Package ‘hitandrun’

October 13, 2022

Type Package

Title “"Hit and Run" and **Shake and Bake" for Sampling Uniformly from
Convex Shapes

Version 0.5-6

Date 2022-05-26

Description The “"Hit and Run" Markov Chain Monte Carlo method for sampling uniformly from con-
vex shapes defined by linear constraints, and the “*Shake and Bake" method for sam-
pling from the boundary of such shapes. Includes specialized functions for sampling normal-
ized weights with arbitrary linear constraints. Tervonen, T., van Valkenhoef, G., Bas-
turk, N., and Postmus, D. (2012) <doi:10.1016/j.ejor.2012.08.026>. van Valkenhoef, G., Tervo-
nen, T., and Postmus, D. (2014) <doi:10.1016/j.ejor.2014.06.036>.

URL https://github.com/gertvv/hitandrun

License GPL-3

LazyLoad yes

Imports rcdd (>= 1.1), stats

Suggests testthat (>=0.8)

NeedsCompilation yes

Author Gert van Valkenhoef [aut, cre, cph],
Tommi Tervonen [aut]

Maintainer Gert van Valkenhoef <gert@gertvv.nl>
Repository CRAN
Date/Publication 2022-05-27 13:10:02 UTC

R topics documented:

hitandrun-package L 2
bbReject 4
createBoundBox e e 5
createSeedPoint L 6
createTransform 7
eliminateRedundant 8

https://doi.org/10.1016/j.ejor.2012.08.026
https://doi.org/10.1016/j.ejor.2014.06.036
https://github.com/gertvv/hitandrun

2 hitandrun-package

findExtremePoints e e 9
findFace e 10
findInteriorPoint e 11
findVertices e e e e e 12
har e 13
harConstraints e e 15
hitandrun L e 16
hypersphere.sample 19
SAD L L L e 19
shakeandbake 21
simplex.createConstraintso e e 24
simplex.createTransform 25
simplex.sample L. e e e 27
solution.basis e e e e 28
transformConstraints e e e e e e e e e e e e 29

Index 31

hitandrun-package "Hit and Run" sampling
Description

This package provides a "Hit and Run" sampler that generates a Markov chain whose stable state
converges on the uniform distribution over a convex polytope. The polytope is given by a set
of inequality constraints in standard linear programming form (Ax < b) and optionally a set of
equality constraints. In addition, there is a "Shake and Bake" sampler to generate points from the
boundary of such a shape.

Utilities are provided for sampling from subsets of the unit simplex (i.e. random variates that can
be interpreted as weights satisfying certain constraints) and for specifying common constraints.

Details

hitandrun and shakeandbake now provide the most general interface for sampling from spaces
defined by arbitrary linear equality and inequality constraints. The functions described in the fol-
lowing provide lower level functionality on which it is built.

har is the core "Hit and Run" sampler, sab is the core "Shake and Bake" sampler, bbReject is the
bounding box rejection sampler, and simplex.sample samples uniformly from the unit simplex.

See simplex.createTransform and simplex.createConstraints for sampling from subsets of
the unit simplex. Utilities to specify common constraints are described in harConstraints.

When the sampling space is restricted by different linear equality constraints, use solution.basis,
createTransform, and transformConstraints. This is a generalization of the methods for sam-
pling from the simplex.

hitandrun-package 3

Note

"Hit and Run" is a Markov Chain Monte Carlo (MCMC) method, so generated samples form a
correlated time series. To get a uniform sample, you need O*(n?) samples, where n is the dimension
of the sampling space.

Author(s)

Maintainer: Gert van Valkenhoef <gert@gertvv.nl>

References

Tervonen, T., van Valkenhoef, G., Basturk, N., and Postmus, D. (2012) "Hit-And-Run enables effi-
cient weight generation for simulation-based multiple criteria decision analysis". European Journal
of Operational Research 224(3) 552-559. doi: 10.1016/j.ejor.2012.08.026 van Valkenhoef, G., Ter-
vonen, T., and Postmus, D. (2014) "Notes on "Hit-And-Run enables efficient weight generation for

simulation-based multiple criteria decision analysis’". European Journal of Operational Research
(in press). doi: 10.1016/j.ejor.2014.06.036

See Also

hitandrun har

bbReject simplex.sample hypersphere.sample
solution.basis createTransform transformConstraints
simplex.createTransform simplex.createConstraints
harConstraints

createSeedPoint createBoundBox

Examples

Example: sample weight vectors where w_1 >= w_2 and w_1 >= w_3
n <- 3 # length of weight vector
constr <- mergeConstraints(
ordinalConstraint(n, 1, 2),
ordinalConstraint(n, 1, 3))
transform <- simplex.createTransform(n)
constr <- simplex.createConstraints(transform, constr)
seedPoint <- createSeedPoint(constr, homogeneous=TRUE)
N <- 1000
w <- har(seedPoint, constr, N=N * (n-1)*3, thin=(n-1)"3,
homogeneous=TRUE, transform=transform)$samples
stopifnot(all(wl,1] >= w[,2]) && all(w[,1] >= w[,3]))

https://doi.org/10.1016/j.ejor.2012.08.026
https://doi.org/10.1016/j.ejor.2014.06.036

4 bbReject

bbReject Bounding box rejection sampler

Description

Generates uniform random variates over a convex polytope defined by a set of linear constraints by
generating uniform variates over a bounding box and rejecting those outside the polytope.

