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2 hgm-package

hgm-package HGM

Description

The holonomic gradient method (HGM, hgm) gives a way to evaluate normalizing constants of
unnormalized probability distributions by utilizing holonomic systems of differential or difference
equations. The holonomic gradient descent (HGD, hgd) gives a method to find maximal likelihood
estimates by utilizing the HGM.

Details

Package: hgm
Type: Package
License: GPL-2
LazyLoad: yes

The HGM and HGD are proposed in the paper below. This method based on the fact that a broad
class of normalizing constants of unnormalized probability distributions belongs to the class of
holonomic functions, which are solutions of holonomic systems of linear partial differential equa-
tions.

Note

This package includes a small subset of the Gnu scientific library codes (http://www.gnu.org/
software/gsl/). Then, it might cause a conflict with the package gsl.

References

* (N30OST2) Hiromasa Nakayama, Kenta Nishiyama, Masayuki Noro, Katsuyoshi Ohara, Tomonari
Sei, Nobuki Takayama, Akimichi Takemura, Holonomic Gradient Descent and its Appli-
cation to Fisher-Bingham Integral, Advances in Applied Mathematics 47 (2011), 639-658,
doi: 10.1016/j.aam.2011.03.001

* (dojo) Edited by T.Hibi, Groebner Bases: Statistics and Software Systems, Springer, 2013,
doi: 10.1007/9784431545743

* http://www.openxm.org

See Also

hgm.ncBingham, hgm.ncorthant, hgm.ncso3, hgm.pwishart, hgm.Rhgm hgm.p2wishart,

Examples

## Not run:
example (hgm.ncBingham)


http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/
https://doi.org/10.1016/j.aam.2011.03.001
https://doi.org/10.1007/978-4-431-54574-3
http://www.openxm.org

hgm.ncBingham

example (hgm.ncorthant)
example (hgm.ncso3)
example(hgm.pwishart)

example (hgm.Rhgm)

example (hgm.p2wishart)

## End(Not run)

hgm.ncBingham

The function hgm.ncBingham performs the holonomic gradient
method (HGM) for Bingham distributions.

Description

The function hgm.ncBingham performs the holonomic gradient method (HGM) for Bingham dis-
tributions with the deSolve package in R.

Usage

hgm.ncBingham(th, d=rep(1,length(th)+1), logarithm=FALSE,

Arguments

th

logarithm
ini.method
times

withvol

Details

ini.method="power", times=NULL, withvol=FALSE, ...)

A (p-1)-dimensional vector which specifies the first (p-1) components of the
parameter vector of the Bingham distribution on the (p-1)-dim sphere. The p-th
parameter is assumed to be zero.

A p-dimensional vector which specifies the multiplicity of the parameter. The
default is all-one vector.

If *logarithm’ is TRUE, then the result is log of the normalizing constant.
The method for computing the initial value. Only "power" is implemented now.

a vector; times in [0,1] at which explicit estimates for G are desired. If time =
NULL, the set 0,1 is used, and only the final value is returned.

If *withvol’ is TRUE, then the normalizing constant with volume of sphere is
returned. Otherwise that without volume is returned. Therefore, if *withvol’ is
FALSE and the parameter is zero, then the normalizing constant becomes 1.

Additional parameters for computing initial values. Details are omitted.

The function hgm.ncBingham computes the normalizing constant of the Bingham distribution and
its derivatives at any specified point. The initial value is computed by the power series expansion.

Value

The output is p-dimensional vector G. The first element of G is the normalizing constant and the
following (p-1)-elements are partial derivative of the normalizing constant with respect to the first
(p-1) components of the parameter ’th’.
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Author(s)

Tomonari Sei

References

http://www.math.kobe-u.ac.jp/OpenXM/Math/hgm/ref-hgm.html

Examples

# Example 1.
hgm.ncBingham(c(1,3,5))

hgm.ncorthant The function hgm.ncorthant evaluates the orthant probability.

Description

The function hgm.ncorthant evaluates the orthant probability, which is the normalization constant
of the multivariate normal distribution restrcted to the first orthant.

Usage

hgm.ncorthant(x,y,rk_step_size=1e-3)

Arguments
X See the description of y.
y This function evaluates the orthant probability for the m dimensional multivari-

ate normal distribution whose m by m covariance matrix and the mean vector of
size m are x and y respectively.

rk_step_size The step size for the Runge-Kutta method to apply the HGM.

