fit2)

ccprSim Simulated monocyte counts and psychosis symptoms.

Description

Discretised values of monocyte counts, and ratings of level of psychosis simulated from a model
fitted to a data set consisting of observations made on a number of patients from the Northern
District Health Board system. The real data must be kept confidential due to ethics constraints.

Usage

data("ccprSim")

Format

The object ccprSim is a list of length 1258. Each entry of this list is to be considered to correspond
to an individual subject. The entries consist of matrices having two columns named cellCount and
psychosisRating. The number of rows of these matrices varies from entry to entry of the list (i.e.
from subject to subject).

Most of the entries of these matrices are NA. The entries are temporally ordered and correspond to
the number of weeks from the start of observation. Observations in the real data set were made only
when the patient in question visted a physician and so weeks in which no visit was made resulted in
an “observation” of NA. The object ccprSim was simulated in such a way as to imitate this character-
istic. The fraction of missing observations in each variate (i.e. cellCount and psychosisRating
is roughly commensurate with the corresponding fractions in the real data.



4 cnvrtRho

The values in the first column of each matrix (the cellCount column) consist of integers from 1
to 5 and are to be interpreted as indicators of cell counts in units of 109 cells per litre, discretised
according to the following scale:

• 0.0 ≤ c ≤ 0.3↔ 1

• 0.3 < c ≤ 0.5↔ 2

• 0.5 < c ≤ 0.7↔ 3

• 0.7 < c ≤ 1.0↔ 4

• 1.0 < c ≤ 2.0↔ 5

where c represents “count”.

The values in the second column of each matrix (the psychosisRating column consist of integers
from 0 to 4 and are to be interpreted as indicators of a physician’s assessment of the level of pschosis
of the patient. A value of 0 corresponds to “no symptoms”; a value of 4 corresponds to “severe”.

The question of essential interest in respect of the real data was “Is there any association between the
cell count values and the psychosis ratings?” More specifically it was “Can the level of psychosis
be predicted from the cell counts?”

Source

The real data, on the basis of which these data were simulated, were supplied by Dr. Jonathan
Williams, Northern District Health Board.

Examples

## Not run: # Takes too long.
fit <- hmm(ccprSim,K=2,indep=FALSE,itmax=5,verbose=TRUE)

## End(Not run)

cnvrtRho Convert Rho between forms.

Description

Converts a matrix specification of the emission probabilities (in which the probabilities are simply
the entries of the matrix) to a data frame specification (in which the probabilities are a logistic-style
function of the parameters) or vice versa.

Usage

cnvrtRho(Rho)



fitted.hmm.discnp 5

Arguments

Rho A specification of the emission probabilities of a discrete valued hidden Markov
model. It may be either a matrix of these probabilities, in which case it is con-
verted to a three column data frame, or it may be a three column data frame,
in which case it is converted to a matrix of probabilities. See hmm() for more
details about the structure of Rho, in either form.

Details

The data frame specification of Rho allows for predictor variables x. If Rho is of the data frame
form, and is designed to allow for predictor variables, then it will have more than three columns and
cannot be converted to the matrix form. In such cases cnvrtRho will throw an error.

Value

A data frame if the argument Rho is a matrix, or a matrix if the argument Rho is a data frame.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

hmm()

Examples

Yval <- LETTERS[1:10]
Tpm <- matrix(c(0.75,0.25,0.25,0.75),ncol=2,byrow=TRUE)
Rho <- cbind(c(rep(1,5),rep(0,5)),c(rep(0,5),rep(1,5)))/5
rownames(Rho) <- Yval
newRho <- cnvrtRho(Rho)
oldRho <- cnvrtRho(newRho)

fitted.hmm.discnp Fitted values of a discrete non-parametric hidden Markov model.

Description

Calculates the fitted values of a discrete non-parametric hidden Markov model. If the data are
numeric these are the conditional expectations of the observations, given the entire observation
sequence (and the estimated parameters of the model). If the data are categorical (whence “expec-
tations” make no sense) the “fitted values” are taken to be the probabilities of each of the possible
values of the observations, at each time point.



6 fitted.hmm.discnp

Usage

## S3 method for class 'hmm.discnp'
fitted(object, warn=TRUE, drop=TRUE, ...)

Arguments

object An object of class hmm.discnp as returned by hmm().

warn Logical scalar. See the help for sp().

drop Logical scalar. If there is a single sequence of observations (i.e. if object[["y"]]
consists of a matrix or a list of length 1) and if drop is TRUE then the returned
value is a single entity (matrix, list of two matrices, or 3-dimensional array, de-
pending on circumstances. Otherwise the returned value is a list of such entities,
one for each observation sequence.

... Not used.

Details

The observation sequence(s) must be present in object (which will be the case if object was
returned by hmm() and if the argument keep.y was set to TRUE). If it is not present an error is
thrown.

However, if such an error is thrown, do not despair! You do not have to start from scratch when
fitting your model with keep.y==TRUE. If fit is your fitted model that you obtained without setting
keep.y==TRUE, then you can just re-fit the model using fit as the starting values:

fit2 <- hmm(<whatever>,par0=fit,keep.y=TRUE)

This will of course converge instantaneously. You could also do:

fit2 <- update(fit,data=<whatever>,keep.y=TRUE)

Value

If the observations consist of a single sequence and if drop is TRUE then the returned value consists
of a single object (matrix, list of two matrices, or 3-dimensional array, depending on circumstances;
see below). Otherwise the returned value is a list of such objects, one for each observation sequence.

If the observations are numeric then the object corresponding to each observation sequence is a
matrix. If the model is univariate (see hmm()) then matrix has a single column constituting the
sequence of fitted values corresponding to the observations in the given sequence. The number of
rows is the number of observations and the entry in row t is the fitted value (conditional expection)
corresponding to the observation made at time t. If the model is bivariate (either independent or
dependent) then the matrix has two columns corresponding respectively to the two variables in the
bivariate model.

If the observations are categorical then the nature of the object returned changes substantially de-
pending on whether the data are univariate, bivariate independent or bivariate dependent. (See
hmm().



hmm 7

In the unvariate case the object corresponding to each sequence is a matrix, the number of rows
of which is the number of observations and the number of columns of which is the number of
unique possible values of the observations. The entry of this matrix in row t and column j is the
conditional probability that an emission, at time t, is equal to ui where u1, . . . , um are the unique
possible values.

In the bivariate independent case the object is a list of two matrices, each of which is of the same
nature as that produced in the univariate case, corresponding respectively to the first and second of
the two variables.

In the bivariate dependent case the object is a 3-dimensional array of dimension m1 × m2 × n
where m1 is the number of unique possible values of the first variable, m2 is the number of unique
possible values of the second variable, and n is the number of observations. The (i,j,t)-th entry
of this array is the conditional probability that an emission, at time t, is equal to (ui, vj) where the
ui are the unique possible values of the first variable and the vj are the unique possible values of
the second variable.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

sp() link{predict.hmm.discnp}()

Examples

P <- matrix(c(0.7,0.3,0.1,0.9),2,2,byrow=TRUE)
R <- matrix(c(0.5,0,0.1,0.1,0.3,

0.1,0.1,0,0.3,0.5),5,2)
set.seed(42)
lll <- sample(250:350,20,TRUE)
y <- rhmm(ylengths=lll,nsim=1,drop=TRUE,tpm=P,Rho=R)
fit <- hmm(y,K=2,verb=TRUE,keep.y=TRUE,itmax=10)
fv <- fitted(fit)

hmm Fit a hidden Markov model to discrete data.

Description

Effects a maximum likelihood fit of a hidden Markov model to discrete data where the observations
come from one of a number of finite discrete distributions, depending on the (hidden) state of the
Markov chain. These distributions (the “emission probabilities”) are specified non-parametrically.
The observations may be univariate, independent bivariate, or dependent bivariate. By default this
function uses the EM algorithm. In the univariate setting it may alternatively use a “brute force”
method.



8 hmm

Usage

hmm(y, yval=NULL, par0=NULL, K=NULL, rand.start=NULL,
method=c("EM","bf","LM","SD"), hglmethod=c("fortran","oraw","raw"),
optimiser=c("nlm","optim"), optimMethod=NULL, stationary=cis,
mixture=FALSE, cis=TRUE, indep=NULL, tolerance=1e-4, digits=NULL,
verbose=FALSE, itmax=200, crit=c("PCLL","L2","Linf","ABSGRD"),
X=NULL,keep.y=FALSE, keep.X=keep.y,
addIntercept=TRUE, lmc=10, hessian=FALSE,...)

Arguments

y A vector or a list of vectors, or one or two column matrix (bivariate setting)
or a list of such matrices; missing values are allowed. If y is a vector, or list
of vectors (of discrete data) these vectors are coerced to one column matrices.
The entries of these vectors or matrices may be numeric or character and are
assumed to constitute discrete data.

yval A vector (of length m, say) of possible values for the data or a list of two such
vectors (of lengths m1 and m2, say, one for each of the two variates in the bivariate
settings). These vectors default to the sorted unique values of the respective
variates as provided in y. If yval is supplied and any value of y does not match
some value of yval, then an error is thrown.
The argument yval is provided so as to allow for fitting of models to data in
which some of the data values “of interest” were never observed. The estimated
emission probabilities of such “never observed” values will of course be zero.

par0 An optional (named) list of starting values for the parameters of the model, with
components tpm (transition probability matrix), optionally ispd (initial state
probability distribution) and Rho. The object Rho specifies the probability that
the observations take on each of the possible values of the variate or variates,
given the state of the hidden Markov chain. See Details. Note that in the case of
independent bivariate data Rho is a list of two matrices. These matrices may (and
in general will) have different row dimensions, but must have identical column
dimensions (equal to K, the number of states; see below).
If the model is stationary (i.e. if stationary is TRUE) then you should almost
surely not specify the ispd component of par0. If you do specify it, it really
only makes sense to specify it to be the stationary distribution determined by
tpm and this is a waste of time since this is what the code will take ispd to be if
you leave it unspecified.
If par0 is not specified, starting values are created by the (undocumented) func-
tion init.all().