Usage

bbReject(lb, ub, constr, N, homogeneous=FALSE, transform=NULL)

Arguments
1b Lower bound for each dimension (not including homogeneous coordinate)
ub Upper bound for each dimension (not including homogeneous coordinate)
constr Constraint definition (see details)
N Number of samples to generate
homogeneous Whether constr and transform are given in homogeneous coordinate representa-
tion (see details)
transform Transformation matrix to apply to the generated samples (optional)
Details

See har for a description of the constraint definition and the homogeneous coordinate representa-
tion.

Value

A list, containing:

samples A matrix containing the generated samples as rows.

rejectionRate The mean number of samples rejected for each accepted sample.

Author(s)

Gert van Valkenhoef

See Also

createBoundBox

harConstraints simplex.createTransform simplex.createConstraints

createBoundBox 5

Examples

constraints: x_1 >= 0, x_2 >= 0, x_1 + x_2 <=1
A <- rbind(c(-1, @), c(0, -1), c(1, 1))

b <- c(o, 0, 1)

d <= c("<=", "<=", "<=")

constr <- list(constr=A, rhs=b, dir=d)

create a bounding box that contains the polytope
1b <- c(0, 0)
ub <- c(1, 1)

sample 10,000 points
samples <- bbReject(lb, ub, constr, 1E4)$samples

Check dimension of result
stopifnot(dim(samples) == c(1E4, 2))

Check that x_i >= 0
stopifnot(samples >= @)

Check that x_1 + x_2 <=1
stopifnot(samples[,1] + samples[,2] <= 1)

plot(samples)

createBoundBox Calculate a bounding box

Description

Calculate a bounding box around a polytope given by a set of linear constraints.

Usage

createBoundBox (constr, homogeneous=FALSE)

Arguments

constr Constraint definition

homogeneous Whether constr is given in homogeneous coordinate representation
Details

See har for a description of the constraint definition and the homogeneous coordinate representa-
tion.

This function uses findExtremePoints to find extreme points along each dimension.

6 createSeedPoint

Value
1b Lower bound for each dimension (not including homogeneous coordinate).
ub Upper bound for each dimension (not including homogeneous coordinate).
Author(s)

Gert van Valkenhoef

See Also

har

findExtremePoints

Examples

constraints: x_1 >= 0, x_2 >= 0, x_1 + x_2 <=1
A <- rbind(c(-1, @), c(0, -1), c(1, 1))

b <- c(o, 0, 1)

d <= c("<=", "<=", "<=")

constr <- list(constr=A, rhs=b, dir=d)

bb <- createBoundBox(constr)
stopifnot(bb$lb == c(0.0, 0.0))
stopifnot(bb$ub == c(1.0, 1.0))

createSeedPoint Generate a seed point

Description

Generate a seed point inside a polytope given by a set of linear constraints.

Usage

createSeedPoint(constr, homogeneous=FALSE, randomize=FALSE, method="slacklp")

Arguments
constr Constraint definition
homogeneous Whether constr is given in homogeneous coordinate representation
randomize If TRUE, randomize the starting point
method How to obtain the starting point: "slacklp" for a linear program that maximizes

the minimum slack, or "vertices" for a weighted average of the vertices of the
polytope

createTransform 7

Details

See har for a description of the constraint definition and the homogeneous coordinate representa-
tion.

» The "slacklp" method solves a linear program that maximizes the minimum slack on the in-
equality constraints. When randomized, the slack on each constraint is randomly rescaled
before maximization.

* The "vertices" method enumerates all vertices of the polytope and then calculates the weighted
arithmetic mean of this set of points. If ‘randomize’ is set, the weights are randomly generated,
otherwise they are all equal and the generated point is the centroid of the polytope.

Value

A coordinate vector in the appropriate coordinate system.

Author(s)

Gert van Valkenhoef

See Also

har

findExtremePoints findVertices

Examples

constraints: x_1 >= 0, x_2 >= 0, x_1 + x_2 <=1
A <= rbind(c(-1, @), c(0, -1), c(1, 1))

b <- c(o, 0, 1)

d <- ¢c("<=", "<=", "<=")

constr <- list(constr=A, rhs=b, dir=d)

X0 <- createSeedPoint(constr)
stopifnot(x@ >= @)
stopifnot(sum(x@) <= 1)

createTransform Create transformation matrices

Description

This function takes a basis, consisting of an n X m change of basis matrix and an n-vector repre-
senting the origin of the m-space, and generates a matrix to transform points in the m-space, given
in homogeneous coordinates, to the n-space.

The inverse transform can also be generated, and conversion can be to homogeneous coordinates
instead of Cartesian ones.

8 eliminateRedundant

Usage

createTransform(basis, inverse=FALSE, keepHomogeneous=inverse)

Arguments
basis Basis (and origin) for the m-space (see solution.basis)
inverse TRUE to convert from n-space coordinates to m-space coordinates
keepHomogeneous
TRUE to convert to homogeneous coordinates rather than Cartesian
Details

Multiply a coordinate vector in homogeneous coordinates by pre-multiplying by the generated ma-
trix (see examples).

Value

A transformation matrix.

Author(s)

Gert van Valkenhoef

See Also

solution.basis

eliminateRedundant Eliminate redundant linear constraints

Description

Given a set of linear constraints, gives a subset of these constraints that are non-redundant.

Usage

eliminateRedundant(constr)

Arguments

constr Constraints

Details

If no constraints are redundant, returns the same set of constraints.

findExtremePoints

Value

A set of non-redundant constraints.

Author(s)

Gert van Valkenhoef, Tommi Tervonen

See Also

harConstraints

Examples

constr <- list(
constr = rbind(

c(-1 , 9,
cCo , -1),
cC1 , 1),
c(0.5, -1)),
dir = c('<=", '<=", '=', '<="),

rhs = c(0, @, 1, 0))

constr <- eliminateRedundant(constr)

stopifnot(nrow(constr$constr) == 3) # eliminates one constraint
findExtremePoints Find extreme points
Description

Find extreme points of a polytope given by a set of linear constraints along each dimension.

