Package ‘hero’

July 15, 2023

Type Package

Title Spatio-Temporal (Hero) Sandwich Smoother

Version 0.6

Author Joshua French

Maintainer Joshua French <joshua.french@ucdenver.edu>

Description An implementation of the sandwich smoother proposed in Fast Bivariate Penal-
ized Splines by Xiao et al. (2012) <doi:10.1111/rssb.12007>. A hero is a specific type of sand-
wich. Dictionary.com (2018) <https://www.dictionary.com> de-
scribes a hero as: a large sandwich, usually consist-
ing of a small loaf of bread or long roll cut in half lengthwise and containing a variety of ingredi-
ents, as meat, cheese, lettuce, and tomatoes. Also implements the spatio-temporal sand-
wich smoother of French and Kokoszka (2021) <doi:10.1016/j.spasta.2020.100413>.

Depends R (>=2.10)
Imports Matrix, splines, optimx, pbapply, sf, sp, fields

Suggests autoimage, devtools, fda, igraph, testthat, future.apply,
Rmpi

License GPL (>=2)

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

NeedsCompilation no

Repository CRAN

Date/Publication 2023-07-15 21:10:09 UTC

R topics documented:

adjacent L L. e e e 3
ASSTATTAY © o v v o v e 4
AS.SES . . L e e e e e e e e e e e e 4
assemble L L L e e e e 5
border.grid L 7

https://doi.org/10.1111/rssb.12007
https://www.dictionary.com
https://doi.org/10.1016/j.spasta.2020.100413

Index

R topics documented:

bspline e e e 8
circulate 9
COMMNECE . .« . v vttt e e ettt e e e e e e 10
create.prepared_list L. Lo 11
default.evalargs e 12
default.splines L 13
diffpen L 14
enhance e 14
enhance.grid L 16
enlarge L L e e 17
generate.data2d L 18
generate.data3d Lo 19
hero o 20
knot.design L 22
kronecker.seq e e e e e e e 24
loglambda2gcv 25
ludata 26
plothero_adjacent. L 26
plothero_bspline 27
plothero_enlarge e e 28
plothero_matrix 29
plothero_radspline 30
poly2SpatialPolygons 31
PrECOMPULE o oo e e e 32
predicthero L e e 33
predict.hero_bspline. 34
predict.hero_radspline 35
PIEPATE . . . o o i e e e e e e e e e e 36
PIEPATC.ATTAY . . . o v v v e 36
prepare.ist 38
Prepare.matriX e e e e 39
PrePare.NUMEriC v v v v o v e e e e e e e e e e e e e e e e 41
PIEPAre.SIAITAY o o v i e e e e e e e e e e e e e e e e e e 42
PIEPATE.SIS . . o o o v i i e e e e e e e e e e e e e e e e 44
prepare_sequential Lo 45
radspline L e 46
th 48
rhiseq L 49
spdiffpen L e e 50
TASINIAX . .« o v e e e e e e e e e e e e e e e e e e e 51
wrfg_cgem3_tasmax L. e e e e e e e 51

adjacent 3

adjacent Determine adjacent points

Description

adjacent attempts to find the point(s) adjacent (closest) to each point. The data are implicitly
assumed to be on a grid, otherwise this function isn’t very useful. Distances between each point
and other points in coords are computed and then rounded using the round function. Let k denote
the minimum distance between a reference point and all other points. A point is adjacent to the
reference point if (after rounding), it’s distance from the reference point matches the minimum
distance k.

Usage

adjacent(coords, longlat = FALSE, digits = 1)

Arguments
coords A two-dimensional matrix-like object with non-NULL dimensions.
longlat A logical value indicating whether Great Circle distances should be used (TRUE)
or Euclidean distances (FALSE). The default is FALSE.
digits The number of digits to use when applying round to the distances.
Details

digits is the number of digits used by round in the rounding process.

Value

A hero_adjacent object. This is simply a list with elements nbrs and coords. nbrs is a list
specifying the adjacent points for each point. coords is simply the original coords supplied to the
function and is retained for plotting purposes.

Examples

basic coordinates

coords = expand.grid(1:4, 1:4)

plot coordinates to see relationships
plot(coords, type = "n")

text(coords)

a = adjacent(coords, digits = 1)
plot(a)

4 as.sts

as.starray Convert array to starray

Description

Convert a three-dimensional spatio-temporal array into an starray object. The first two dimensions
are assumed to relate to gridded spatial positions.

Usage

as.starray(x)
starray(x)

as_starray(x)

Arguments

X A three-dimensional array

Value

An starray object.

Examples

star = as.starray(tasmax)
class(star)

as.sts Convert object to sts class

Description

Convert a numeric three-dimensional array or two-dimensional matrix-like object to an sts (spatial
time series) object. If x is a three-dimensional array, the first two dimensions are assumed to relate
to gridded spatial positions. If x has only two dimensions, each row is a time series for a specific
location. Each column is a realization of a geostatistical process at a specific time.

Usage

as.sts(x)
sts(x)

as_sts(x)

assemble 5

Arguments

X A matrix-like object with 2 dimensions or an array with 3 dimensions.

Details

This method has been tested with objects of class matrix, data.frame, array, and Matrix-class.
It should be possible for x to have a different class as long as the object has a loaded as.matrix
method, which is used in this function.

Value

An sts object.

Examples

3d array to sts
sts = as.sts(tasmax)
class(sts)

extract a subset of tasmax to produce an sts
x = matrix(c(tasmax[50:60, 50:60, 1), ncol = 30)
sts = as.sts(x)

class(sts)

sts = as.sts(as.array(x))
class(sts)

sts = as.sts(Matrix::Matrix(x))
class(sts)

sts = as.sts(as.data.frame(x))
class(sts)

assemble Assemble spline ingredients for sandwich smooth

Description

Assemble computations from a spline-related object x in order to implement the sandwich smoother.
This is essentially an internal function, but could be useful for performing a manual implementation
of the sandwich smoother.

Usage

assemble(object, ...)

S3 method for class 'hero_bspline'
assemble(object, x, m = 2, sparse = TRUE, ...)

6 assemble

S3 method for class 'hero_radspline'

assemble(object, x, m = 2, sparse = TRUE, spdiffpen = TRUE, digits =1, ...)
S3 method for class 'list'
assemble(object, x, m = 2, sparse = TRUE, spdiffpen = TRUE, digits =1, ...)
Arguments
object A spline-related object (e.g, a hero_bspline from the bspline function), or a
list of spline-related objects.
Not implemented
X Values at which to evaluate the basis functions. This should be a numeric vector
if object is a hero_bspline. This should be a numeric matrix of coordinates
if object is a hero_radspline. If object is a list comprised of hero_bspline
and hero_radspline objects, then x should be a list where each element of the
list corresponds to the appropriate x argument for each element.
m A positive integer indicating order of the difference penalty.
sparse A logical value indicating if the result should be a sparse version of the Matrix-class.
spdiffpen A logical value indicating whether spdiffpen should be used to compute the
difference penalty. The default is FALSE.
digits The number of digits to use when applying round to the distances.
Value

A list with the necessary components (ingredients)

Examples

construct b-spline

objectl = bspline(nbasis = 10)
sequence to evaluate

x1 = seq(@, 1, len = 11)

assemble b-spline information
splinel = assemble(objectl, x1)

assemble radial spline information
border = border.grid(lon, lat)

object2 = radspline(nknots = 16, border)
x2 = cbind(c(lon), c(lat))

spline2 = assemble(object2, x = x2)

assemble for list of splines
object = list(objectl, object2)
x = list(x1, x2)

splines = assemble(object, x)

border.grid 7

border.grid Construct border for grid

Description

border.grid determines the border for data on a grid. x and y must define a regular or irregular
grid. See Details.

Usage

border.grid(x, y, proj4string)
border_grid(x, y, proj4string)
borderGrid(x, y, proj4string)

BorderGrid(x, y, proj4string)

Arguments
X A vector or matrix of x coordinates. See Details.
y A vector or matrix of y coordinates. See Details.
proj4string A projection string of class CRS-class. If not provided, then default values are
used. This should be changed with caution.
Details

A regular grid is defined by ascending numeric vectors x and y. A vector x is ascending if x[i] <
x[j]fori<j.

An irregular grid is defind by ascending matrices. A matrix x is ascending if x[i, j] <x[i, 1] for
j<landifx[i, jl1<x[k, jland j<Kk.
Value

A SpatialPolygons object.