K The number of states in the hidden Markov chain; if par0 is not specified K
MUST be; if par0 is specified, K is ignored.
Note that K=1 is acceptable; if K is 1 then all observations are treated as being
independent and the non-parametric estimate of the distribution of the observa-
tions is calculated in the “obvious” way.

rand.start Either a logical scalar or a list consisting of two logical scalars which must be
named tpm and Rho. If the former, it is converted internally into a list with



hmm 9

entries named tpm and Rho, both having the same value as the original argu-
ment. If tpm is TRUE then the function init.all() chooses entries for the starting
value of tpm at random; likewise for Rho. If left NULL, this argument defaults to
list(tpm=FALSE,Rho=FALSE).

method Character string, either "bf", "EM", "LM" or "SD" (i.e. use numerical maximisa-
tion via either nlm() or optim(), the EM algorithm, the Levenberg-Marquardt
algorithm, or the method of steepest descent). May be abbreviated. Currently
the "bf", "LM" and "SD" methods can be used only in the univariate setting,
handle only stationary models (see below) and do not do mixtures.

hglmethod Character string; one of "fortran", "oraw" or "raw". May be abbreviated.
This argument determines the procedure by which the hessian, gradient and log
likelihood of the model and data are calculated. If this is argument is equal
to "fortran" (the default) then (obviously!) dynamically loaded fortran sub-
routines are used. The other two possibilities effect the calculations in raw R;
"oraw" (“o” for “original” uses code that is essentially a direct transcription
of the fortran code, do-loops being replaced by for-loops. With method "raw"
the for-loops are eliminated and matrix-vector calculations are applied. The
"oraw" method is about 25 times slower than the "fortran" method and the
"raw" method is (surprisingly?) even worse; it is more than 30 times slower.
The “raw” methods are present mainly for debugging purposes and would not
usually be used in practice. This argument is used only if the method is "LM"
or "SD" (and is involved only peripherally in the latter instance). It is ignored
otherwise.

optimiser Character string specifying the optimiser to use when the “"bf"” method of
optimisation is chosen. It should be one of "nlm" or "optim", and may be
abbreviated. Ignored unless method="bf".

optimMethod Character string specifying the optimisation method to be used by optim().
Should be one of "Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", or
"Brent". Ignored if the method is not "bf" or if the optimiser is not "optim".

stationary Logical scalar. If TRUE then the model is fitted under the stationarity assump-
tion, i.e. that the Markov chain was in steady state at the time that observations
commenced. In this case the initial state probability distribution is estimated as
the stationary distribution determined by the (estimated) transition probability
matrix. Otherwise if cis (see below) is TRUE the initial state probability distri-
bution is estimated as the mean of the vectors of conditional probabilities of the
states, given the observation sequences, at time t=1. If stationary is TRUE and
cis is FALSE an error is thrown. Currently if the method is "bf", "LM" or "SD",
and stationary is FALSE, then an error is thrown.

mixture A logical scalar; if TRUE then a mixture model (all rows of the transition prob-
ability matrix are identical) is fitted rather than a general hidden Markov model.
Currently an error is thrown if mixture=TRUE and the method is "bf", "LM" or
"SD".

cis A logical scalar specifying whether there should be a constant initial state
probability distribution. If stationary is FALSE and cis is FALSE then the
initial state probability distribution for a given observation sequence is equal to
1 where the (first) maximum of the vector of conditional probabilities of the



10 hmm

states, given the observation sequences, at time t=1, occurs, and is 0 elsewhere.
If stationary is TRUE and cis is FALSE an error is given.

indep Logical scalar. Should the bivariate model be fitted under the assumption that
the two variables are (conditionally) independent give the state? If this argument
is left as NULL its value is inferred from the structure of Rho in par0 if the latter
is supplied. If the data are bivariate and neither indep nor par0 is supplied, then
an error is given. If the data are bivariate and if the value of indep is inconsistent
with the structure of par0$Rho then an error is given. If the data are univariate
then indep is ignored.

tolerance If the value of the quantity used for the stopping criterion is less than tolerance
then the algorithm is considered to have converged. Ignored if method="bf".
Defaults to 1e-4.

digits Integer scalar. The number of digits to which to print out “progress reports”
(when verbose is TRUE). There is a “sensible” default (calculated from tolerance).
Not used if the method is "bf".

verbose A logical scalar determining whether to print out details of the progress of the
algorithm. If the method is "EM", "LM" or "SD" then when verbose is TRUE
information about the convergence criteria is printed out at every step that the
algorithm takes. If method="bf" then the value of verbose determines the value
of the argument print.level of nlm() or the value of the argument trace of
optim(). In the first case, if verbose is TRUE then print.level is set to 2,
otherwise it is set to 0. In the second case, if verbose is TRUE then trace is set
to 6, otherwise it is set to 0.

itmax When the method is "EM", "LM" or "SD" this is the maximum number of steps
that the algorithm takes. If the convergence criterion has not been met by the
time itmax steps have been performed, a warning message is printed out, and
the function stops. A value is returned by the function anyway, with the logical
component converged set to FALSE. When method="bf" the itmax argument is
passed to nlm() as the value of iterlim or to optim() as the value of maxit. If
the (somewhat obscure) convergence criteria of nlm() or optim() have not been
met by the time itmax “iterations” have been performed, the algorithm ceases.
In this case, if nlm() is used. the value of code in the object returned set equal
to 4 and if optim() is used then the value of convergence returned is set equal
to 1. Note that the value of code, respectively convergence is returned as the
converged component of the object returned by hmm(). A value of 1 indicates
successful completion of the nlm() procedure. A value of 0 indicates successful
completion of the optim() procedure.

crit The name of the stopping criterion used. When method="EM" it must be one
of "PCLL" (percent change in log-likelihood; the default), "L2" (L-2 norm,
i.e. square root of sum of squares of change in coefficients), or "Linf" (L-
infinity norm, i.e. maximum absolute value of change in coefficients). When
method="LM" or method="SD" there is a fourth possibility, namely "ABSGRD"
the (maximum) absolute value of the gradient. It may not be advisable to use
this criterion in the current context (i.e. that of discrete non-parametric distri-
butions). See Warnings. This argument defaults to "PCLL". It is ignored if
method="bf". (The nlm() and optim() functions have their own obscure stop-
ping criteria.)



hmm 11

X An optional numeric matrix, or a list of such matrices, of “auxiliary” predictors.
The use of such predictors is (currently, at least) applicable only in the univariate
emissions setting. If X is a list it must be of the same length as y and all entries
of this list must have the same number of columns. If the columns of any entry
of the list are named, then they must be named for all entries, and the column
names must be the same for all entries. The number of rows of each entry must
be equal to the length of the corresponding entry of y. If X is a matrix then y
should be a vector or one-column matrix (or a list with a single entry equal to
such).
There may be at most one constant column in X or the components thereof. If
there are any constant columns there must be precisely one (in all components
of X), it must be the first column and all of its entries must be equal to 1. If the
columns have names, the names of this first column must be "Intercept".
Note that X (or its entries) must be a numeric matrix (or must be numeric ma-
trices) — not data frames! Factor predictors are not permitted. It may be
possible to use factor predictors by supplying X or its entries as the output of
model.matrix(); this will depend on circumstances.
The fitted coefficients that are produced when X is supplied, are (to put it mildly)
a bit difficult to interpret. See Fitted Coefficients of Auxiliary Predictors for
some discussion.

keep.y Logical scalar; should the observations y be returned as a component of the
value of this function?

keep.X Logical scalar; should the predictors X be returned as a component of the value
of this function? Note that the value of keep.X will be silently set equal to
FALSE unless it actually “makes sense” to keep X. I.e. unless the observations
are univariate and X is actually supplied, i.e. is not NULL.

addIntercept Logical scalar. Should a column of ones, corresponding to an intercept term, be
prepended to each of the matrices in the list X? If each of these matrices already
has an initial column of ones, then setting addIntercept=TRUE results in an
error being thrown. If this is not the case, then by default an initial column of
ones is added.

lmc Numeric scalar. The (initial) “Levenberg-Marquardt correction” parameter. Used
only if method="LM", otherwise ignored.

hessian Logical scalar. Should the hessian matrix be returned? This argument is relevant
only if method="bf" (in which case it is passed along to hmmNumOpt()) and is
ignored otherwise. This argument should be set to TRUE only if you really want
the hessian matrix. Setting it to TRUE causes a substantial delay between the
time when hmm() finishes its iterations and when it actually returns a value.

... Additional arguments passed to hmmNumOpt(). There is one noteworthy argu-
ment useAnalGrad which is used “directly” by hmmNumOpt(). This argument is
a logical scalar and if it is TRUE then calls to nlm() or optim() are structured so
that an analytic calculation of the gradient vector (implemented by the internal
function get.gl() is applied. If it is FALSE then finite difference methods are
used to calculate the gradient vector. If this argument is not specified it defaults
to FALSE. Note that the name of this argument cannot be abbreviated.
Other “additional arguments” may be supplied for the control of nlm() and are
passed on appropriately to nlm(). These are used only if method="bf" and if



12 hmm

optimiser="nlm". These “. . . ” arguments might typically include gradtol,
stepmax and steptol. They should NOT include print.level or iterlim.
The former argument is automatically passed to nlm() as 0 if verbose is FALSE
and as 2 if verbose is TRUE. The latter argument is automatically passed to
nlm() with the value of itmax.

Details

• Univariate case: In the univariate case the emission probabilities are specified by means of
a data frame Rho. The first column of Rho, named "y", is a factor consisting of the possible
values of the emissions, repeated K times (where K is the number of states). The second
column, named states, is a factor consisting of integer values 1, 2, ..., K. Each of these
values is repeated m times where m is the length of yval. Further columns of Rho are numeric
and consist of coefficients of the linear predictor of the probabilities of the various values of
y. If X is NULL then Rho has only one further column named Intercept.
If X is not NULL then the Intercept column is present only if addIntercept is TRUE. There
as many (other, in addition to the possible Intercept column) numeric columns as there are
columns in X or in the matrices in the list X. The names of these columns are taken to be the
column names of X or the first entry of X if such column names are present. Otherwise the
names default to V1, V2 . . . .
The probabilities of the emissions taking on their various possible values are given by

Pr(Y = yi|x, state = S) = `i/

m∑
j=1

`j

where `j is the jth entry of β>x and where in turn x is the vector of predictors and β is the
coefficient vector in the linear predicator that corresponds to yi and the hidden state S. For
identifiability the vectors β corresponding to the first value of Y (the first level of Rho$y) are
set equal to the zero vector for all values of the state S.
Note that the Rho component of the starting values par0 may be specified as a matrix of
probabilities, with rows corresponding to possible values of the observations and columns
corresponding to states. That is the Rho component of par0 may be provided in the form
Rho = [ρij ] where ρij = Pr(Y = yi|S = j). This is permissible as long as X is NULL and may
be found to be more convenient and intuitive. If the starting value for Rho is provided in matrix
form it is (silently) converted internally into the data frame form, by the (undocumented)
function cnvrtRho().
When argument X is not NULL, it is difficult to specify a “reasonable” value for the Rho com-
ponent of par0. One might try to specify par0$Rho in the data frame form. The question of
how to specify the columns of par0$Rho corresponding to the auxiliary predictors (columns
of X or of the entries of X) is a thorny one.
It is permissible in these circumstances to specify par0$Rho as a matrix of probabilities, just as
one would do if X were NULL. In this setting the (undocumented) function checkStartVal()
converts the matrix of probabilities to data frame form and then appends columns, all of whose
entries are 0, corresponding to the auxiliary predictors. When par0 is unspecified, the (undoc-
umented) function init.all() performs similar construction to accommodate a non-NULL
value of X. Whether the resulting starting value for Rho makes any real sense, is questionable.
However little else can be done.



hmm 13

• Independent bivariate case: the emission probabilities are specified by a list of two matrices.
In this setting Pr(Y1, Y2) = (yi1, yi2)|S = j) = ρ

(1)
i1,j

ρ
(2)
i2,j

where R(k) = [ρ
(k)
ij ] (k = 1, 2) are

the two emission probability matrices.

• Dependent bivariate case: the emission probabilities are specified by a three dimensional
array. In this setting Pr((Y1, Y2) = (yi1, yi2)|S = j) = ρi1,i2,j where R = [ρijk] is the
emission probability array.

The hard work of calculating the recursive probabilities used to fit the model is done by a Fortran
subroutine recurse (actually coded in Ratfor) which is dynamically loaded. In the univariate case,
when X is provided, the estimation of the “linear predictor” vectors β is handled by the function
multinom() from the nnet package. Note that this is a “Recommended” package and is thereby
automatically available (i.e. does not have to be installed).