Usage

findExtremePoints(constr, homogeneous=FALSE)

Arguments

constr Constraint definition

homogeneous Whether constr is given in homogeneous coordinate representation
Details

See har for a description of the constraint definition and the homogeneous coordinate representa-
tion.
For n-dimensional coordinate vectors, solves 2n LPs to find the extreme points along each dimen-

sion.

10 findFace

Value

A matrix, in which each row is a coordinate vector in the appropriate coordinate system.

Author(s)

Gert van Valkenhoef

See Also

har
findInteriorPoint findVertices
lpcdd

Examples

constraints: x_1 >= 0, x_2 >= 0, x_1 + x_2 <=1
A <= rbind(c(-1, @), c(o, -1), c(1, 1))

b <- c(o, 0, 1)

d <- c("<=", "<=", "<=")

constr <- list(constr=A, rhs=b, dir=d)

findExtremePoints(constr, homogeneous=FALSE)

findFace Find the closest face (constraint) to an interior point of a polytope.

Description
Find the closest face (constraint) to an interior point of a polytope defined by a set of linear con-
straints.

Usage

findFace(x, constr)

Arguments
X An interior point
constr Constraint definition
Details

See har for a description of the constraint definition.

Value

A face index.

findInteriorPoint 11

Author(s)

Gert van Valkenhoef

See Also

har

Examples

constraints: x_1 >= 0, x_2 >= 0, x_1 + x_2 <=1
A <= rbind(c(-1, @), c(0, -1), c(1, 1))

b <- c(o, 0, 1)

d <- ¢c("<=", "<=", "<=")

constr <- list(constr=A, rhs=b, dir=d)

stopifnot(findFace(c(0.1, 0.2), constr) == 1)
stopifnot(findFace(c(@0.2, ©.1), constr) == 2)
stopifnot(findFace(c(0.4, 0.4), constr) == 3)

findInteriorPoint Find an interior point

Description

Find an interior point of a polytope given by a set of linear constraints along each dimension.

Usage

findInteriorPoint(constr, homogeneous=FALSE, randomize=FALSE)

Arguments
constr Constraint definition
homogeneous Whether constr is given in homogeneous coordinate representation
randomize Whether the point should be randomized

Details

See har for a description of the constraint definition and the homogeneous coordinate representa-
tion.

Solves a slack-maximizing LP to find an interior point of the polytope defined by the given con-
straints. The randomized version randomly scales the slack on each (non-redundant) constraint.

Value

A vector.

12 find Vertices

Author(s)

Gert van Valkenhoef

See Also

har
findExtremePoints findVertices
lpcdd

Examples

constraints: x_1 >= 0, x_2 >= 0, x_1 + x_2 <=1
A <= rbind(c(-1, @), c(o, -1), c(1, 1))

b <- c(o, 0, 1)

d <- c("<=", "<=", "<=")

constr <- list(constr=A, rhs=b, dir=d)

findInteriorPoint(constr, homogeneous=FALSE)

findVertices Find vertices of the polytope

Description

Find the vertices of a polytope given by a set of linear constraints.

Usage

findVertices(constr, homogeneous=FALSE)

Arguments

constr Constraint definition

homogeneous Whether constr is given in homogeneous coordinate representation
Details

See har for a description of the constraint definition and the homogeneous coordinate representa-
tion.

Uses the Avis-Fukuda pivoting algorithm to enumerate the vertices of the polytope.

Value

A matrix, in which each row is a vertex of the polytope.

Author(s)

Gert van Valkenhoef

har 13

See Also

har
findExtremePoints findInteriorPoint
scdd

Examples

constraints: x_1 >= 0, x_2 >= 0, x_1 + x_2 <=1
A <- rbind(c(-1, @), c(0, -1), c(1, 1))

b <- c(o, 0, 1)

d <= c("<=", "<=", "<=")

constr <- list(constr=A, rhs=b, dir=d)

findVertices(constr, homogeneous=FALSE)

har "Hit and Run" sampler

Description
The "Hit and Run" method generates a Markov Chain whose stable state converges on the uniform
distribution over a convex polytope defined by a set of linear constraints.

Usage

har(x@, constr, N, thin=1, homogeneous=FALSE, transform=NULL)

Arguments
X0 Starting point (must be in the polytope)
constr Constraint definition (see details)
N Number of iterations to run
thin Thinning factor (keep every ’thin’-th sample)
homogeneous Whether x0, constr and transform are given in homogeneous coordinate repre-
sentation (see details)
transform Transformation matrix to apply to the generated samples (optional)
Details

The constraints, starting point and transformation matrix can be given in homogeneous coordinate
representation (an extra component is added to each vector, equal to 1.0). This enables affine trans-
formations (such as translation) to be applied to the coordinate vectors by the constraint and trans-
formation matrices. Be aware that while non-affine (perspective) transformations are also possible,
they will not in general preserve uniformity of the generated samples.

Constraints are given as a list(constr=A, rhs=b, dir=d), where d should contain only "<=". See
hitandrun for a "Hit and Run" sampler that also supports equality constraints. The constraints
define the polytope as usual for linear programming: Az < b. In particular, it must be true that
A.’E() < b.

14 har

Value
A list, containing:

samples A matrix containing the generated samples as rows.

xN The last generated sample, untransformed. Can be used as the starting point for
a continuation of the chain.
Note

"Hit and Run" is a Markov Chain Monte Carlo (MCMC) method, so generated samples form a
correlated time series. To get a uniform sample, you need O*(n?) samples, where n is the dimension
of the sampling space.