Author(s)

Joshua French

Examples

create x and y defining square border
x = seq(min(lon), max(lon), length = 60)
y = seq(min(lat), max(lat), length = 80)
border = border.grid(x, y)
sp::plot(border)

8 bspline

use lon and lat to define border of an irregular grid
border2 = border.grid(lon, lat)
sp: :plot(border2)

bspline B-spline specification

Description

bspline helps define the parameters necessary for constructing a B-spline but doesn’t evaluate it.

Usage

bspline(rangeval = 0:1, nbasis, nknots, norder = 4, extend = FALSE, knots)

Arguments
rangeval A numeric vector of length 2 defining the interval over which the functional data
object can be evaulated. The default value is 0: 1.
nbasis An integer specifying the number of basis functions to construct. This is closely
linked to the number of knots (nknots), and nknots = nbasis - norder.
nknots The number of *interior* knots. See Details.
norder An integer specifying the order of the B-splines, which is one higher than their
degree. The default is 4, which corresponds to cubic splines.
extend Should the knots stop at the endpoints specified by rangeval? Default is FALSE.
See Details.
knots A numeric vector with all knots (interior and exterior), including potentially
replicated endpoints. See Details.
Details

The knots are assumed to be equidistant and non-repeating (except possibly at the endpoints).

The number of knots (nknots) and the number of basis function (nbasis) are linked by the relation
nknots = nbasis - norder.

If extend = TRUE, the interior knots are augmented by replicating the rangeval endpoints norder
times. Otherwise, the interior knots are augmented by norder knots at each end corresponding to
the spacing of the interior knots.

The knot placement mimics the behavior of create.bspline.basis when extend = FALSE. Note
that the number of breaks specified by breaks in create.bspline.basis corresponds to the num-
ber of interior knots plus 2 (the interior knots plus the two endpoints).

If knots is specified, the function does minimial argument checking. This is provided (mostly)
for testing purposes, though it can be used by individuals who want more customizability of knots
locations than the equidistant spacing provided by default.

circulate

Value

An object of class hero_bspline. It is a list specifying the necessary B-spline parameters.

Author(s)

Joshua French

See Also

knot.design

Examples

bspline(nbasis = 10)

circulate Circulate values of a vector

Description

The first n values of x are circulated from the front of x to the back of x.

Usage

circulate(x, n = 1)

Arguments

X vector of values

n The number of values to circulate
Value

The circulated vector

Author(s)

Joshua French

Examples

circulate(1:10, n = 2)
circulate(as.list(1:10), n = 2)

10

connect

connect Connect hero_radsplines

Description

connect joins multiple hero_radspline objects into a single hero_radspline. The e

Usage

connect(...)

Arguments

A sequence of hero_radspline objects from the radspline function.

Value

A combined hero_radspline

See Also

radspline

Examples

border = border.grid(lon, lat)
s1 = radspline(nknots = 36, border = border)

plot(s1)

s2 = radspline(nknots = 36 * 4, border = border,
width = 6)

plot(s2)

par(mfrow = c(1, 2))

plot(s1)

plot(s2)

par(mfrow = c(1, 1))
s = connect(s1, s2)
plot(s)

create.prepared_list 11

create.prepared_list Manually create a prepared_list

Description

create.prepared_list creates a prepared_list manually. Typically, one would simply use the
prepare.list, but there are situations where the data argument would be too large to read into
memory.

This function assumes that the user has used the assemble function to construct a list of the relevant
assembled_splines and manually computed Ytilde for a number of relevant data observations
and stored them in a list. The user should also manually compute the sum of the squared data
for each data observation. The user must also specify the dimensions of each data set (which are
assumed to be the same) as a vector and provide the relevant set of values at which each data object
is observed. See Examples.

Usage

create.prepared_list(assembled, x, Ytilde, sum_ysq, n)

Arguments
assembled A list of assembled_splines. See Examples.
X The list of arguments at which to evaluate each of the splines used to construct
assembled.
Ytilde A list of prepared_x objects.
sum_ysq A vector with the sum of squared data objects used to construct Ytilde.
n The dimensions of the data objects used to construct Ytilde.
Value
A prepared list.
Examples

generate and prepare 3d data
set.seed(9)
dat = generate.data3d()

list giving the locations to evaluate the basis functions
x = dat$x

construct a set of basic B-splines for each dimension
splines = default.splines(x)

construct assembled splines from splines list
a = assemble(splines, x)

imagine there are 4 data obsevations we want to smooth

12 default.evalargs

but that they can't be loaded into memory
Ytilde = vector("list"”, 4)
sum_ysq = numeric(4)

prepare each data set manually
notice the use of the assembled arguments so that
the splines are not "assembled” again for each data set
for(i in seq_along(Ytilde)) {
data = generate.data3d()$data3d
Ytilde[[i]] = prepare(data, x = x, splines = splines,
assembled = a)
sum_ysq[i] = sum(data*2)

}
n = dim(data)
p = create.prepared_list(assembled = a, x = x,
Ytilde = Ytilde, sum_ysq = sum_ysq,
n=n)
default.evalargs Construct default evalargs
Description

Create a default evalargs object based on data. This is just a list of sequences. If ni =dim(data)[i],
then the sequence for dimension i is seq(@, 1, len=ni).
Usage

default.evalargs(data)

Arguments

data A matrix or array-like object

Value

A list of equidistance sequences between 0 and 1

Author(s)

Joshua French

Examples

a = array(rnorm(10 * 11 * 12), dim = 10:12)
default.evalargs(a)

default.splines 13

default.splines Construct default splines

Description
Construct a list of hero_bsplines using the default values suggested by Ruppert, Wand, and Car-
roll (2003). Specifically, if r = range(evalargs[[i]]) and 1 = length(evalargs[[i]]), then

Ruppert, Wand, and Carroll (2003) suggest nknots =min(ceiling(1/4), 35) and the function
returns the hero_bspline for that dimension as bspline(r, nknots = nknots).

Usage

default.splines(evalargs)

Arguments

evalargs A list of equidistant sequences.

Value

A list of hero_bsplines.

Author(s)

Joshua French

References

Ruppert, D., Wand, M. P., & Carroll, R. J. (2003). Semiparametric Regression. Cambridge Univer-
sity Press. <doi:10.1017/CB09780511755453>

Examples

s1 = seq(@, 1, len = 10)
s2 = seq(@, 1, len = 20)
default.splines(list(s1, s2))

14 enhance

diffpen P-spline difference penalty

Description

P-spline difference penalty

Usage

diffpen(x, m = 2, sparse = TRUE)

Arguments

X A hero_bspline object produced by bspline.

m A positive integer indicating order of the difference penalty.

sparse A logical value indicating if the result should be a sparse version of the Matrix-class.
Value

A matrix or sparseMatrix-class object.

Author(s)

Joshua French

Examples

b = bspline(nbasis = 10)
diffpen(b)

enhance Enhance penalty value

Description

enhance enhances the sandwich smoother by choosing the optimal penalty value that minimizes
the GCV statistic. The optimx function is used to do the optimization.

enhance

Usage

enhance(
obj,

15

par = rep(0, length(obj$n)),
lower = rep(-20, length(par)),
upper = rep(20, length(par)),
method = "L-BFGS-B",

control = list(),

prepare = TRUE,

loggcv = FALSE,

Arguments

obj

par

lower, upper

method

control

prepare

loggcv

Details

A prepared_x object from a prepare function.

a vector of initial values for the parameters for which optimal values are to be
found. Names on the elements of this vector are preserved and used in the results
data frame.

Bounds on the variables for methods such as "L-BFGS-B” that can handle box
(or bounds) constraints.

The method to be used for optimization. The default is L-BFGS-B, which al-
lows for constraints on the parameters to optimize. See optimx for all available
methods.

A list of control parameters. See ‘Details’.

A logical value. The default is TRUE, indicating that a prepared_data object
should be returned. If FALSE, then the results of the call to the optimx function
is returned.

A logical value indicating whether the log of the GCV statistic should be used.
Useful for very large data sets. Default is TRUE.

Additional arguments to pass to to the optimx function.

Internally, the loglambda2gcv is used as the objective function for the optimx function. Many
different optimization methods are available. The default is L-BFGS-B, which allows for constraints
on the parameters to optimize. Another excellent choice is the nlminb algorithm, which also allows
for parameter constraints.

Value

By default, a prepared_data object with the optimal loglambda values that minimize the GCV,
along with an additional component, results, that contains the optimization results.