Value

A list with components:

Rho The fitted value of the data frame, list of two matrices, or array Rho (in the case
of a univariate model, a bivariate independent model or a bivariate dependent
model respectively) specifying the distributions of the observations (the “emis-
sion” probabilities).

Rho.matrix Present only in the univariate setting. A matrix whose entries are the (fitted)
emission probabilities, row corresponding to values of the emissions and columns
to states. The columns sum to 1. This component provides the same information
as Rho, but in a more readily interpretable form.

tpm The fitted value of the transition probability matrix tpm.

stationary Logical scalar; the value of the stationary argument.

ispd The fitted initial state probability distribution, or a matrix of initial state proba-
bility distributions, one (column) of ispd for each observation sequence.
If stationary is TRUE then ispd is assumed to be the (unique) stationary distri-
bution for the chain, and thereby determined by the transition probability matrix
tpm. If stationary is FALSE and cis is TRUE then ispd is estimated as the
mean of the vectors of conditional probabilities of the states, given the observa-
tion sequences, at time t=1.
If cis is FALSE then ispd is a matrix whose columns are the vectors of condi-
tional probabilities of the states, given the observation sequences, at time t=1,
as described above. (If there is only one observation sequence, then this —
one-column — matrix is converted into a vector.)

log.like The final (maximal, we hope!) value of the log likelihood, as determined by the
maximisation procedure.

grad The gradient of the log likelihood. Present only if the method is "LM" or "bf"
and in the latter case then only if the optimiser is nlm().

hessian The hessian of the log likelihood. Present only if the method is "LM" or "bf".

stopCrit A vector of the (final) values of the stopping criteria, with names "PCLL", "L2",
"Linf" unless the method is "LM" or "SD" in which case this vector has a fourth
entry named "ABSGRD".



14 hmm

par0 The starting values used by the algorithms. Either the argument par0, or a
similar object with either or both components (tpm and Rho) being created by
rand.start().

npar The number of parameters in the fitted model. Equal to nispar + ntpmpar +
nrhopar where (1) nispar is 0 if stationary is TRUE and is K-1 otherwise; (2)
ntpmpar is K*(K-1) (3) nrhopar is

• (nrow(Rho) - K)*(ncol(Rho)-2) for univariate models
• K*(sum(sapply(Rho,nrow))-K) for bivariate independent models
• prod(dim(Rho))-K for bivariate dependent models.

bicm Numeric scalar. The number by which npar is multiplied to form the BIC cri-
terion. It is essentially the log of the number of observations. See the code of
hmm() for details.

converged A logical scalar indicating whether the algorithm converged. If the EM, LM
or steepest descent algorithm was used it simply indicates whether the stopping
criterion was met before the maximum number (itmax) of steps was exceeded.
If method="bf" then converged is based on the code component of the ob-
ject returned by the optimiser when nlm() was used, or on the convergence
component when optim() was used. In these cases converged has an attribute
(code or convergence respectively) giving the (integer) value of the relevant
component.
Note that in the nlm() case a value of code equal to 2 indicates “probable”
convergence, and a value of 3 indicates “possible” convergence. However in
this context converged is set equal to TRUE only if code is 1.

nstep The number of steps performed by the algorithm if the method was "EM", "LM"
or "SD". The value of nstep is set equal to the iterations component of the
value returned by nlm() if method="bf".

prior.emsteps The number of EM steps that were taken before the method was switched from
"EM" to "bf" or to "LM". Present only in values returned under the "bf" or "LM"
methods after a switch from "EM" and is equal to 0 if either of these methods
was specified in the initial call (rather than arising as the result of a switch).

ylengths Integer vector of the lengths of the observation sequences (number of rows if the
observations are in the form of one or two column matrices).

nafrac A real number between 0 and 1 or a pair (two dimensional vector) of such num-
bers. Each number is the the fraction of missing values if the corresponding
components of the observations.

y An object of class "tidyList". It is a tidied up version of the observations; i.e.
the observations y after the application of the undocumented function tidyList().
Present only if keep.y is TRUE.

X An object of class "tidyList". It is tidied up version of the predictor matrix or
list of predictor matrices; i.e. the argument X after the application of tidyList()
(with argument rp set to "predictor". Present only if X is supplied, is an
appropriate argument, and if keep.X is TRUE.

parity Character string; "univar" if the data were univariate, "bivar" if they were
bivariate.

numeric Logical scalar; TRUE if the (original) data were numeric, FALSE otherwise.



hmm 15

AIC The value of AIC = -2*log.like + 2*npar for the fitted model.

BIC The value of BIC = -2*log.like + log(nobs)*npar for the fitted model. In the
forgoing nobs is the number of observations. This is the number of non-missing
values in unlist(y) in the univariate setting and one half of this number in the
bivariate setting.

args A list of argument values supplied. This component is returned in the interest
of making results reproducible. It is also needed to facilitate the updating of a
model via the update method for the class hmm.discnp, update.hmm.discnp().
It has components:

• method

• optimiser

• optimMethod

• stationary

• mixture

• cis

• tolerance

• itmax

• crit

• addIntercept

Thanks

A massive nest of bugs was eliminated in the transition from version 3.0-8 to version 3.0-9. These
bugs arose in the context of using auxiliary predictor variables (argument X). The handling of such
auxiliary predictors was completely messed up. I am grateful to Leah Walker for pointing out the
problem to me.

Warnings

The ordering of the (hidden) states can be arbitrary. What the estimation procedure decides to call
“state 1” may not be what you think of as being state number 1. The ordering of the states will be
affected by the starting values used.

Some experiences with using the "ABSGRD" stopping criterion indicate that it may be problematic in
the context of discrete non-parametric distributions. For example a value of 1854.955 was returned
after 200 LM steps in one (non-convergent, of course!) attempt at fitting a model. The stopping
criterion "PCLL" in this example took the “reasonable” value of 0.03193748 when iterations ceased.

Notes — Various

This function used to have an argument newstyle, a logical scalar (defaulting to TRUE) indicating
whether (in the univariate setting) the emission probabilities should be represented in “logistic”
form. (See Details, Univariate case:, above.) Now the emission probabilities are always repre-
sented in the “logistic” form. The component Rho of the starting parameter values par0 may still be
supplied as a matrix of probabilities (with columns summing to 1), but this component is converted
(internally, silently) to the logistic form.



16 hmm

The object returned by this function also has (in the univariate setting), in addition to the component
Rho, a component Rho.matrix giving the emission probabilities in the more readily interpretable
matrix-of-probabilities form. (See Value above.)

The package used to require the argument y to be a matrix in the case of multiple observed se-
quences. If the series were of unequal length the user was expected to pad them out with NAs to
equalize the lengths.

The old matrix format for multiple observation sequences was permitted for a while (and the matrix
was internally changed into a list) but this is no longer allowed. If y is indeed given as a matrix then
this corresponds to a single observation sequence and it must have one (univariate setting) or two
(bivariate setting) columns which constitute the observations of the respective variates.

If K=1 then tpm, ispd, converged, and nstep are all set equal to NA in the list returned by this
function.

The estimate of ispd in the non-stationary setting is inevitably very poor, unless the number of
sequences of observations (the length of the list y) is very large. We have in effect “less than one”
relevant observation for each such sequence.

The returned values of tpm and Rho (or the entries of Rho when Rho is a list) have dimension names.
These are formed from the argument yval if this is supplied, otherwise from the sorted unique
values of the observations in y. Likewise the returned value of ispd is a named vector, the names
being the same as the row (and column) names of tpm.

If method is equal to "EM" there may be a decrease (!!!) in the log likelihood at some EM step.
This is “theoretically impossible” but can occur in practice due to an intricacy in the way that the
EM algorithm treats ispd when stationary is TRUE. It turns out to be effectively impossible to
maximise the expected log likelihood unless the term in that quantity corresponding to ispd is
ignored (whence it is ignored). Ignoring this term is “asymptotically negligible” but can have the
unfortunate effect of occasionally leading to a decrease in the log likelihood.

If such a decrease is detected, then the algorithm terminates and issues a message to the effect
that the decrease occurred. The message suggests that another method be used and that perhaps
the results from the penultimate EM step (which are returned by this function) be used as starting
values.

It seems to me that it should be the case that such a decrease in the log likelihood can occur only
if stationary is TRUE. However I have encountered instances in which a decrease occurred when
stationary was FALSE. I have yet to figure out/track down what is going on here.

Note on method

If the method is "EM" it is actually possible for the log likelihood to decrease at some EM step. This
is “impossible in an ideal world” but can happen to the fact the EM algorithm, as implemented in
this package at least, cannot maximise the expected log likelihood if the component correspond-
ing to the initial state probability distribution is taken into consideration. This component should
ideally be maximised subject to the constraint that t(P)%*%ispd = ispd, but this constraint seems
to effectively impossible to impose. Lagrangian multipliers don’t cut it. Hence the summand in
question is ignored at the M-step. This usually works alright since the summand is asymptotically
negligible, but things can sometimes go wrong. If such a decrease occurs, an error is thrown.

In previous versions of this package, instead of throwing an error the hmm() function would auto-
matically switch to either the "bf" or the "LM" method, depending whether a matrix X of auxiliary



hmm 17

predictors is supplied, starting from the penultimate parameter estimates produced by the EM algo-
rithm. However this appears not to be a good idea; those “penultimate estimates” appear not to be
good starting values for the other methods. Hence an error is now thrown and the user is explicitly
instructed to invoke a different method, “starting from scratch”.

Fitted Coefficients of the Predictors

It is of course of interest to understand the meaning of the coefficients that are fitted to the predictors
in the model. If X is supplied then the number of predictors is (as a rule) one (for the intercept)
plus the number of columns in each entry of X. We say “as a rule” because, e.g., the entries of X
could each have an “intercept” column, or the addIntercept argument could be FALSE. If X is not
supplied there is only one predictor, named Intercept.

The interpretation of these predictor coefficients is a bit subtle. To get an idea of what it’s all about,
consider the output from example 4. (See Examples). The fitted coefficients in question are to
be found in columns 3 and onward of the component Rho of the object returned by hmm(). In the
context of example 4, this object is fit.wap. (The suffix wap stands for “with auxiliary predictors”.)

fit.wap$Rho
y state Intercept ma.com nh.com bo.com

1 lo 1 1.3810463 0.4527982 -3.27161353 -1.9563915
2 mlo 1 0.1255631 -1.1402546 -1.37713744 0.5946980
3 m 1 0.7356526 0.1523734 -2.70841817 -0.1794645
4 mhi 1 0.8479798 -0.2438988 -1.12544989 -0.9650320
5 hi 1 0.0000000 0.0000000 0.00000000 0.0000000
6 lo 2 3.9439410 -0.8355306 -0.77702276 1.4963631
7 mlo 2 2.6189880 -1.9373885 -0.09190623 0.8316870
8 m 2 2.1457317 -1.7276183 0.19524655 -0.3249485
9 mhi 2 1.8834139 -1.3760011 -0.59806309 1.2828365
10 hi 2 0.0000000 0.0000000 0.00000000 0.0000000

If you multiply the matrix consisting of the predictor coefficients (columns 3 to 6 of Rho in this
instance) times a vector of predictors you get, for each state, the “exponential form” of the proba-
bilities (“pre-probabilities”) for each of the possible y-values, given the vector of predictors.