Author(s)

Gert van Valkenhoef

References

Smith, R. L. (1984) "Efficient Monte Carlo Procedures for Generating Points Uniformly Distributed
over Bounded Regions". Operations Research 32(6): 1296-1308. doi: 10.1287/opre.32.6.1296

See Also

harConstraints hitandrun

Examples

constraints: x_1 >= 0, x_2 >= 0, x_1 + x_2 <=1
A <= rbind(c(-1, @), c(o, -1), c(1, 1))

b <- c(o, 0, 1)

d <= c("<=", "<=", "<=")

constr <- list(constr=A, rhs=b, dir=d)

take a point x@ within the polytope
X0 <- ¢(0.25, 0.25)

sample 10,000 points
samples <- har(x@, constr, 1E4)$samples

Check dimension of result
stopifnot(dim(samples) == c(1E4, 2))

Check that x_i >= 0
stopifnot(samples >= 0)

Check that x_1 + x_2 <=1
stopifnot(samples[,1] + samples[,2] <= 1)

plot(samples)

https://doi.org/10.1287/opre.32.6.1296

harConstraints

15

harConstraints

Constraint formulation utility functions

Description

These utility functions generate linear constraints

Usage

simplexConstraints(n)

lowerBoundConstraint(n, i
upperBoundConstraint(n, i
lowerRatioConstraint(n, i
upperRatioConstraint(n, i, j, x)
exactRatioConstraint(n, i
ordinalConstraint(n, i, j

i, X)
i, X)
i, 3, X)

» 3, %)
i)

mergeConstraints(...)

Arguments

n

Details

Number of dimensions (vector components)
Index of first component

Index of second component

Scalar bound

Constraint definitions, or a single list of constraint definitions

See har for a description of the constraint format.

simplexConstraints encodes the n-simplex: Vywy > 0and >, wy =1

lowerBoundConstraint encodes w; >

upperBoundConstraint encodes w; <

lowerRatioConstraint encodes wi/wj >z

upperRatioConstraint encodes w;/w; <

exactRatioConstraint encodes w; /w; = x

ordinalConstraint encodes w; > w;

mergeConstraints merges the constraints it is given. Alternatively, the function takes a single list
of constraint definitions which are to be merged.

Value

A constraint definition (concatenation of the given constraint definitions).

16 hitandrun

Author(s)

Gert van Valkenhoef

See Also

eliminateRedundant hitandrun har

Examples

create an ordinal constraint
cl <- ordinalConstraint(2, 1, 2)
stopifnot(cl$constr == c(-1, 1))
stopifnot(ci$rhs == c(0))
stopifnot(cl$dir == c("<="))

create our own constraints
c2 <- list(constr=t(c(-1, 0)), rhs=c(0@), dir=c("<="))
c3 <- list(constr=t(c(1, 1)), rhs=c(1), dir=c("<="))

merge the constraints into a single definition

¢ <- mergeConstraints(cl, c2, c3)

stopifnot(c$constr == rbind(c(-1, 1), c(-1, @), c(1, 1)))
stopifnot(c$rhs == c(0, 0, 1))

stopifnot(c$dir == c("<=", "<=", "<="))

test the alternative (list) method

1 <- mergeConstraints(list(cl, c2, c3))
stopifnot(c$constr == 1$constr)
stopifnot(c$rhs == 1$rhs)
stopifnot(c$dir == 1$dir)

test iteratively merging

1 <- mergeConstraints(mergeConstraints(cl, c2), c3)
stopifnot(c$constr == 1$constr)

stopifnot(c$rhs == 1$rhs)

stopifnot(c$dir == 1$dir)

hitandrun "Hit and Run" sampler

Description

The "Hit and Run" method generates a Markov Chain whose stable state converges on the uniform
distribution over a convex polytope defined by a set of linear inequality constraints. hitandrun
further uses the Moore-Penrose pseudo-inverse to eliminate an arbitrary set of linear equality con-
straints before applying the "Hit and Run" sampler.

har.init and har.run together provide a re-entrant version of hitandrun so that the Markov
chain can be continued if convergence is not satisfactory.

hitandrun 17

Usage

hitandrun(constr, n.samples=1E4,
thin.fn = function(n) { ceiling(log(n + 1)/4 * n*3) 3}, thin = NULL,
x0@.randomize=FALSE, x0.method="slacklp”, x@ = NULL, eliminate = TRUE)

har.init(constr,
thin.fn = function(n) { ceiling(log(n + 1)/4 * n*3) 3}, thin = NULL,
x0.randomize=FALSE, x@.method="slacklp”, x@ = NULL, eliminate = TRUE)

har.run(state, n.samples)

Arguments

constr Linear constraints that define the sampling space (see details)

n.samples The desired number of samples to return. The sampler is run for n.samples *
thin iterations

thin.fn Function that specifies a thinning factor depending on the dimension of the sam-
pling space after equality constraints have been eliminated. Will only be invoked
if thin is NULL

thin The thinning factor

X0 Seed point for the Markov Chain. The seed point is specified in the original
space, and transformed to the sampling space automatically.

x@.method Method to generate the seed point if x@ is unspecified, see createSeedPoint

x@.randomize Whether to generate a random seed point if x@ is unspecified

eliminate Whether to eliminate redundant constraints before constructing the transforma-
tion to the sampling space and (optionally) calculating the seed point.
state A state object, as generated by har.init (see value)
Details

The constraints are given as a list with the elements constr, dir and rhs. dir is a vector with values
'='or '<='. constr is a matrix and rhs a vector, which encode the standard linear programming
constraint froms Ax = b and Az < b (depending on dir). The lengths of rhs and dir must match
the number of rows of constr.

hitandrun applies solution.basis to generate a basis of the (translated) solution space of the
linear constraints (if any). An affine transformation is generated using createTransform and ap-
plied to the constraints. Then, a seed point satisfying the inequality constraints is generated using
createSeedPoint. Finally, har is used to generate the samples.