Author(s)

Joshua French

16 enhance.grid

Examples

create b-splines
x1 = bspline(nbasis = 10)
x2 = bspline(nbasis = 12)

observed data locations
evalargl = seq(@, 1, len = 60)
evalarg2 = seq(@, 1, len = 80)

construct "true” data
mu = matrix(@, nrow = 60, ncol = 80)
for(i in seq_len(60)) {
for(j in seq_len(80)) {
muli, jl = sin(2*pi*(evalargli[i]-.5)"3)*cos(4*xpixevalarg2[j])
}
3
construct noisy data
data = mu + rnorm(60 * 80@)

obj = prepare(data, list(evalargl, evalarg2), list(x1, x2))
enhance(obj)

enhance.grid Enhance penalty value using grid search

Description

enhance.grid enhances the sandwich smoother by choosing a optimal penalty value to lower the
GCV statistic. A grid search algorithm is utilized based on the each row of par. The penalty values
(assumed to be on the log scale) are passed to the loglambda2gcv function. If prepare is TRUE,
then obj is returned with the penalty values that minimize the GCV statistic during the grid search.
Otherwise, the complete results of the grid search are returned.

Usage
enhance.grid(obj, par, prepare = TRUE, loggcv = FALSE, ..., cl = NULL)
Arguments
obj A prepared_x object from a prepare function.
par A matrix-like object (i.e., !is.null(dim(par)))). Each row contains a set of
parameter values for which the GCV statistic should be computed. The number
of columns of par should match the dimensionality of obj, i.e, should equal
length(obj)$n. If missing, the default choices are a row of -20s, a row of Os,
and a row of 20s.
prepare A logical value. The default is TRUE, indicating that a prepared_data object

should be returned. If FALSE, then the results of the call to the optimx function
is returned.

enlarge 17

loggev A logical value indicating whether the log of the GCV statistic should be used.
Useful for very large data sets. Default is TRUE.

Additional arguments to pass to to the loglambda2gcv function.

cl A cluster object created by makeCluster, or an integer to indicate number of
child-processes (integer values are ignored on Windows) for parallel evaluations
(see Details on performance). It can also be "future” to use a future backend
(see Details), NULL (default) refers to sequential evaluation.

Value

By default, a prepared_# object with the optimal 1loglambda values that minimize the GCV, along
with an additional component, results, that contains the optimization results. Otherwise, the
complete results of the grid search.

Author(s)

Joshua French

Examples

create b-splines
b1 = bspline(nbasis = 10)
b2 = bspline(nbasis = 12)

observed data locations
x1 = seq(@, 1, len = 60)
x2 = seq(@, 1, len = 80)

construct "true” data
mu = matrix(@, nrow = 60, ncol = 80)
for(i in seq_len(60)) {
for(j in seq_len(80)) {
muli, jl = sin(2*xpi*(x1[i]-.5)*3)*cos(4*pi*x2[j])
3
3

construct noisy data
data = mu + rnorm(60 x 80)

obj = prepare(data, list(x1, x2), list(b1, b2))
enhance.grid(obj, prepare = FALSE)

enlarge Enlarge spatial domain

Description

Enlarge the spatial domain of a SpatialPolygons-class object. If width isn’t specified, then 10%
of the maximum distance between the points specified by the bounding box is used. The st_buffer
function is used to enlarge x.

18 generate.data2d

Usage
enlarge(x, width, ...)
Arguments
X A SpatialPolygons-class object defining the border(s) of the spatial domain.
width The width to enlarge the study area. Distance from original geometry to include
in the new geometry. Negative values are allowed.
Additional arguments to pass to st_buffer.
Value

An object of class hero_enlarge. This is simply a list with eborder (the enlarged border), border
(the border of the original coordinates), and the width of the enlargement. eborder and border are
SpatialPolygons-class objects.

Author(s)

Joshua French

Examples

enlarge regular grid

create x and y defining square border
x = seq(min(lon), max(lon), length = 60)
y = seq(min(lat), max(lat), length = 80)
border = border.grid(x, y)

e = enlarge(border)

plot(e)

create x and y defininging an irregular grid
border2 = border.grid(lon, lat)

e2 = enlarge(border2)

plot(e2)

generate.data2d Generate 2d data

Description

Generate two-dimensional data related to the f1 function of Lu et al. (2012) (code from author).
Define n=c(60, 80). Then x[[i]l]1= (1:n[i])/n[i] -1/2/n[i]. These are the observed data
locations. For i and j spanning the full length of each element of x, mu2d[i, j1 =sin(2 * pi
(xCLT11I0i1 - .5) * 3) * cos(4 * pi x x[[2]11[j1). Lastly, data2d =mu2d + rnorm(prod(n)).

generate.data3d 19
Usage

generate.data2d()

generate_data2d()

generateData2d()

GenerateData2d()

Value
A list with components x, mu2d, and data2d. x is a list of sequences with length 60 and 80. mu2d
and data2d are matrices of size 60 by 80.

Author(s)

Joshua French. Based off code by Luo Xiao (see References).

References

Xiao, L., Li, Y. and Ruppert, D. (2013), Fast bivariate P-splines: the sandwich smoother. J. R. Stat.
Soc. B, 75: 577-599. <doi:10.1111/rssb.12007>

Examples

dat = generate.data2d()

generate.data3d Generate 3d data

Description

Generate data related to Section 7.2 of Lu et al. (2012) (code from author). Define n = c(128, 128,
24). Then x[[i]1] = (1:n[i]1)/n[i] - 1/2/n[i]. These are the observed data locations. For i, j,
k spanning the full length of each element of x, mu3d[i, j, k1 =x[[1J1[i]*2+x[[2]1[j]*2+
x[[3]11[kJ*2. Lastly, data3d =mu3d + @.5 * rnorm(n[1] * n[2] * n[3]).

Usage
generate.data3d()
generate_data3d()
generateData3d()

GenerateData3d()

20 hero

Value
A list with components x, mu3d, and data3d. x is a list of sequences with length 128, 128, and 24.
mu3d and data3d are arrays of size 128 by 128 by 24.

Author(s)

Joshua French. Based off code by Luo Xiao (see References).

References
Xiao, L., Li, Y. and Ruppert, D. (2013), Fast bivariate P-splines: the sandwich smoother. J. R. Stat.
Soc. B, 75: 577-599. <doi:10.1111/rssb.12007>

Examples

dat = generate.data3d()

hero Construct a hero sandwich smoother

Description

hero constructs a hero sandwich smoother based off off a prepared data object coming from the
prepare function.

Subclasses are added (e.g., hero_numeric, hero_matrix, hero_array, etc.) are added to the re-
turned object for plotting purposes.

A list is returned (and the data locations are not) for hero.prepared_list. Each element of the list
contains the coefficients and fitted values (if fitted is TRUE) for the respective data observation.

Usage

hero(x, ...)

S3 method for class 'prepared_array'
hero(x, ...)

S3 method for class 'prepared_list'
hero(x, ..., fitted = FALSE)

S3 method for class 'prepared_matrix'
hero(x, ...)

S3 method for class 'prepared_numeric'
hero(x, ...)

S3 method for class 'prepared_sequential'
hero(

hero 21

X’
export_list,
export_fun = base::saveRDS,
package = "base”,
call_args = list()
)

S3 method for class 'prepared_starray
hero(x, ...)

S3 method for class 'prepared_sts'

hero(x, ...)
Arguments

X Data prepared via the prepare function.
Mostly not implemented. hero.prepared_list takes the fitted argument,
specifying whether the fitted values should be returned.

fitted A logical value indicating whether the fitted values should be computed. The
default is FALSE.

export_list A vector or list whose elements tell export_fun what files to export. The
length must match the number of observations, i.e., the number of elements
in x$Ytilde

export_fun A function that will write the results for each observation to file using the names
in export_list. Must only have the arguments object, which is what will be
saved and computed internally, and file, which is the name of the file that will
be saved. file will be one of the elements of export_list.

package A character string indicating the approach to use for the computations. The
choices are "base"”, "parallel”, "pbapply”, "future.apply”, or "Rmpi”.
The default is "base”. If package == "base", then mapply is used. If package
== "parallel”, then mcmapply is used. If package == "pbapply"”, then pblapply
is used. If codepackage == "future.apply"”, then future_mapply is used. If
codepackage == "Rmpi", then mpi.applyLB is used.

call_args A named list providing relevant arguments to mcmapply, pblapply, future_mapply,
or mpi.applyLB, depending on the package choice.