E.g. set x <- c(1,1,0,0). This vector picks up the intercept and indicates that the Malabar outfall
has been commissioned, the North Head outfall has not been commissioned, and the Bondi Offshore
outfall has not been commissioned.

Now set:

pp1 <- (as.matrix(fit.wap$Rho)[,3:6]%*%x)[1:5]
pp2 <- (as.matrix(fit.wap$Rho)[,3:6]%*%x)[6:10]

Note that pp1 consists of “exponential probabilities” corresponding to state 1, and pp2 consists of
“exponential probabilities” corresponding to state 2. To convert the foregoing pre-probabilities to
the actual probabilities of the y-values, we apply the — undocumented — function expForm2p():

p1 <- expForm2p(pp1)
p2 <- expForm2p(pp2)

The value of p1 is



18 hmm

[1] 0.52674539 0.03051387 0.20456767 0.15400019 0.08417288

and that of p2 is

[1] 0.78428283 0.06926632 0.05322204 0.05819340 0.03503541

Note that p1 and p2 each sum to 1, as they should/must do. This says, e.g., that when the system is
in state 2, and Malabar has been commissioned but North Head and Bondi Offshore have not, the
(estimated) probability that y is "mhi" (medium-high) is 0.05819340.

It may be of some interest to test the hypothesis that the predictors have any actual predictive power
at all:

fit.nap <- hmm(xxx,yval=Yval,K=2,verb=TRUE)
# "nap" <--> no aux. preds

There is a bit of a problem here, in that the likelihood decreases at EM step 65. (See the warning
message.)

We can check on this problem by refitting using method="LM".

fit.nap.lm <- hmm(xxx,yval=Yval,par0=fit.nap,method="LM",verb=TRUE)

Doing so produces only a small improvement in the log likelihood (from -1821.425 to -1820.314),
so we really could have ignored the problem. We can now do anova(fit.wap,fit.nap) which
gives

$stat
[1] 153.5491

$df
[1] 24

$pvalue
[1] 7.237102e-21

Thus the p-value is effectively zero, saying that in this instance the auxiliary predictors appear to
have a “significant” impact on the fit.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

References

Rabiner, L. R., "A tutorial on hidden Markov models and selected applications in speech recogni-
tion," Proc. IEEE vol. 77, pp. 257 – 286, 1989.

Zucchini, W. and Guttorp, P., "A hidden Markov model for space-time precipitation," Water Re-
sources Research vol. 27, pp. 1917-1923, 1991.



hmm 19

MacDonald, I. L., and Zucchini, W., "Hidden Markov and Other Models for Discrete-valued Time
Series", Chapman & Hall, London, 1997.

Liu, Limin, "Hidden Markov Models for Precipitation in a Region of Atlantic Canada", Master’s
Report, University of New Brunswick, 1997.

See Also

rhmm(), mps(), viterbi()

Examples

# TO DO: Create one or more bivariate examples.
#
# The value of itmax in the following examples is so much
# too small as to be risible. This is just to speed up the
# R CMD check process.
# 1.
Yval <- LETTERS[1:10]
Tpm <- matrix(c(0.75,0.25,0.25,0.75),ncol=2,byrow=TRUE)
Rho <- cbind(c(rep(1,5),rep(0,5)),c(rep(0,5),rep(1,5)))/5
rownames(Rho) <- Yval
set.seed(42)
xxx <- rhmm(ylengths=rep(1000,5),nsim=1,tpm=Tpm,Rho=Rho,yval=Yval,drop=TRUE)
fit <- hmm(xxx,par0=list(tpm=Tpm,Rho=Rho),itmax=10)
print(fit$Rho) # A data frame
print(cnvrtRho(fit$Rho)) # A matrix of probabilities

# whose columns sum to 1.

# 2.
# See the help for logLikHmm() for how to generate y.num.
## Not run:

fit.num <- hmm(y.num,K=2,verb=TRUE,itmax=10)
fit.num.mix <- hmm(y.num,K=2,verb=TRUE,mixture=TRUE,itmax=10)
print(fit.num[c("tpm","Rho")])

## End(Not run)
# Note that states 1 and 2 get swapped.

# 3.
xxx <- with(SydColDisc,split(y,f=list(locn,depth)))
Yval <- c("lo","mlo","m","mhi","hi")
# Two states: above and below the thermocline.
fitSydCol <- hmm(xxx,yval=Yval,K=2,verb=TRUE,itmax=10)

# 4.
X <- split(SydColDisc[,c("ma.com","nh.com","bo.com")],

f=with(SydColDisc,list(locn,depth)))
X <- lapply(X,function(x){

as.matrix(as.data.frame(lapply(x,as.numeric)))-1})
fit.wap <- hmm(xxx,yval=Yval,K=2,X=X,verb=TRUE,itmax=10)
# wap <--> with auxiliary predictors.



20 hydroDat

# 5.
## Not run: # Takes too long.
fitlm <- hmm(xxx,yval=Yval,K=2,method="LM",verb=TRUE)
fitem <- hmm(xxx,yval=Yval,K=2,verb=TRUE)
# Algorithm terminates due to a decrease in the log likelihood
# at EM step 64.
newfitlm <- hmm(xxx,yval=Yval,par0=fitem,method="LM",verb=TRUE)
# The log likelihood improves from -1900.988 to -1820.314

## End(Not run)

# 6.
fitLesCount <- hmm(lesionCount,K=2,itmax=10) # Two states: relapse and remission.

hydroDat Canadian hydrological data sets.

Description

Five data sets obtained from the “HYDAT” database, Environment and Climate Change Canada’s
database of historical hydrometric data. The data were obtained using the tidyhydat package. The
data have been trimmed so that there are no gaps in the observation dates and are presented in “raw”
form and in discretised form as deciles of the residuals (difference between raw values and the daily
mean over years).

Usage

data("linLandFlows")
data("ftLiardFlows")
data("portMannFlows")
data("portMannSedLoads")
data("portMannSedCon")

Format

Data frames with observations on the following 3 variables.

Date Dates on which observations were made.

Value Numeric vector of observation values.

mean The mean over years of Value.

resid The difference Value - mean.

deciles A factor with levels d1, . . . , d10, which are the deciles of the variable resid



lesionCount 21

Details

The variable mean was calculated as follows:

yday <- as.POSIXlt(X$Date)$yday
mn <- tapply(X$Value,yday,mean,na.rm=TRUE)
mean <- mn[as.character(yday)]

where X is the data set being processed.

The data set linLandFlows originally consisted of 2008 observations; there were 1980 observations
after “trimming”. The data set ftLiardFlows originally consisted of 22364 observations; there
were 11932 observations after “trimming”. The data set portMannFlows originally consisted of
6455 observations; there were 3653 observations after “trimming”. The data set portMannSedLoads
consists of 2771 observations; no observations were trimmed. The data set portMannSedCon con-
sists of 4597 observations; no observations were trimmed.

The units of the “Flows” variables are cubic metres per second (m3/s); the units of “portMannSed-
Loads” are tonnes; the units of “portMannSedCon” are milligrams per litre (mg/l).

The “linLandFlows” data were obtained at the Lindberg Landing hydrometric station on the Liard
River in the Northwest Territories of Canada. The “ftLiardFlows” data were obtained at the Fort
Liard hydrometric station on the Liard River in the Northwest Territories of Canada. The “port-
Mann” data were obtained at the hydrometric station located at the Port Mann pumping station on
the Fraser River in the Province of British Columbia in Canada.

Source

Environment and Climate Change Canada’s database “HYDAT”, a database of historical hydromet-
ric data. The data were obtained vis the tidyhydat package, which is available from “CRAN”,
https://cran.r-project.org

Examples

fit <- hmm(linLandFlows$deciles,K=4,itmax=10)

lesionCount Multiple sclerosis lesion counts for three patients.

Description

Lesion counts for three multiple sclerosis patients. The counts were obtained by magnetic resonance
imaging, and were observed at monthly intervals.

Usage

lesionCount



22 logLikHmm

Format

A list with three components each component being the sequence of counts for a given patient and
consisting of a vector with non-negative integer entries.

Modelling

The hidden Markov models applied to these data by Albert et al. and by MacKay and Petkau
were much more complex and elaborate than those fitted in the examples in this package. See the
references for details.

Source

The data were originally studied by Albert et al., (1994). They are were also analyzed by Altman
and Petkau (2005). The data were kindly provided by Prof. Altman.

References

Albert, P. S., McFarland, H. F., Smith, M. E., and Frank, J. A. Time series for modelling counts
from a relapsing-remitting disease: application to modelling disease activity in multiple sclerosis.
Statistics in Medicine 13 (1994) 453–466.

Altman, Rachel MacKay, and Petkau, A. John. Application of hidden Markov models to multiple
sclerosis lesion count data. Statistics in Medicine 24 (2005) 2335–2344.

logLikHmm Log likelihood of a hidden Markov model

Description

Calculate the log likelihood of a hidden Markov model with discrete non-parametric observation
distributions.

Usage

logLikHmm(y, model=NULL, tpm=NULL, ispd=NULL, Rho=NULL, X=NULL,
addIntercept=NULL, warn=TRUE)

Arguments

y A vector, or list of vectors, or a one or two column matrix or a list of such
matrics, whose entries consist of observations from a hidden Markov model
with discrete non-parametric observation distributions.

model An object specifying a hidden Markov model, usually returned by hmm().

tpm The transition probability matrix of the Markov chain. Ignored (and extracted
from model) if model is non-NULL.



logLikHmm 23

ispd The vector of probabilities specifying the initial state probability distribution, or
a matrix each of whose columns is a trivial (“delta function”) vector specify-
ing the “most probable” initial state for each observation sequence. If ispd is
missing then ispd is calculated as the stationary distribution determined by tpm.
Ignored (and extracted from model) if model is non-NULL.

Rho An object specifying the “emission” probabilities of the observations. (See the
Details in the help for hmm().) Ignored (and extracted from model) if model is
non-NULL.

X An optional numeric matrix, or a list of such matrices, of predictors. The use of
such predictors is (currently, at least) applicable only in the univariate emissions
setting. If X is a list it must be of the same length as y and all entries of this
list must have the same number of columns. The number of rows of each entry
must be equal to the length of the corresponding entry of y. If X is a matrix then
y should be a vector or one-column matrix (or a list with a single entry equal to
such).

addIntercept Logical scalar. See the documentation of hmm(). If this argument is not speci-
fied, and if model is NULL then an error is thrown.

warn Logical scalar; should a warning be issued if Rho hasn’t got relevant dimension
names? (Note that if this is so, then the corresponding dimension names are
formed from the sorted unique values of y or of the appropriate column(s) of y.
And if this is so, then the user should be sure that the ordering of the entries of
Rho corresponds properly to the the sorted unique values of y.) This argument is
passed to the utility function check.yval() which actually issues the warning
if warn=TRUE.

Details

If y is not provided the function simply returns the log.like component of model (which could be
NULL if model was not produced by hmm().

The observation values (the entries of the vector or matrix y, or of the vectors or matrices which
constitute the entries of y if y is a list) must be consistent with the appropriate dimension names of
Rho or of its entries when Rho is a list. More specifically, if Rho has dimension names (or its entries
have dimension names) then the observation values must all be found as entries of the appropriate
dimension name vector. If a vector of dimension names is NULL then the corresponding dimension
must be equal to the number of unique observations of the appropriate variate. integers between 1
and nrow(Rho).