Details

The function hgm.ncorthant evaluates the orthant probability, which is the normalization constant
of the m-dimensional multivariate normal distribution restrcted to the first orthant. It uses the holo-
nomic gradient method (HGM) to evalute it. The rank of the system of differential equations for the
HGM is 2"m.

Value

The output is the orthant probalibity.

Author(s)

Tamio Koyama


http://www.math.kobe-u.ac.jp/OpenXM/Math/hgm/ref-hgm.html
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References

Tamio Koyama, Akimichi Takemura, Calculation of orthant probabilities by the holonomic gradient
method, https://arxiv.org/abs/1211.6822.

Examples
#H#
## Example 1. Computing the orthant probability
##
x <- matrix(c(15,26,23,19,
26,47,46,35,
23,46,65, 38,

19,35,38,33), nrow =4)
y <- c(1,2,3,4)
hgm.ncorthant(x,y)

hgm.ncso3 The function hgm.ncso3 evaluates the normalization constant for the
Fisher distribution on SO(3).

Description

The function hgm.ncso3 evaluates the normalization constant for the Fisher distribution on SO(3).

Usage

hgm.ncso3(a,b,c,t0=0.0,9=1,deg=0, log=0)

Arguments

a See the description of c.

b See the description of c.

C This function evaluates the normalization constant for the parameter Theta=diag(theta_ii)
of the Fisher distribution on SO(3). The variables a,b,c stand for the parameters
theta_11, theta_22, theta_33 respectively.

to It is the initial point to evaluate the series. If it is set to 0.0, a default value is
used.

q If itis 1, then the program works in a quiet mode.

deg It gives the approximation degree of the power series approximation of the nor-

malization constant near the origin. If it is 0, a default value is used.

log If it is 1, then the function returns the log of the normalizing constant.


https://arxiv.org/abs/1211.6822

6 hgm.p2wishart

Details

The normalization constant c(Theta) of the Fisher distribution on SO(3) is defined by integral(
exp(trace( transpose(Theta) X)) ) where X is the integration variable and runs over SO(3) and Theta
is a 3 x 3 matrix parameter. A general HGM algorithm to evaluate the normalization constant
is given in the reference below. We use the Corollary 1 and the series expansion in 3.2 for the
evaluation.

Value
The output is an array of c¢(Theta) and its derivatives with respect to Theta_11,Theta_22,Theta_33.
It is the vector C of the reference below. When log=1, the output is an array of log of them.

Author(s)

Nobuki Takayama

References

Tomonari Sei, Hiroki Shibata, Akimichi Takemura, Katsuyoshi Ohara, Nobuki Takayama, Proper-
ties and applications of Fisher distribution on the rotation group, Journal of Multivariate Analysis,
116 (2013), 440-455, doi: 10.1016/j.jmva.2013.01.010

Examples

##
## Example 1. Computing normalization constant of the Fisher distribution on SO(3)
#H#
hgm.ncso3(1,2,3)[1]

#H#
## Example 2. Asteroid data in the paper
##
hgm.ncs03(19.6,0.831,-0.671)[1]

hgm.p2wishart The function hgm.p2wishart evaluates the cumulative distribution
function of the largest eigenvalues of W1 *inverse(W2).

Description

The function hgm.p2wishart evaluates the cumulative distribution function of the largest eigenval-
ues of Wl*inverse(W2) where W1 and W2 are Wishart matrices of size m*m of the freedom nl
and n2 respectively.

Usage

hgm.p2wishart(m,n1,n2,beta,q@, approxdeg,h,dp,q,mode,method,
err,automatic,assigned_series_error,verbose,autoplot)


https://doi.org/10.1016/j.jmva.2013.01.010
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Arguments

m
nl
n2
beta

qo
approxdeg

dp

mode

method

err

automatic

The dimension of the Wishart matrix.
The degree of freedome of the Wishart distribution S1
The degree of freedome of the Wishart distribution S2

The eigenvalues of inverse(S2)*S1 where S1 and S2 are covariant matrices of
W1 and W2 respectively.