Value

A hero object with the smoothed data (fitted), the estimated coefficients for the basis functions
(coefficients), and the locations of the original data (x).

Author(s)

Joshua French.

22

References

knot.design

Xiao, L., Li, Y. and Ruppert, D. (2013), Fast bivariate P-splines: the sandwich smoother. J. R. Stat.

Soc. B, 75: 577-599. <doi:10.1111/rssb.12007>

French, Joshua P., and Piotr S. Kokoszka. "A sandwich smoother for spatio-temporal functional

data." Spatial Statistics 42 (2021): 100413.

Examples

create b-splines
x1 = bspline(nbasis = 10)
x2 = bspline(nbasis = 12)

observed data locations
evalargl = seq(@, 1, len
evalarg2 = seq(@, 1, len

60)
80)

construct "true” data
mu = matrix(@, nrow = 60, ncol = 80)
for(i in seq_len(60)) {
for(j in seq_len(80)) {
muli, j] = sin(2*pi*(evalargl1[i]-.5)"3)*cos(4xpixevalarg2[j])
3
3

construct noisy data
data = mu + rnorm(60 * 80@)

obj = prepare(data, list(evalargl, evalarg2), list(x1, x2))
obj = enhance(obj)

sandmod = hero(obj)

plot(sandmod)

knot.design Design knot/breakpoint spacing

Description

See Details of bspline for additional information about arguments.

Usage

knot.design(
rangeval = 0:1,
nbasis,
nknots,
norder = 4,
extend = FALSE,
interior = FALSE

knot.design

knot_design(

)

rangeval = 0:1,
nbasis,

nknots,

norder = 4,
extend = FALSE,
interior = FALSE

knotDesign(

)

rangeval = 0:1,
nbasis,

nknots,

norder = 4,
extend = FALSE,
interior = FALSE

KnotDesign(

rangeval = 0:1,
nbasis,

23

nknots,

norder

extend = FALSE,

interior

Arguments

rangeval

nbasis

nknots

norder

extend

interior

Value

FALSE

A numeric vector of length 2 defining the interval over which the functional data
object can be evaulated. The default value is @: 1.

An integer specifying the number of basis functions to construct. This is closely
linked to the number of knots (nknots), and nknots = nbasis - norder.

The number of *interior* knots. See Details.

An integer specifying the order of the B-splines, which is one higher than their
degree. The default is 4, which corresponds to cubic splines.

Should the knots stop at the endpoints specified by rangeval? Default is FALSE.
See Details.

A logical value specifying whether only interior knots should be returned. De-
fault is FALSE.

An ascending sequence of univarite knot locations.

24 kronecker.seq

Examples

if (requireNamespace("fda", quietly = TRUE)) {

b = fda::create.bspline.basis(nbasis = 10)

interior knots only

bknots = b$params

should match

knots = knot.design(nbasis = 10, interior = TRUE)
all.equal(bknots, knots)

3

kronecker.seq A sequence of kronecker products

Description

A sequence of kronecker products

Usage
kronecker.seq(X, FUN = "x" make.dimnames = FALSE, ...)
kronecker_seq(X, FUN = "x" make.dimnames = FALSE, ...)
kroneckerSeq(X, FUN = "%" make.dimnames = FALSE, ...)
KroneckerSeq(X, FUN = "x" make.dimnames = FALSE, ...)
Arguments
X A list of numeric matrices or arrays
FUN a function; it may be a quoted string.

make.dimnames Provide dimnames that are the product of the dimnames of X and Y.

optional arguments to be passed to FUN.

Value

A matrix or array

Examples
x1 = matrix(rnorm(16), nrow = 4)
x2 = matrix(rnorm(25), nrow = 5)

x3 = matrix(rnorm(36), nrow = 6)

x4 = matrix(rnorm(49), nrow = 7)

p1 = X1 %Xx% X2 %X% X3 %x% x4

p2 = kronecker.seq(list(x1, x2, x3, x4))
all.equal(pl, p2)

loglambda2gcv 25

loglambda2gcv Determine GCV statistic

Description
loglambda2gcv uses a vector of penalty values to evaluate the GCV statistic for a prepared_response
object.

Usage
loglambda2gcv(loglambda, obj, loggcv = FALSE)

Arguments
loglambda A vector of penalty values (assumed to be on a natural logarithmic scale) for
computing the GCV.
obj A prepared_x object from a prepare function.
loggev A logical value indicating whether the log of the GCV statistic should be re-
turned. The default is FALSE.
Details

Though this function can be used by the user, it is basically an internal function used to find the
value of loglambda minimizing the GCV statistic.

Value

The scalar GCV statistic

See Also

prepare

Examples

nl = 10
b1 bspline(nbasis = 10)
x1 seq(@, 1, len = n1)
n2 = 20
x2 = seq(@, 1, len = n2)
b2 = bspline(nbasis = 12)
construct "true” data
mu = matrix(@, nrow = n1, ncol = n2)
for(i in seq_len(n1)) {

for(j in seq_len(n2)) {

muli, jl = sin(2*xpi*(x1[i]-.5)*3)*cos(4*pi*x2[j])

}

26 plot.hero_adjacent

image(mu)

construct noisy data

data = mu + rnorm(n1 * n2)

x = list(x1, x2)

splines = list(b1, b2)

obj = prepare(data, x, splines)
loglambda2gcv(c(@, @), obj)

ludata Data for f1 function from Lu et al. (2012)

Description

Data related to the fl function in Lu et al. (2012). Define n1 =60 and x = seq_len(n1)/n1 -
1/2/n1. Similarly, define n2 =80 and z = seq_len(n2)/n2 - 1/2/n2. The fl function is de-
fined as sin(2 x pi * (x[i] - .5) * 3) * cos(4 * pi *x z[j]), where i in seq_along(x) and j in
seq_along(z). The result of this function is stored in lutruef1. Using set.seed(3) and adding
rnorm(6@ * 80) to lutruef1 results in lunoisyf1.

Usage
data(ludata)

Format

The sequences x and z, the lutruef1 data matrix with 60 rows and 80 columns, and the lunoisyf1
data matrix with 60 rows and 80 columns.

plot.hero_adjacent Plot a hero_adjacent object

Description

Plot a hero_adjacent object. x$nbrs is used to construct a sparseMatrix-class object. The
default behavior is to plot the sparse matrix using the image function. However, if the igraph
package is installed, a graph is made using graph_from_adjacency_matrix and then plotted using
plot.igraph.

Usage
S3 method for class 'hero_adjacent'
plot(x, ...)

Arguments
X A hero_adjacent object

Additional arguments passed to image, or if the igraph package is installed,
plot.igraph.

plot.hero_bspline 27

Examples

coords = expand.grid(1:4, 1:4)
a = adjacent(coords, digits = 1)
plot(a)

plot.hero_bspline Plot a hero_bspline object

Description

Plots basis functions specified by results of bspline.

Usage
S3 method for class 'hero_bspline'
plot(x, nderiv = oL, type = "1", kcol = NULL, ...)
Arguments
X An object of class hero_bspline to be plotted.
nderiv An integer value specifying the derivative order of the B-splines. The default is
0.
type character string (length 1 vector) or vector of 1-character strings indicating the

type of plot for each column of y, see plot for all possible types. The first
character of type defines the first plot, the second character the second, etc.
Characters in type are cycled through; e.g., "pl” alternately plots points and
lines.

kcol Color for vertical lines drawn at interior knots. Default is NULL, meaning no
lines are drawn.

Additional graphical parameters passed to matplot function.

See Also
bspline

Examples

X = bspline(nbasis = 10, extend = FALSE)

plot(x)

plot(x, nderiv = 1)

plot(x, kcol = "grey"”) # plot vertical lines at knots

extend knots passed rangeval
x2 = bspline(nbasis = 10, extend = TRUE)
plot(x2, kcol = "grey")

compare to plot.fd

28

plot.hero_enlarge

if (requireNamespace("fda", quietly = TRUE)) {
x3 = fda::create.bspline.basis(nbasis = 10)

par(mfrow

c(2, 1)

plot(x, kcol = "grey")
title("plot.hero_bspline”)

}

plot(x3)
title("plot.fd")

plot.hero_enlarge

Plot a hero_enlarge object

Description

Plot the enlarged and original border defined be a set of coordinates.

Usage

S3 method for class 'hero_enlarge'

plot(x,

Arguments

X

blist

See Also

., blist = list(col = "grey"))

An object of class hero_enlarge.