Value

For hitandrun, a matrix containing the generated samples as rows.

For har.init, a state object, containing:

basis The basis for the sampling space. See solution.basis.

transform The sampling space transformation. See createTransform.

18 hitandrun

constr The linear inequality constraints translated to the sampling space. See transformConstraints.
X0 The generated seed point. See createSeedPoint.
thin The thinning factor to be used.

For har. run, a list containing:

samples A matrix containing the generated samples as rows.

state A state object that can be used to continue sampling from the Markov chain (i.e.
x0 has been modified).

Note

"Hit and Run" is a Markov Chain Monte Carlo (MCMC) method, so generated samples form a
correlated time series. To get a uniform sample, you need O*(n?) samples, where n is the dimension
of the sampling space.

Author(s)

Gert van Valkenhoef

See Also

harConstraints har

Examples

Sample from the 3-simplex with the additional constraint that w_1/w_2 = 2

Three inequality constraints, two equality constraints

constr <- mergeConstraints(simplexConstraints(3), exactRatioConstraint(3, 1, 2, 2))
samples <- hitandrun(constr, n.samples=1000)

stopifnot(dim(samples) == c(1000, 3))

stopifnot(all.equal(apply(samples, 1, sum), rep(1, 1000)))
stopifnot(all.equal(samples[,1]/samples[,2], rep(2, 1000)))

Sample from the unit rectangle (no equality constraints)
constr <- list(
constr = rbind(c(1,0), c(0,1), c(-1,0), c(0,-1)),
dir=rep('<=', 4),
rhs=c(1, 1, 0, 0))
state <- har.init(constr)
result <- har.run(state, n.samples=1000)
samples <- result$samples
stopifnot(all(samples >= @ & samples <= 1))
Continue sampling from the same chain:
result <- har.run(result$state, n.samples=1000)
samples <- rbind(samples, result$samples)

hypersphere.sample 19

hypersphere.sample Sample uniformly from an n-hypersphere

Description

Generates uniform random variates over an n-hypersphere

Usage
hypersphere.sample(n, N)

Arguments
n Dimension of the hypersphere
N Number of samples

Value

A single n-dimensional sample from the hypersphere.

Author(s)

Tommi Tervonen <tommi@smaa.fi>

Examples
n <- 3 # Dimension
N <- 5 # Nr samples

sample <- hypersphere.sample(n, N)

Check summing to unity
vec.norm <- function(x) { sum(x*2) }
stopifnot(all.equal(apply(sample, 1, vec.norm), rep(1l, N)))

sab "Shake and Bake" sampler

Description
The "Shake and Bake" method generates a Markov Chain whose stable state converges on the
uniform distribution over the boundary of a convex polytope defined by a set of linear constraints.
Usage

sab(x@, i@, constr, N, thin=1, homogeneous=FALSE, transform=NULL)

20 sab

Arguments
X0 Starting point (must be in the polytope)
io Index of the closest face to the starting point
constr Constraint definition (see details)
N Number of iterations to run
thin Thinning factor (keep every ’thin’-th sample)
homogeneous Whether x0, constr and transform are given in homogeneous coordinate repre-
sentation (see details)
transform Transformation matrix to apply to the generated samples (optional)
Details

The constraints, starting point and transformation matrix can be given in homogeneous coordinate
representation (an extra component is added to each vector, equal to 1.0). This enables affine trans-
formations (such as translation) to be applied to the coordinate vectors by the constraint and trans-
formation matrices. Be aware that while non-affine (perspective) transformations are also possible,
they will not in general preserve uniformity of the generated samples.

Constraints are given as a list(constr=A, rhs=b, dir=d), where d should contain only "<=". See
shakeandbake for a "Shake and Bake" sampler that also supports equality constraints. The con-
straints define the polytope as usual for linear programming: Az < b. In particular, it must be true
that Azy < b. Points are generated from the boundary of the polytope (where equality holds for
one of the constraints), using the "running" shake and bake sampler, which samples the direction
vector so that every move point is accepted (Boender et al. 1991).

Value

A list, containing:

samples A matrix containing the generated samples as rows.
faces A vector containing the indices of the faces on which the samples lie.
xN The last generated sample, untransformed. Can be used as the starting point for

a continuation of the chain.

iN Face on which the last generated sample lies.

Note

"Shake and Bake" is a Markov Chain Monte Carlo (MCMC) method, so generated samples form a
correlated time series.

Author(s)

Gert van Valkenhoef

shakeandbake 21

References

Boender, C. G. E., Caron, R. J., McDonald, J. F., Rinnooy Kan, A. H. G., Romeijn, H. E., Smith,
R. L., Telgen, J., and Vorst, A. C. F. (1991) "Shake-and-Bake Algorithms for Generating Uniform
Points on the Boundary of Bounded Polyhedra". Operations Research 39(6):945-954. doi: 10.1287/
opre.39.6.945

See Also

harConstraints shakeandbake

Examples

constraints: x_1 >= 0, x_2 >= 0, x_1 + x_2 <=1
A <= rbind(c(-1, @), c(0, -1), c(1, 1))

b <- c(o, 0, 1)

d <- c("<=", "<=", "<=")

constr <- list(constr=A, rhs=b, dir=d)

take a point x@ within the polytope
X0 <- c(0.25, 0.25)

sample 10,000 points
result <- sab(x@, 1, constr, 1E4)
samples <- result$samples

Check dimension of result
stopifnot(dim(samples) == c(1E4, 2))