Value

The loglikehood of y given the parameter values specified in par.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

References

See hmm() for references.



24 misstify

See Also

hmm(), pr(), sp()

Examples

# TO DO: One or more bivariate examples.
P <- matrix(c(0.7,0.3,0.1,0.9),2,2,byrow=TRUE)
R <- matrix(c(0.5,0,0.1,0.1,0.3,

0.1,0.1,0,0.3,0.5),5,2)
set.seed(42)
lll <- sample(250:350,20,TRUE)
set.seed(909)
y.num <- rhmm(ylengths=lll,nsim=1,tpm=P,Rho=R,drop=TRUE)
set.seed(909)
y.let <- rhmm(ylengths=lll,nsim=1,tpm=P,Rho=R,yval=letters[1:5],drop=TRUE)
row.names(R) <- 1:5
ll1 <- logLikHmm(y.num,tpm=P,Rho=R)
row.names(R) <- letters[1:5]
ll2 <- logLikHmm(y.let,tpm=P,Rho=R)
ll3 <- logLikHmm(y.let,tpm=P,Rho=R,ispd=c(0.5,0.5))
fit <- hmm(y.num,K=2,itmax=10)
ll4 <- logLikHmm(y.num,fit) # Use the fitted rather than the "true" parameters.

misstify Insert missing values.

Description

Insert missing values into data simulated by rhmm.

Usage

misstify(y, nafrac, fep = NULL)

Arguments

y A data set (vector or matrix with one or two columns, whose entries consitute
discrete data, or a list of such vectors or matrices) or a list of such data sets (ob-
jects of class "multipleHmmDataSets" such as might be generated by rhmm()

nafrac A numeric vector, some entries of which could be ignored. (See below.) Those
which do not get ignored must be probabilities strictly less than 1. (Having
everything missing makes no sense!)
The vector nafrac will be replicated to have an “appropriate” length. If y is
of class "multipleHmmDataSets" then this length is length(y) if the data are
univariate and is 2*length(y) if the data are bivariate. In the former case the
entries of the replicated vector from the fraction of missing values in the corre-
sponding data set. In the latter case the odd numbered entries form the fraction
of missing values for the first variable and the even numbered entries the fraction



misstify 25

for the second variable. If y is not of class "multipleHmmDataSets" then this
length is either 1 (univariate case) or 2 (bivariate case).
Note that replication discards entries that are not needed to make up the required
length, and such entries are thereby ignored. E.g. rep(c(0.2,0.7,1.6),length=2)
yields [1] 0.2 0.7, i.e. the entry 1.6 is ignored.
The fraction(s) of missing values in a given data set may be determined by
nafracCalc().

fep “First entry present”. A list with one or two entries, the first being a logical
scalar (which might be named "present". If there is a second entry it should be
a scalar probability (which might be named "p2"). In an application of interest,
observation sequences always begin at an observed event, i.e. at a time point
at which the “emission” has at least one non-missing value. If fep[[1]] is
TRUE the NAs will be inserted in such a way that the resulting data have this
characteristic. If fep is left NULL then its first (possibly only) entry is set to
TRUE.
For bivariate data, fep[[2]] specifies the probabilty that both values of the ini-
tial pair of observations are non-missing. In this case one of the entries of the ini-
tial pair is chosen to be “potentially” missing, with probabilities nafrac/sum(nafrac).
This entry is left non-missing with probability fep[[2]]. (The other entry is al-
ways left non-missing.)
If the data are univariate or if fep[[1]] is FALSE, then fep[[2]] is ignored. If
the data are bivariate and fep[[2]] is not specified, it defaults to the (estimated)
conditional probability that both entries of the initial pair of observations are
present given that at least one is present, under the assumption of independence
of these events. I.e. it is set equal to prod(1-nafrac)/(1-prod(1-nafrac)).

Value

An object with a structure similar to that of y, containing the same data as y but with some of these
data having been replaced by missing values (NA). In particular, if y is of class "multipleHmmDataSets"
then so is the returned value.

Note that rhmm() calls upon misstify() to effect the replacement of a certain fraction of the
simulated observations by missing values. If rhmm() is applied to a fitted model, then by default,
this “certain fraction” is determined, using nafracCalc(), from the data set to which the model
was fitted.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

rhmm() nafracCalc()

Examples

P <- matrix(c(0.7,0.3,0.1,0.9),2,2,byrow=TRUE)



26 mps

R <- matrix(c(0.5,0,0.1,0.1,0.3,
0.1,0.1,0,0.3,0.5),5,2)

set.seed(42)
lll <- sample(250:350,20,TRUE)
y1 <- rhmm(ylengths=lll,nsim=1,tpm=P,Rho=R)
y1m <- misstify(y1,nafrac=0.5,fep=list(TRUE))
y2 <- rhmm(ylengths=lll,nsim=5,tpm=P,Rho=R)
set.seed(127)
y2m <- misstify(y2,nafrac=0.5,fep=list(TRUE))
nafracCalc(y2m) # A list all of whose entries are close to 0.5.
set.seed(127)
y2ma <- lapply(y2,misstify,nafrac=0.5,fep=list(TRUE))
## Not run:

nafracCalc(y2ma) # Throws an error.

## End(Not run)
sapply(y2ma,nafracCalc) # Effectively the same as nafracCalc(y2m).

mps Most probable states.

Description

Calculates the most probable hidden state underlying each observation.

Usage

mps(y, model = NULL, tpm, Rho, ispd=NULL, warn=TRUE)

Arguments

y The observations for which the underlying most probable hidden states are re-
quired. May be a sequence of observations in the form of a vector or a one or two
column matrix, or a list each component of which constitutes a (replicate) se-
quence of observations. It may also be an object of class "multipleHmmDataSets"
as returned by rhmm() with nsim>1.
If y is missing, it is extracted from model (whence it will not be of class "multipleHmmDataSets"!)
provided that model and its y component are not NULL. Otherwise an error is
given.

model An object describing a fitted hidden Markov model, as returned by hmm(). In
order to make any kind of sense, model should bear some reasonable relationship
to y.

tpm The transition probability matrix for a hidden Markov model; ignored if model
is non-null. Should bear some reasonable relationship to y.

Rho An object specifying the probability distributions of the observations (“emis-
sion” probabilities) for a hidden Markov model. See hmm(). Ignored if model is
non-null. Should bear some reasonable relationship to y.



mps 27

ispd A vector specifying the initial state probability distribution for a hidden Markov
model, or a matrix each of whose columns are trivial (“delta function”) vectors
specifying the “most probable” initial state for each observation sequence.
This argument is ignored if model is non-null. It should bear some reasonable
relationship to y. If both ispd and model are NULL then ispd is taken to be the
stationary distribution of the chain, calculated from tpm.

warn Logical scalar; in the bivariate setting, should a warning be issued if the two
matrices constituting Rho (bivariate independent case) or the array constituting
Rho (bivariate dependent case) have not got relevant dimension names? (Note
that if this is so, then the corresponding dimension names are formed from the
sorted unique values of the appropriate columns of y. And if this is so, then the
user should be sure that the ordering of the entries of Rho corresponds properly
to the the sorted unique values of y.) This argument is passed to the utility
function check.yval() which actually issues the warning if warn=TRUE.

Details

For each t the maximum value of γt(i), i.e. of the (estimated) probability that the state at time t is
equal to i, is calculated, and the value of the state with the corresponding index is returned.

Value

If y is a single observation sequence, then the value is a vector of corresponding most probable
states.

If y is a list of replicate sequences, then the value is a list, the j-th entry of which constitutes the
vector of most probable states underlying the j-th replicate sequence.

If y is of class "multipleHmmDataSets" then the value returned is a list of lists of the sort described
above.

Warning

The sequence of most probable states as calculated by this function will not in general be the most
probable sequence of states. It may not even be a possible sequence of states. This function looks
at the state probabilities separately for each time t, and not at the states in their sequential context.

To obtain the most probable sequence of states use viterbi().

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

References

Rabiner, L. R., "A tutorial on hidden Markov models and selected applications in speech recogni-
tion," Proc. IEEE vol. 77, pp. 257 – 286, 1989.

See Also

hmm(), rhmm(), viterbi()



28 nafracCalc

Examples

## Not run:
P <- matrix(c(0.7,0.3,0.1,0.9),2,2,byrow=TRUE)
rownames(P) <- 1:2
R <- matrix(c(0.5,0,0.1,0.1,0.3,

0.1,0.1,0,0.3,0.5),5,2)
set.seed(42)
lll <- sample(250:350,20,TRUE)
set.seed(909)
y.num <- rhmm(ylengths=lll,nsim=1,tpm=P,Rho=R,drop=TRUE)
fit.num <- hmm(y.num,K=2,verb=TRUE)
s.1 <- mps(y.num,fit.num)
s.2 <- mps(y.num,tpm=P,ispd=c(0.25,0.75),Rho=R)
# The order of the states has got swapped;
# note that ifelse(s.1[[1]]=="1","2","1") is much
# more similar to s.2[[1]] than is s.1[[1]].

## End(Not run)

nafracCalc Calculate fractions of missing values.

Description

Calculate the fraction (univariate case) or fractions (bivariate case) of missing values in the data or
in each component of the data.

Usage

nafracCalc(y,drop=TRUE)

Arguments

y A vector or a one or two column matrix of discrete data or a list of such vectors
or matrices, or a list of such lists (an object of class "multipleHmmDataSets"
such as might be produced by rhmm()).

drop Logical scalar. If y is of class "multipleHmmDataSets" but actually consists
of a single data set, and if drop is TRUE, then the returned value is not a list but
rather the single component that such a list “would have had” were drop equal
to FALSE. This argument is ignored if y is not of class "multipleHmmDataSets"
or has length greater than 1.

Value

If y is not of class "multipleHmmDataSets", then the returned value is a scalar (between 0 and 1)
if the data are univariate or a pair (2-vector) of such scalars if the data are bivariate. The values are
equal to the ratios of the total count of missing values in the appropriate column to the total number
of observations.



pr 29

If y is of class "multipleHmmDataSets", and if y has length greater than 1 or drop is FALSE, then
the returned value is a list of such scalars or 2-vectors, each corresponding to one of the data sets
constituting y. If y has length equal to 1 and drop is TRUE, then the returned value is the same as if
codey were not of class "multipleHmmDataSets".

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

rhmm() misstify()

Examples

xxx <- with(SydColDisc,split(y,f=list(locn,depth)))
nafracCalc(xxx) # 0.7185199

pr Probability of state sequences.

Description

Calculates the conditional probability of one or more state sequences, given the corresponding
observations sequences (and the model parameters.

Usage

pr(s, y, model=NULL, tpm, Rho, ispd=NULL, warn=TRUE)

Arguments

s A sequence of states of the underlying Markov chain, or a list of such sequences
or a list of lists (!!!) of such sequences.

y A data set to which a hidden Markov model might be fitted, or a collection of
such data sets in the form of an object of class "multipleHmmDataSets" as
returned by rhmm() if the argument nsim is greater than 1. In this latter case s
must be a list of the same length as y, and pr() is applied recursively to each
pair of entries of s and y.
If y consists of a single observation sequence, it is used with each of the state
sequences in s in turn. Otherwise the length of the list y must be the same as the
length of the list s. (If not, then an error is given). If y is missing, it is extracted
from model (whence it will not be of class "multipleHmmDataSets"!) provided
that model and its y component are not NULL. Otherwise an error is given.

model An object of class hmm.discnp as returned by hmm().