Additional graphical parameters passed to the plotting method for SpatialPolygons-class
for x$eborder

A list of additional graphical parameters passed to the plotting method for SpatialPolygons-class
for x$border.

SpatialPolygons-class

Examples

b = border.grid(lon, lat)

e = enlarge(b)
plot(e)

plot.hero_matrix 29

plot.hero_matrix Plot a hero object

Description
Plot the smoothed data produced by the hero function. The behavior of the function changes
depending on the subclass of the hero object. See Details.

Usage

S3 method for class 'hero_matrix'
plot(x, xlab = "", ylab = "", ...)

S3 method for class 'hero_numeric'

plot(x, xlab = "", ylab = "", type = "1", ...)
Arguments

X An object of class hero.

x1lab x-axis label

ylab y-axis label
Additional graphical parameters passed to the relevant plotting function. See
Details.

type The plot type (when x is of subclass hero_numeric). Default is type = "1".

Details

If x has subclass hero_numeric, then the traditional plot function is used to plot the smoothed
data, with type = "1".

If x has subclass hero_matrix, then image is used to plot the smoothed data, or if the autoimage
package is installed, autoimage is used to plot the smoothed data.
See Also

hero

Examples

create b-splines
x1 = bspline(nbasis = 10)
x2 = bspline(nbasis = 12)

observed data locations
evalargl = seq(@, 1, len
evalarg2 = seq(@, 1, len

60)
80)

construct "true” data

30 plot.hero_radspline

mu = matrix(@, nrow = 60, ncol = 80)
for(i in seq_len(60)) {
for(j in seq_len(80)) {
muli, j] = sin(2*pi*(evalargl1[i]-.5)"3)*cos(4*xpixevalarg2[j])
}
3

construct noisy data
data = mu + rnorm(60 * 80)

obj = prepare(data, list(evalargl, evalarg2), list(x1, x2))
obj = enhance(obj)

sandmod = hero(obj)

plot(sandmod)

plot.hero_radspline Plot a hero_radspline

Description

Plot a hero_radspline to compare the knots to the observed data locations.

Usage

S3 method for class 'hero_radspline'’
plot(

X,

blist = list(col = "grey"),

glist = list(col = seqg_along(x$grid) + 1, pch = seqg_along(x$grid)),
)
Arguments
X A hero_radspline object.
blist A list to pass the plot method associated with SpatialPolygons-class when
plotting x$border. The default is a grey-colored polygon.
glist A list to pass the plot method associated with SpatialPoints-class when plot-
ting each element of the list x$grid. A basic color scheme and point style is
automatically chosen if none is supplied.
Additional arguments to pass the plot method associated with SpatialPolygons-class
when plotting x$eborder.
Details

If the default plotting styles for x$grid are to be changed, the user can either choose a single
color/style that is replicated for each element of x$grid or supply a vector which has length match-
ing length{x$grid}. See Examples.

poly2SpatialPolygons

Author(s)

Joshua French

See Also

radspline

Examples

border = border.grid(lon, lat)
r = radspline(nknots = c(36, 36 * 4), border =

default color scheme
plot(r)

change color and point styles of points,
and background of original domain

plot(r, blist = list(col
glist = list(col
pch

"yellow"),
c("blue”, "orange"),
3:4))

border)

31

poly2SpatialPolygons Convert simple polygon to a SpatialPolygons object

Description

This function takes a simple polygon and attempts to convert it to a SpatialPolygons object. This

list is assumed to have components x and y that define the boundary of the polygon.

Usage

poly2SpatialPolygons(x, ID = "border")

Arguments

X A list with components x and y.

ID The name of the resulting polygon. Default is "border”.
Value

A SpatialPolygons object

Author(s)

Joshua French

32

Examples

angle = seq(@, 2 x pi, len =

poly = list(x = cos(angle), y = sin(angle))

plot(poly, type = "1", asp =

sppoly = poly2SpatialPolygons(poly)

library(sp)

plot(sppoly, axes = TRUE, asp = 1)

100)

D)

precompute

precompute Precompute objects

Description

This function is an internal function to compute objects needed for fast implementation of the

sandwich smoother. It is meant to be an internal function, so use this at your own risk.

Usage

precompute(B, P, m)

Arguments
B A matrix of basis functions
P A penalty matrix
m Difference order of P-spline
Value

A list of needed objects

Examples

object = bspline(nbasis = 10)
sequence to evaluate
evalarg = seq(@, 1, len = 11)
penalty matrix

D = diffpen(object)

P = Matrix::crossprod(D)

B = predict(object, evalarg)
stuff = precompute(B, P, m =

2)

predict.hero 33

predict.hero Predict method for hero object

Description

Predict new values based on object produced by the hero function.

Usage
S3 method for class 'hero'
predict(object, newB, ...)
Arguments
object A hero_bspline object created by bspline
newB A vector or list containing the evaluated basis functions for the observations for

which predictions are desired.

Not currently implemented.

Value

A matrix of the appropriate size

Examples

create b-splines
x1 = bspline(nbasis
x2 = bspline(nbasis

10)
12)

observed data locations
evalargl = seq(@, 1, len = 60)
evalarg2 = seq(@, 1, len = 80)

construct "true” data
mu = matrix(@, nrow = 60, ncol = 80)
for(i in seq_len(60)) {
for(j in seq_len(80)) {
muli, j] = sin(2*xpi*(evalargli[i]-.5)"3)*cos(4*xpixevalarg2[j])
3
3

construct noisy data
data = mu + rnorm(60 * 80)

obj = prepare(data, list(evalargl, evalarg2), list(x1, x2))

obj = enhance(obj)

sandmod = hero(obj)

plot(sandmod)

newbl = predict(x1, newx = seq(@, 1, len = 100))
newb2 = predict(x2, newx = seq(@, 1, len = 100))

34

newB = list(newb1, newb2)
p = predict(sandmod, newB = list(newbl, newb2))

predict.hero_bspline

predict.hero_bspline Predict method for hero_bspline object

Description

Predicted values based on object created by bspline.

Usage
S3 method for class 'hero_bspline'
predict(object, newx, nderiv = @L, sparse = TRUE, ...)
Arguments
object A hero_bspline object created by bspline
newx A numeric vector of values at which to evaluate the B-spline functions or deriva-
tives.
nderiv An integer value specifying the derivative order of the B-splines. The default is
0.
sparse A logical value indicating if the result should be a sparse version of the Matrix-class.

Not currently implemented.

Value

An n x k matrix (or Matrix-class object if sparse = TRUE), where n is the number of values in
newx and k is the number of basis functions in object. Each row gives the predicted values of the

basis functions for the appropriate value of newx.

See Also

bspline

Examples

b
p

bspline(nbasis = 10)
predict(b, newx = seq(@, 1, len = 101))

predict.hero_radspline 35

predict.hero_radspline
Predict method for a hero_radspline

Description

Predicted values based on object created by radspline.

Usage
S3 method for class 'hero_radspline’
predict(object, newx, sparse = TRUE, longlat = FALSE, join = TRUE, ...)
Arguments
object A hero_radspline object created by radspline.
newx A numeric matrix at which to evaluate the radial basis splines functions.
sparse A logical value indicating if the result should be a sparse version of the Matrix-class.
longlat Use Euclidean (FALSE) or Great Circle (WGS84 ellipsoid) distance (TRUE). De-

fault is FALSE.

join A logical value. TRUE, the default, indicates that the predictions from each set of
radial basis functions should be joined column-wise. Otherwise, a list with the
predictions from each set of basis functions is returned.

Not currently implemented.

Value

An n X k matrix (or Matrix-class object if sparse = TRUE), where n is the number of rows in
newx and k is the number of basis functions in object. Each row gives the predicted values of each
newx value evaluated at each of the basis functions.

See Also

radspline

Examples

border = border.grid(lon, lat)

r = radspline(nknots = c(36, 36 * 4), border = border)
newx = cbind(c(lon), c(lat))

p = predict(r, newx)

36 prepare.array

prepare Prepare data for sandwich smooth

Description

A generic function to prepare various types of data. See the functions linked in See Also.

Usage

prepare(data, ...)

Arguments

data The data to prepare

Not implemented

Value

A prepared object

See Also

prepare.numeric, prepare.matrix, prepare.array, prepare.sts, prepare.starray

prepare.array Prepare data array for sandwich smooth

Description

prepare.array prepares a data matrix for the sandwich smooth. The dimensionality of data and
the length of x must match. Specifically, length(dim(data)) must equal length(x). The dimen-
sionality of data and the length of splines must match. Specifically, length(dim(data)) must
equal length(splines).