Check that x_i >= 0
stopifnot(samples >= -1E-15)

Check that x_1 + x_2 <=1
stopifnot(samples[,1] + samples[,2] <= 1 + 1E-15)

check that the results lie on the faces

faces <- result$faces

stopifnot(all.equal(samples[faces==1,1], rep(@, sum(faces==1))))

stopifnot(all.equal (samples[faces==2,2], rep(@, sum(faces==2))))
stopifnot(all.equal(samples[faces==3,1] + samples[faces==3,2], rep(1, sum(faces==3))))

plot(samples)

shakeandbake "Shake and Bake" sampler

https://doi.org/10.1287/opre.39.6.945
https://doi.org/10.1287/opre.39.6.945

22 shakeandbake

Description

The "Shake and Bake" method generates a Markov Chain whose stable state converges on the
uniform distribution over a the boundary of a convex polytope defined by a set of linear inequality
constraints. shakeandbake further uses the Moore-Penrose pseudo-inverse to eliminate an arbitrary
set of linear equality constraints before applying the "Shake and Bake" sampler.

sab.init and sab.run together provide a re-entrant version of shakeandbake so that the Markov
chain can be continued if convergence is not satisfactory.

Usage

shakeandbake (constr, n.samples=1E4,
thin.fn = function(n) { ceiling(log(n + 1)/4 * n*3) 3}, thin = NULL,
x0@.randomize=FALSE, x0.method="slacklp”, x@ = NULL, eliminate = TRUE)

sab.init(constr,
thin.fn = function(n) { ceiling(log(n + 1)/4 * n*3) 3}, thin = NULL,
x0@.randomize=FALSE, x0.method="slacklp”, x@ = NULL, eliminate = TRUE)

sab.run(state, n.samples)

Arguments

constr Linear constraints that define the sampling space (see details)

n.samples The desired number of samples to return. The sampler is run for n.samples *
thin iterations

thin.fn Function that specifies a thinning factor depending on the dimension of the sam-
pling space after equality constraints have been eliminated. Will only be invoked
if thinis NULL

thin The thinning factor

X0 Seed point for the Markov Chain. The seed point is specified in the original
space, and transformed to the sampling space automatically.

x@.method Method to generate the seed point if x@ is unspecified, see createSeedPoint

x0.randomize Whether to generate a random seed point if x@ is unspecified

eliminate Whether to eliminate redundant constraints before constructing the transforma-
tion to the sampling space and (optionally) calculating the seed point.
state A state object, as generated by har.init (see value)
Details

The constraints are given as a list with the elements constr, dir and rhs. dir is a vector with values

="' or '<='. constr is a matrix and rhs a vector, which encode the standard linear programming
constraint froms Ax = b and Az < b (depending on dir). The lengths of rhs and dir must match
the number of rows of constr.

shakeandbake applies solution.basis to generate a basis of the (translated) solution space of
the linear constraints (if any). An affine transformation is generated using createTransform and

shakeandbake 23

applied to the constraints. Then, a seed point satisfying the inequality constraints is generated using
createSeedPoint. The closest face to this point is found using findFace. Finally, sab is used to
generate the samples.

Value

For shakeandbake, a matrix containing the generated samples as rows.

For sab.init, a state object, containing:

basis The basis for the sampling space. See solution.basis.

transform The sampling space transformation. See createTransform.

constr The linear inequality constraints translated to the sampling space. See transformConstraints.
X0 The generated seed point. See createSeedPoint.

io The index of the closest face. See findFace.

thin The thinning factor to be used.

For sab. run, a list containing:

samples A matrix containing the generated samples as rows.

state A state object that can be used to continue sampling from the Markov chain (i.e.
x0 and 10 have been modified).
Note
"Shake and Bake" is a Markov Chain Monte Carlo (MCMC) method, so generated samples form a
correlated time series.
Author(s)

Gert van Valkenhoef

See Also

harConstraints sab

Examples

Sample from the 3-simplex with the additional constraint that w_1/w_2 = 2

Three inequality constraints, two equality constraints

constr <- mergeConstraints(simplexConstraints(3), exactRatioConstraint(3, 1, 2, 2))
samples <- shakeandbake(constr, n.samples=1000)

stopifnot(dim(samples) == c(1000, 3))

stopifnot(all.equal(apply(samples, 1, sum), rep(1, 1000)))

sel <- samples[,3] > 0.5 # detect which side we're on
stopifnot(all.equal(samples[sel,], matrix(rep(c(@,0,1), each=sum(sel)), ncol=3)))
stopifnot(all.equal(samples[!sel,], matrix(rep(c(2/3,1/3,0), each=sum(sel)), ncol=3)))

Sample from the unit rectangle (no equality constraints)
constr <- list(

24 simplex.createConstraints

constr = rbind(c(1,0), c(@,1), c(-1,0), c(0,-1)),
dir=rep('<=', 4),
rhs=c(1, 1, 0, 0))

state <- sab.init(constr)

result <- sab.run(state, n.samples=1000)

faces <- result$faces

samples <- result$samples

stopifnot(all(samples >= -1e-15 & samples <= 1 + 1e-15))

stopifnot(all.equal(samples[faces==1,1], rep(1, sum(faces==1))))
stopifnot(all.equal (samples[faces==2,2], rep(1, sum(faces==2))))
stopifnot(all.equal(samples[faces==3,1], rep(@, sum(faces==3))))
stopifnot(all.equal(samples[faces==4,2], rep(@, sum(faces==4))))

Continue sampling from the same chain:
result <- sab.run(result$state, n.samples=1000)
samples <- rbind(samples, result$samples)

simplex.createConstraints
Create constraints that define the (n-1)-simplex

Description

This function takes a transformation matrix from the plane coincident with the (n-1) simplex and
(optionally) additional constraints defined in n-dimensional space, and generates a set of constraints
defining the simplex and (optionally) the additional constraints in the (n-1)-dimensional homoge-
neous coordinate system.