The point to evaluate the matrix hypergeometric series. q0>0

Zonal polynomials upto the approxdeg are calculated to evaluate values near the
origin. A zonal polynomial is determined by a given partition (k1,...,km). We
call the sum k1+...+km the degree.

A (small) step size for the Runge-Kutta method. h>0.

Sampling interval of solutions by the Runge-Kutta method. When autoplot=1 or
dp is negative, it is automatically set. if it is 0, no sample is stored.

The second value y[0] of this function is the Prob(L1 < q) where L1 is the first
eigenvalue of the Wishart matrix.

When mode=c(1,0,0), it returns the evaluation of the matrix hypergeometric se-
ries and its derivatives at q0. When mode=c(1,1,(2"m+1)*p), intermediate val-
ues of P(L1 < x) with respect to p-steps of x are also returned. Sampling interval
is controled by dp. When autoplot=1, mode is automatically set.

a-tk4 is the default value. When method="a-rk4", the adaptive Runge-Kutta
method is used. Steps are automatically adjusted by err.

When err=c(el,e2), el is the absolute error and e2 is the relative error. This
parameter controls the adative Runge-Kutta method. If the output is absurd,
you may get a correct answer by setting, e.g., err=c(le-(xy+5), le-10) or by
increasing q0 when initial value at q0 is very small as le-xy.

automatic=1 is the default value. If it is 1, the degree of the series approxima-
tion will be increased until I(F(i)-F(i-1))/F(i-1)| < assigned_series_error where
F(i) is the degree i approximation of the hypergeometric series with matrix ar-
gument. Step sizes for the Runge-Kutta method are also set automatically from
the assigned_series_error if it is 1.

assigned_series_error

verbose

autoplot

assigned_series_error=0.00001 is the default value.

verbose=0 is the default value. If it is 1, then steps of automatic degree updates
and several parameters are output to stdout and stderr.

autoplot=0 is the default value. If it is 1, then this function outputs an input
for plot (which is equivalent to setting the 3rd argument of the mode param-
eter properly). When ans is the output, ans[1,] is c(q,prob at q,...), ans[2,] is
¢(q0,prob at q0,...), and ans[3,] is ¢(q0+q/100,prob at q/100,...), ... When the
adaptive Runge-Kutta method is used, the step size h may change automatically,
which makes the sampling period change, in other words, the sampling points
q0+q/100, q0+2*g/100, q0+3*q/100, ... may change. In this case, the output
matrix may contain zero rows in the tail or overfull. In case of the overful, use
the mode option to get the all result.
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Details

It is evaluated by the Koev-Edelman algorithm when x is near the origin and by the HGM when
x is far from the origin. We can obtain more accurate result when the variables h is smaller, q0 is
relevant value (not very big, not very small), and the approxdeg is more larger. A heuristic method
to set parameters q0, h, approxdeg properly is to make x larger and to check if the y[0] approaches
to 1.

Value
The output is x, y[0], ..., y[2”m] in the default mode, y[0] is the value of the cumulative distribution
function P(L1 < x) at x. y[1],...,y[2”m] are some derivatives. See the reference below.

Note

This function does not work well under the following cases: 1. The beta (the set of eigenvalues)
is degenerated or is almost degenerated. 2. The beta is very skew, in other words, there is a big
eigenvalue and there is also a small eigenvalue. The error control is done by a heuristic method.
The obtained value is not validated automatically.

Author(s)
Nobuki Takayama
References
H.Hashiguchi, N.Takayama, A.Takemura, Distribution of ratio of two Wishart matrices and evalu-

ation of cumulative probability by holonomic gradient method.

Examples

##
## Example 1.
#H#
hgm.p2wishart(m=3,n1=5,n2=10,beta=c(1,2,4),q=4)
#i#t
## Example 2.
##
b<-hgm.p2wishart(m=3,n1=5,n2=10,beta=c(1,2,4),q0=0.3,9=20, approxdeg=20,mode=c(1,1, (8+1)*1000)) ;
c<-matrix(b,ncol=8+1,byrow=1);

#plot(c)

H#H
## Example 3.
##
c<-hgm.p2wishart(m=3,n1=5,n2=10,beta=c(1,2,4),q0=0.3,9=20, approxdeg=20,autoplot=1);
#plot(c)
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hgm.pwishart

The function hgm.pwishart evaluates the cumulative distribution func-
tion of random wishart matrices.