Usage

S3 method for class 'array'
prepare(data, x, splines, m = 2, sparse = TRUE, ...)

prepare.array 37

Arguments
data A data array
X A list of univariate, equidistant sequences. These should correspond to where
the data are observed. Equidistant spacing between 0 and 1 is assumed if not
supplied. See Details.
splines A list of spline-related objects, e.g., produced by bspline. Splines are automat-
ically created if not supplied. See Details.
m A positive integer indicating order of the difference penalty.
sparse A logical value indicating if the result should be a sparse version of the Matrix-class.
Not currently implemented.
Details
For a typical sandwich smooth, for data with d dimensions, Y[i1, i2, ...,id] is assumed to be

observed at position x[[1]1[i1], x[[2]1][i2], ..., x[[d]1]1[id]. Consequently, dim(data)[i]
should equal length(x[[i]]) for all i in seq_len(d).

If x is not supplied, then default.evalargs is used to create it automatically.

If splines is not supplied, then a B-spline basis is automatically created for each dimension using
default.splines.
Value

A prepared_array object.

Author(s)

Joshua French. Based off code by Luo Xiao (see References).

References

Xiao, L., Li, Y. and Ruppert, D. (2013), Fast bivariate P-splines: the sandwich smoother. J. R. Stat.
Soc. B, 75: 577-599. <doi:10.1111/rssb.12007>

See Also

bspline, default.evalargs, default.splines

Examples

generate and prepare 3d data
set.seed(9)

dat = generate.data3d()

obj = prepare(dat$data3dd, x = dat$x)

38

prepare.list

prepare.list

Prepare data array for sandwich smooth

Description

prepare.list prepares a list of data for the sandwich smooth. The class of each element of the
list must be identical. The dimensionality of datal[[i]] and the length of x must match. Specifi-
cally, length(dim(datal[i]])) mustequal length(x). The dimensionality of datal[[i]] and the
length of splines must match. Specifically, length(dim(datal[[i]])) mustequal length(splines).
Note: If the splines are preassembled, these can be passed using the argument assembled so that
this computation is not reperformed.

Usage
S3 method for class 'list'
prepare(data, x, splines, m = 2, sparse = TRUE, ...)
Arguments
data A list of numeric, matrix, or array objects.
X A list of values at which to evaluate the basis functions. See Examples and
Details.
splines A list of spline objects (hero_bspline and hero_radspline). See Examples
and Details.
m A positive integer indicating order of the difference penalty.
sparse A logical value indicating if the result should be a sparse version of the Matrix-class.
Not currently implemented.
Details

This function applies the functions prepare.numeric, prepare.matrix, and prepare.array to
each element of the list, so relevant restrictions in the arguments may be found there.

Value

A prepared_list object.

Author(s)

Joshua French.

References

Xiao, L. , Li, Y. and Ruppert, D. (2013), Fast bivariate P-splines: the sandwich smoother. J. R. Stat.
Soc. B, 75: 577-599. <doi:10.1111/rssb.12007>

prepare.matrix 39

See Also

prepare.numeric, prepare.matrix, prepare.array

Examples

generate and prepare 3d data

set.seed(9)

dat = lapply(1:3, function (i) generate.data3d())
x = dat[[1]11$x

data = lapply(dat, getElement, name = "data3d")
obj = prepare(data, x = x)

h = hero(obj)

prepare.matrix Prepare data matrix for sandwich smooth

Description

prepare.matrix prepares a data matrix for the sandwich smooth. The dimensionality of data
and the length of x must match. Specifically, length(dim(data)) must equal length(x). The
dimensionality of data and the length of splines must match. Specifically, length(dim(data))
must equal length(splines).

Usage

S3 method for class 'matrix'
prepare(

data,

X,

splines,

m= 2,

sparse = TRUE,

spdiffpen = TRUE,

digits = 1,
sts = FALSE,
)
Arguments
data A data matrix.
X A list of values at which to evaluate the basis functions. See Examples and
Details.
splines A list of spline objects (hero_bspline and hero_radspline). See Examples

and Details.

m A positive integer indicating order of the difference penalty.

40 prepare.matrix

sparse A logical value indicating if the result should be a sparse version of the Matrix-class.

spdiffpen A logical value indicating whether spdiffpen should be used to compute the
difference penalty. The default is FALSE.

digits The number of digits to use when applying round to the distances.

sts A logical value indicating whether data is a spatial time series, in which each

row of data corresponds to a distinct spatial location and each column corre-
sponds to a distinct time.

Not currently implemented.

Details

For a typical sandwich smooth (sts = FALSE), for two-dimensional data, datali, jJ is assumed to
be observed at position x[[1]1J[i], x[[2]1[j]. If the data are a spatial time series, then the first
dimension is assumed to refer to space, and the second dimension to time. In that case, datali, j]
is assumed to be observed at location x[[1]][i,] and time x[[2]1][j].

If sts = TRUE, then x[[1]] should be a matrix of spatial coordinates, with each row corresponding
to a location, and x[[2]] should be a vector with the observation times.

If x is not supplied, then default.evalargs is used to create it automatically. This is only valid
when sts = FALSE.

If splines is not supplied, then a B-spline basis is automatically created for each dimension using
default.splines. This is only valid when sts = FALSE.
Value

A prepared_matrix object.

Author(s)

Joshua French. Based off code by Luo Xiao (see References).

References

Xiao, L., Li, Y. and Ruppert, D. (2013), Fast bivariate P-splines: the sandwich smoother. J. R. Stat.
Soc. B, 75: 577-599. <do0i:10.1111/rssb.12007>

See Also

bspline, radspline, diffpen, spdiffpen, default.evalargs, default.splines

Examples

prepare Lu et al. (2012) noisy f1 data
data(ludata)
obj = prepare(lunoisyf1, x = list(x, z))
h = hero(obj)

precompute some stuff
splines = default.splines(list(x, z))

prepare.numeric 41

1 = assemble(splines, x = list(x, z))

obj2 = prepare(lunoisyf1, x = list(x, z),
splines = splines, assembled = 1)

h2 = hero(obj2)

all.equal(h, h2)

prepare.numeric Prepare data vector for sandwich smooth

Description

prepare.vector prepares a data vector for the sandwich smooth. Unlike the other prepare.=*
functions, x and splines do not need to be lists since the data are 1-dimensional.

Usage
S3 method for class 'numeric'
prepare(data, x, splines, m = 2, sparse = TRUE, ...)
Arguments
data A numeric data vector
X A sequence of equidistant values corresponding to where the data are observed.
Equidistant spacing between 0 and 1 is assumed if not supplied. See Details.
splines A spline-related object, e.g., produced by bspline. A spline is automatically
created if not supplied. See Details.
m A positive integer indicating order of the difference penalty.
sparse A logical value indicating if the result should be a sparse version of the Matrix-class.

Not currently implemented.

Details

If x is not supplied and n is the length(data), then the function automatically sets x = seq(@, 1,
length =n).

If splinesis not supplied, and n is the length(data), then the function automatically sets splines
=bspline(range(x), nknots =min(ceiling(n/4), 35)).

Value

A prepared_numeric object.

Author(s)

Joshua French. Based off code by Luo Xiao (see References).

42 prepare.starray

References

Xiao, L., Li, Y. and Ruppert, D. (2013), Fast bivariate P-splines: the sandwich smoother. J. R. Stat.
Soc. B, 75: 577-599. <do0i:10.1111/rssb.12007>

Ruppert, D., Wand, M. P., & Carroll, R. J. (2003). Semiparametric Regression. Cambridge Univer-
sity Press. <doi:10.1017/CB09780511755453>

See Also

bspline, default.evalargs, default.splines

Examples

create data

= 160

= seq(@, 4 *x pi, len = n)
"true” data

mu = sin(x)

plot true data

plot(x, mu, type = "1")

construct noisy data
set.seed(4)

data = mu + rnorm(n)

X S

construct spline
splines = bspline(c(@, 4 * pi), nknots = 20)
prepare/enhance data
obj = prepare(data, x, splines)
obj = enhance(obj)
sandmod = hero(obj)
plot(sandmod, ylim = range(data), 1ty
lines(x, data, col = "lightgrey")
lines(x, mu)
legend("bottomleft”,
legend = c("smoothed”, "true"”, "observed"),
1ty = c(2, 1, 1),
col = c("black”, "black”, "grey"))

2)

prepare.starray Prepare starray for sandwich smooth

Description

prepare.starray prepares a spatio-temporal array for the sandwich smooth.