Usage

simplex.createConstraints(transform, userConstr=NULL)

Arguments
transform Transformation matrix
userConstr Additional constraints
Details

The transformation of the constraint matrix to (n-1)-dimensional homogeneous coordinates is a
necessary preprocessing step for applying "Hit and Run" to subsets of the simplex defined by
userConstr.

Value

A set of constraints in the (n-1)-dimensional homogeneous coordinate system.

simplex.createTransform 25

Author(s)

Gert van Valkenhoef

See Also

simplex.createTransformhar harConstraints

Examples

n<-3
userConstr <- mergeConstraints(
ordinalConstraint(3, 1, 2), ordinalConstraint(3, 2, 3))

transform <- simplex.createTransform(n)
constr <- simplex.createConstraints(transform, userConstr)
seedPoint <- createSeedPoint(constr, homogeneous=TRUE)

N <- 10000
samples <- har(seedPoint, constr, N, 1, homogeneous=TRUE, transform=transform)$samples

Check dimension
stopifnot(dim(samples) == c(N, n))

Check that w_i >= w_i+1
stopifnot(sapply(1:(n-1), function(i) {
all(samples[,i]>=samples[,i+1])

1))

Check that w_i >= 0
stopifnot(samples >= 0)

Check that sum_i w_i =1

E <- 1E-12

stopifnot(apply(samples, 1, sum) > 1 - E)
stopifnot(apply(samples, 1, sum) < 1 + E)

simplex.createTransform
Transform points on an (n-1)-simplex to n-dimensional space

Description

This function generates a matrix to transform points in an (n-1) dimensional homogeneous coordi-
nate representation of the (n-1) simplex to n-dimensional Cartesian coordinates.

The inverse transform can also be generated, and conversion can be to homogeneous coordinates
instead of Cartesion ones.

26 simplex.create Transform

Usage

simplex.createTransform(n, inverse=FALSE, keepHomogeneous=inverse)

Arguments
n Dimension of the space
inverse TRUE to convert from n-space coordinates to (n-1)-simplex coordinates
keepHomogeneous
TRUE to convert to homogeneous coordinates rather than Cartesian
Details

Multiply a coordinate vector in homogeneous coordinates by pre-multiplying by the generated ma-
trix (see examples).

Value

A transformation matrix.

Author(s)

Gert van Valkenhoef

See Also

simplex.createConstraints har

Examples

E <- 1E-12 # Allowed numerical error

The origin in (n-1)-dimensional space should be the centroid of the simplex
when transformed to n-dimensional space

transform <- simplex.createTransform(3)

x <- transform %x% c(@, @, 1)

X

stopifnot(abs(x - c(1/3, 1/3, 1/3)) < E)

The same should hold for the inverse transformation
invTransform <- simplex.createTransform(3, inverse=TRUE)
y <= invTransform %x% c(1/3, 1/3, 1/3, 1)

y

stopifnot(abs(y - c(@, @, 1)) < E)

Of course, an arbitrary weight vector should transform back to itself
transform <- simplex.createTransform(3, keepHomogeneous=TRUE)

X <- ¢c(0.2, 0.5, 9.3, 1.0)

y <- transform %*% invTransform %*% x

y
stopifnot(abs(y - x) < E)

simplex.sample

And we can apply the tranform to a matrix:
a <- cbind(x, x, x)

b <- transform %x% invTransform %*% a

b

stopifnot(abs(b - a) < E)

27

simplex.sample Sample uniformly from a simplex

Description

Generates uniform random variates over the (n-1)-simplex in n-dimensional space.

Usage

simplex.sample(n, N, sort=FALSE)

Arguments

n Dimension of the space

N Number of samples to generate

sort Whether to sort the components in descending order
Details

The samples will be uniform over the (n-1)-simplex.

Value

samples A matrix containing the generated samples as rows.

Author(s)

Gert van Valkenhoef

Examples

n<-3
N <- 10000
samples <- simplex.sample(n, N)$samples

Check dimension
stopifnot(dim(samples) == c(N, n))

Check that w_i >= 0
stopifnot(samples >= 0)

Check that sum_i w_i =1
E <- 1E-12

28

stopifnot(apply(samples, 1, sum) > 1 - E)
stopifnot(apply(samples, 1, sum) < 1 + E)

Now with descending order
samples <- simplex.sample(n, N, sort=TRUE)$samples

Check dimension
stopifnot(dim(samples) == c(N, n))

Check that w_i >= 0
stopifnot(samples >= @)

Check that sum_i w_i =1

E <- 1E-12

stopifnot(apply(samples, 1, sum) > 1 - E)
stopifnot(apply(samples, 1, sum) < 1 + E)

Check w_i >= w_{i+1}
stopifnot(samples[,1] >= samples[,2])
stopifnot(samples[,2] >= samples[,3])

solution.basis

solution.basis

tions

Calculate the basis for the solution space of a system of linear equa-

Description

Given a set of linear equality constraints, determine a translation and a basis for its solution space.