30 pr

tpm The transition probability matrix of the chain. Ignored (and extracted from
model instead) if model is not NULL.

Rho An object specifying the “emission” probabilities of observations, given the un-
derlying state. See hmm(). Ignored (and extracted from model instead) if model
is not NULL.

ispd The vector specifying the initial state probability distribution of the Markov
chain. Ignored (and extracted from model instead) if model is not NULL. If both
ispd and model are NULL then ispd is taken to be the stationary distribution
of the chain, calculated from tpm.

warn Logical scalar; should a warning be issued if Rho hasn’t got relevant dimension
names? (Note that if this is so, then the corresponding dimension names are
formed from the sorted unique values of y or of the appropriate column(s) of y.
And if this is so, then the user should be sure that the ordering of the entries of
Rho corresponds properly to the the sorted unique values of y.) This argument is
passed to the utility function check.yval() which actually issues the warning
if warn=TRUE.

Value

The probability of s given y, or a vector of such probabilities if s and y are lists, or a list of such
vectors if y is of class "multipleHmmDataSets".

Warning

The conditional probabilities will be tiny if the sequences involved are of any substantial length.
Underflow may be a problem. The implementation of the calculations is not sophisticated.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

hmm(), mps(), viterbi(), sp(), fitted.hmm.discnp()

Examples

## Not run:
P <- matrix(c(0.7,0.3,0.1,0.9),2,2,byrow=TRUE)
R <- matrix(c(0.5,0,0.1,0.1,0.3,

0.1,0.1,0,0.3,0.5),5,2)
set.seed(42)
lll <- sample(250:350,20,TRUE)
set.seed(909)
y.num <- rhmm(ylengths=lll,nsim=1,tpm=P,Rho=R,drop=TRUE)
fit.num <- hmm(y.num,K=2,keep.y=TRUE,verb=TRUE)
# Using fitted parmeters.
s.vit.1 <- viterbi(y.num,fit.num)
pr.vit.1 <- pr(s.vit.1,model=fit.num)



predict.hmm.discnp 31

# Using true parameters from which y.num was generated.
s.vit.2 <- viterbi(y.num,tpm=P,Rho=R)
pr.vit.2 <- pr(s.vit.2,y.num,tpm=P,Rho=R)
set.seed(202)
y.mult <- rhmm(fit.num,nsim=4)
s.vit.3 <- viterbi(y.mult,tpm=fit.num$tpm,Rho=fit.num$Rho)
pr.vit.3 <- pr(s.vit.3,y.mult,tpm=fit.num$tpm,Rho=fit.num$Rho)

## End(Not run)

predict.hmm.discnp Predicted values of a discrete non-parametric hidden Markov model.

Description

Calculates predicted values given a specification of a discrete non-parametric hidden Markov model.
The specification may be provided in the form of a hmm.discnp object as returned by hmm() or
in the form of “components” of such a model: the data y, the transition probability matrix tpm,
the emission probabilities Rho, etc. If the data are numeric then these predicted values are the
conditional expectations of the observations, given the entire observation sequence (and the —
possibly estimated — parameters of the model). If the data are categorical (whence “expectations”
make no sense) the “predicted values” are taken to be the probabilities of each of the possible values
of the observations, at each time point.

Usage

## S3 method for class 'hmm.discnp'
predict(object, y = NULL, tpm=NULL, Rho=NULL,

ispd=NULL, X=NULL,addIntercept=NULL,
warn=TRUE, drop=TRUE, ...)

Arguments

object If not NULL, an object of class hmm.discnp as returned by hmm().

y A data structure to which the fitted model object could have been fitted. If y is
NULL, an attempt is made to extract y from model.

tpm,Rho,ispd,X,addIntercept,warn

See the help for sp().

drop Logical scalar. See the help for fitted.hmm.discnp().

... Not used.



32 rhmm

Details

This function is essentially the same as fitted.hmm.discnp(). The main difference is that it
allows the calculation of fitted/predicted values for a data object y possibly different from that to
which the model was fitted. Note that if both the argument y and object[["y"]] are present, the
“argument” value takes precedence. This function also allows the model to be specfied in terms
of individual components rather than as a fitted model of class "hmm.discnp". These components,
(tpm, Rho, ispd, X, addIntercept) if supplied, take precedence over the corresponding components
of object. The opposite applies with sp(). The function fitted.hmm.discnp() makes use only
of the components of object.

Value

See the help for fitted.hmm.discnp().

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

sp() link{fitted.hmm.discnp}()

Examples

P <- matrix(c(0.7,0.3,0.1,0.9),2,2,byrow=TRUE)
R <- matrix(c(0.5,0,0.1,0.1,0.3,

0.1,0.1,0,0.3,0.5),5,2)
set.seed(42)
ll1 <- sample(250:350,20,TRUE)
y1 <- rhmm(ylengths=ll1,nsim=1,tpm=P,Rho=R,drop=TRUE)
fit <- hmm(y1,K=2,verb=TRUE,keep.y=TRUE,itmax=10)
fv <- fitted(fit)
set.seed(176)
ll2 <- sample(250:350,20,TRUE)
y2 <- rhmm(ylengths=ll2,nsim=1,tpm=P,Rho=R,drop=TRUE)
pv <- predict(fit,y=y2)
yval <- letters[1:5]
set.seed(171)
y3 <- rhmm(ylengths=ll2,yval=yval,nsim=1,tpm=P,Rho=R,drop=TRUE)
fit3 <- hmm(y3,K=2,verb=TRUE,keep.y=TRUE,itmax=10)
pv3 <- predict(fit3) # Same as fitted(fit3).

rhmm Simulate discrete data from a non-parametric hidden Markov model.



rhmm 33

Description

Simulates one or more replicates of discrete data from a model such as is fitted by the function
hmm().

Usage

rhmm(model,...,nsim,verbose=FALSE)
## Default S3 method:
rhmm(model, ..., nsim=1, verbose=FALSE, ylengths,

nafrac=NULL, fep=NULL, tpm, Rho, ispd=NULL, yval=NULL,
drop=TRUE, forceNumeric=TRUE)

## S3 method for class 'hmm.discnp'
rhmm(model, ..., nsim=1, verbose=FALSE, inMiss=TRUE,

fep=NULL, drop=TRUE, forceNumeric=TRUE)

Arguments

model An object of class hmm.discnp. This will have the form of a list specifying a
hidden Markov model with discrete emissions and emission probabilities speci-
fied non-parametrically, i.e. by means of some form of table or tables. Usually
this will be an object returned by hmm(). This argument is ignored by the default
method.

... Not used.

nsim Integer scalar; the number of data sets to be simulated.

verbose Logical scalar. If TRUE then the overall index of the simulated value that has
been reached is printed out every 1000 iterations. Useful for reassurance when
very “large” simulations are undertaken.

ylengths Integer values vector specify the lengths (or number of rows in the bivariate
setting) of the individual observation sequences constituting a data set.

nafrac See misstify() for an explanation of this argument. If specified a fraction
nafrac[[j]] of column j of the data will be randomly set equal to NA.

fep “First entry present”. See misstify() for an explanation of this argument.

tpm The transition probability matrix for the underlying hidden Markov chain(s).
Note that the rows of tpm must sum to 1. Ignored if ncol(Rho)==1. Ignored by
the hmm.discnp method and extracted from model.

Rho An object specifying the probability distribution of the observations, given the
state of the underlying hidden Markov chain. (I.e. the “emission” probabilities.)
See hmm(). Note that Rho can be such that the number of states is 1, in which
case the simulated data are i.i.d. from the single distribution specified by Rho.
Ignored by the hmm.discnp method and extracted from model.

ispd A vector specifying the initial state probability distribution of the chain. If this is
not specified it is taken to be the stationary distribution of the chain, calculated
from tpm. Ignored by the hmm.discnp method and extracted from model.

yval Vector of possible values of the observations, or (in the bivariate setting) a list
of two such vectors. If not supplied it is formed from the levels of the factor



34 rhmm

constituting the y column of Rho (univariate case) or from appropriate dimension
names associated with Rho (bivariate case). Ignored by the hmm.discnp method.

drop Logical scalar; if TRUE then lists of length 1 are replaced by their first entry.
In particular if nsim is 1 and if drop is TRUE then the list to be returned by this
function (see below) is replaced by its first and only entry. Also if ylengths is of
length 1 (so that each entry of the returned value contains only a single sequence
of of simulated observations) then each list of such sequences is replaced by its
first and only entry.

inMiss Logical scalar; if TRUE then missing values will be randomly inserted into the
data in the fraction nafrac determined from object.

forceNumeric Logical scalar; if TRUE then if all of the possible values of the observations can
be interpreted as numeric (by as.numeric()) then they are so interpreted. That
is, the value returned will consist of a collection of numeric sequences, rather
than a collection of sequences of values of categorical variables.

Value

If nsim>1 or drop is FALSE then the value returned is a list of length nsim. Each entry of this list is
in turn a list of the same length as ylengths, each component of which is an independent vector or
matrix of simulated observations. The length or number of rows of component i of this list is equal
to ylengths[i]. The values of the observations are entries of yval or of its entries when yval is a
list.

If nsim=1 and drop is TRUE then the (“outer”) list described above is replaced by its first and only
entry

If the length of ylengths is 1 and drop is TRUE then each “inner” list described above is replaced
by its first and only entry.

Note

You may find it useful to avail yourself of the function nafracCalc() to determine the fraction of
missing values in a given existing (presumably “real”) data set.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

hmm() nafracCalc() misstify()

Examples

# To do: one or more bivariate examples.
## Not run:

y <- list(linLandFlows$deciles,ftLiardFlows$deciles)
fit <- hmm(y,K=3)
simX <- rhmm(fit)



scovmat 35

## End(Not run)

scovmat Simulation based covariance matrix.

Description

Produces an estimate of the covariance matrix of the parameter estimates in a model fitted by
hmm.discnp. Uses a method based on simulation (or “parametric bootstrapping”).

Usage

scovmat(object, expForm=TRUE, seed = NULL, nsim=100, verbose = TRUE)

Arguments

object An object of class hmm.discnp as returned by hmm().

expForm Logical scalar. Should the covariance matrix produced be that of the estimates
of the parameters expressed in “exponential” (or “smooth” or “logistic”) form?
If expForm=FALSE then the parameter estimates considered are “raw” probabil-
ities, with redundancies (last column of tpm; last row of Rho) removed.

seed Integer scalar serving as a seed for the random number generator. If left NULL
the seed itself is chosen randomly from the set of integers between 1 and 105.

nsim A positive integer. The number of simulations upon which the covariance matrix
estimate will be based.

verbose Logical scalar; if TRUE, iteration counts will be printed out during each of the
simulation and model-fitting stages.

Details

This function is currently applicable only to models fitted to univariate data. If there are predictors
in the model, then only the exponential form of the parameters may be used, i.e. expForm must be
TRUE.