Description

The function hgm.pwishart evaluates the cumulative distribution function of random wishart matri-
ces of size m times m.

Usage

hgm.pwishart(m,n,beta,q@,approxdeg,h,dp,q,mode,method,

Arguments

m
n
beta

qo
approxdeg

dp

mode

method

err

automatic

err,automatic,assigned_series_error,verbose,autoplot)

The dimension of the Wishart matrix.
The degree of freedome (a parameter of the Wishart distribution)

The eigenvalues of the inverse of the covariant matrix /2 (a parameter of the
Wishart distribution). The beta is equal to inverse(sigma)/2.

The point to evaluate the matrix hypergeometric series. q0>0

Zonal polynomials upto the approxdeg are calculated to evaluate values near the
origin. A zonal polynomial is determined by a given partition (k1,....km). We
call the sum k1+...+km the degree.

A (small) step size for the Runge-Kutta method. h>0.

Sampling interval of solutions by the Runge-Kutta method. When autoplot=1 or
dp is negative, it is automatically set. if it is 0, no sample is stored.

The second value y[0] of this function is the Prob(L1 < q) where L1 is the first
eigenvalue of the Wishart matrix.

When mode=c(1,0,0), it returns the evaluation of the matrix hypergeometric se-
ries and its derivatives at g0. When mode=c(1,1,(2"m+1)*p), intermediate val-
ues of P(L1 < x) with respect to p-steps of x are also returned. Sampling interval
is controled by dp. When autoplot=1, it is automatically set.

a-rk4 is the default value. When method="a-rk4", the adaptive Runge-Kutta
method is used. Steps are automatically adjusted by err.

When err=c(el,e2), el is the absolute error and e2 is the relative error. This
parameter controls the adative Runge-Kutta method. If the output is absurd,
you may get a correct answer by setting, e.g., err=c(le-(xy+5), le-10) or by
increasing q0 when initial value at q0 is very small as le-xy.

automatic=1 is the default value. If it is 1, the degree of the series approxima-
tion will be increased until I(F(i)-F(i-1))/F(i-1)| < assigned_series_error where
F(i) is the degree i approximation of the hypergeometric series with matrix ar-
gument. Step sizes for the Runge-Kutta method are also set automatically from
the assigned_series_error if it is 1.
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assigned_series_error
assigned_series_error=0.00001 is the default value.

verbose verbose=0 is the default value. If it is 1, then steps of automatic degree updates
and several parameters are output to stdout and stderr.

autoplot autoplot=0 is the default value. If it is 1, then this function outputs an input
for plot (which is equivalent to setting the 3rd argument of the mode param-
eter properly). When ans is the output, ans[1,] is c(q,prob at q,...), ans[2,] is
c(qO0,prob at q0,...), and ans[3,] is c(q0+g/100,prob at g/100,...), ... When the
adaptive Runge-Kutta method is used, the step size h may change automatically,
which makes the sampling period change, in other words, the sampling points
q0+g/100, q0+2*g/100, q0+3*g/100, ... may change. In this case, the output
matrix may contain zero rows in the tail or overfull. In case of the overful, use
the mode option to get the all result.

Details

It is evaluated by the Koev-Edelman algorithm when x is near the origin and by the HGM when
x is far from the origin. We can obtain more accurate result when the variables h is smaller, q0 is
relevant value (not very big, not very small), and the approxdeg is more larger. A heuristic method
to set parameters q0, h, approxdeg properly is to make x larger and to check if the y[0] approaches
to 1.

Value
The output is x, y[0], ..., y[2”*m] in the default mode, y[0] is the value of the cumulative distribution
function P(L1 < x) at x. y[1],...,y[2”m] are some derivatives. See the reference below.

Note

This function does not work well under the following cases: 1. The beta (the set of eigenvalues)
is degenerated or is almost degenerated. 2. The beta is very skew, in other words, there is a big
eigenvalue and there is also a small eigenvalue. The error control is done by a heuristic method.
The obtained value is not validated automatically.