Usage

solution.basis(constr)

Arguments

constr Linear equality constraints

Details

For a system of linear equations, Ax = b, the solution space is given by

x=ATb+ (I - ATA)y

where At is the Moore-Penrose pseudoinverse of A. The QR decomposition of I — AT A enables

us to determine the dimension of the solution space and derive a basis for that space.

transformConstraints 29

Value
A list, consisting of
translate A point in the solution space

basis A basis rooted in that point

Author(s)

Gert van Valkenhoef

See Also

createTransform

Examples

A 3-dimensional original space
n<-3

#x_ 1+ x2+ x.3=1

eq.constr <- list(constr = t(rep(1, n)), dir = '=', rhs = 1)
basis <- solution.basis(eq.constr)
stopifnot(ncol(basis$basis) == 2) # Dimension reduced to 2

y <= rbind(rnorm(100, @, 100), rnorm(100, @, 100))
X <- basis$basis %*% y + basis$translate
stopifnot(all.equal(apply(x, 2, sum), rep(1, 100)))

2 x_2 =x_1; 2 x.3=x_2
eq.constr <- mergeConstraints(

eq.constr,
list(constr = c(-1, 2, @), dir = '=', rhs = 0),
list(constr = c(@, -1, 2), dir = '=', rhs = 0))
basis <- solution.basis(eq.constr)
stopifnot(ncol(basis$basis) == @) # Dimension reduced to @

stopifnot(all.equal(basis$translate, c(4/7, 2/7, 1/7)))

transformConstraints Apply a transformation to a set of linear constraints.

Description
Given a set of linear constraints and a transformation matrix, return the constraints in the trans-
formed space.

Usage

transformConstraints(transform, constr)

30 transformConstraints

Arguments
transform Transformation matrix
constr Constraints

Details

Transforming the constraint matrix is a necessary preprocessing step for applying "Hit and Run" to
subsets of a space defined by linear equality constraints. See solution.basis and createTransform
for building the transformation matrix.

Value

A set of constraints in the new basis.

Author(s)

Gert van Valkenhoef

See Also

solution.basis createTransformhar

Examples

Sample from the space where 2xx_1 = x_2 + x_3 and
0 <= x_1, x_2, x_.3 <=5
n <-3

eq.constr <- list(
constr = matrix(c(2, -1, -1), nrow=1, ncol=n),

dir = '=',
rhs = @)

ineq.constr <- list(
constr = rbind(-diag(n), diag(n)),
dir = rep('<=', n x 2),
rhs = c(rep(@, n), rep(5, n)))

basis <- solution.basis(eq.constr)

transform <- createTransform(basis)

constr <- transformConstraints(transform, ineq.constr)

x@ <- createSeedPoint(constr, homogeneous=TRUE)

x <- har(x@, constr, 500, transform=transform, homogeneous=TRUE)$samples

stopifnot(all.equal(2 * x[,1], x[,2] + x[,31))
stopifnot(all(x >= @))
stopifnot(all(x <= 5))

Index

* bounding box
bbReject, 4
createBoundBox, 5

* constraint
eliminateRedundant, 8
harConstraints, 15
simplex.createConstraints, 24
transformConstraints, 29

* hit-and-run
har, 13
harConstraints, 15
hitandrun, 16
hitandrun-package, 2

* hypersphere
hypersphere.sample, 19

* seed point
createSeedPoint, 6
findExtremePoints, 9
findInteriorPoint, 11
findVertices, 12

+ shake-and-bake
sab, 19
shakeandbake, 21

* simplex
simplex.createConstraints, 24
simplex.createTransform, 25
simplex.sample, 27

* transform
createTransform, 7
simplex.createTransform, 25
solution.basis, 28
transformConstraints, 29

+ uniform sampling
bbReject, 4
har, 13
hitandrun, 16
hypersphere.sample, 19
sab, 19
shakeandbake, 21

31

simplex.sample, 27
bbReject, 2, 3,4

createBoundBox, 3, 4, 5
createSeedPoint, 3,6, 17, 18, 22, 23
createTransform, 2, 3,7, 17,22, 23, 29, 30

eliminateRedundant, 8, 16
exactRatioConstraint (harConstraints),
15

findExtremePoints, 5-7,9, 12, 13
findFace, 10, 23
findInteriorPoint, 10, 11, 13
findVertices, 7, 10, 12, 12

har, 2-7,9-13, 13, 15-18, 25, 26, 30
har.init (hitandrun), 16

har.run (hitandrun), 16
harConstraints, 2—4, 9, 14, 15, 18, 21, 23, 25
hitandrun, 2, 3, 13, 14, 16, 16
hitandrun-package, 2
hypersphere.sample, 3, 19

lowerBoundConstraint (harConstraints),
15

lowerRatioConstraint (harConstraints),
15

1pcdd, 10, 12

mergeConstraints (harConstraints), 15
ordinalConstraint (harConstraints), 15

sab, 2, 19, 23

sab.init (shakeandbake), 21

sab.run (shakeandbake), 21

scdd, 13

shakeandbake, 2, 20, 21, 21
simplex.createConstraints, 24, 24, 26

32

simplex.createTransform, 24, 25, 25
simplex.sample, 2, 3, 27
simplexConstraints (harConstraints), 15
solution.basis, 2, 3,8, 17, 22, 23, 28, 30

transformConstraints, 2, 3, 18, 23, 29

upperBoundConstraint (harConstraints),
15

upperRatioConstraint (harConstraints),
15

INDEX

	hitandrun-package
	bbReject
	createBoundBox
	createSeedPoint
	createTransform
	eliminateRedundant
	findExtremePoints
	findFace
	findInteriorPoint
	findVertices
	har
	harConstraints
	hitandrun
	hypersphere.sample
	sab
	shakeandbake
	simplex.createConstraints
	simplex.createTransform
	simplex.sample
	solution.basis
	transformConstraints
	Index