Value

A (positive definite) matrix which is an estimate of the covariance of the parameter estimates from
the fitted model specified by object. It has row and column labels which indicate the parameters
to which its entries pertain, in a reasonably perspicuous manner.

This matrix has an attribute seed (the random number generation seed that was used) so that the
calculations can be reproduced.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>



36 sp

See Also

squantCI() link{rhmm}() link{hmm)}()

Examples

## Not run:
y <- list(lindLandFlows$deciles,ftLiardFlows$deciles)
fit <- hmm(y,K=3)
ccc <- scovmat(fit,nsim=100)

## End(Not run)

sp Calculate the conditional state probabilities.

Description

Returns the probabilities that the underlying hidden state is equal to each of the possible state values,
at each time point, given the observation sequence.

Usage

sp(y, model = NULL, tpm=NULL, Rho=NULL, ispd=NULL, X=NULL,
addIntercept=NULL, warn=TRUE, drop=TRUE)

Arguments

y The observations on the basis of which the probabilities of the underlying hidden
states are to be calculated. May be a vector of a one or two column matrix of
observations, or a list each component of which is such a vector or matrix. If y
is missing it is set equal to the y component of model, given that that argument
is non-NULL and that that component exists. Otherwise an error is given.

model An object of class hmm.discnp as returned by hmm().

tpm The transition probability matrix for the underlying hidden Markov chain. Ig-
nored if model is not NULL (in which case tpm is extracted from model).

Rho An object specifying the distribution of the observations, given the underlying
state. I.e. the “emission” probabilities. See hmm(). Ignored if model is not NULL
(in which case Rho is extracted from model).

ispd Vector specifying the initial state probability distribution of the underlying hid-
den Markov chain. Ignored if model is not NULL (in which case ispd is extracted
from model). If both model[["ispd"]] and ispd are NULL then ispd is cal-
culated to be the stationary distribution of the chain as determined by tpm.

X An optional numeric matrix, or a list of such matrices, of predictors. Ignored if
model is not NULL (in which case X is extracted from model).
The use of such predictors is (currently, at least) applicable only in the univariate
emissions setting. If X is a list it must be of the same length as y and all entries



sp 37

of this list must have the same number of columns. The number of rows of each
entry must be equal to the length of the corresponding entry of y. If X is a matrix
then y should be a vector or one-column matrix (or a list with a single entry
equal to such).

addIntercept Logical scalar. See the documentation of hmm(). Ignored if model is not NULL
(in which case addIntercept is extracted from model).

warn Logical scalar; should a warning be issued if Rho hasn’t got relevant dimension
names? (Note that if this is so, then the corresponding dimension names are
formed from the sorted unique values of y or of the appropriate column(s) of y.
And if this is so, then the user should be sure that the ordering of the entries of
Rho corresponds properly to the the sorted unique values of y.) This argument is
passed to the utility function check.yval() which actually issues the warning
if warn=TRUE.

drop Logical scalar. If y is a matrix, or a list of length 1, and if drop is FALSE then
the returned value is a list whose sole entry is the matrix that would have been
returned were drop equal to TRUE. The argument drop is ignored if y is a list of
length greater than 1.

Details

Note that in contrast to predict.hmm.discnp(), components in model take precendence over in-
dividually supplied components (tpm, Rho, ispd, X and addIntercept).

Value

If y is a single matrix of observations or a list of length 1, and if drop is TRUE then the returned value
is a matrix whose rows correspond to the states of the hidden Markov chain, and whose columns
correspond to the observation times. Otherwise the returned value is a list of such matrices, one for
each matrix of observations.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

hmm(), mps(), viterbi(), pr(), fitted.hmm.discnp()

Examples

P <- matrix(c(0.7,0.3,0.1,0.9),2,2,byrow=TRUE)
R <- matrix(c(0.5,0,0.1,0.1,0.3,

0.1,0.1,0,0.3,0.5),5,2)
set.seed(42)
y <- rhmm(ylengths=rep(300,20),nsim=1,tpm=P,Rho=R,drop=TRUE)
fit <- hmm(y,K=2,verb=TRUE,keep.y=TRUE,itmax=10)
cpe1 <- sp(model=fit) # Using the estimated parameters.
cpe2 <- sp(y,tpm=P,Rho=R,warn=FALSE) # Using the ``true'' parameters.



38 squantCI

# The foregoing would issue a warning that Rho had no row names
# were it not for the fact that "warn" has been set to FALSE.

squantCI Simulation-quantile based confidence intervals.

Description

Calculates estimates of confidence intervals for the parameters of a model fitted by hmm.discnp.
Uses a method based quantiles of estimates produced by simulation (or “parametric bootstrapping”).

Usage

squantCI(object, expForm = TRUE, seed = NULL, alpha = 0.05,
nsim=100, verbose = TRUE)

Arguments

object An object of class hmm.discnp as returned by hmm().

expForm Logical scalar. Should the confidence intervals produced be for the parameters
expressed in “exponential” (or “smooth” or “logistic”) form? If expForm=FALSE
then the parameters considered are “raw” probabilities, with redundancies (last
column of tpm; last row of Rho) removed.

seed Integer scalar serving as a seed for the random number generator. If left NULL
the seed itself is chosen randomly from the set of integers between 1 and 105.

alpha Positive real number strictly between 0 and 1. A set of 100*(1-alpha)% confi-
dence intervals will be produced.

nsim A positive integer. The number of simulations upon which the confidence inter-
val estimates will be based.

verbose Logical scalar; if TRUE, iteration counts will be printed out during each of the
simulation and model-fitting stages.

Details

This function is currently applicable only to models fitted to univariate data. If there are predictors
in the model, then only the exponential form of the parameters may be used, i.e. expForm must be
TRUE.

Value

A npar-by-2 matrix (where npar is the number of “independent” parameters in the model) whose
rows form the estimated confidence intervals. (The first entry of each row is the lower bound of a
confidence interval for the corresponding parameter, and the second entry is the upper bound. The
row labels indicate the parameters to which each row pertains, in a reasonably perspicuous manner.
The column labels indicate the relevant quantiles in percentages.

This matrix has an attribute seed (the random number generation seed that was used) so that the
calculations can be reproduced.



SydColDisc 39

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

scovmat() link{rhmm}() link{hmm)}()

Examples

## Not run:
y <- list(lindLandFlows$deciles,ftLiardFlows$deciles)
fit <- hmm(y,K=3)
CIs <- squantCI(fit,nsim=100)

## End(Not run)

SydColDisc Discretised version of coliform counts in sea-water samples

Description

Discretised version of counts of faecal coliform bacteria in sea water samples collected at seven
locations near Sydney NSW, Australia. There were four “controls”: Longreef, Bondi East, Port
Hacking “50”, and Port Hacking “100” and three “outfalls”: Bondi Offshore, Malabar Offshore and
North Head Offshore. At each location measurements were made at four depths: 0, 20, 40, and 60
meters. A large fraction of the counts are missing values.

Usage

SydColDisc

Format

A data frame with 5432 observations on the following 6 variables.

y A factor consisting of a discretisation of counts of faecal coliform count bacteria in sea water
samples. The original measures were obtained by a repeated dilution process. The data were
discretised using the cut() function with breaks given by c(0,1,5,25,200,Inf) and labels
equal to c("lo","mlo","m","mhi","hi").

locn a factor with levels Longreef, Bondi East, Port Hacking 50, Port Hacking 100, Bondi
Offshore, Malabar Offshore and North Head Offshore.

depth a factor with levels 0 (0 metres), 20 (20 metres), 40 (40 metres), 60 (60 metres).
ma.com A factor with levels no and yes, indicating whether the Malabar sewage outfall had been

commissioned.
nh.com A factor with levels no and yes, indicating whether the North Head sewage outfall had

been commissioned.
bo.com A factor with levels no and yes, indicating whether the Bondi Offshore sewage outfall had

been commissioned.



40 update.hmm.discnp

Details

The observations corresponding to each location-depth combination constitute a (discrete valued)
time series. The sampling interval is ostensibly 1 week; distinct time series are ostensibly syn-
chronous. The measurements were made over a 194 week period. Due to exigencies of weather, the
unreliabitity of boats and other factors the collection times were actually highly irregular and have
been rounded to the neares week. Often no sample was obtained at a given site within a week of the
putative collection time, in which the observed count is given as a missing value. In fact over 75%
of the counts are missing. See Turner et al. (1998) for more detail.

Modelling

The hidden Markov models applied in the paper Turner et al. (1998) and in the paper Turner (2008)
used a numeric version of the response in this data set. The numeric response was essentially a
square root transformation of the original data, and the resulting values were modelled in terms of
a Poisson distribution. See the references for details.

Source

The original data were kindly supplied by Geoff Coade, of the New South Wales Environment
Protection Authority (Australia)

References

T. Rolf Turner, Murray A. Cameron, and Peter J. Thomson. Hidden Markov chains in generalized
linear models. Canadian J. Statist. 26 (1998) 107 – 125.

Rolf Turner. Direct maximization of the likelihood of a hidden Markov model. Comp. Statist. Data
Anal. 52 (2008) 4147–4160.

update.hmm.discnp Update a fitted hmm.discnp model.

Description

An update() method for objects of class hmm.discnp.

Usage

## S3 method for class 'hmm.discnp'
update(object,..., data, Kplus1=FALSE,

tpm2=NULL, verbose=FALSE, method=NULL, optimiser=NULL,
stationary=NULL, mixture=NULL, cis=NULL, tolerance=NULL,
itmax=NULL, crit=NULL, X=NULL, addIntercept=NULL)



update.hmm.discnp 41

Arguments

object An object of class hmm.discnp as returned by hmm().

... Not used.

data The data set to which the (updated) model is to be fitted. See the description of
the y argument of hmm() for more detail.

Kplus1 Logical scalar. Should the number of states be incremented by 1? If so then tpm
(the transition probability matrix) is re-formed by rbind()-ing on a row all of
whose entries are 1/K (where K is the “old” number of states) and then cbind()-
ing on a column of zeroes. The emission probability matrix Rho is reformed by
cbind()-ing on a column all of whose entries are 1/m where m is the number of
discrete values of the emissions.
Note that the intial likelihood of the “new” model with K+1 states will (should?)
be exactly the same as that of of the “old” fitted K-state model.
The Kplus1 argument is provided mainly so as to provide a set of starting values
for the fitting process which will guarantee the log likelihood of a K+1-state
model will be at least as large as that of a K-state model fitted to the same data
set.
Experience indicates that when Kplus1=TRUE is used, the fitting process does
not “move very far” from the maximum log likelihood found for the K-state
model. It is then advisable to try (many) random starting values so as to (try to)
find the “true” maximum for the K+1-state model.

tpm2 The transtion probability matrix to use when updating a model fitted with K=1
and Kplus1=TRUE. This argument is ignored otherwise. The default value of
this argument is matrix(0.5,2,2). The value of tpm2 makes no difference
to the initial value of the likelihood of the K=2 model (which will be identical
to the likelihood of the fitted K=1 model that is being updated). Any two-by-
two transition probability matrix “will do”. However the value of tpm2 could
conceivably have an impact on the final likelihood of the K=2 model to which
the fitting procedure converges. This is particularly true if the method is (or is
switched to) "LM".

verbose See the help for hmm().

method See the help for hmm().

optimiser See the help for hmm().

stationary See the help for hmm().

mixture See the help for hmm().

cis See the help for hmm().

tolerance See the help for hmm().

itmax See the help for hmm().

crit See the help for hmm().