Author(s)

Nobuki Takayama

References

H.Hashiguchi, Y.Numata, N.Takayama, A.Takemura, Holonomic gradient method for the distribu-
tion function of the largest root of a Wishart matrix, Journal of Multivariate Analysis, 117, (2013)
296-312, doi: 10.1016/j.jmva.2013.03.011,

Examples

#H#
## Example 1.
##
hgm.pwishart(m=3,n=5,beta=c(1,2,3),9=10)



https://doi.org/10.1016/j.jmva.2013.03.011
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##
## Example 2.
#H#
b<-hgm.pwishart(m=4,n=10,beta=c(1,2,3,4),90=1,9=10, approxdeg=20,mode=c(1,1, (16+1)*100));
c<-matrix(b,ncol=16+1,byrow=1);

#plot(c)

##
## Example 3.
#H#
c<-hgm.pwishart(m=4,n=10,beta=c(1,2,3,4),90=1,9=10, approxdeg=20,autoplot=1);
#plot(c)

hgm.Rhgm The function hgm.Rhgm performs the holonomic gradient method
(HGM) for a given Pfaffian system and an initial value vector.

Description
The function hgm.Rhgm performs the holonomic gradient method (HGM) for a given Pfaffian sys-
tem and an initial value vector with the deSolve package in R.

Usage

hgm.Rhgm(the, GO, th1, dG.fun, times=NULL, fn.params=NULL)

Arguments
tho A d-dimensional vector which is an initial point of the parameter vector th
(theta).
GO A r-dimensional vector which is the initial value of the vector G of the normal-
izing constant and its derivatives.
th1 A d-dimensional vector which is the target point of th.
dG. fun dG.fun is the “right hand sides” of the Pfaffian system. It is a d*r-dimensional
array.
times a vector; times in [0,1] at which explicit estimates for G are desired. If time =
NULL, the set 0,1 is used, and only the final value is returned.
fn.params fn.params: a list of parameters passed to the function dG.fun. If fn.params =
NULL, no parameter is passed to dG.fun.
Details

The function hgm.Rhgm computes the value of a holonomic function at a given point, using HGM.
This is a “Step 3” function (see the reference below), which can be used for an arbitrary input, in
the HGM framework. Efficient “Step 3” functions are given for some distributions in this package.

The Pfaffian system assumed is d G_j / d th_i = (dG.fun(th, G))_i,j
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The inputs of hgm.Rhgm are the initial point thQ, initial value GO, final point thl, and Pfaffian
system dG.fun. The output is the final value G1.

If the argument ‘times’ is specified, the function returns a matrix, where the first column denotes
time, the following d-vector denotes th, and the remaining r-vector denotes G.

Value

The output is the value of G at thl. The first element of G is the normalizing constant.

Author(s)

Tomonari Sei

References

http://www.math.kobe-u.ac.jp/OpenXM/Math/hgm/ref-hgm.html

Examples

# Example 1.
# A demo program; von Mises--Fisher on S*{3-1}

G.exact = function(th){ # exact value by built-in function
c( sinh(th[11)/th[1], cosh(th[1]1)/th[1] - sinh(th[11)/th[1]*2 )
}

dG.fun = function(th, G, fn.params=NULL){ # Pfaffian
dG = array(e, c(1, 2))
sh = G[1] * th[1]
ch = G[2] = th{1] + G[1]
dG[1,1] = G[2] # Pfaffian eq's
dG[1,2] = sh/th[1] - 2xch/th[1]*2 + 2xsh/th[1]"3

dG
}
tho = 0.5
th1 = 15
GO = G.exact(tho)

Go

G1 = hgm.Rhgm(tho, GO, th1, dG.fun) # HGM
G1

Gl.exact = G.exact(th1)
G1.exact

#

# Example 2.

#

hgm.Rhgm.demo1 ()


http://www.math.kobe-u.ac.jp/OpenXM/Math/hgm/ref-hgm.html
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hgm.Rhgm.demo1 The function hgm.Rhgm.demol performs a demonstration of the func-
tion hgm.Rhgm.

Description

The function hgm.Rhgm.demol performs a demonstration of the function hgm.Rhgm.

Usage
hgm.Rhgm.demo1 ()

Details
The function hgm.Rhgm.demol evaluates the normalizing constant of the Von-Mises distribution
by the HGM.

Value

The returned value is a dataframe. The column exact of the dataframe is the exact value of the
normalizing constant. The column byHGM is the value obtained by the HGM. The column start is
the initial value for the HGM.

Author(s)

Tomonari Sei

See Also

hgm.Rhgm
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