Usage

S3 method for class 'starray'
prepare(data, x, y, times, rs, bs, m = 2, sparse = TRUE, spdiffpen = TRUE, ...)

prepare.starray

Arguments

data

X

y
times
rs

bs

m
sparse

spdiffpen

Value

43

An starray

A vector or matrix of x coordinates. See Details.

A vector or matrix of y coordinates. See Details.

The vector of times at which the data were observed.

A hero_radspline produced by the radspline or connect functions.

A hero_bspline produced by the bspline function.

A positive integer indicating order of the difference penalty.

A logical value indicating if the result should be a sparse version of the Matrix-class.

A logical value indicating whether spdiffpen should be used to compute the
difference penalty. The default is FALSE.

Not currently implemented.

A prepared_starray object.

Author(s)

Joshua French. Based off code by Luo Xiao (see References).

References

Xiao, L., Li, Y. and Ruppert, D. (2013), Fast bivariate P-splines: the sandwich smoother. J. R. Stat.
Soc. B, 75: 577-599. <doi:10.1111/rssb.12007>

See Also

bspline, radspline

Examples

construct basis functions
border = border.grid(lon, lat)
rs = radspline(nknots = 36, poverlap = 3,

border = border, longlat = TRUE)

bs = bspline(c(1, 30), nbasis = 6)
data = starray(tasmax)
p = prepare(data, x = lon, y = lat, times = 1:30,

rs = rs, bs = bs)

44 prepare.sts

prepare.sts Prepare starray for sandwich smooth

Description

prepare.starray prepares a spatio-temporal array for the sandwich smooth.

Usage

S3 method for class 'sts'
prepare(

data,

coords,

times,

rs,

bs,

m= 2,

sparse = TRUE,

spdiffpen = TRUE,

Arguments
data An starray
coords A two-dimensional matrix-like object with non-NULL dimensions.
times The vector of times at which the data were observed.
rs A hero_radspline produced by the radspline or connect functions.
bs A hero_bspline produced by the bspline function.
m A positive integer indicating order of the difference penalty.
sparse A logical value indicating if the result should be a sparse version of the Matrix-class.
spdiffpen A logical value indicating whether spdiffpen should be used to compute the
difference penalty. The default is FALSE.
Not currently implemented.
Value

A prepared_sts object.

Author(s)

Joshua French. Based off code by Luo Xiao (see References).

prepare_sequential 45

References

Xiao, L., Li, Y. and Ruppert, D. (2013), Fast bivariate P-splines: the sandwich smoother. J. R. Stat.
Soc. B, 75: 577-599. <doi:10.1111/rssb.12007>

See Also

bspline, radspline

Examples

construct basis functions
border = border.grid(lon, lat)
rs = radspline(nknots = 36, poverlap = 3,
border = border, longlat = TRUE)
bs = bspline(c(1, 30), nbasis = 6)
splines = list(rs, bs)
data = as.sts(tasmax)
p = prepare(data, coords = chind(c(lon), c(lat)),
times = 1:30, rs = rs, bs = bs)

prepare_sequential Sequentially prepare data for sandwich smooth

Description

Sequentially prepare each observation for smoothing. It is assumed that each observation resides
in its own file and that do.call (import_fun,list(import_list[i])) will import the data asso-
ciated with observation i into memory. The import_fun argument should be a function after the
style of readRDS, where the object can be assigned a name once it is read in. The import_fun
argument should NOT be like 1oad, where the object loaded has a preassigned name.

Usage

prepare_sequential(
import_list,
import_fun = base::readRDS,
X,
splines,
assembled,
package = "base",
call_args = list(),

46 radspline
Arguments
import_list A vector or list whose elements tell import_fun which files to import.
import_fun A function that will read each observation into memory based on the elements
of import_list.
X The list of arguments at which to evaluate each of the splines used to construct
assembled.
splines A list of spline-related objects. Each element of splines corresponds to the set
of splines for the corresponding element of x.
assembled A list of assembled_splines. See Examples.
package A character string indicating the package to use for the computations. The
choices are "base”, "parallel”, "pbapply”, "future.apply”, and "Rmpi”.
The default is "base”, in which case a standard for loop is used. If package ==
"parallel”, then mclapply is used, which is only appropriate when mc. cores
is integer-valued or NULL. If package == "pbapply"”, then pblapply is used,
which automatically provides a progress bar. If package == "future.apply”,
then future_lapply is used. If package == "Rmpi", then mpi.applyLBis used.
call_args A named list providing relevant arguments to the mclapply, pblapply, future_lapply,
or mpi.applyLB depending on the value of package.
Not implemented
Value
A prepared_sequential object
Author(s)
Joshua P. French
See Also
prepare, mclapply, pblapply, future_lapply, mpi.applylLB
radspline Radial basis spline specification
Description

radspline specifies a set of radial basis splines. nknots is the approximate number of knots to
sample in the (usually) enlarged study area. If eborder is not provided, then eborder is auto-
matically constructed by enlarging the border object using the enlarge function and width. See
Details for additional information about sampling the knot locations.

radspline

Usage

radspline(
nknots,
border,
poverlap = 2,

k =2,
width,

47

type = "hexagonal”,
longlat = FALSE,

eborder,

Arguments

nknots

border

poverlap

k
width

type
longlat

eborder

Details

The approximate number of knots locations. Can be a vector of positive integers
for successive samplings. See Details.

A SpatialPolygons-class object. If eborder is not supplied, this will be used
to determine the sampling region for the knots. See Details.

The proportional amount of overlap (>=1) beyond the nearest neighbor knots.
Default is 2.

The order of the Wendland covariance function.
The width for the border enlargement.
The sampling type for spsample. The default is "hexagonal”.

A logical value indicating whether Great Circle distances should be used (TRUE)
or Euclidean distances (FALSE). The default is FALSE.

A SpatialPolygons-class object. The enlarged border from which the knots
will be selected. If not supplied, this is automatically computed using border
and width.

Additional arguments passed to spsample.

The spsample function is used to "automatically" select the knot locations within eborder. nknots
corresponds to the n argument in that function. A hexagonal sampling scheme is used by default,
but other options are available.

Great circle distance IS NOT used in sampling from the regular grid. This is computationally
expensive, so it has not been implemented. Great circle distance is only used when the constructed
hero_radspline is evaluated (and longlat = TRUE).

Value

A hero_radspline object.

48

Examples

border = border.grid(lon, lat)

r = radspline(nknots = c(36, 36 * 4), border = border)
default color scheme

plot(r)

change color and point styles of points,

and background of original domain

plot(r, blist = list(col = "yellow"),

rh

glist = list(col = c("blue”, "orange"),
pch = 3:4))
rh Rotated H-transform

Description

A rotation of the H-transform of the array a by a matrix x.

Usage
rh(x, a, transpose = FALSE)

Arguments

X A matrix-like object. See Details.

a An d-dimensional array

transpose A logical value. The Default is FALSE. If TRUE, then the transpose of A
Details

x should be matrix-like. This function has been tested when x is a matrix object or a Matrix.

Assuming a is of size ¢; X ¢ X - -+ X ¢q, then x is of size r X c;.

Value

A rotated, h-transformed array

Author(s)

Joshua French. Based off code by Luo Xiao (see References).

References

Currie, I. D., Durban, M. and Eilers, P. H. (2006), Generalized linear array models with applica-
tions to multidimensional smoothing. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 68: 259-280. <doi:10.1111/j.1467-9868.2006.00543.x>

Xiao, L., Li, Y. and Ruppert, D. (2013), Fast bivariate P-splines: the sandwich smoother. J. R. Stat.

Soc. B, 75: 577-599. <doi:10.1111/rssb.12007>

rh.seq 49

Examples

dim = c(10:12)

construct random array

a = array(rnorm(prod(dim)), dim = dim)

construct random matrix

x = matrix(rnorm(15 * dim[1]), nrow = 15)
rhxa = rh(x, a)

rh.seq Apply rh sequentially

Description
rh.seq sequentially applies the rh function to a. Specifically, if the length of x is d, then rh. seq(x,
a) is equivalent to rh(x[[d]], rh(x[[d - 117, ..., rh(x[[21], rh(xC[1]1], a))..)).