X See the help for hmm().

addIntercept See the help for hmm().



42 viterbi

Details

Except for argument X, any arguments that are left NULL have their values supplied from the args
component of object.

Value

An object of class hmm.discnp with an additional component init.log.like which is the initial
log likelihood calculated at the starting values of the parameters (which may be modified from the
parameters returned in the object being updated, if Kplus1 is TRUE). The calculation is done by the
function logLikHmm(). Barring the strange and unforeseen, init.log.like should be (reassur-
ingly) equal to object$log.like. See hmm() for details of the other components of the returned
value.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

See Also

hmm() rhmm.hmm.discnp()

Examples

set.seed(294)
fit <- hmm(WoodPeweeSong,K=2,rand.start=list(tpm=TRUE,Rho=TRUE),itmax=10)
xxx <- rhmm(fit,nsim=1)
sfit <- update(fit,data=xxx,itmax=10)
yyy <- with(SydColDisc,split(y,f=list(locn,depth)))
f1 <- hmm(yyy,K=1)
f2 <- update(f1,data=yyy,Kplus1=TRUE) # Big improvement, but ...
## Not run:
g2 <- hmm(yyy,K=2) # Substantially better than f2.

## End(Not run)

viterbi Most probable state sequence.

Description

Calculates “the” most probable state sequence underlying each of one or more replicate observation
sequences.

Usage

viterbi(y, model = NULL, tpm, Rho, ispd=NULL,log=FALSE, warn=TRUE)



viterbi 43

Arguments

y The observations for which the most probable sequence(s) of underlying hid-
den states are required. May be a sequence of observations in the form of a
vector or a one or two column matrix, or a list each component of which con-
stitutes a (replicate) sequence of observations. It may also be an object of class
"multipleHmmDataSets" as returned by rhmm() with nsim>1.
If y is missing, it is extracted from model (whence it will not be of class "multipleHmmDataSets"!)
provided that model and its y component are not NULL. Otherwise an error is
given.

model An object describing a hidden Markov model, as fitted to the data set y by hmm().

tpm The transition probability matrix for a hidden Markov model; ignored if model
is non-null.

Rho An object specifying the probability distributions of the observations for a hid-
den Markov model. See hmm(). Ignored if model is non-null. Should bear some
reasonable relationship to y.
If Rho has dimension names (or if its entries have dimension names in the case
where Rho is a list) then the appropriate dimension names must include all cor-
responding values of the observations. If a relevant vector of dimension names
is NULL then it is formed as the sort unique values of the approprate columns of
the observation matrices. In this case the corresponding dimensions must match
the number of unique values.

ispd The initial state probability distribution for a hidden Markov model; ignored if
model is non-null. Should bear some reasonable relationship to y. If model and
ispd are both NULL then ispd is set equal to the stationary distribution calculated
from tpm.

log Logical scalar. Should logarithms be used in the recursive calculations of the
probabilities involved in the Viterbi algorithm, so as to avoid underflow? If log
is FALSE then underflow is avoided instead by a normalization procedure. The
quantity delta (see Rabiner 1989, page 264) is replaced by delta/sum(delta)
at each step. It should actually make no difference whether log is set to TRUE.
I just included the option because I could. Also the HMM package uses the log-
arithm approach so setting log=TRUE might be of interest if comparisons are to
be made between results from the two packages.

warn Logical scalar; should a warning be issued if Rho hasn’t got relevant dimension
names? (Note that if this is so, then the corresponding dimension names are
formed from the sorted unique values of y or of the appropriate column(s) of y.
And if this is so, then the user should be sure that the ordering of the entries of
Rho corresponds properly to the the sorted unique values of y.) This argument is
passed to the utility function check.yval() which actually issues the warning
if warn=TRUE.

Details

Applies the Viterbi algorithm to calculate “the” most probable robable state sequence underlying
each observation sequences.



44 viterbi

Value

If y consists of a single observation sequence, the value is the underlying most probable observation
sequence, or a matrix whose columns consist of such sequences if there is more than one (equally)
most probable sequence.

If y consists of a list of observation sequences, the value is a list each entry of which is of the form
described above.

If y is of class "multipleHmmDataSets" then the value returned is a list of lists of the sort described
above.

Warning

There may be more than one equally most probable state sequence underlying a given observation
sequence. This phenomenon can occur but appears to be unlikely to do so in practice.

Thanks

The correction made to the code so as to avoid underflow problems was made due to an inquiry and
suggestion from Owen Marshall.

Author(s)

Rolf Turner <r.turner@auckland.ac.nz>

References

Rabiner, L. R., "A tutorial on hidden Markov models and selected applications in speech recogni-
tion," Proc. IEEE vol. 77, pp. 257 – 286, 1989.

See Also

hmm(), rhmm(), mps(), pr()

Examples

# See the help for logLikHmm() for how to generate y.num and y.let.
## Not run:
fit.num <- hmm(y.num,K=2,verb=TRUE,keep.y=TRUE)
v.1 <- viterbi(model=fit.num)
rownames(R) <- 1:5 # Avoids a (harmless) warning.
v.2 <- viterbi(y.num,tpm=P,Rho=R)
# P and R as in the help for logLikHmm() and for sp().

# Note that the order of the states has gotten swapped; 3-v.1[[1]]
# is identical to v.2[[1]]; for other k = 2, ..., 20, 3-v.1[[k]]
# is much more similar to v.2[[k]] than is v.1[[k]].

fit.let <- hmm(y.let,K=2,verb=TRUE,keep.y=TRUE))
v.3 <- viterbi(model=fit.let)
rownames(R) <- letters[1:5]



weissData 45

v.4 <- viterbi(y.let,tpm=P,Rho=R)

## End(Not run)

weissData Data from “An Introduction to Discrete-Valued Time Series”

Description

Data sets from the book “An Introduction to Discrete-Valued Time Series” by Christian H. Weiß.

Usage

data(Bovine)
data(Cryptosporidiosis)
data(Downloads)
data(EricssonB_Jul2)
data(FattyLiver)
data(FattyLiver2)
data(goldparticle380)
data(Hanta)
data(InfantEEGsleepstates)
data(IPs)
data(LegionnairesDisease)
data(OffshoreRigcountsAlaska)
data(PriceStability)
data(Strikes)
data(WoodPeweeSong)

Format

• Bovine A character vector of length 8419.
• Cryptosporidiosis A numeric (integer) vector of length 365.
• Downloads A numeric (integer) vector of length 267.
• EricssonB_Jul2 A numeric (integer) vector of length 460.
• FattyLiver2 A numeric (integer) vector of length 449.
• FattyLiver A numeric (integer) vector of length 928.
• goldparticle380 A numeric (integer) vector of length 380.
• Hanta A numeric (integer) vector of length 52.
• InfantEEGsleepstates A character vector of length 107.
• IPs A numeric (integer) vector of length 241.
• LegionnairesDisease A numeric (integer) vector of length 365.
• OffshoreRigcountsAlaska A numeric (integer) vector of length 417.
• PriceStability A numeric (integer) vector of length 152.
• Strikes A numeric (integer) vector of length 108.
• WoodPeweeSong A numeric (integer) vector of length 1327.



46 weissData

Details

For detailed information about each of these data sets, see the book cited in the References.

Note that the data sets Cryptosporidiosis and LegionnairesDisease are actually called
Cryptosporidiosis_02-08 and LegionnairesDisease_02-08 in the given reference. The
“suffixes” were removed since the minus sign causes problems in a variable name in R.

Source

These data sets were kindly provided by Prof. Christian H. Weiß. The package author is also
pleased to acknowledge the kind permission granted by Prof. Kurt Brännäs (Professor Emeritus of
Economics at Umeå University) to include the Ericsson time series data set (EricssonB_Jul2).

References

Christian H. Weiß (2018). An Introduction to Discrete-Valued Time Series. Chichester: John Wiley
& Sons.

Examples

## Not run:
fit1 <- hmm(WoodPeweeSong,K=2,verbose=TRUE)
# EM converges in 6 steps --- suspicious.
set.seed(321)
fit2 <- hmm(WoodPeweeSong,K=2,verbose=TRUE,rand.start=list(tpm=TRUE,Rho=TRUE))
# 52 steps --- note the huge difference between fit1$log.like and fit2$log.like!
set.seed(321)
fit3 <- hmm(WoodPeweeSong,K=2,verbose=TRUE,method="bf",

rand.start=list(tpm=TRUE,Rho=TRUE))
# log likelihood essentially the same as for fit2

## End(Not run)



Index

∗ datagen
misstify, 24
rhmm, 32

∗ datasets
ccprSim, 3
hydroDat, 20
lesionCount, 21
SydColDisc, 39
weissData, 45

∗ methods
anova.hmm.discnp, 2
update.hmm.discnp, 40

∗ models
anova.hmm.discnp, 2
fitted.hmm.discnp, 5
hmm, 7
logLikHmm, 22
mps, 26
pr, 29
predict.hmm.discnp, 31
sp, 36
update.hmm.discnp, 40
viterbi, 42

∗ utilities
cnvrtRho, 4
nafracCalc, 28

∗ utility
scovmat, 35
squantCI, 38

anova.hmm.discnp, 2

Bovine (weissData), 45

ccprSim, 3
cnvrtRho, 4
Cryptosporidiosis (weissData), 45
cut, 39

Downloads (weissData), 45

EricssonB_Jul2 (weissData), 45

FattyLiver (weissData), 45
FattyLiver2 (weissData), 45
fitted.hmm.discnp, 5, 30–32, 37
ftLiardFlows (hydroDat), 20

goldparticle380 (weissData), 45

Hanta (weissData), 45
hmm, 2, 3, 5, 6, 7, 22–24, 26, 27, 29–31, 33–38,

41–44
hydroDat, 20

InfantEEGsleepstates (weissData), 45
IPs (weissData), 45

LegionnairesDisease (weissData), 45
lesionCount, 21
linLandFlows (hydroDat), 20
logLikHmm, 22

misstify, 24, 29, 33, 34
model.matrix, 11
mps, 19, 26, 30, 37, 44

nafracCalc, 25, 28, 34
nlm, 10, 11, 14

OffshoreRigcountsAlaska (weissData), 45
optim, 9, 10, 14

portMannFlows (hydroDat), 20
portMannSedCon (hydroDat), 20
portMannSedLoads (hydroDat), 20
pr, 24, 29, 37, 44
predict.hmm.discnp, 31
PriceStability (weissData), 45

rhmm, 19, 24–29, 32, 43, 44
rhmm.hmm.discnp, 42

47



48 INDEX

scovmat, 35, 39
sp, 6, 7, 24, 30–32, 36
squantCI, 36, 38
Strikes (weissData), 45
SydColDisc, 39

update.hmm.discnp, 15, 40

viterbi, 19, 27, 30, 37, 42

weissData, 45
WoodPeweeSong (weissData), 45


	anova.hmm.discnp
	ccprSim
	cnvrtRho
	fitted.hmm.discnp
	hmm
	hydroDat
	lesionCount
	logLikHmm
	misstify
	mps
	nafracCalc
	pr
	predict.hmm.discnp
	rhmm
	scovmat
	sp
	squantCI
	SydColDisc
	update.hmm.discnp
	viterbi
	weissData
	Index