Usage

rh.seq(x, a, transpose = FALSE)

rh_seq(x, a, transpose = FALSE)

rhSeq(x, a, transpose = FALSE)

RhSeq(x, a, transpose = FALSE)
Arguments

X A list of matrix-like objects

a A matrix-like object (with dimensions)

transpose A logical value. The Default is FALSE. If TRUE, then the transpose of A
Value

A matrix or Matrix-class.

Examples

generate x, a

x = list(matrix(rnorm(100), nrow = 10),
matrix(rnorm(100), nrow = 10))

a = matrix(rnorm(100), nrow = 10)

three equivalent forms

rhs1 = rh.seq(x, a)

rhs2 = rh(x[[2]1], rh(x[[1]1]1, a))
rhs3 = x[[11] %*% a %*% t(x[[2]]1)

50 spdiffpen

check equality
all.equal(rhsl, rhs2)
all.equal(rhs1, rhs3)

spdiffpen Spatial difference penalty

Description

spdiffpen computes the mth order spatial difference penalty for a set of coordinates.

Usage
spdiffpen(coords, m = 1, sparse = TRUE, longlat = FALSE, digits = 1)

Arguments
coords A two-dimensional matrix-like object with non-NULL dimensions.
m A positive integer indicating order of the difference penalty.
sparse A logical value indicating if the result should be a sparse version of the Matrix-class.
longlat A logical value indicating whether Great Circle distances should be used (TRUE)
or Euclidean distances (FALSE). The default is FALSE.
digits The number of digits to use when applying round to the distances.
Details

adjacent is used to determine the first-order neighbors of each point in coords. The difference
penalties are then successively determined from that.

If sparse = TRUE, a sparseMatrix-class Matrix is returned when the penalty matrix is relatively
sparse (typically, at least half the entries are zero). Otherwise, something of the more general
Matrix-class is returned.

Value

A matrix or sparseMatrix-class object.

Examples

coords = expand.grid(1:4, 1:4)

first order difference penalty
d1 = spdiffpen(coords, digits = 1)
second order difference penalty

d2 = spdiffpen(coords, m = 2, digits = 1)
third order difference penalty
d3 = spdiffpen(coords, m = 3, digits = 1)

tasmax 51

tasmax Computer-generated temperature data

Description

The maximum daily surface air temperature (C) for the time period January 1, 1971 through January
30, 1971 for the ECP2-GFDL computer generated data made available through the North American
Regional Climate Change Assessment Program (NARCCAP).

Usage

data(tasmax)

Format

Matrices lon and lat and array tasmax.

References

Mearns, L.O., et al., 2007, updated 2014. The North American Regional Climate Change Assess-
ment Program dataset, National Center for Atmospheric Research Earth System Grid data portal,
Boulder, CO. Data downloaded 2018-06-13. <doi:10.5065/D6RN35ST>.

Mearns, L. O., W. J. Gutowski, R. Jones, L.-Y. Leung, S. McGinnis, A. M. B. Nunes, and Y. Qian.
"A regional climate change assessment program for North America." EOS, Vol. 90, No. 36, 8
September 2009, pp. 311-312. <doi:10.1029/2009E0360002>.

wrfg_cgcm3_tasmax Computer-generated temperature data

Description

The maximum daily surface air temperature (C) of land locations for the time period January 1,
2041 through January 30, 1941 for the WRFG-CGCM3 computer generated data made available
through the North American Regional Climate Change Assessment Program (NARCCAP). The
non-land locations are specified as NA.

Usage

data(wrfg_cgcm3_tasmax)

Format

Matrices wrfg_lon and wrfg_lat and array wrfg_cgcm3_tasmax.

52 wrfg_cgem3_tasmax

References

Mearns, L.O., et al., 2007, updated 2014. The North American Regional Climate Change Assess-
ment Program dataset, National Center for Atmospheric Research Earth System Grid data portal,
Boulder, CO. Data downloaded 2018-06-13. <doi:10.5065/D6RN35ST>.

Mearns, L. O., W. J. Gutowski, R. Jones, L.-Y. Leung, S. McGinnis, A. M. B. Nunes, and Y. Qian.
"A regional climate change assessment program for North America." EOS, Vol. 90, No. 36, 8
September 2009, pp. 311-312. <doi:10.1029/2009E0360002>.

Index

adjacent, 3, 50 graph_from_adjacency_matrix, 26
array, 5

as.matrix, 5 hero, 20, 29, 33

as.starray, 4

as.sts. 4 image, 26, 29

as_starray (as.starray), 4
as_sts (as.sts), 4
assemble, 5, 11
autoimage, 29

knot.design, 9, 22

knot_design (knot.design), 22
KnotDesign (knot.design), 22
knotDesign (knot.design), 22

border.grid, 7 kronecker.seq, 24

border_grid (border.grid), 7 kronecker_seq (kronecker.seq), 24
BorderGrid (border.grid), 7 KroneckerSeq (kronecker.seq), 24
borderGrid (border.grid), 7 kroneckerSeq (kronecker.seq), 24

bspline, 6, 8, 14, 22, 27, 33, 34, 37, 40—45 Jat (tasmax), 51

circulate, 9 load, 45
connect, 10, 43, 44 loglambda2gcev, 15-17, 25
create.bspline.basis, 8 lon (tasmax), 51
create.prepared_list, 11 ludata, 26

lunoisyf1 (ludata), 26
data.frame, 5 lutruef1 (ludata), 26
default.evalargs, 12, 37, 40, 42
default.splines, 13, 37, 40, 42 makeCluster, 17
diffpen, 14, 40 mapply, 2/

matplot, 27
enhance, 14 Matrix, 48
enhance.grid, 16 matrix, 5, 14, 50
enlarge, 17,46 mclapply, 46

mcmapply, 21
future_lapply, 46 mpi.applylLB, 21, 46

future_mapply, 21
optimx, I14-16
generate.data2d, 18

generate.data3d, 19 pblapply, 21, 46

generate_data2d (generate.data2d), 18 plot, 27, 29

generate_data3d (generate.data3d), 19 plot.hero_adjacent, 26

GenerateData2d (generate.data2d), 18 plot.hero_bspline, 27

generateData2d (generate.data2d), 18 plot.hero_enlarge, 28

GenerateData3d (generate.data3d), 19 plot.hero_matrix, 29

generateData3d (generate.data3d), 19 plot.hero_numeric (plot.hero_matrix), 29

53

54

plot.hero_radspline, 30
plot.igraph, 26
poly2SpatialPolygons, 31
precompute, 32
predict.hero, 33
predict.hero_bspline, 34
predict.hero_radspline, 35
prepare, 15, 16, 20, 21, 25, 36, 46
prepare.array, 36, 36, 38, 39
prepare.list, 11,38
prepare.matrix, 36, 38, 39, 39
prepare.numeric, 36, 38, 39, 41
prepare.starray, 36, 42
prepare.sts, 36, 44
prepare_sequential, 45

radspline, 10, 31, 35, 40, 43—45, 46
readRDS, 45

rh, 48, 49

rh.seq, 49

rh_seq (rh.seq), 49

RhSeq (rh.seq), 49

rhSeq (rh.seq), 49
round, 3, 6, 40, 50

SpatialPolygons, 7, 31
spdiffpen, 6, 40, 43, 44, 50
spsample, 47
st_buffer, 17, 18
starray, 43, 44

starray (as.starray), 4
sts (as.sts), 4

tasmax, 51

wrfg_cgcm3_tasmax, 51

wrfg_lat (wrfg_cgcm3_tasmax), 51
wrfg_lon (wrfg_cgcm3_tasmax), 51
x (ludata), 26

z (ludata), 26

INDEX

	adjacent
	as.starray
	as.sts
	assemble
	border.grid
	bspline
	circulate
	connect
	create.prepared_list
	default.evalargs
	default.splines
	diffpen
	enhance
	enhance.grid
	enlarge
	generate.data2d
	generate.data3d
	hero
	knot.design
	kronecker.seq
	loglambda2gcv
	ludata
	plot.hero_adjacent
	plot.hero_bspline
	plot.hero_enlarge
	plot.hero_matrix
	plot.hero_radspline
	poly2SpatialPolygons
	precompute
	predict.hero
	predict.hero_bspline
	predict.hero_radspline
	prepare
	prepare.array
	prepare.list
	prepare.matrix
	prepare.numeric
	prepare.starray
	prepare.sts
	prepare_sequential
	radspline
	rh
	rh.seq
	spdiffpen
	tasmax
	wrfg_cgcm3_tasmax
	Index

